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Abstract

Since the seminal studies by Osborne Reynolds in the nineteenth century,
pipe flow has served as a primary prototype for investigating the transition
to turbulence in wall-bounded flows. Despite the apparent simplicity of this
flow, various facets of this problemhave occupied researchers formore than a
century.Herewe review insights from three distinct perspectives: (a) stability
and susceptibility of laminar flow, (b) phase transition and spatiotemporal dy-
namics, and (c) dynamical systems analysis of the Navier—Stokes equations.
We show how these perspectives have led to a profound understanding of
the onset of turbulence in pipe flow. Outstanding open points, applications
to flows of complex fluids, and similarities with other wall-bounded flows
are discussed.
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Reynolds number
(Re): the Re for pipe
flow is defined as Re =
UD/ν, where U is the
mean velocity (also
known as the bulk
velocity),D is the pipe
diameter, and ν is the
kinematic viscosity

1. INTRODUCTION

“What we really cannot do is deal with actual, wet water running through a pipe. That is the
central problem which we ought to solve some day, and we have not.” This statement by Richard
Feynman (Feynman et al. 1963) captures how the seemingly simple motion of fluid through a pipe
can present such an immense scientific challenge. The central problem Feynman refers to arises
because the fluid flowing through a pipe can become turbulent, and we review here the recent
progress on understanding this appearance of turbulence—that is, the transition to turbulence.
The term transition can be interpreted in various ways. An engineer may be most interested in
the susceptibility of the laminar flow to disturbances and in the corresponding instability thresh-
old as a function of the flow rate (Figure 1a), while a physicist may think of the problem as a phase
transition and seek to determine the underlying critical point (Figure 1b), and a mathematician
may ask from where solutions other than the laminar state originate, how these subsequently give
rise to a chaotic dynamics, and how this dynamics is separated from laminar flow (Figure 1c). In
flows that exhibit linear instabilities, such as Rayleigh–Bénard convection or Taylor–Couette flow
driven by inner cylinder rotation, the situation is much simpler, as all these questions essentially
merge and are covered by the same framework. In pipe flow, in contrast, each aspect requires
an entirely different approach. Consequently, there is not just one single answer to the transi-
tion problem. In the following, we guide the reader through the different facets of the transition
problem for pipe flow, in each case explaining the perspective and goals and what has been learned.

2. EXPERIMENTS

Before delving into the three perspectives on transition, we review some key experimental ob-
servations and historically important works. Many of the concepts introduced in this section are
developed more fully throughout this review.

2.1. Natural Transition

Although Newtonian pipe flow is solely governed by the Reynolds number (Re), in laboratory
experiments the first appearance of turbulence can occur over a wide range of Re. Reynolds (1883)
could shift the onset of turbulence from Re≈ 2,000 to 13,000 by reducing disturbances at the pipe
inlet. In later experiments, flows could be held laminar, even up to Re= 100,000 (Pfenniger 1961).

To turbulence
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Three perspectives on the transition problem for pipe flow. (a) Perspective of susceptibility of linearly stable laminar flow. Small
disturbances to laminar flow may trigger a transition to turbulence beyond a certain Reynolds number Re, depending on both the level
and the form of the disturbance. (b) Perspective of phase transitions. Once triggered, turbulence near onset is a spatiotemporally
complex phenomenon whose critical behavior can be understood in the context of statistical phase transitions. (c) Perspective of the
Navier–Stokes equations as a dynamical system. Each point in phase space represents a full velocity field. Trajectories, fixed points, and
other sets in phase space provide a detailed understanding of the dynamics of turbulence.
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Hagen–Poiseuille
(HP) flow: fully
developed laminar
pipe flow. It is steady,
purely axial, and of
parabolic shape in the
radial direction,
UHP =U (r) ez, where
r and z are the radial
and axial directions,
respectively

Puff: a spatially
localized patch of
turbulence that
maintains nearly
constant form and
speed as it moves
down the pipe. Early
works referred to these
structures as flashes

We refer to the natural transition point as the perceived threshold Re for the onset of turbulence
in a given apparatus.

As discussed in Section 3, laminar Hagen–Poiseuille (HP) flow is stable to infinitesimal pertur-
bations up to very high, and possibly infinite,Re (Salwen et al. 1980,Meseguer & Trefethen 2003).
Therefore, an initially laminar flow becomes turbulent only as a consequence of perturbations of
finite amplitude, something Reynolds himself noted (Reynolds 1883). Because HP flow becomes
more susceptible to perturbations with increasing Re (see Figure 1a), noise and disturbances must
be reduced to avoid transition as Re increases. This is particularly true at the pipe entrance, where
sophisticated inlet designs, e.g., Wygnanski & Champagne (1973), are needed to realize laminar
flow at Re significantly exceeding 10,000. Imperfections and disturbance levels differ from one
experimental setup to the next, and thus so do the natural transition points.

Even if the entrance flow is held laminar, the profile at high Re may deviate significantly from
parabolic HP flow. Pipe lengths may be too short to allow the parabolic profile to sufficiently
develop. At high Re, even very small forces such as the Coriolis force can cause large distortions to
the profile (Draad & Nieuwstadt 1998). Consequently, the natural transition point is influenced
by many factors, and in principle even flows in two identical experimental setups can become
turbulent at considerably different Re due to being located at different latitudes or due to small
variations between the ambient and the fluid temperature, for example.

2.2. Reynolds Critical Point

Given that the natural transition point strongly depends on the experimental apparatus, Reynolds
(1883) proposed amethod for determining a reproducible critical point for the onset of turbulence
(please see sidebar titled Reynolds Critical Point). Reynolds’s idea was to disturb the flow in a
controlled manner and then determine whether, sufficiently far downstream, the flow was, or was
not, turbulent. This could be used to determine a precise critical Re beyond which turbulence is
first sustained indefinitely in suitably long pipes. This is a remarkable insight from the nineteenth
century since it is exactly how we now understand critical phenomena in systems with a coexisting
active state (turbulence) and an absorbing state (stable laminar flow). We address the Reynolds
critical point in Section 5.

2.3. Localized and Expanding Turbulence: Puffs and Slugs

At the lowest Re for which turbulence can be observed, it appears only in the form of localized
patches. Reynolds (1883) referred to these as flashes, but they are now commonly called puffs (see
Figure 2a,c,e). Puffs were observed in early experiments by Rotta (1956) and Lindgren (1957) and
were subsequently studied in more detail by Wygnanski & Champagne (1973). Turbulent puffs
can be detected experimentally down to Re as low as ≈1,500 (Hof et al. 2005). Puffs advect down-
stream at approximately the bulk flow velocity. They have a well-defined characteristic shape; the

REYNOLDS CRITICAL POINT

Reynolds (1883, pp. 957–58) proposed a definition of the critical point for the onset of turbulence.We quote directly
fromReynolds (1883), adding text in brackets as needed for clarity: “if in a tube of sufficient length the water were at
first admitted in a high state of disturbance, then as the water proceeded along the tube the disturbance would settle
down into a steady condition, which condition would be one of eddies [turbulent flow] or steady motion [laminar
flow], according to whether the velocity was above or below what may be called the real critical value.”
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Slug: a spatially
expanding patch of
turbulence that leads
to an overall increase
in the amount of
turbulence within the
flow

Intermittency factor
γ : the fraction of time,
at a fixed spatial
location, that a flow is
in the turbulent state

e
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f

Figure 2

Puffs and slugs. (a,b) Sketches reprinted from Reynolds (1883). (c,d) Experimental measurements of centerline velocities reprinted with
permission fromWygnanski & Champagne (1973) at (c) Re = 2,360 and (d) Re = 4,200. (e,f ) Streamwise-vorticity contours from optical
experimental measurements for Re = 2,000 and 3,000; images courtesy of Kerstin Avila and Bastian Bäuerlein. Panels a, c, and e
correspond to puffs, while panels b, d, and f correspond to the slug regime.

upstream front is marked by a sharp drop of the centerline velocity, while downstream the center-
line velocity gradually recovers to the laminar value (Figure 2c). With increasing Re, turbulence
delocalizes, and puffs give way to expanding patches of turbulence known as slugs (Wygnanski
& Champagne 1973, Darbyshire & Mullin 1995) (see Figure 2b,d,f ). Unlike puffs, the size of a
turbulent slug is determined by the perturbation that generated it and how long it has evolved
since its generation.

