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Abstract

By taking into account the inhomogeneity introduced by the presence of
a solid boundary, slip-flow theory extends the range of applicability of the
venerable Navier-Stokes description to smaller scales and into the regime
where confinement starts to be important. Due to the inherently atomistic
nature of solid—fluid interactions at their interface, slip flow can be described,
at least in principle, predictively at this level. This review aims to summarize
our current understanding of slip flow at the atomistic level in dilute gases
and dense liquids. The discussion extends over the similarities and differ-
ences between slip in gases and liquids, characterization and measurement
of slip by molecular simulation methods, models for predicting slip, and open
questions requiring further investigation.
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1. INTRODUCTION

Slip at a solid—fluid interface is said to occur when the tangential velocity of the fluid is not equal
to the velocity of the solid it is in contact with (Lauga et al. 2007). It is typically a result of the
inhomogeneity introduced by the presence of the solid and is typically captured by replacing
the traditional no-slip boundary condition (Lauga et al. 2007) with a slip boundary condition.
Despite its relative simplicity and certainly because of it, slip flow is an invaluable theoretical tool.
It extends the traditional Navier-Stokes-based hydrodynamic models into the regime where con-
finementstarts to become important while requiring only a change in the boundary condition, thus
enabling researchers to continue using a well-understood model for which sophisticated solution
methods, be they analytical or numerical, already exist.

By relaxing the requirement of no slip at the boundary, slip alleviates a kinematic restriction to
flow, generally leading to flow rates higher than the nominal amounts expected in the absence of
slip. In some cases, this flow enhancement can be significant; for example, in the limiting case
of pressure-driven flow in nanotubes, it can completely dominate the response to the driving
force (Kavokine et al. 2021), resulting in significantly larger flow rates or, conversely, requiring
a significantly lower driving force for the same flow rate (Joseph & Aluru 2008, Falk et al. 2010).
In other words, fundamental understanding of slip-flow mechanisms is interesting from both a
scientific and a practical point of view.

This review focuses on the fundamentals of slip flow, taking in particular an atomistic point
of view. With this in mind, we consider simple fluids in the absence of electrostatic and non-
Newtonian effects. A broader discussion of slip can be found in the review by Lauga et al. (2007),
in which additional physical phenomena leading to or affecting slip, such as wall roughness and
apparent slip due to electrokinetic phenomena or dissolved gas, are also discussed.

Transport in liquids and gases is fundamentally different. In dilute gases transport is essentially
kinetic; particle interactions can be neglected, except during collisions (Vincenti & Kruger 1965,
Cercignani 1988, Bird 1994). As a result, the internal fluid scale for hydrodynamic purposes is the
molecular mean free path, ¢. Deviations from the no-slip Navier-Stokes description are expected
when the Knudsen number, Kn = ¢/L, where L denotes the system characteristic scale, is no
longer negligibly small. Typical values of £ for gases of practical interest at atmospheric pressure
lie in the range of 50 to 100 nm, making slip corrections necessary for L << 10 um. The accuracy
of the slip-flow description increasingly degrades as Kn increases, with its limit of applicability
typically taken to be Kn ~ 0.1, although this clearly depends on the amount of error that can
be tolerated. For smaller length scales, a kinetic approach is required, which typically consists
of solving the Boltzmann equation (Bird 1994, Homolle & Hadjiconstantinou 2007, Sone 2007,
Radtke et al. 2011, Sadr & Hadjiconstantinou 2023) in the transition regime 0.1 < Kn < 10 or by
approximating transport as ballistic for Kn > 10.

Transport in dense liquids is dominated by intermolecular interactions. As a result, the internal
scale for hydrodynamic purposes is the atomic/molecular size itself, o, which for a simple liquid
is of the order of 0.3 nm. Accordingly, deviations from the no-slip Navier—Stokes description are
expected for L < 10 nm. On the other hand, as recently elaborated on by Kavokine et al. (2021),
for L < 1 nm the continuum description is being confronted by structuring (Gravelle et al. 2013,
Wang & Hadjiconstantinou 2017) discreteness and nonlocal effects. Slip flow performs a very
important function in bridging the gap between these two length scales, since it eliminates the
need for the development of another, intermediate, transport description.

As in the case of constitutive relations, despite fundamental differences in transport mecha-
nisms, slip boundary conditions in gases and liquids are remarkably similar, at least to leading
order. For isothermal, unidirectional flow of a Newtonian fluid in the x-direction parallel to
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Figure 1

Slip length, B, measured from the physical wall location, z = 0, shown here in the liquid case; the latter is
defined by the locus of solid atom centers (grzy) in direct contact with the liquid atoms (b/ue). In the interest
of simplicity, the wall is shown as a single layer of atoms. The hydrodynamic wall location, zy, is discussed in
Section 3.1.2. The distance between the first liquid layer and the wall, 2pmin, is discussed in Section 3.2.1.
Figure adapted with permission from Wang & Hadjiconstantinou (2017); copyright 2017 American Physical
Society.

a stationary, flat solid boundary (wall) at z = 0 with normal in the positive z-direction (see
Figure 1), the slip boundary condition is typically written in the form

ou,
0z

w

v =B

The slip parameter 8 can be interpreted as the distance inside the boundary at which the extrapo-
lated velocity profile reaches the wall velocity, and for this reason it is also termed the slip length.
The canonical case of no slip is obtained in the limit 8 — 0. Note that the above relation is an
already simplified form of the more general relation

_)\”xlw = 1_Ilew 2.

originally proposed by Navier (1823), where A denotes the solid—-fluid friction coefficient, IT,, =
—u(du,/dz2) is the x—= component of the stress tensor in the fluid, and u is the fluid viscosity.
Equation 2 is consistent with that obtained using general thermodynamic arguments (Bedeaux
et al. 1976), which also provide for the presence of a thermal creep component. Thermal creep
is briefly discussed in Section 2.2.2. Equation 1 directly follows from Equation 2 for g = u/A.
Recent careful experiments by Cross et al. (2018) demonstrate that by keeping the contribution
of interface friction and viscosity separate, Equation 2 is more suitable for problems involving
variable viscosity.

Significant research effort has focused on developing reliable methods for determining the
value of the slip length (or friction coefficient) for various solid-liquid systems of interest. De-
spite considerable progress, several open questions remain, both in terms of robust and predictive
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methods for the calculation of these quantities and in terms of putting liquid slip flow on a firmer
theoretical footing and on par with the dilute gas case. These topics are discussed in Section 3, fol-
lowing a presentation of the kinetic theory treatment of the dilute gas case in Section 2. Section 4
concludes with a summary and outlook for future work.

2. SLIP IN DILUTE GASES
2.1. Background

Provided they are sufficiently dilute (Bird 1994), gases can be described by the Boltzmann
transport equation (Vincenti & Kruger 1965, Cercignani 1988, Bird 1994),

L[] :
ar  Tor or |y

which governs the evolution of the single particle distribution function f'= f(r;, ¢;, ), where 7, =
(x,y, 2) denotes the position vector in physical space, ¢; = (¢, ¢;, ¢;) denotes the molecular velocity
vector, and ¢ is time; here, we have assumed that no body forces are acting on the gas. Air at
atmospheric pressure narrowly meets the dilute gas criteria (Bird 1994).

In the above, [0f/ 01].on denotes the collision operator, which describes the rate of change of
the distribution function due to collisions in the gas. Within this description, intermolecular inter-
actions are captured by the scattering law associated with binary collisions. The most well-known
collision model is that of hard spheres (HS) (Vincenti & Kruger 1965, Bird 1994, Sone 2007). Due
to the complexity associated with the HS collision operator, it is often replaced with simple models
such as the Bhatnagar—Gross-Krook (BGK) (Bhatnagar et al. 1954, Cercignani 1988, Sone 2007)
or the ellipsoidal-statistical model (Hollway 1966). An alternative that better represents the tem-
perature dependence of transport coefficients of real gases has also been developed and is known
as the variable HS model (Bird 1994). A survey of molecular interaction models and their result-
ing transport properties can be found in the review by Sharipov & Seleznev (1998). In the interest
of simplicity, we discuss slip-flow theory in the context of the HS gas, which strikes a reasonable
balance between fidelity and complexity. The HS gas mean free path is given by ¢ = (v/2pmd?)™!,
where p denotes number density and 4 the HS diameter.

The slip expressions discussed below are independent of the collision model, whereas the slip
coefficients (nondimensional slip lengths, such as 8/£) are weakly dependent on the latter. On the
other hand, slip coefficients are strongly dependent on the gas—solid interaction model. Within the
Boltzmann equation framework, the latter is treated by a boundary condition on the distribution
function at the physical wall location 7. The most well-known such boundary condition is by

Maxwell (1879),

f(rl\_v’ Ciy t) = (1 - a)f(rl\_)v’ G — 2([] - u}v)ﬁjﬁi,t)

g w2
o Pw ([i —U; ) W7
+ T exp (— = ) for (¢; — u})h; > 0, 4.

T,

which assumes that the gas particle impinging on the boundary is diffusely reflected with prob-
ability « or specularly reflected with probability 1 — «. Diffuse reflection, also termed full
accommodation, implies that the particle is reemitted from a Maxwell-Boltzmann distribution at
the temperature and velocity of the boundary, 7., and #)", respectively, where To = 2kg T, /m, kg
is the Boltzmann constant and #z is the fluid (gas/liquid) atomic mass. The coefficient p§ can be
thought of as the number density of an equilibrium dilute gas with the same temperature and
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velocity as the boundary; its value is determined by mass-flux balance at the boundary
/ (C]' — u}y)ﬁjf(r}”,ci,t)dV[ + / (Cj — Zl;y)ﬁjf(i";v,fi,t)dl/[ = 0, 5.
(=) =0 (=i <0

where dV, denotes the differential volume element in molecular velocity space. Using Equation 4
to evaluate the first integral yields

p‘% =-2 ,,l / ([]' — u}”)ﬁjf(rl‘-”,c,-, l)dl/[ 6.
V T, (ej=u)ij<0

As one would expect, slip at the boundary increases as the degree of accommodation, «, de-
creases below 1. On the other hand, experiments suggest that engineering surfaces are most closely
represented by fully accommodating models (Wenski et al. 1998, Arkilic et al. 2001, Sharipov
2003, Graur et al. 2009); for this reason, most results on slip coefficients can be found in this
limit. Although some additional gas—surface interaction models have been developed (e.g., the
Cercignani-Lampis model; Cercignani & Lampis 1971, Cercignani 1988), they have received sig-
nificantly less attention, and as a result, they are less well characterized. In the interest of simplicity,
in what follows we limit our discussion to the Maxwell boundary condition given by Equation 4.

The emergence of the Navier—Stokes description from the Boltzmann equation can be demon-
strated using the well-known Chapman—Enskog expansion (Vincent & Kruger 1965, Cercignani
1988). This expansion considers an infinite expanse of gas and thus provides no information about
the gas behavior at the boundaries. Slip boundary conditions arise from the inhomogeneity intro-
duced by the boundary presence. They can be rigorously derived using an asymptotic matching
procedure (Sone 2007) for Kn < 1 in which the system is sufficiently large that a Navier—Stokes
description can be found in the bulk of the physical domain and the boundary presence can be
introduced as a perturbation to that solution.

Since the present interest in slipping flows is related primarily to microscale and nanoscale
applications, in the interest of simplicity, we limit the discussion to low-speed, steady flows gov-
erned by the steady Stokes equation. Extensions to unsteady flows as well as those governed by
the Navier—Stokes system of equations are briefly discussed once the theory has been presented.
The thermal counterpart to the slip condition, the temperature jump, is obtained using an entirely
analogous procedure (Sone 2007). Jump boundary conditions for phonon-mediated heat transfer
in solids have also been derived using such a procedure (Peraud & Hadjiconstantinou 2016).

According to the asymptotic analysis, away from the boundary (in practice, a distance of the
order of a few mean free paths) the Boltzmann solution is fully described by the Stokes system of
equations. Close to the boundary, however, the distribution function associated with the Stokes
flow field cannot satisfy the kinetic boundary condition, introducing additional kinetic effects and
an inner, Knudsen layer component to the solution. As a result, the solution of the linearized
Boltzmann equation for the gas hydrodynamic velocity,

f f(V,‘, Ciy t)fidV[

ui(riyt) = 7.
D= P nal.
is written as a superposition of a Stokes component and a Knudsen layer correction,
u; = uls + uZKN, 8.

with 5N — 0 away from the boundary. Slip boundary conditions emerge from the matching

procedure involving the inner and outer solutions at each order of the expansions
S0 S,1 s.2
) =u" +Knw' + Ko’ o) + ... 9.

and

N = Kn N 4+ Ko? 2N 4 10.
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2.2. First-Order Slip

In the present section we summarize the salient results of such an analysis to first order in the
Knudsen number. For more details the reader is referred to the monograph by Sone (2007).

2.2.1. Slip relations. The asymptotic analysis sketched above yields the boundary conditions

Py = 11.

i lw = U

u
and
S,1 r,1\2 AR50, 2 A0S0 2
(ul. |W—7/l;L )tizﬂEij |wti”j+9Gl' |wl',' 12.

$,0 S,1
for the components #;” and

i

with the (nondimensional) Stokes set of equations gov-
erning the dynamics at each level and the wall velocity expanded in the form Y = "* +
Kn u}”’l + Kn? u}”’z + ... (Sone 2007, Aoki 2001). In Equation 12, 8 = /¢, § = 6/¢ represent

nondimensional slip lengths, or slip coefficients; moreover,

auS’m aus””
ESm == J 13.
i (a@ M
and
S __ Cr BTS’”’ 14
T o '

where T is the temperature field, which can be obtained by the steady heat conduction equa-
tion subject to analogous jump boundary conditions (for details, see Sone 2007). Additionally,
7 = r;/L, t; denotes the unit vector tangential to the boundary, #; denotes the unit vector normal
to the boundary, and ¢, = /2kgT;/m is the most probable molecular speed based on the refer-
ence temperature 7;. Here we note that the no-slip boundary condition emerges as the boundary
condition of the zeroth-order description, with slip appearing as a correction at higher orders.

It is possible to verify that the above set of governing equations and boundary conditions is

equivalent to O(Kn) to the Stokes set

ous 0 'u; 9P

=0, = — 15.
87',' Mai"ja?"j 87‘,’
with the “implicit” slip boundary condition
@) — ) )i = BKnES | i + 0 KnG | f; 16.

as usually presented in the fluid dynamics literature. Given that the value of the viscosity is not
variable (see discussion below), Equation 16 is consistent with Equation 2 and the thermodynamic
result given by Bedeaux et al. (1976).