Further details on puffs and slugs appear throughout this review. They are historically impor-
tant, and moreover, it is impossible to discuss the transition to turbulence in pipe flow without
introducing these structures from the outset. The dynamics of puffs is crucial to determining the
Reynolds critical point, as we see in Section 5.

2.4. Perturbation Schemes

Employing perturbations to obtain reproducible behavior in experiments raises the questions of
how to most efficiently disturb the flow and whether the choice of disturbance type affects the
resulting flow states.

2.4.1. Continuous perturbations. Early experiments commonly used fixed static disturbance,
such as an orifice, at the pipe entrance. Such perturbations produced more consistent results
than those for natural transition, but they remain far from converging to the true critical velocity
anticipated by Reynolds (see Mukund & Hof 2018 for a discussion of suggested critical points).
Figure 3 shows experimental results by Rotta (1956) obtained using an orifice disturbance. The
intermittency factor γ , which quantifies the fraction of the flow that is turbulent, depends on
the measurement location along the pipe. With increasing downstream position, the amount of
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Intermittency factor γ as a function of Reynolds number Re measured at different locations x downstream of
the pipe inlet. The flow is continuously disturbed at the inlet. As the measurement location is moved
downstream, the entire curve shifts to the left and steepens. Replotted from Rotta (1956).

turbulence at a given Re increases, and curves shift to the left. This illustrates that, even several
hundred diameters downstream from the inlet, the flow has not settled to a steady condition.
These long development lengths are the key difficulty in determining the true critical point and
are caused by the excessive timescales that govern the dynamics in this regime, as discussed in
Section 5.

2.4.2. Impulsive perturbations. More recent experiments employed impulsive perturbations
(Wygnanski et al. 1975,Darbyshire &Mullin 1995), which are better suited for the study of transi-
tion. Such perturbations are typically realized by injection of a jet of fluid through one or multiple
holes in the pipe wall. Single pulses can be used to initiate localized turbulent structures, and such
experiments clarified the robustness of turbulent puffs as near equilibrium structures (Wygnanski
et al. 1975), at least up the typical observation times in experiments.

Impulsive perturbations also allow the timing of the pulses to be adjusted, thereby providing an
additional degree of freedom. Pulse length is crucial for determining the scaling of the turbulence
transition threshold (Hof et al. 2003), whereas pulse frequency can be used to study the interaction
between localized turbulent structures (Samanta et al. 2011). In particular, impulsive perturbations
can trigger turbulence far more efficiently at low Re than their continuous counterparts. As shown
in Figure 4, a continuous jet disturbance that locally causes very high fluctuation levels and a
strong distortion of the flow profile fails to trigger puffs, and the downstream flow is fully laminar.
An orifice inserted at the pipe inlet triggers puffs only sporadically and unpredictably, whereas an
impulsive disturbance can trigger puffs in a controlled manner and with much lower overall dis-
turbance amplitudes at the same Re. As argued by van Doorne &Westerweel (2009), puffs rely on
the energy input from the impinging upstream laminar flow, and a sufficiently developed parabolic
profile is required to keep the puff energetically sustained. Continuous perturbations distort the
flow profile throughout, and, if they are of large amplitude, the resulting velocity profiles are too
flat to sustain puffs. Counterintuitively, this causes flows to relaminarize (Kühnen et al. 2018).
Likewise, if the spacing between two puffs is too small (less than ∼20D), the downstream puff
is exposed to the wake (i.e., the flat, energetically depleted profile) of the upstream puff and de-
cays (Hof et al. 2010, Samanta et al. 2011). Hence, impulsive perturbations are a central tool for
experimental studies because they can trigger single puffs in a controlled way down to low Re.

Once puffs are triggered, they lose any memory of their initiation (Figure 4). While close to
the perturbation location the average flow structure depends on the perturbation type, at distances
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Figure 4

The left column shows the disturbance amplitude applied just downstream from the pipe inlet for four different perturbation types at
Reynolds number Re = 2,100. The perturbation types are (a) continuous jets, (b) orifice, (c) partial blockage of the pipe, and
(d) impulsive jets. The panels on the right show the corresponding pressure measurements at two downstream locations (250D and
2,500D). Spikes correspond to the passage of puffs. Figure adapted from Mukund & Hof (2018) with permission.

greater than 250D from the perturbation location, puffs are identical on average. This property
also applies to injection perturbations that initially give rise to hairpin vortex streets (van Doorne
2004, Peixinho & Mullin 2007, Philip & Cohen 2010, Wu et al. 2015). While hairpin vortex
structures can be triggered in the near wall region, as they progress further downstream either
they decay and relaminarize or they develop into turbulence (van Doorne 2004), i.e., puffs or
slugs, depending on Re.

3. INSTABILITY

We see from the above discussion how perturbations to laminar flow, whether natural or imposed,
play an important role in experimental studies of pipe flow. This leads us naturally to our first
perspective, also the oldest perspective, on the transition problem: that of hydrodynamic stability
(Figure 1a). We address the questions of which perturbations to laminar flow are most effective
at triggering turbulence and how the required perturbation amplitude for transition depends on
Re, i.e., how the threshold for transition depends on Re for a given perturbation type (Figure 1a).

3.1. Linear Approaches to the Problem of Transition

The stability of laminar HP flow UHP to a perturbation u can be investigated by decomposing
the full velocity field as v = UHP + u, and inserting this into the incompressible Navier–Stokes
equations, in dimensionless form

∂u
∂t

= −∇ p+ Re−1∇2u − (UHP · ∇ )u − (u · ∇ )UHP − (u · ∇ )u, 1a.

∇ · u= 0, 1b.
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Modal disturbance:
an eigenmode of the
Navier–Stokes
equations linearized
about the laminar flow.
Modal disturbances (or
modes) do not change
in shape as they grow
or decay exponentially
in time

Nonmodal
disturbance:
a superposition of
eigenmodes.
Nonmodal
disturbances change
shape as they evolve
and can be transiently
amplified before
ultimately growing or
decaying exponentially
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t = 20

t = 0 t = 2.5 t = 12.5t = 22

a   Linear optimal (streamwise constant)

c   Minimal seed (long pipe)

b   Nonlinear optimal (short pipe)
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Figure 5

(a) Optimal linear nonmodal disturbance of pipe flow at Reynolds number Re = 1,750 consisting of a pair of streamwise vortices ( faint
arrows), which over time generates one streak of high streamwise velocity and one of low streamwise velocity. (b) Corresponding
nonlinear optimal disturbance (t = 0) and its evolution for a pipe of length L = (π/2)D. In both panels, the color map runs from white
and yellow, corresponding to low-velocity streaks, to red and black, corresponding to high-velocity streaks. Panels a and b adapted from
Pringle & Kerswell (2010) with permission; copyright 2010 American Physical Society. (c) Snapshots of the temporal evolution of an
initial condition close to the minimal seed at Re = 2,400 in a 25D-long pipe. Panel c adapted from Kerswell (2018) with permission.

where p is the perturbation pressure (Drazin & Reid 2004). Even though Reynolds (1883) had
stressed that “the condition might be one of instability for disturbance of a certain magnitude
and stable for smaller disturbances,” early theoretical approaches to the transition problem, led by
luminaries such as Lord Rayleigh, Lord Kelvin, Lorentz, Orr, Sommerfeld, and Heisenberg, fo-
cused on the study of infinitesimal disturbances to laminar flow (Eckert 2010, 2015).This amounts
to neglecting the last term in Equation 1a. Under the assumption of axial periodicity, the linear
stability question reduces to a one-dimensional (radial) eigenvalue problem. Numerical solutions
of this problem have determined that all eigenvalues have a negative real part, and hence HP is
linearly stable, at least up to Re = 107 (Meseguer & Trefethen 2003).