2.2.2. Discussion. In analogy with the treatment of the kinetic boundary condition on the dis-
tribution function (e.g., Equation 4), within the slip-flow description, the boundary condition is
applied at the physical wall location. Moreover, impermeability requires that #>"'|,; = 0. That
is, no slip normal to the wall exists to this order; note that «}"#; = 0 for steady flow (Aoki 2001).
Crucially, within slip-flow theory, the constitutive relation of the gas, including the value of
the viscosity, remains unchanged. At the same time, no Knudsen layer correction exists for the
stress. In other words, even though the Stokes component of the solution is unable to match
the Boltzmann solution for the velocity field in the vicinity of boundaries, it is able to correctly cap-
ture the stress field in the same region. Adjusting the gas viscosity to enforce a match in the velocity
field in the wall vicinity is not justified on practical grounds (due to its possible corrupting effect on
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the stress field, which requires no correction) or on theoretical grounds: A discrepancy between
the Stokes flow field and the Boltzmann solution close to the boundary is required by the the-
ory; if closer agreement is required in this region, a Knudsen layer correction should be used (see
below).

The final term in Equation 12 is known as thermal creep and it describes the tendency of the gas
to slip along a solid surface in the presence of a temperature gradient in the same direction (from
cold to hot). This can be seen by noting that the term G?‘Of,- can be written as (¢./71;)(3T /37)E;,
since at the zeroth order (in analogy to Equation 11) we have 750 = T?? at the boundary (Aoki
2001).

The structure of the slip-flow Equations 12 and 16 is independent of the gas molecular model
(Sone 2007). On the other hand, coefficients f and § are mildly dependent on the gas model,
while f in particular is strongly dependent on the degree of surface accommodation. Due to his-
torical reasons, they are typically approximated by expressions that date back to Maxwell’s first
attempt at estimating them (Maxwell 1879) [e.g., (o) = (2 — @)/a]. Although those expressions
are perhaps surprisingly accurate as estimates, they are not quite exact. For example, for a HS
gas in contact with a fully accommodating wall, 8 = 1.11 and 8 = 0.573 (Sone 2007); for the
whole range of accommodation, Sharipov & Seleznev (1998) report that 3 can be approximated
reasonably well by the relation B(a) ~ 2 — a)[1.11 — 0.137(1 — )]/a, and Wakabayashi et al.
(1996) report that § varies between 0.439 (&« = 0) and 0.573 (« = 1). Differences between various
gas models (or approximations like the one by Maxwell) become particularly important in inter-
preting experimental results, especially those aimed at inferring the accommodation coefficient
from slip coefficient measurements. Since differences between models can be sufficiently large
to affect the inferred value of the accommodation coefficient beyond typical experimental error
magnitudes, such experiments should always make clear which expression connecting slip to the
accommodation coefficient was assumed in this process (see, for example, the work by Graur et al.
2009).

More recent work has shown that using the more realistic Lennard-Jones (LJ) molecular model
leads to essentially the same slip coefficients (Sharipov 2011). A thorough compilation of slip
coefficient data and their dependence on the molecular model and the gas—surface interaction
model and parameters can be found in the review by Sharipov (2011).

Equations 11 and 12, as well as coefficients § and , remain unaltered in the case of
Navier-Stokes (Sone 2007), unsteady Stokes (Takata & Hattori 2012a), and compressible
Navier-Stokes (Aoki et al. 2017) equations.

The asymptotic solution approach also provides the following result for the Knudsen layer
correction (Sone 2007):

u ™ = bo(n) B3 i + bi(n) GO, 17.

where 1 is a stretched coordinate normal to the wall, i.e., n = x /¢, where x denotes the coordinate
normal to the wall. In other words, remarkably, the Knudsen layer correction depends only on
velocity gradients of the Stokes solution at the wall and can thus be superimposed to the Stokes
solution once the latter has been calculated. As in the case of slip coefficients, functions 4(n) and
b1(n) depend weakly on the molecular model. They have been calculated primarily for the BGK
and HS gas and are typically available in tabular form.

Figure 2 illustrates these concepts for the case of Couette flow of a HS gas subject to diffuse
reflection (o = 1) at the system boundaries (z = £L/2). The latter are moving with velocities U
in the x-direction, with L = 10¢. The Stokes solution with the slip boundary condition as given by
Equation 16 yields #5 = 2Uz/L(1 + 28Kn). Figure 2a,b shows that this result describes the flow
field quite accurately; although clearly present, Knudsen layer corrections are small. Specifically,
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Figure 2

Couette flow of a hard sphere gas between fully accommodating walls. Comparison between slip-flow theory (gray lines) and direct
Monte Carlo simulation (DSMC) (orange dots). (a) Flow profile; the two solutions differ due to Knudsen layers close to both walls. Inset
highlights difference in the vicinity of z = 0.5L. ()) Knudsen layer in the vicinity of z = —0.5L: difference between the DSMC result
and the slip solution (go/d dots) compared with the prediction of Equation 17, with ho(n) taken from Sone (2007) (blue line). Despite the
long tail, its effective (90%) thickness is ~2¢. (¢c) Shear stress; gas constitutive relation is unmodified by the wall presence and no
Knudsen layer exists for the stress field.

even though strictly nonzero at distances as large as ~10¢, the 90% thickness of this layer, defined
as the distance from the wall at which the Knudsen layer correction has decayed by 90% of its
value at the wall, is ~2¢. These features are essential to the success of the slip-flow description.

Figure 2¢ highlights the important fact that the gas constitutive relation remains unaltered
close to the boundary (I1,, = —2uU/L(1 4 2Kn)). Overall, the slip-corrected Stokes description
remains accurate in the slip-flow regime and, as we remark below, remarkably robust beyond this
regime.

2.3. Second-Order Slip

In the present section we summarize the salient results of the second-order asymptotic analysis.
For more details the reader is referred to the monograph by Sone (2007) and the more recent
work by Takata & Hattori (2012a).

2.3.1. Slip relations. Solution to the second order proceeds along the same lines: 5 is gov-
erned by a Stokes set of equations subject to a corresponding set of boundary conditions. At
this order, these boundary conditions include boundary curvature effects (Sone 2007, Takata &
Hattori 2012a), which are suppressed here in the interest of simplicity. Specifically, for a flat solid
wall, the boundary condition for the tangential component of the flow velocity is given by

S,0

S,2 2\p S aa g0 2aA
(Zti |w—u? )ti = ,BE,] |Wtinj_8Th tﬂ’ljnk

W

- G aTwJf J)BG;C"O
T, o7 37

o 18.

w

442 Hadjiconstantinou



2.3.2. Discussion. Asin the first-order case, close to the boundary, each second-order slip term
(including the terms due to boundary curvature not shown above) is supplemented by a second-
order Knudsen layer correction that is scaled by the same field gradients. The associated kinetic
boundary layers are available only in tabular form (Sone 2007).

At this order, gradients normal to the boundary lead to a slip flow in the normal direction. Zero
mass flux across the boundary is restored by the Knudsen layer correction (Sone 2007).