Beyond Re = 107, it is difficult to keep disturbances at bay, even in double-precision calcu-
lations (Meseguer & Trefethen 2003). At the root of this behavior is the nonnormality of the
linearized Navier–Stokes equations (Schmid & Henningson 2001, Schmid 2007). This situation
arises because modal disturbances are not mutually orthogonal so that their linear combinations
can give rise to large transient growth of nonmodal (shape-changing) disturbances, as first shown
by Boberg & Brosa (1988) and later popularized by Trefethen et al. (1993).

For laminar pipe flow, streamwise vortices are the optimal nonmodal disturbances—thosemax-
imizing transient energy growth. Specifically, a streamwise vortex pair of infinitesimal amplitude ϵ
lifts low-velocity fluid near the wall to the center and high-velocity fluid near the center to the wall
(Brandt 2014), as shown in Figure 5a, thereby generating local streamwise velocity differences
(streaks) of amplitude ϵRe (Schmid & Henningson 1994). The fact that an order ϵ perturbation
can generate an order ϵRe response in the flow is generally consistent with the experimentally
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Minimal seed:
a disturbance of the
least amplitude
capable of triggering
turbulence

determined transition threshold scaling as Re−1 for push–pull disturbances generating streamwise
vortices in pipe (Hof et al. 2003,Mellibovsky &Meseguer 2007) and channel (Lemoult et al. 2012)
flows.

While the linear transient growth of nonmodal disturbances is an essential feature of pipe
flow, the linear picture is overly simplified (Waleffe 1995). Nothing guarantees that optimal lin-
ear disturbances will trigger turbulence in a fully nonlinear setting, and even if they do, there
may be other disturbance types that are more effective. Sections 3.2 and 3.3 address the role of
nonlinearity in the instability problem.

3.2. Streak Instability and Breakdown to Turbulence

An early approach to incorporating nonlinearity can be found in Boberg & Brosa (1988). When
streamwise vortices are introduced at finite amplitude into the nonlinear Navier–Stokes equations
(Equation 1), the strong streaks they generate can themselves become unstable, leading to turbu-
lence. Studying the streak formation and breakdown process, Meseguer (2003) suggested that the
threshold scaling was Re−3/2, in agreement with the asymptotic analysis of Chapman (2002) for
channel flow. Later, Peixinho & Mullin (2007) showed experimentally that oblique disturbances
are more efficient than streamwise vortices in triggering turbulence, in agreement with a previ-
ous numerical study of channel flow by Reddy et al. (1998). We note that most experiments and
direct numerical simulations have been conducted for Re ≤ 10,000, and as suggested by Chapman
(2002), higher Re may be required to uncover the true asymptotic scaling.

3.3. Fully Nonlinear Approach: Minimal Seeds of Turbulence

A general approach to finding the minimum perturbation amplitude necessary to trigger turbu-
lence is to solve an appropriate nonlinear optimization problem. The idea is simple in principle:
optimize nonlinear growth over all possible initial conditions. However, there are substantial
mathematical and computational challenges to this approach (Monokrousos et al. 2011). The
interested reader is referred to Kerswell (2018) for a review of optimization techniques for com-
puting the optimal routes to turbulence and to Luchini & Bottaro (2014) for general adjoint
approaches, including flow stability and sensitivity of disturbances for complex geometries.

Pringle & Kerswell (2010) computed nonlinear optimal disturbances for pipe flow in short pe-
riodic pipes of length L = (π/2)D and found that these disturbances exhibit substantially larger
amplification than do their linear counterparts. As shown in Figure 5b, nonlinear optimal distur-
bances are localized in the wall-normal and azimuthal directions, and as they evolve they expand
and exploit the classical lift-upmechanism. In long pipes, theminimal seed is additionally localized
in the streamwise direction with length about 7D (Pringle et al. 2015) (see Figure 5c). In experi-
ments, 7D corresponds to the pulse duration beyond which the perturbation amplitude levels off;
i.e., for shorter pulse duration, significantly larger perturbations are needed to trigger turbulence
(Hof et al. 2003).

This fully nonlinear approach enables a clear-cut, although computationally expensive, ap-
proach to the threshold-scaling problem.Duguet et al. (2013) tackled this problem inCouette flow
for Re ≤ 3,000. Extending the computations to higher Re, and to pipe flow, remains a challenge.

4. DYNAMICAL SYSTEMS

We see from the above discussion that when laminar pipe flow is disturbed at finite amplitude, the
flow may relaminarize or may become turbulent, depending on the Re and on the details of the
disturbance. This highly nonlinear behavior can be naturally rationalized via the mathematical
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Chaotic attractor:
an attracting invariant
set exhibiting
unpredictable but
deterministic
dynamics. Trajectories
starting arbitrarily
close on a chaotic
attractor diverge from
one another
exponentially in time

Bifurcation:
a qualitative change in
the phase space of a
dynamical system;
occurs when a
parameter crosses a
critical point. At a
bifurcation, the
number, type, and/or
stability of invariant
sets changes

Invariant set:
a set of states that is
unchanged by
temporal evolution.
The simplest invariant
sets are steady states
and periodic orbits

formalism of dynamical systems (Figure 1c). Here we present this perspective on the transition
problem,with special emphasis on pinpointing themechanisms giving rise to the chaotic dynamics
associated with turbulent flow.

4.1. The Phase Space of a Fluid Flow

Eberhard Hopf (1948) argued that, to understand turbulence transition conceptually, “it is useful
to visualize the solutions in the phase space � of the problem.” Here a phase state of the system
corresponds to a full velocity field v(r, θ , z) ∈ � defined over the whole pipe volume and satisfying
the boundary conditions and the continuity equation. A trajectory in phase space v(r, θ , z, t ) ∈
� corresponds to the temporal evolution of the velocity field starting from an initial condition
v(r, θ , z, 0) = v0. As in Section 3.1, the state of the system is defined relative to the laminar flow
with the perturbation field, u = v − UHP. We rewrite the Navier–Stokes equations (Equation 1)
as a dynamical system of formally infinite dimension,

∂u
∂t

= fRe(u), 2.

where fRe represents the right-hand side of the momentum equation (Equation 1a), subject to
the divergence-free constraint (Equation 1b). Viscous dissipation reduces the relevant long-term
dynamics of the system to finitely many degrees of freedom (Hopf 1948). This is consistent with
the fact that one can capture the dynamics of Equation 2 via direct numerical simulations using
a finite number of grid points or spectral modes. Following discretization, Equation 2 becomes a
finite (albeit large) system of ordinary differential equations, and the corresponding phase space
is finite dimensional.

Laminar flow,u = 0, is a steady state (equilibrium) of the dynamical system; i.e., fRe(0) = 0.Tur-
bulence, which is also a solution of the equations for suitable values of Re, is associated with a more
intricate set of the dynamical system, such as a chaotic attractor. The relationship between lam-
inar and turbulent flow in phase space can be visualized in two-dimensional projections (Gibson
et al. 2008), as exemplified in the cartoon of Figure 6a. This phase-space picture captures that
the laminar flow is stable to small disturbances (trajectories that start near laminar flow return to
laminar flow) but is unstable to large disturbances of appropriate form (trajectories starting from
appropriate places in phase space evolve to the chaotic attractor). Trajectories starting exactly on
the laminar–turbulent boundary (the basin boundary in Figure 6a) become neither laminar nor
turbulent but evolve toward a saddle state (Itano & Toh 2001). Technically, the laminar–turbulent
boundary is an invariant manifold (Guckenheimer & Holmes 2002).

The minimal seed is the lowest-energy state on the laminar–turbulent boundary. Trajectories
starting near the minimal seed evolve first toward the saddle state before being repelled toward
laminar flow or turbulence, depending on which side of the boundary they start (Kerswell 2018).
The actual phase-space relationship between laminar flow and turbulence is more nuanced (see
Figure 6b, which is discussed in Section 4.3).

4.2. Exact Coherent States and the Onset of Chaos

The onset of turbulence with increasing Re can be formulated in terms of the qualitative changes
in phase space (or bifurcations) as a parameter is varied. At low Re,Re< 81.49, the system is highly
dissipative, and all perturbations to laminar flow decay monotonically ( Joseph & Carmi 1969). At
higher Re, Re � 1,500, turbulence can be observed in experiments (Hof et al. 2005), indicating
the existence of invariant sets that are dynamically disconnected from laminar flow and support
chaotic dynamics.
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Exact coherent states
(ECS): exact solutions
of the Navier–Stokes
equations with simple
temporal dynamics,
such as traveling waves
and relative periodic
orbits
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Figure 6

(a) Phase-space cartoon of a system in which a chaotic attractor (turbulence) and a steady state (the laminar
flow) coexist. The basins of attraction of turbulence (orange) and of the laminar flow (white) are separated by
the basin boundary. Trajectories starting near the minimal seed approach a saddle state before being repelled
toward the chaotic attractor (red trajectory) or toward the laminar flow (blue trajectory). (b) As in panel a, but
for a system in which a chaotic saddle supports transient turbulence. Here an invariant manifold (the edge)
separates transient trajectories with long lifetimes from those relaminarizing directly. (c) Saddle–node
bifurcation diagram for mirror-symmetric traveling waves in pipe flow. The snapshot is from the upper
branch solution at Reynolds number Re = 1,344. Panel c adapted from Pringle & Kerswell (2007) with
permission; copyright 2007 American Physical Society. (d) Stability threshold of laminar pipe flow to a
disturbance consisting of a pair of axially modulated streamwise vortices in a periodic domain of length 5D.
Points correspond to initial conditions that evolve toward laminar and turbulent flow, respectively. Panel d
adapted from Schneider et al. (2007) with permission.

The first, nontrivial invariant sets to be discovered for pipe flow are traveling-wave solutions
(Faisst & Eckhardt 2003, Wedin & Kerswell 2004), whose velocity field satisfies u(r, θ , z, t ) =
u(r, θ , z− ct, 0). In the frame comoving at their propagation speed c (specific to each wave), they
are steady. These types of solutions are referred to as exact coherent states (ECS), because they
are spatially coherent, dynamically simple, exact solutions of the Navier–Stokes equations. There
have been experimental observations of flow states resembling traveling waves, indicating their
presence, at least transiently, in turbulent pipe flow (Hof et al. 2004, De Lozar et al. 2012). As
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Saddle–node
bifurcation: the birth
of a pair of ECS at a
critical saddle–node
point. In the context of
shear flows, the two
branches of emerging
solutions are termed
the lower and the
upper branch

Boundary crisis:
a bifurcation in which
simple solutions
embedded in a chaotic
attractor collide with
its basin boundary (the
edge), leading to a
chaotic saddle
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reviewed by Kawahara et al. (2012) and Graham & Floryan (2021), ECS have been instrumental
in understanding many aspects of wall-bounded turbulence.

To date, several families of traveling waves have been discovered and classified according to
their spatial symmetries (Pringle et al. 2009). They appear in pairs via saddle–node bifurcations,
and their existence has been traced as low as Re = 773 (Pringle & Kerswell 2007), as shown in
Figure 6c. This demonstrates that bifurcations, and hence qualitative changes in phase space, can
and do occur well before turbulence can be excited in experiments. Another type of ECS, known
as relative periodic solutions, are time periodic in a comoving frame (Duguet et al. 2008a, Willis
et al. 2013).

Duguet et al. (2008b) showed that traveling waves are part of the laminar–turbulent boundary
for pipe flow. Moreover, if discrete spatial symmetries are imposed in the governing equations to
restrain the dynamics, then the saddle state in the boundary is itself a traveling wave (Itano &
Toh 2001, Duguet et al. 2008b). Some of these solutions are stable and can be computed by time-
stepping the symmetry-restricted Navier–Stokes equations. This was exploited by Mellibovsky &
Eckhardt (2012) to show how chaos emerges from a traveling wave via a sequence of bifurcations.

4.3. Boundary Crisis to Transient Chaos

The traveling waves and relative periodic orbits discussed in Section 4.2 have been obtained in
short, axially periodic pipes and do not reflect the axial localization of turbulence occurring in
puffs. The search for ECS in long pipes led to the discovery of spatially localized relative periodic
orbits of pipe flow (Avila et al. 2013), shown in Figure 7a. These ECS, their bifurcations, and
their dynamics were computed in a symmetry subspace (twofold azimuthal periodicity and mir-
ror symmetry) of the full Navier–Stokes equations. Unstable lower branch (LB) and stable upper
branch (UB) states arise via a saddle–node bifurcation. The UB undergoes a sequence of bifurca-
tions leading to chaotic dynamics (Figure 7b). The chaotic attractor rapidly increases its volume
in phase space, as seen in both the bifurcation diagram (Figure 7b) and phase-space projection
(Figure 7c), until it touches the LB at a boundary crisis (Grebogi et al. 1982, Tél & Lai 2008). As
a result, the phase space changes qualitatively (Figure 6b): The basin boundary collapses, and the
chaotic attractor turns into a chaotic saddle, or repeller. Trajectories starting within this region of
phase space appear chaotic for some, potentially a long, time but eventually escape and go to the
laminar state (the flow relaminarizes). The system is said to exhibit transient chaos. As Figure 7d
shows, the escape process yields an exponential distribution of turbulent lifetimes. The mean life-
time of turbulence rapidly decreases as Re increases (Ritter et al. 2016).We stress that the transient
dynamics in such symmetry-restricted simulations is far simpler than that of turbulent puffs in ex-
periments. In the full unrestricted space, the dynamics is more complex, and lifetimes increase
monotonically with Re (Brosa 1989, Faisst & Eckhardt 2004, Eckhardt et al. 2007). Uncovering
the bifurcations leading to turbulent puffs remains an open challenge.

In systems with transient turbulence, the laminar–turbulent boundary is not a basin boundary
but remains an invariant manifold, referred to as an edge (Skufca et al. 2006). In pipe flow, the edge
has a fractal structure (Budanur et al. 2019). Regardless of how much one zooms into the chaotic
saddle, initial conditions giving rise to long- and short-lived transients are found next to each other
(Moehlis et al. 2004). The implication is that the stability threshold is a fractal hypersurface, as
exemplified in Figure 6d. For this reason, the threshold for the turbulent transition is shown as a
region rather than a sharp curve (Figure 1a). The relative attractor in the edge is referred to as
an edge state and is chaotic in pipe flow (Schneider et al. 2007, Mellibovsky et al. 2009).