For the case of a HS gas, for a fully accommodating wall, § = 0.71 and ¢ = 1.25 (Takata &
Hattori 2012a). Information on the dependence of these coefficients on the molecular potential,
accommodation coefficient, and scattering model is limited.

In the case of unsteady flow, additional terms appear in Equation 18 as well as in the Stokes set
of equations (Radtke et al. 2012, Takata & Hattori 2012a, Takata et al. 2012). A comprehensive
exposition of the unsteady problem and a discussion of the main differences from the steady case
can be found in Takata & Hattori (2012a).

As in the case of the first-order theory, equivalent results up to O(Kn?) can be obtained by
solution of the Stokes set of Equation 15 subject to the “implicit” second-order slip boundary

condition
S W\ _ A S| 24 RToal BEE PPN
(ul |w —u; )l’,‘ = IB KJ]E,]|Wt,7’l] —5Kn 31’:1? i, 19.

written here for isothermal unidirectional flow.

Beyond convenience, in some cases the selection of slip relation (e.g., Equations 11 and 12
versus Equation 16 or Equations 11, 12, and 18 versus Equation 19) may come down to a choice
of class of boundary conditions that are preferable; this is especially true in the case of the slip
condition given by Equation 19, where the highest-order derivative is of the same order as that of
the governing differential equation, raising questions about posedness.

When using second-order boundary conditions such as Equation 18 or 19, we must recall
that the contribution of first-order Knudsen layers may become important. One specific example
of practical importance is the calculation of the flow rate across the domain (Hadjiconstantinou
2006). Taking pressure-driven flow in a 2D channel with fully accommodating walls at z = £L/2
as an example, the flow rate from the Stokes component of the flow field is given by

L2 L3 dP . <
QS = / u3(z)dz = —————(1 + 68Kn + 125Kn?), 20.
—L)2 IZ/L do

where dP/dx denotes the pressure gradient along the channel. On the other hand, when calcu-
lating the flow rate to O(Kn?), we need to include the first-order Knudsen layer contributions
(Cercignani 1964, Hadjiconstantinou 2003, Takata & Hattori 2012b), namely,

/ bo(n)dn, 21,
2] 70

where in taking the limit of the integral of the function 4, to infinity, we assumed that £ < L.
By the argument just presented, the contribution of second-order Knudsen layers to the flow rate
would be of the order of Kn®. The above expression for Q can be written in the form (Cercignani

1964, Hadjiconstantinou 2003)
L/2 . 5 dz S
Q= / (%s — u;) dz, 22.
—L)2 dZ
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Figure 3

Normalized velocity profile, 3 /[—(L? /21)(dP/dx)], for Poiseuille flow of a hard sphere gas between fully accommodating walls.
Comparison between first-order slip-flow theory (blue lines), second-order slip-flow theory (gray lines), and direct Monte Carlo
simulation (DSMC) (orange dots) for (2) Kn = 0.05, () Kn = 0.1, and (¢) Kn = 0.2. The vertical dashed lines indicate the 90% thickness
of the Knudsen layer at each wall.

where ¥ = /i ho(n)dn = —0.168. For the pressure-driven flow example, this expression leads to

L} dp < s s o
Q=————(1+46BKn+12(5 + y)Kn"), 23.
12u dx
in which an effective second-order slip coefficient (§ + v7) appears that is different from the actual
second-order coefficient §. This is particularly important for the interpretation of experiments
aimed at determining the second-order slip coefficient via flow rate measurements. Specifically,
measurement of the flow rate enhancement due to slip will return the value of the effective slip
coefficient § + ¥ and not the value of the actual slip coefficient .

Figure 3 shows a comparison between first-order slip flow (boundary condition given by
Equation 16), second-order slip flow (boundary condition given by Equation 19), and direct Monte
Carlo simulations of Poiseuille flow of a HS gas between accommodating walls for Kn = 0.05, 0.1,
and 0.2. The comparison shows that both first-order and second-order theories remain accurate
even at the nominal limits of their applicability (Kn ~ 0.1). Even more remarkable is the ro-
bustness exhibited well beyond these limits; for example, the second-order flow rate prediction
(Equation 23) remains accurate to approximately 2.5% at Kn = 0.2.

3. SLIP IN DENSE LIQUIDS

Compared with the dilute gas case, our understanding of liquid slip is significantly less advanced.
This is due to the persistent and multibody intermolecular interactions, which make theoretical
treatments significantly more complex. As a result, molecular dynamics (MD) simulation (Allen
& Tildesley 1989, Frenkel & Smit 2002) has been used extensively to characterize slip. In what
follows we review various approaches for calculating slip based on MD simulations, as well as a
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variety of molecular-mechanics-based approaches for modeling this phenomenon. In the interest
of simplicity we revert our notation to that of Figure 1; namely, we consider a liquid flowing in
the x-direction, parallel to a stationary flat wall with normal pointing in the z-direction.

3.1. Molecular Simulation

Broadly speaking, MD simulations can be used to measure slip via either an equilibrium or
a nonequilibrium approach. Both approaches are discussed below. To aid the discussion, we
introduce the generalized L] potential (Alosious et al. 2019)

wi) =40, (%) -6, (2], 24,

which serves as a canonical interaction potential in fundamental studies of slip. Here, #;(r) denotes
the interaction energy between atoms 7 and  as a function of their distance 7, while C;; modifies the
degree of attraction between atom 7 and j from the standard L] case (Cj; = 1) (Allen & Tildesley
1989). In what follows, we use subscript s to denote solid (wall) atoms and their properties and 1 to
denote liquid atoms and their properties. Unless otherwise stated, physical quantities are reported
in nondimensional units using oy as a characteristic distance, j; as a characteristic energy scale,

and 1y = ,/molf /en as the characteristic time (here 7z = ).

More realistic empirical potentials for simulating common material interfaces of interest (e.g.,
water in carbon nanotubes; Perez-Hernandez & Schmidt 2013) have been developed and are cur-
rently in use. Unfortunately, the performance of such potentials remains subject to a trade-off
between accuracy and computational cost, meaning that inexpensive predictive calculations of
slip for general solid-liquid systems currently remain out of reach. For a brief discussion of lim-
itations associated with MD modeling of fluids under nanoconfinement, the reader is referred to
the review by Kavokine et al. (2021).

3.1.1. Nonequilibrium method. Slip lengths in MD simulations can be measured in the pres-
ence of a velocity gradient by extrapolating the velocity profile to the location where the fluid
velocity is equal to that of the wall, as originally defined (see Figure 1). This approach is termed
the nonequilibrium method. MD simulation is uniquely suitable for slip characterization in the
nonlinear regime where approaches based on linear response cannot be used. On the other hand,
these simulations need to be performed with care, as viscous heating, associated thermostats, or
other nonlinear effects may contaminate the result (Martini et al. 2008a, Pahlavan & Freund 2011).

As we discuss in more detail below, typical applications of interest fall within the linear regime,
which can be accessed in nonequilibrium MD simulations using low driving forces, with the bene-
ficial side effect of minimizing the abovementioned artifacts. Although statistical noise makes MD
simulation at small driving forces expensive (Hadjiconstantinou et al. 2003), current computational
resources make such calculations possible on modern workstations.

An additional phenomenon that complicates slip measurement in the nonequilibrium method
is liquid layering at the solid-liquid interface (Wang & Hadjiconstantinou 2017). At this time no
firm theoretical guidance exists on the effect of layering on the local velocity profile (in analogy to
the Knudsen layer in the dilute gas case, for example). Using Couette flow simulation to measure
the slip length has the advantage that the velocity gradient term in Equation 1 can be measured
in the liquid bulk, thus excluding the layered region (Sendner et al. 2009, Hadjiconstantinou &
Swisher 2022b) where local properties vary as a result of the liquid density variation (Wang &
Hadjiconstantinou 2018).

A final source of uncertainty in such simulations is related to the wall location and is a result of
the finite size of atomic interactions. Measurement of the slip length with respect to the physical
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wall location (z = 0 in Figure 1) yields a different result than measurement with respect to the
first liquid layer (FLL) or the hydrodynamic wall location (z = 2y, and z = z,, in Figure 1, respec-
tively); the difference in the first case is of the order of one atomic diameter (see Section 3.2.1),
while in the second case it may be more (see Section 3.1.2).

3.1.2. Equilibrium method and Green-Kubo formulations. As a dissipative transport co-
efficient, the friction coefficient at the solid-liquid interface can also be measured with a
Green—Kubo formulation (Frenkel & Smit 2002), which requires only equilibrium simulations.
In the formulation originally proposed by Bocquet & Barrat (1994),

AGK _ I%BT,/O (Fu(t)F.(0))dr 5

leading to
gok _ __ mdksT y
SO E@F0)dt’ :

where we use the superscript GK to denote the result of the Green—Kubo calculation. In the
above expressions, angled brackets denote ensemble average, 4 denotes the interface area, and
F.(?) denotes the force exerted by the solid on the fluid in the x (slip)-direction.

A severe limitation to the accuracy of this approach arises from the difficulty in identifying the
plateau in the integral fooo (F.(t)F:(0))dt in finite systems (Bocquet & Barrat 1994, de la Torre et al.
2019). This issue is typically sidestepped by approximating (Bocquet & Barrat 1994) the plateau
with the first peak of fot (F.(t')F.(0))d¢'. Recent work by Oga et al. (2019) has shed some light on
the error committed by this approximation in finite systems. Using several assumptions, they show

that

1 ! ’ ’
A0 = o [ BORO) 27,
can be approximated by
Al) = Ao (e*% - e*%), 28.

AGK and the two relevant charac-

where the parameters Ay, #;, and #, contain information about
teristic system timescales, namely, the GK and the viscoelastic relaxation timescales. The value of

the friction coefficient (within the model assumptions) can be obtained from the expression
— A 1 —(12/t1)

1+ (2/1)
after determining the parameters Ay, #1, and ¢, by fitting traces of A(z) to MD data.

Using this model, Oga et al. (2019) calculated the error associated with the first-peak approx-
imation as a function of the ratio of the GK to the viscoelastic system timescales. In particular,

2K 29.

they show that the error becomes small when this timescale ratio is large, with a ratio greater than
approximately 100 yielding an error of less than 5%. For systems that do not meet the required
ratio of timescales (as determined by the desired error tolerance), they recommend using their
model for determining the slip length.

Figure 4 shows a typical simulation result for an LJ fluid. Using Equation 28, which pro-
vides a remarkably good fit to the MD data, shows that, in this case, using the peak value of
Jo (Fx(t)F.(0))dt’ underestimates A9 (and thus overestimates B9K) by approximately 4% com-

pared with the result from Equation 29. The discrepancy typically increases with increasing
16K,
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Figure 4

Molecular dynamics (MD) simulation result for p = 0.68, T = 1.5, &5 = 0.6, and Cy = 0.6. Simulation
parameters and setup as in Hadjiconstantinou & Swisher (2022b). Blue dots denote MD data, and the red
line denotes the best fit of Equation 28 to the MD data (with #; = 3.52, 7, = 0.0483, and Ag = 0.324).
Approximating A by the (first) peak of the MD trace, as shown by the dashed gray line, results in an estimate
approximately 4% smaller than that obtained from Equation 29.

3.1.2.1. The bydrodynamic wall location. In our discussion so far, the location at which the slip
boundary condition is to be applied coincided with the physical wall location (z = 0 in Figure 1).
GK theory, on the other hand, predicts that the effective solid-liquid interface at which the slip
boundary condition is to be applied is located inside the liquid, some distance from the physical
wall location. This distance, also termed the hydrodynamic wall location (Bocquet & Barrat 1994),
is given by

ok Jo (B@:(0))dt

A R R ORO) 30,

where the x—z component of the liquid stress tensor (at equilibrium) is given in terms of atomistic
quantities by IT,; = D imcc;; + Y fuzi. In this expression, i runs through all liquid atoms, ¢
denotes the velocity of atom 7 in direction j, 72; denotes the mass of atom 7, and f,; denotes the
x-component of the force on liquid atom 7, including the forces exerted by the solid onto the liquid.

Calculation of 28% by Equation 30 is quite challenging. In addition to Equation 30 being sig-
nificantly more sensitive to noise (Bocquet & Barrat 1994) than Equation 26, a reliable approach
for resolving the plateau dilemma for this ratio of GK integrals has yet to be developed. As a re-
sult, the hydrodynamic wall location has remained largely uncharacterized, with studies utilizing
the GK formulation typically failing to report this quantity. Unfortunately, as shown recently
(Hadjiconstantinou & Swisher 2022b), neglecting z8% cannot be theoretically justified for
moderate and especially small slip lengths, where it can be of the same order as, if not larger than, 8.

3.1.2.2. Hydrodynamic wall location via tangential force balance at the wall. The limitations
associated with evaluating Equation 30 can be avoided by using the tangential force balance at the
wall,

u.(z = 20K
(Fy) Z_MA(ﬁW’ 31
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Comparison of slip measurements from equilibrium and nonequilibrium molecular dynamics (MD) simulations under a variety of
conditions. The Green—Kubo prediction, 85K, as well as associated uncertainty is denoted by the dark red line and light red shading,
respectively; the slip measured at 2 = 0 by nonequilibrium MD simulations, B, is shown by gold dots, while blue dots denote the
measurements at the hydrodynamic wall location z = 28K (8 4 28K). For more details about the MD simulations, see
Hadjiconstantinou & Swisher (2022b).
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to provide a different relation for evaluating z8X. This approach (Hadjiconstantinou & Swisher
2022b) uses measurements of the solid-liquid force in nonequilibrium MD simulations to
GK a5 the location at which #,(z = zGK) satisfies the above equation.

This method was extensively validated by Hadjiconstantinou & Swisher (2022b). Figure 5
shows typical results from this work, where nonequilibrium slip measurements from Couette flow

determine 2

were compared with equilibrium measurements of slip obtained from Equation 26. Nonequilib-
rium measurements are shown in two forms: as measured at the physical wall location, denoted by
B, and referred at the GK hydrodynamic wall location, given and denoted by 8 + zGX. This shift
is possible because the flow profile in Couette flow is linear. As can be seen from Figure 5, only
B + z8% is in agreement with B%; that is, only when the hydrodynamic wall location associated
with B9 is taken into account can the equilibrium and nonequilibrium measurements be brought
into agreement.

3.1.2.3. An alternative Green—Kubo formulation. Duque-Zumajo et al. 2019) developed an
alternative GK approach that addresses (Camargo et al. 2019, de la Torre et al. 2019) the plateau
problem discussed above. Following Hansen et al. (2011), their analysis is based on the equa-
tion governing the dynamics of a liquid slab of thickness of a few atomic diameters immediately
next to and in contact with the solid.