In summary, viewing the Navier–Stokes equations as a dynamical system provides valuable
insights into the problemof transition, even in the absence of a linear instability of the laminar flow.
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From spatially localized exact coherent states (ECS) to transient chaos in pipe flow. (a) Snapshots showing streaks of a turbulent puff,
and lower branch (LB) and upper branch (UB) relative periodic orbits that emerge at a saddle–node bifurcation at Reynolds number
Re ≈ 1,428. Blue and red areas denote low- and high-velocity streaks, respectively. Panel a adapted from Avila et al. (2013) with
permission; copyright 2013 American Physical Society. (b) Bifurcation diagram of ECS leading to chaos and then a boundary crisis.
(c) Phase-space projection of typical chaotic trajectories. The red cycle corresponds to the LB edge state, shown in more detail in the
upper inset. The lower inset shows the minimum distance between the chaotic trajectories and the edge state, which vanishes at a
boundary crisis, Rebc ≈ 1,545. (d) Probability of survival of chaotic trajectories obtained from the relaminarization times (symbols)
collected from direct numerical simulations with different initial conditions. The mean lifetime scales as τ ∝ (Re − Rebc)−1. Panels b–d
adapted with permission from Ritter et al. (2016) (CC BY 4.0).

Unlike for flows with linear instabilities, such as Rayleigh–Bénard convection and Taylor–Couette
flow driven by inner cylinder rotation, the bifurcations in pipe flow are necessarily disconnected
from laminar flow, and the resulting chaotic dynamics is found to be transient. Similar scenarios
have been found for plane Couette flow (Kreilos & Eckhardt 2012, Lustro et al. 2019), for channel
flow (Zammert & Eckhardt 2015), and even for magnetohydrodynamic Keplerian flows (Riols
et al. 2013), suggesting that the emergence of transient chaos from ECS is generic in shear flows.

5. STATISTICAL PHASE TRANSITION

We see from the above discussion how linear and nonlinear methods can elucidate laminar flow’s
receptivity to perturbations, and we discuss above the insights that dynamical systems can pro-
vide regarding the origins of ECS and transient chaos. However, none of these perspectives can
resolve what are probably the most intriguing aspects of the onset of turbulence in a pipe: the
determination of a precise critical point as proposed by Reynolds and the associated universal na-
ture of the transition to turbulence. The key difference with criticality in classic problems such
as Taylor–Couette flow and Rayleigh–Bénard convection is that here we are concerned not with
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(a) Transient dynamics of turbulent puffs at Reynolds number Re = 1,900. Shown is the temporal evolution
of turbulent fraction Ft from five direct numerical simulations of single puffs in a pipe of length 50D. Each
simulation is initialized with a different instantaneous snapshot of a turbulent puff at Re = 2,200. Puffs may
persist for a significant time before abruptly decaying to laminar flow. (b) Probability of puff survival at Re =
1,900 collected from 100 independent simulations of single puffs such as those shown in panel a. Figure
courtesy of Daniel Morón.

an upper stability limit of laminar flow, but instead with the lower stability border of sustained
turbulence. While the former problems can be understood in terms of stability analysis and bi-
furcation theory, the latter is a direct transition to a fluctuating, spatially intermittent mixture of
turbulent and laminar flow that is most appropriately characterized as a nonequilibrium statistical
phase transition.

Most of the remainder of this review is devoted to understanding the dynamics of turbulence
in both space and time. In this section we address how intermittent turbulence becomes sustained
at a critical point, and in Section 6 we explain how localized turbulent puffs give way to expanding
slugs.

5.1. Transient Turbulence

In Section 2.3, we show that at the lowest Re for which turbulence can be observed, it appears
only in the form of localized puffs. Classical experiments led to the belief that puffs are them-
selves sustained turbulent structures, as highlighted by Wygnanski et al. (1975), who coined the
term equilibrium puff. However, turbulent puffs are not sustained indefinitely. It has been exper-
imentally (Peixinho & Mullin 2006, Hof et al. 2006) and numerically (Willis & Kerswell 2007)
established that, at a fixed Re, different realizations of turbulent puffs will survive for different
lengths of time before abruptly decaying to laminar flow, as illustrated in Figure 8. This is a
prototypical example of metastability: Puffs appear to be stable equilibrium structures for a sig-
nificant time before abruptly transitioning to a more stable state, in this case laminar flow. One
refers to such abrupt relaminarization as puff decay. The statistics of the survival times frommany
realizations consistently give exponential distributions, as seen inFigure 8. Such distributions cor-
respond to a constant probability per unit time for decay to occur, independently of the history of
the puff. Hence, turbulent puffs do not age, and puff decay is effectively a memoryless (Poisson)
process. The exponential distribution of survival times is consistent with a chaotic saddle in phase
space. We see this in Figure 7, in which a chaotic saddle arises via a boundary crisis.

While the lifetime of any individual puff in simulation or experiment is not very meaningful,
the mean lifetime of an ensemble of puffs at a fixed Re is, so much so that mean lifetimes are
perhaps the most prevalent measurements made on puffs and one of the most useful quantities
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available to characterize puffs at a given Re. Clearly, the statistical behavior of an ensemble of states
is key to understanding the dynamics of turbulence near onset.

Studies of puff lifetimes in experiments (Peixinho & Mullin 2006) and direct numerical simu-
lations (Willis & Kerswell 2007) suggested that the mean lifetime becomes infinite at a critical Re,
beyond which the puffs would be truly stable (equilibrium) states. Within the dynamical systems
perspective, this would correspond to the chaotic saddle (transient turbulence) transforming into
a chaotic attractor (sustained turbulence) at a crisis bifurcation, or possibly via some other mech-
anism. However, experiments in a longer pipe and with better resolved statistics (Hof et al. 2006)
revealed that puffs do not stabilize but remain transient. Their mean lifetimes were subsequently
observed to grow faster than exponentially with Re (Hof et al. 2008) but nevertheless to remain
finite for any Re. Hence, individual puffs never stabilize, and it is impossible to define a critical
point from the perspective of individual puffs.

The faster-than-exponential, or superexponential, increase in mean lifetimes with Re was
confirmed in direct numerical simulations (Avila et al. 2010) as well as in independent experi-
ments (Kuik et al. 2010). Combined results from these studies are shown on the left branch of
Figure 9a, together with a double exponential fit to the dependence of mean lifetime on Re: τ =
exp[exp(aRe + b)]. Goldenfeld et al. (2010) proposed a simple mechanism connecting the super-
exponential scaling of lifetimes to extreme value distributions. Nemoto & Alexakis (2021) refined
the details of this mechanism on the basis of extreme values of vorticity from direct numerical sim-
ulations of turbulent puffs. More generally, transient turbulence has been observed for a range of
different shear flows and is one of the best established properties of transitional turbulence. The
extreme dependence of lifetimes on Re makes lifetime measurements ideally suited to calibrate
different experiments and to quantitatively compare experiments to simulations.

5.2. The Critical Point

The quest for a critical point cannot be resolved by considering the decay of puffs alone. The
mechanism by which turbulence becomes sustained is more complex. A particularly insightful the-
oretical approach was introduced by Kaneko (1985), who developed a new paradigm by enlarging
the dynamical systems framework to spatially extended systems.He considered turbulence to be a
product state of multiple chaotic systems coupled in physical space and showed that locally tran-
sient chaos can become sustained through spatial coupling. Specifically, Kaneko studied coupled
one-dimensional maps on a discrete spatial lattice (coupled map lattice). In the absence of spa-
tial coupling, the dynamics at each lattice site is transient chaos, with eventual decay to a steady
laminar state.With nearest-neighbor coupling, the spatially extended system does not necessarily
decay to the laminar state. Instead, it can reach a persistent state composed of a mixture of chaotic
and laminar sites varying in space and time. Kaneko referred to these dynamics as spatiotemporal
intermittency.

Coming from a different perspective, Pomeau (1986) also recognized the importance of ap-
proaching subcritical transition as a spatiotemporal problem, and he proposed a connection to a
nonequilibrium statistical phase transition known as directed percolation (DP) (see Hinrichsen
2000 and Lübeck 2004 for extensive reviews of nonequilibrium phase transitions, with emphasis
on DP in particular). We address this phase transition after presenting further phenomenology
for pipe flow. However, very much like the Kaneko picture, the essential point is to consider tran-
sition in large spatially extended systems in which turbulence and laminar flow coexist in different
spatial regions, evolving in space and time in a complex (intermittent) way.