The final result of their analysis is

32.
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where

D

1 o .
D _
W= /0 (AL ()T, (), 3.
1 >
D __ =
&= [ mon.o, 54
and
D
AP = b / ‘ (F.(t)F.(0))dt 35
= AT J, VEOENE '

In the above, V'is the liquid volume and fl. = > micyici + Y fx,-z,- denotes the x—z component
of the liquid-only stress tensor (at equilibrium): that is, fx,- denotes the x-direction component of
the force on liquid atom 7 from all of the liquid atoms (but not the solid atoms).

With the exception of the upper limit of integration, the expressions for 4P and AP are the
standard expressions for the liquid viscosity and the solid-liquid friction coefficient; GP can
be interpreted as a correction to the liquid viscosity in the wall vicinity due to the wall forces
(P. Espaiiol, personal communication). Although Equation 32 appears to suffer from the same
limitation as Equation 30, namely, requiring evaluation of the ratio of GK integrals, according
to Duque-Zumajo et al. (2019), Equation 32 overcomes the plateau problem because, by design,
both the numerator and the denominator exhibit a polynomial long-time tail, which leads their
ratio to reach a plateau at some intermediate timescale, denoted here by =2, from which the slip
length can be calculated more reliably.

It can be shown (Camargo et al. 2019) that the set of Equations 32-35 is equivalent to
Equations 26 and 30. The difference between Equation 32 and the standard relation fSK =
m / 2 GK
tion 2P

can be understood by noting that 8P is based on a modified hydrodynamic wall loca-

D — ;8K _ GPBSK/yu. This translation of the hydrodynamic wall location in exchange for
an equivalent change in the slip length is of course possible because both theories assume that the
velocity profile is linear (in the wall vicinity). We also note that z is still to be determined by a
ratio of two GK integrals (Camargo et al. 2019), making it susceptible to the limitations described
above.

3.2. Slip Models

In this section we review atomistic models of slip at the solid-liquid interface. We start the dis-
cussion with a review of liquid layering at the solid-liquid interface, a well-known yet largely
uncharacterized phenomenon.

3.2.1. Layering at the liquid—solid interface. As in the case of the molecular velocity distri-
bution in a gas, the wall presence introduces an inhomogeneity in the structure of a dense liquid
in the wall vicinity. This inhomogeneity manifests itself as a region that extends approximately
3-5 atomic diameters from the wall in which the liquid structure is layered; depending on the
solid-liquid system and its thermodynamic condition (see below), density variations in this region
can be very appreciable.

As the degree of confinement increases, the size of this interfacial region increases relative
to the full system size. It can thus affect both the amount of liquid in the system (Wang &
Hadjiconstantinou 2015) and the local liquid properties (Giannakopoulos et al. 2012, Wang &
Hadjiconstantinou 2018), and perhaps most importantly, momentum and energy exchange with
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Figure 6

Typical layered density profiles for a liquid density pave = 1. The blue line indicates Wa = 1.2, and the red
line indicates Wa = 0.6; bp1, denotes the width of the first liquid layer (see text). Adapted with permission
from Wang & Hadjiconstantinou (2017); copyright 2017 American Physical Society.

the system boundaries, including slip (Barrat & Bocquet 1999) and its counterpart, the Kapitza
resistance (Alexeev et al. 2015, Hadjiconstantinou & Swisher 2022a).

Despite the importance of layering in confined systems, most research work has taken a
phenomenological approach. Here we note some recent work focused on the development of
continuum-based computational approaches (Raghunathan et al. 2007, Mashayak & Aluru 2012,
Mashayak et al. 2015) for accurately describing fluid structure under nanoconfinement.

A typical density profile of a layered liquid as observed in an MD simulation is shown in
Figure 6. Such profiles are in good qualitative agreement with experimental results obtained us-
ing X-ray scattering (Huisman et al. 1997, Cheng et al. 2001). The width of the depletion region
in the immediate wall vicinity (denoted by 2, in Figure 1) can be estimated quite accurately by
noting that it is primarily a result of the very strong short-range repulsion between the solid and
the liquid. MD simulations show that due to the very steep form of the repulsive potential, it can
be reliably determined as the distance from the wall at which the liquid atom potential energy due
to all wall atoms is equal to zero; for a wall made of a single layer of atoms (e.g., a graphene sheet),
this leads t0 zmin = (2/5)!/%0y (Wang & Hadjiconstantinou 2017), and for a 3D wall this leads to
Zmin = (2/15)%0 4 (Sendner et al. 2009). Both of these results are given for the case Cy = 1.

An operational definition of the degree of layering based on the ratio of the first maximum and
following minimum in the density profile was proposed by Wang & Hadjiconstantinou (2017).
MD simulations were then used to show that the wall number Wa = ,owaszl eq/kpT, where p,, de-
notes the wall number density, is the nondimensional number controlling the degree of layering as
it represents the balance between solid-liquid attraction and thermal energy. Significant layering
is typically expected when Wa is no longer very small, although the exact value depends on the wall
details and definition of significant layering. We also note that the definition for Wa given above
is for the case of a wall comprising a single layer of atoms and thus o p,, represents a nondimen-
sional areal wall density; for multilayered walls, a properly nondimensionalized volumetric wall
density should be used.

Further insight into the layering phenomenon was presented in Wang & Hadjiconstantinou
(2017), which pursued a theoretical investigation of layering on the basis of the Nernst—Planck
equation, governing the density distribution of the liquid as determined by a balance between
interatomic interactions and thermal energy. Referring to the geometry of Figures 1 and 6, the
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Nernst—Planck equation for the system of interest can be brought (Wang & Hadjiconstantinou
2017) into the form

dp duy | dyy ) 36

dz :—Wap( dz +6$

where 5 = p(2)/pave, U denotes the liquid particle potential energy due to interactions with the
wall, Uy denotes the liquid particle potential energy due to interactions with all other liquid par-
ticles, and € = pyyeen/pweq. In the above, p,y. represents the average liquid density in the system
(number of particles divided by the volume accessible to the liquid; also approximately equal to
the liquid density away from the interface for large systems).

When scaled as shown above, Equation 36 can be used to motivate the role of Wa in control-
ling the degree of layering, with € affecting the finer features of layered-liquid density profiles.
Asymptotic analysis in the limit of small € can be used (Wang & Hadjiconstantinou 2017) to show
that typical quantities of interest, such as the areal density in the FLL, Zpp; the fluid density in
the FLL, ppr, = Ty /bp; and the width of the FLL, bgy,, can be expressed in polynomial powers
of pave.

One surprising and at the same time convenient result is that the enhancement factor C =
SpL/(BFL Pave) (excess number of particles in the FLL compared with the absence of layering) is
to a large extent independent of p,y. and a very weak function of temperature for p,,. 2 0.7. In
other words, over a wide range of temperatures and densities 1.5 < C < 2.5, a surprisingly small
variation given the range of behaviors observed for different system parameters. A qualitative ex-
planation follows by noting that the sharp peaks in the density profile are typically accompanied by
lower minimum values of the density, leading to some cancellation (for an example, see Figure 6).

Much remains to be understood about the layering phenomenon and its effects on transport
at the nanoscale in both simple and complex liquids.