The first studies of subcritical transition from a spatiotemporal perspective were for plane
Couette flow (Bottin & Chaté 1998, Bottin et al. 1998; see the review by Manneville 2015). For
pipe flow, Moxey & Barkley (2010) noted the significance of the spatiotemporal framework to

588 Avila • Barkley • Hof



Decaying turbulence
Injection (L = 3,380)
Hof et al. (2008)
Kuik et al. (2010)
Avila et al. (2010)

1,800 1,900 2,000 2,100 2,200 2,300 2,400

Re

a108

106

104

102

τ

Spreading turbulence
Injection
Obstacle
DNS1
DNS2

Space (D)

Ti
m

e 
(D

/U
)

b

200 (D)

Space (D)

Ti
m

e 
(D

/U
)

5,000 (D
/U

)

c

Figure 9

(a) Mean lifetime of a puff before a decay or splitting event. The left branch shows mean lifetimes for puff
decay from experiments and numerical simulations. The dashed curve is given by τ = exp[exp(0.005556Re −
8.499)] and approximates the Reynolds number Re dependence of the mean lifetime for decay.
The right branch shows mean lifetimes for a puff splitting event. The solid curve is given by τ =
exp[exp(−0.003115Re + 9.161)] and approximates the Re dependence of mean time until a daughter
puff is nucleated and the turbulent fraction increases. Both curves represent superexponential scaling with
Re and cross at Re = 2,040 ± 10. Panel adapted from Avila et al. (2011) with permission. (b,c) Spatiotemporal
visualizations of puffs below (Re= 1,900) and above (Re= 2,300) the critical point. Visualizations are in frames
of reference moving with the average puff speed and the center of mass of the intermittent region, respectively.
In panel b, the flow is initiated with several puffs, which subsequently decay, resulting in laminar flow
(the absorbing state). In panel c, the flow is initiated with a single puff that splits, creating daughter puffs and
leading to an intermittent mixture of turbulent and laminar flow. Panels b and c provided by Daniel Morón.

the observed irregular (intermittent) occurrence of multiple puffs in long pipes. In particular, they
pointed out that puff splitting (Lindgren 1957,Wygnanski et al. 1975,Shimizu et al. 2014) provides
the proliferation mechanism for turbulence to become sustained, despite the transient nature of
individual puffs. Figure 9c illustrates puff splitting in a numerical simulation of pipe flow. The
flow is initiated with a single puff that subsequently generates additional daughter puffs, thereby
increasing the turbulence fraction of the flow.
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Avila et al. (2011) noted that puff splitting is a memoryless process that, like puff decay, can be
quantified in terms of a mean time: the average time for a puff to undergo a first splitting. Mean
splitting times were measured as a function of Re and were also found to scale superexponentially
with Re, indicating that there is no value of Re where the mean splitting time becomes infinite.
Figure 9a shows the measured mean times for decay and splitting. The Re dependence of the
decay and splitting statistics approximately mirror one another such that curves cross at a critical
Re, estimated to be Re = 2,040 ± 10. At this critical value, the two timescales are balanced. Below
the crossing, puff decay will dominate puff proliferation (Figure 9b), while above the crossing,
proliferation will dominate decay (Figure 9c).

At the critical point defined by the crossing of mean lifetimes, the common mean timescale
for a puff to either split or decay is ∼2 × 107 advective time units. This corresponds to a puff
traveling on average a distance of ∼2 × 107 pipe diameters before it either splits or decays. These
enormous timescales and space scales explain why earlier studies, such as the study by Rotta (1956)
shown in Figure 3, could not have converged on a critical point. To determine the critical point
directly using Reynolds’ approach (see the sidebar titled Reynolds Critical Point), one needs to
trigger turbulence and let it evolve over extraordinarily long distances to determine whether the
turbulence is sustained. This approach would seem to rule out studying the full spatiotemporal
problem with many interacting puffs near the critical point. However, Mukund & Hof (2018)
exploited the memoryless nature of puffs to design an experimental pipe with effectively periodic
boundary conditions by having it trigger a new puff at the entrance every time a puff exited the
pipe downstream.

The balance between decay and splitting timescales of isolated puffs is a simplification of the
full process by which turbulence becomes sustained, since it ignores the puff interactions that
will necessarily occur after splitting takes place. This is evident in Figure 9c, in which one can
observe a puff terminating due to interaction with a neighboring puff. Mukund & Hof (2018)
demonstrated that, at Re = 2,060, intermittent flow with many turbulent puffs eventually settles
into a statistically steady-state (requiring measurement times of ∼6 × 107 advective time units)
decay. At Re = 2,020, and hence slightly below the critical point, all puffs eventually decay (after
∼108 advective time units).

With these observations in mind, we return to nonequilibrium statistical phase transitions and
to DP in particular. Figure 9b illustrates the eventual decay of multiple puffs. At the end of the
simulation, the flow is everywhere in the laminar state, referred to as an absorbing state in sta-
tistical physics. The active state, turbulence, can never spontaneously emerge from the absorbing
state because laminar flow is linearly stable. It can arise only via local proliferation from existing
turbulence. Turbulence is a fluctuating state with statistical probabilities of decaying and prolif-
erating, and the ratio of these probabilities depends on a control parameter, Re. These are the key
ingredients of DP. The percolation is directed because time is not reversible; turbulence is clearly
percolating upward in time in Figure 9c.

The following features can be expected if pipe flow exhibits a statistical phase transition of DP
type. There will be a critical Re below which the flow will always eventually reach the absorbing
state from any turbulent initial condition. Above the critical Re, the flow, if initiated with turbu-
lence, will eventually reach a statistical equilibrium with an average turbulence fraction, Ft, that
depends only on Re. This equilibrium value of Ft will grow continuously from zero at the crit-
ical Re (shown schematically in Figure 1b). Finally, there will be universal scaling laws (critical
exponents) associated with the transition (see Hinrichsen 2000, Lübeck 2004).

Pipe flow appears to have all the necessary ingredients for the transition to turbulence to be in
the DP universality class. The laminar HP flow is linearly stable and is hence an absorbing state in
the context of DP. Indeed, the transitions to turbulence in axially confined (Lemoult et al. 2016)
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and unconfined (Klotz et al. 2022) circular Couette flow as well as planar Waleffe flow (Chantry
et al. 2017) have all been shown to fall into the DP universality class. For pipe flow, experimental
observations by Mukund & Hof (2018) show that at Re = 2,020 an initially turbulent flow even-
tually reaches the absorbing state, while at Re = 2,060 a very low persistent Ft is attained. These
observations suggest that the transition is probably continuous. Furthermore, model studies by
Barkley (2011, 2016) and Shih et al. (2016) support the continuous nature of the transition and sug-
gest that it falls into the DP universality class. However, currently there is no direct measurement
from either direct numerical simulations or experiments confirming that Ft grows continuously
from zero or that the transition belongs to the DP universality class. Establishing either of these
as fact remains one of the great challenges for pipe flow.

6. PUFF–SLUG TRANSITION

Above we discuss the fundamental role that localized turbulence puffs play in the onset of sustained
turbulence. At a higher Re, the situation changes fundamentally, and once triggered, turbulence
aggressively expands at the expense of laminar flow in the form of slugs (recall Section 2.3 and
Figure 2). Intermittency is ultimately lost, leading to fully turbulent pipe flow. Only after turbu-
lence becomes statistically uniform in the axial direction does the flow obey the Blasius friction
law (Avila & Hof 2013). In this section, we address the transition from puffs to slugs.

Figure 10 illustrates the scenario by which turbulence changes from localized puffs to expand-
ing slugs. Panels b–d of Figure 10 show the evolution from localized patches of turbulence at three
differentRe. At lower values ofRe, turbulence remains in localized puff form,while at higher values
of Re, turbulence rapidly expands. The frame of reference is that of the bulk velocity, so structures
moving to the left propagate upstream relative to the bulk velocity, while structures moving to the
right propagate faster than the bulk velocity.There are two distinct types of slugs: weak and strong
(Barkley et al. 2015). These are distinguished by their downstream turbulent–laminar fronts, as
we explain in more detail below.While the puff shown in Figure 10b eventually undergoes decay
or splitting, those timescales are extremely long in comparison with the relevant timescales con-
sidered here. Figure 10a shows upstream and downstream front speeds of the turbulent patches
as a function of Re for both pipe flow and square duct flow.

Early measurements of the onset of expanding turbulent slugs can be found in Lindgren (1957).
Lindgren associated a critical Re, RK, with the transition to expanding turbulence and notes that
for Re < RK turbulence existed only as “flashes” of “unaltered length,” whereas above this value
turbulence “elongates itself continually.” The significance of the transition to slugs and the role of
turbulent–laminar fronts were recognized by Coles (1962), who summarized important aspects of
early experiments by Rotta (1956), Lindgren (1957), and himself (unpublished). Turbulent slugs
have since been the subject of numerous experimental and numerical studies (Lindgren 1969,
Wygnanski & Champagne 1973, Darbyshire & Mullin 1995, Durst & Ünsal 2006, Nishi et al.
2008, Duguet et al. 2010, Song et al. 2017, Rinaldi et al. 2019). Chen et al. (2022) recently studied
slugs numerically up to Re= 105 and compared their results with several of these previous studies.
Upstream front speeds are reasonably consistent acrossmultiple studies.Downstream front speeds
have proven more difficult to obtain consistently, particularly above Re = 104. Chen et al. (2022)
find, from their data, high-Re scaling laws for upstream and downstream front speeds of the form
cup � 0.024 + (Re/1,936)−0.528 and cdown � 1.971 − (Re/1,925)−0.825.

6.1. Physical Mechanisms

Figure 11 explains the physical mechanism underlying the transition from localized to expanding
turbulence. Shown are turbulent kinetic energy (TKE) budgets for a puff and the two types
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Figure 10

Puff-to-slug transition. (a) Upstream and downstream front speeds as a function of Reynolds number Re for
pipe flow and square duct flow. Points are from experiments and direct numerical simulations. The
difference between the upstream and downstream speeds quantifies the rate of expansion of slug expansion.
(b–d) Space–time visualizations from direct numerical simulation of pipe flow showing a localized puff and
expanding slugs in a frame of reference moving at the bulk velocity. In this reference frame, upstream (left)
fronts are seen to move upstream. The two types of slugs, weak and strong, are distinguished by their
downstream (right) fronts. The curves in panel a represent speeds obtained from a model that captures the
details of the transition from localized puffs to weak slugs to strong slugs. Figure adapted from Barkley et al.
(2015) with permission.

of slugs (Song et al. 2017). It is instructive to consider first the strong slug (bottom panels of
Figure 11). At the intense upstream front, production exceeds dissipation, and there is a net
production of TKE. Since this front is moving upstream relative to the mean flow, upstream fluid
crosses the front. Essentially, the kinetic energy contained within the laminar upstream flow is
fuel for this front. The front burns this fuel, converting laminar kinetic energy into TKE. At a
short distance downstream from the production maximum, production and dissipation of TKE
come into balance, P = ϵ, and form the core of the slug—or what is termed turbulent pipe flow
once turbulence fully occupies the pipe.
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Turbulent kinetic energy budgets for puffs and slugs. Budgets are obtained in frames of reference in which the structures are stationary,
and hence the budgets are in different reference frames for the upstream and downstream slug fronts. The most significant
contributions are from production P and dissipation ϵ, which come into balance in the core region of the slugs. Turbulence moves into a
weak downstream front, where it relaminarizes. Turbulence is generated at a strong downstream front and, relative to the front, moves
into the core of the slug. Top panel adapted from Song et al. (2017) with permission, with additional data in the top panel provided by
Baofang Song.

The downstream turbulent–laminar front of the strong slug is similar to a reflection of the up-
stream front.This front overtakes the laminar flow downstream, and there is also net production of
TKE at the front. In the frame of reference of the front, laminar downstream fluid crosses into the
front,wherein turbulence is produced and flows into the core of the slug as it expands.Hence, there
is an increase in the total TKE of the flow coming from both the upstream and downstream fronts.

The downstream turbulent–laminar front of the weak slug is different. Seen in the reference
frame of the front, turbulence from the core of the slug flows into the front, where it decays
(relaminarizes).Weak slugs effectively contract at their downstream front.There is nevertheless an
overall expansion of these slugs due to the speed difference between the upstream and downstream
fronts. The increase in the total TKE associated with expansion comes from the net production
at the upstream front only.

To understand the puff, consider what happens to the slug as the Re is decreased, i.e., viscosity
is increased. There comes a point at which TKE production in the core of the slug can no longer
balance the increased dissipation due to the increase in viscosity. The core collapses. However,
at the upstream front, production is still large, and so it survives the increase in viscosity. The
upstream front and the weak downstream front coalesce and become the puff: an isolated
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Figure 12

The puff-to-slug transition as a transition from excitability to bistability. (a,b) Phase planes of centerline
velocity (equivalently the mean shear) and turbulence intensity. Trajectories illustrate the evolution of these
quantities as a function of position along the pipe, with arrows indicating increasing downstream location.
The trajectories shown are schematics only. Examples from simulations can be found in Song et al. (2017)
and Rinaldi et al. (2019). (The phase planes represent quantities different from those in Figure 6.)
(c,d) Visualization of a puff and the upstream front of a slug. Turbulent fluctuations from numerical
simulations are shown in color. White curves are schematic representations of the mean velocity profiles at
various axial locations. Numerical simulations provided by Baofang Song.

structure continually burning upstream laminar kinetic energy but leaving no persistent down-
stream turbulent slug. The continuous variation of the upstream front speeds throughout the
transition from puffs to slugs in Figure 10 is a direct reflection of the continuous evolution of
the upstream fronts in Figure 11.

6.2. Excitability and Bistability

The transition from puffs to slugs is a transition from excitability to bistability (Barkley 2011,
Barkley 2016; Barkley et al. 2015; Song et al. 2017). This transition, illustrated in Figure 12, is
closely tied to the physical mechanisms just discussed. We focus on the interplay between turbu-
lence and the mean velocity profile. Consider first the slug shown in Figure 12d and how the
turbulence and profile evolve as a function of axial location, shown schematically as a trajectory in
Figure 12b. Upstream the flow is laminar: There is no turbulence, and the centerline velocity is
high. Upon crossing the upstream front, there is a rapid increase in turbulence, which then causes
the profile to blunt (the centerline velocity decreases). Downstream from the front, production
and dissipation come into balance in the core of the slug. There are two stable states—laminar
flow and the core of the turbulent slug—and the system is said to be bistable. The front connects
these two stable states. Trajectories corresponding to downstream fronts of slugs are not shown
but can be found in Barkley (2016), Barkley et al. (2015), and Song et al. (2017).

Now consider the puff in Figure 12c. Just as for the slug, upstream from the puff, the flow
is laminar, and crossing into the puff, there is a rapid increase in turbulence, causing the shear
profile to blunt. Unlike for the slug, however, once the shear profile blunts, there is insufficient
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production to balance dissipation. There is no stable state corresponding to the core of the slug.
As a result, turbulence decays, after which the shear profile eventually recovers its parabolic form.
The corresponding trajectory is illustrated in Figure 12a. The system is said to be excitable.