3.2.2. Molecular-kinetic theory of liquid slip. A simple, approximate model that synthesizes
the main elements governing liquid slip on a molecularly smooth solid surface can be obtained
(Wang & Hadjiconstantinou 2019) by modeling slip as a thermally activated process and using an
extension of the Eyring theory of reaction rates (Eyring 1936, Hirschfelder et al. 1955) to model
it. Evidence for the validity of the thermally activated process approximation is provided by the
success of the related molecular-kinetic theory (MKT) of Blake & Haynes (1969) applied to the
motion of contact lines, the direct validation of the model discussed below (see Figure 7), and
the careful work by Lichter et al. (2004) and Martini et al. (2008a), who showed that slip is a
thermally activated process at sufficiently low shear rate. Blake & Haynes’s model in particular
is widely accepted in the contact-line literature (Bonn et al. 2009) having been found to be in
good agreement with experimental data (for a discussion, see Blake 2006) and MD simulations of
contact-line motion (Blake et al. 1997, de Ruijter et al. 1999, De Coninck & Blake 2008, Wang
etal. 2019).

This model considers the drift of liquid atoms in the FLL in contact with the solid. As such, it
does not incorporate any notion of a hydrodynamic wall location, thus effectively assuming that
the hydrodynamic wall location is the FLL. Although the distance between the FLL and the phys-
ical wall location is less than one atomic diameter, in the interest of completeness we distinguish
between quantities measured at the two locations by referring to the slip velocity measured at the
first layer of liquid atoms as # and denoting the associated slip length g*.

According to the MKT, #T can be written (Brochard-Wyart & de Gennes 1992, Wang &
Hadjiconstantinou 2019) as the difference between particle forward and backward hopping rates
over the energetic barrier landscape they sample in the wall vicinity, namely, #'T = /(k* — k™)
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with

Vi
k* =1, exp <—];:,]Ew). 37.

2! Va+N ®
FL _ 4 _Pat+hiy .
u, = - exp( T )smh(szT), 38.

where 7 is the jump timescale, }is the potential barrier associated with the jump of length /, and
w is the modification to the potential barrier associated with the jump due to the presence of shear.
In writing Equation 38 it is assumed that the potential barrier landscape " can be decomposed
into a term capturing solid-liquid (V) and a term capturing liquid-liquid (V) interactions. Fi-
nally, by writing @ = ST,/ = u X4y, where 7 denotes the shear rate, we obtain the following
expression for the slip velocity:

21 le —+ Lll . ,LLl .
FL
u = —€exp - llh - . 9.
N To ¢ ( kBj )Sl <22FLkB7 v 3

Figure 7 shows that a scaled form of this expression, namely, #f = ug sinh(y /), can capture
MBD simulation results for slip as a function of shear rate from a variety of studies. Moreover, the
values of coefficients #y and y, required to fit the MD data (Wang & Hadjiconstantinou 2019)
implied reasonable values for the parameters toexp (V/kgT) and /. The comparison includes the
data of Thompson & Troian (1997), who proposed a shear-dependent slip length of the form

This leads to
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Figure 7

Comparison between Equation 39, denoted by the gray dashed line, and molecular dynamics (MD)
simulation results denoted by symbols [green symbols denote all five sets of data discussed by Thompson &
Troian (1997), purple symbols denote the data of Martini et al. (2008a), and blue symbols denote the data of
Wang & Hadjiconstantinou (2019)]. Adapted with permission from Wang & Hadjiconstantinou (2019);
copyright 2019 American Physical Society.
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B = Bo(1 — y/7.)"1/* to explain the highly nonlinear dependence of the slip velocity on the shear
rate. In the above, By denotes the low-shear-rate slip length and y, denotes a critical shear rate.

Itimmediately follows from Equation 39 that in the small-shear-rate limity <« 2Zp kgT/(/10),
Equation 39 linearizes to Equation 1, with

FL _ Mlz _ Va+ T
p= Sr kT 1o exp( kT ) 0.

Here we note that the natural appearance of the shear stress as the driving force makes this ap-
proach physically consistent with the general form of Equation 2. We also note that the low-shear
(linear regime) condition can also be written as y < pkgT /1 by noting that gy, ~ pbgr, ~ pl.

Although the presentation above has followed the work of Wang & Hadjiconstantinou (2019),
Blake and colleagues (Blake 1993, Blake et al. 2015) have independently discussed extension of his
contact-line model to the general slip case and arrived at similar results. Related ideas can also be
found in the work of Tolstoi (1952), Ruckenstein & Rajora (1983), and Bowles et al. (2011), while
the earliest discussion on the use of rate processes to describe slip at an interface involving a fluid
appears to be the one found in the book by Glasstone et al. (1941).

Blake proposes eliminating the term involving the liquid-liquid interaction potential barrier
using u oc vy~ Vexp(I/ks T), where v is the liquid flow volume (Blake 2006), and identifying the
solid-liquid interaction with the work of adhesion Vy o y4(1 + cos6), where yq is the liquid
surface tension (in contact with vapor) and 0 is the solid-liquid contact angle. The strong depen-
dence of slip on the work of adhesion for the contact-line case has been extensively discussed by
Blake in several publications (see, e.g., Blake 2006) and more recently used in calculations that
include both contact-line and Navier slip (Keeler et al. 2022). A discussion of the earlier work on
this topic by Tolstoi can be found in Blake (1990).

Although elegant in its simplicity, the MKT introduces several approximations, especially in
its application of transition state theory (TST) (Hinggi et al. 1990) and its use of several unknown
proportionality coefficients as well as atomistic-level lumped parameters, such as the flow volume
and the jump length, which make predictive calculations for real materials of practical interest
challenging. For a discussion of the connection between Eyring’s reaction rate theory and TST in
the context of slip (albeit for contact lines), the reader is referred to Blake & De Coninck (2011).

3.2.3. Detailed mechanistic models: Frenkel-Kontorova and Fokker-Planck descriptions.
Here we describe work aiming to construct a more detailed mechanistic model of slip and thus
address some of the criticisms associated with the MKT discussed in the previous section. Such a
model can be developed by writing the equation of motion for liquid atoms in the FLL in contact
with the solid and subject to a uniform shear rate y. Referring to the geometry of Figure 1, the
equation describing motion parallel to the wall for a liquid atom in the FLL can be written in the
form

mi = —ngi+ uy A+ £+ f7, 41.

where overdots denote differentiation with respect to time, 7y is an atomistic-level solid-liquid
friction coefficient (Martini et al. 2008b), A is the area per atom at the solid-liquid interface, £/~
denotes the force exerted by all other liquid atoms on the atom of interest (beyond the shear force
uyA),and 2~ denotes the force resulting from the periodic energetic barrier associated with the
layered solid. A reasonable approximation for the latter is f3~ = — f; sin(2wx/a), representing
the largest term in a Fourier decomposition of the liquid—solid interaction potential, with # de-
noting the lattice spacing in the solid (Steele 1973, Barrat & Bocquet 1999, Lichter et al. 2004,
Martini et al. 2008Db).
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On the basis of their MD simulation results, Lichter and collaborators (Lichter et al. 2004,
Martini et al. 2008b) constructed a detailed model for £/~ , which includes nearest-neighbor inter-
actions between liquid atoms in the FLL and the fluctuations in the number of atoms in this layer.
Using a linear spring approximation of the form 1= =k A x for those forces, where A denotes
the discrete Laplacian operator, transforms Equation 41 into a Frenkel-Kontorova (FK) equa-
tion (Braun & Kivshar 1998). Accounting for the motion of liquid atoms normal to the boundary
(in and out of the FLL) results in a variable-density FK equation. Unfortunately, this equation is
quite complex and could only be solved by simulation. Simulation results demonstrate qualitative
agreement with in-house MD data (Lichter et al. 2004, Martini et al. 2008b).