The transition from excitability to bistability, coupled with downstream advection and fluctua-
tions intrinsic to the turbulent state, can account for all the spatiotemporal phenomena presented
in this review. Specifically, a simple model (Barkley et al. 2015) produces the front speeds shown as
continuous curves in Figure 10a. The same model also captures puff splitting and puff decay, the
associated superexponential scaling of the mean lifetimes and a critical point at which the mean
lifetimes cross, localized edge states, the interactions between puffs (puff pushing), and the lami-
nar holes that can appear within turbulent flow. All of these phenomena are generic consequences
of the transition from excitability to bistability in the presence of a fluctuating excited state. See
Barkley (2016) for full details.

7. DIFFERENT GEOMETRIES AND ADDITIONAL
CONTROL PARAMETERS

Pipe flow is a valuable prototype for the onset of turbulence in other wall-bounded shear flows,
including linearly stable flows such as duct and plane Couette flow, as well as channels and bound-
ary layers. In these flows, turbulence frequently sets in for Re lower than the linear instability of
the laminar flow. These flows are often richer than pipe flow—e.g., many exhibit striped laminar–
turbulent patterns near transition (Tuckerman et al. 2020)—but they nevertheless share common
features with pipe flow, such as the coexistence of laminar and turbulent flow and the transient
nature of turbulent patches. In ducts (Takeishi et al. 2015), Couette flow (Lemoult et al. 2016), and
annular pipe flows (Ishida et al. 2016, 2017), the lateral aspect ratio of the system acts as an addi-
tional parameter, which allows for the unfolding of the dynamics from one dimensional (puffs) to
two dimensional (spots or stripes). Significantly, in all these cases the laminar flow is linearly stable
and is hence an absorbing state in the context of DP. This offers a possible unifying framework
for the onset of sustained turbulence. Arguably, the subsequent transition to fully turbulent flow
(the puff-to-slug transition) is far more important in practice. This latter transition is, however,
not sharp and lacks universal properties such as critical exponents with which to make quantitative
comparison between flows.

The understanding of transition in pipe flow has also allowed for the identification and demar-
cation of other instabilities and types of disordered motion that may arise in pipes when additional
control parameters are introduced, for instance, in viscoelastic fluids, particle suspension, flows
in curved pipes, or pulsatile flows. In each of these cases, a second control parameter appears
in addition to Re. To understand how the transition to turbulence is affected by the second pa-
rameter, a number of recent studies have focused on puff lifetimes. Puff lifetimes are extremely
sensitive to parameter changes and are therefore ideally suited to monitor the changes in the
transition threshold as a control parameter is varied. For polymer drag reduction, by increasing
polymer concentration (i.e., increasing viscoelasticity/Weissenberg number), the transition to or-
dinary turbulence is delayed (Figure 13a). However, for sufficiently high concentrations a new
instability (Figure 13a) gives rise to the state of elastoinertial turbulence (Samanta et al. 2013).
This flow state is characterized by lower fluctuation levels, the absence of hysteresis, and the lack
of laminar–turbulent intermittency. The same strategy has been applied to pulsatile flows, where
again turbulence is delayed and a instability to a helical mode arises with increasing pulsation am-
plitude (Xu et al. 2020). Likewise, in curved pipes the transition to turbulent puffs is postponed
as the curvature increases (Sreenivasan & Strykowski 1983, Noorani et al. 2013, Kühnen et al.
2015) (Figure 13c). Finally, in pipe flows of particle suspensions (Matas et al. 2003, Hogendoorn
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New instabilities that arise in pipe flows when additional control parameters are introduced. (a) The addition
of long-chain polymers delays the puff transition (blue) and gives rise to an elastoinertial instability (green)
and the associated state of elastoinertial turbulence. (b) Flow pulsation also delays the puff transition (blue),
and increasing pulsation amplitudes give rise to (subcritical) helical instability (green). (c) Pipe curvature
delays (Sreenivasan & Strykowski 1983) the puff transition (blue) and gives rise to a linear instability of the
laminar Dean flow. (d) The addition of neutrally buoyant spherical particles pushes the puff transition to
lower Reynolds numbers Re (Matas et al. 2003) and causes a new type of disordered motion (green data
points). Panels adapted with permission from (a) Samanta et al. (2013), (b) Xu et al. (2020), (c) Kühnen et al.
(2015), and (d) Agrawal et al. (2019).

& Poelma 2018, Agrawal et al. 2019), particle concentration leads to an early puff transition,
but eventually another instability mechanism is encountered, featuring neither laminar–turbulent
intermittency nor hysteresis (Figure 13d). In conclusion, in more complex situations, different in-
stabilities arise that eventually entirely suppress the transition scenario described above.Viewed in
this multiple control parameter setting, the transition we describe in this review is hence only one
out of several that can be encountered in pipe flows of complex fluids or more complex geometries.

8. SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The turbulence problem associated with “wet water running through a pipe” is multifaceted. As
we present here, there is not just one answer to the question of how transition occurs in pipe flow.
To a significant degree, the question is in the eye of the beholder. The question may address the
response of a laminar flow to a perturbation, it may address the continuous transition from turbu-
lence back to laminar flow at the critical point, or it may refer to the process by which turbulence
forms in a mathematical sense from simple invariant solutions to the Navier–Stokes equations.
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As all of these are valid questions to ask, we review above the contributions that these various
interconnected perspectives bring to our understanding of the transition to turbulence in a pipe.

SUMMARY POINTS

1. The threshold for transition from laminar flow to turbulence depends on perturbation
type and amplitude. Nonlinear stability analysis determines the lowest-energy distur-
bance capable of triggering turbulence (the minimal seed) and hence the threshold
scaling.

2. Dynamical systems approaches provide a conceptual framework for understanding the
phase space of the Navier–Stokes equations. Bifurcation theory elucidates how new in-
variant sets come into existence as the Reynolds number Re is increased and provides
insight into the origin of transient turbulence via a boundary crisis.

3. At low Re, turbulence exists in the form of localized puffs. These are transient states that,
after a potentially very long time, abruptly revert to laminar flow (decay) or shed a daugh-
ter puff (puff splitting). Decay and splitting are memoryless processes characterized by
their Re-dependent mean times.

4. Turbulence is first sustained indefinitely above the critical point Re≈ 2,040. This occurs
once the mean splitting time is shorter than the mean decay time. Above the critical
point, turbulence forms a complex spatiotemporal pattern.

5. At higher Re, localized turbulent puffs give way to expanding turbulent slugs, ultimately
leading to space-filling turbulence.The transition from puffs to slugs is a transition from
excitability to bistability.

FUTURE ISSUES

1. The practicality of dynamical systems approaches beyond transition is unclear. As Re
increases, the number of exact coherent states (ECS) required to capture the dynamics
of turbulence may grow explosively, and no general scheme has been devised so far to
find dynamically relevant ECS. New methods, e.g., those based on machine learning
techniques (Page et al. 2021) or large ensembles of direct numerical simulations, are
necessary.

2. A better understanding of transition should ideally lead to practical means to delay and
suppress it. Some first strategies have been demonstrated in experiments and simulations
(Hof et al. 2010, Kühnen et al. 2018, Marensi et al. 2020).

3. Puff decay and splitting exhibit scaling compatible with the statistics of rare (extreme)
events.However, the specific physical events in puff decay and puff splitting that give rise
to extreme-value behavior have not been identified. Algorithms designed to efficiently
sample rare events have been applied to shear flows (Rolland 2018, 2022; Gomé et al.
2022), but not as yet to pipe flow. The relationship between puff splitting and the onset
of weak slug expansion remains unclear.

4. Although there is strong evidence that the turbulent fraction decreases continuously as
the critical point is approached from above (Mukund&Hof 2018), the scaling exponents
and a direct connection to directed percolation remain open for pipe flow.
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