The observation by Lichter and collaborators that at low shear rates, slip appears to be a
thermally activated process suggests that a simpler approach might be reasonable, especially
if it enables numerical or even analytical solutions. In one such approach (Hadjiconstantinou
2021), the term f1~ is modeled as a Wiener process (Risken 1989). Using this simplification,
Equation 41 can be written in the following rescaled form,

‘5‘:11 + Cnxn + dn Sinxn = f;z + Fn(tﬂ) 42.
with
(Fn(tn)rn(t;,)) = Zg-n@,z(s(tn - t;;)7 43.

where x, = 2nx/a, t, = 2nt/t, ©, = T2 kg T/ma®, ¢, = tng/27wm, f, = t*uy A/2wma, and d, =
tfo /27 ma. In the above, §(¢) is the Dirac delta function, T = vty is a characteristic timescale, and
v is a constant of order 1.

The single-particle distribution function ®, = ®,(x,, va, t,) corresponding to the dynamics
described by Equations 42 and 43 is governed by the Fokker—Planck equation (Risken 1989)

9, 0 d . d
oz, = - oz, (vn(bn) + v, <<§nvn +d, sinx, — .ﬁl + gn(gnm) (Dn), 44.

where v, = %, describing Brownian motion in a periodic potential. Macroscopic slip corresponds
to steady solutions of this equation on the interval 0 < x, < 27 and can be calculated from the
particle mobility

Xp=2T [Up=00
ﬂFL _ <‘Un) _ L11:0 Vp=—00 (Dnvndvndxn
n T - .

o f

Numerical and analytical results (Hadjiconstantinou 2021) show that the slip predicted captures

45.

all the salient features observed in MD simulations, namely, a linear regime of constant slip length
at small driving forces, a rapid rise in slip for moderate/large forcing, and a plateau in the slip
length for sufficiently high forcing, as originally discussed by Martini et al. (2008a).

The ability of this model to accurately capture MD simulation data was evaluated by
Hadjiconstantinou (2021). Considering the dependence of slip on shear rate shows that a vari-
ety of MD data, including those from the work of Thompson & Troian (1997), can be fitted by
solutions of Equation 44 with accuracy comparable to that achieved in Figure 7; the reader is
referred to Hadjiconstantinou (2021) for details on the fitting process. Of particular interest was
the observation that the MD data are best fitted using ¢, < 1 (®, ~ 1), for which Equation 44
lends itself to asymptotic solution. Specifically, several semianalytical results are possible
(Hadjiconstantinou 2021) in the limit ¢,/+/©, < 1; here we give a particularly simple result for
the slip length in the limit of small forcing (f,/¢, < 1) and large potential barrier (4,/®, — oo):

L _ [T S\ i _ ﬁ
Bh _(2 +0.855 /271@@11)5” exp( 2(-),,)' 46.
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Although strictly asymptotic, this result is in agreement with the exponential dependence of slip on
the normalized barrier height also seen in Equation 40 arising from the simpler MKT treatment.

3.2.4. Models arising from partial evaluation of Green-Kubo expressions. In this sec-
tion we explore how the GK formulation of Section 3.1.2 can be used to provide a model that
connects slip to the underlying physical processes as well as system quantities that are accessible
to experimental measurements. We begin by rewriting Equation 26 in the form
_ ndksT

GK
="

47.

where

b=t [ EOEO)

=00 Jo (Ef )

The importance of this rearrangement is that it reduces the contribution of the GK integral
into two distinct factors, namely the mean square wall force (MSWEF) (F?2) and the timescale I,
which can be analyzed and potentially modeled separately. MD simulations show (Falk et al. 2010,
Hadjiconstantinou & Swisher 2022b) that (F?) is strongly dependent on the solid-liquid inter-
action and fluid state, while the timescale I3 is a very weak function of both. In what follows we
discuss these two main ingredients in isolation.

dt’. 48.

3.2.4.1. The timescale 1. In early work (Barrat & Bocquet 1999, Priezjev & Troian 2006),
timescale Iz was argued to be proportional to the diffusive relaxation of the in-plane density—
density correlations at the liquid-solid interface. This result followed from an assumption that
the density—density correlation function can be decoupled into a product of a diffusive relaxation
and a static correlation function (Barrat & Bocquet 1999). This approximate approach required
parameterization of this diffusive relaxation using MD simulations, making it no more accessible
than the original Equation 26.

More recent (Hadjiconstantinou & Swisher 2022b), as well as related (Hadjiconstantinou &
Swisher 2022a), work has suggested the following alternative approximation Iy = t,/Dpg, where
Dy is a constant and 7, is the homogeneous liquid viscous relaxation timescale defined by

R M) [ MLOTL0)
u= VTBT./U (M, (), (0))dt = VisT o (L) dt = Gty 49.
where
! (%) 50.

Gy = VT e
is the liquid high-frequency shear modulus (Heyes et al. 2019). This yields
DgGooksT
= A-1 <E62) ’

which takes a step toward making the dynamics within the GK integral more transparent.

Bk 51.

Figure 8 shows a comparison between Equation 51 and the MD results of Hadjiconstantinou
& Swisher (2022b), with Dg = 1.05. This value was chosen as the one that gives best overall agree-
ment between Equation 51 and the MD results; Go, was calculated using the analytical expression
for an 1] liquid given by Zwanzig & Mountain (1965), and A~ (F?) was taken from MD simula-
tions. The agreement observed in the figure is very encouraging given the variety of conditions
and solid-liquid interaction parameters explored in the validation (Hadjiconstantinou & Swisher
2022b). In the above comparison, liquid properties in Equation 51 were evaluated at the bulk den-
sity (pave) instead of at the local density in the FLL (opp). This can be perhaps explained by the
observation that the two densities are directly related, as discussed in Section 3.2.1.
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Figure 8

Validation of Equation 51 under a variety of conditions for a Lennard—Jones liquid. Molecular dynamics (MD) simulation results and
associated uncertainty (for 6K) are depicted with blue dots, and the prediction of Equation 51 and associated uncertainty are depicted
with the dark red line and light-red shading, respectively. For more details about the MD simulations, the reader is referred to
Hadjiconstantinou & Swisher (2022b).

3.2.4.2. The mean square wall force (F?). 'The MSWF is an equilibrium quantity. Its strong
dependence on the liquid—solid interaction and fluid state leads to these quantities having a large
effect on the slip length. Simple scaling analysis suggests that (F?) /A ~ T ¢}. This scaling behav-
ior has been largely validated by various MD simulation studies (Priezjev & Troian 2006, Sendner
etal. 2009, Hadjiconstantinou & Swisher 2022b). Particular attention has been paid to the scaling
B ~ &;* (Priezjev et al. 2005), including the connection to the wetting contact angle via the rela-
tion g4 ~ (1 + cos®) (Sendner et al. 2009). We also note that 8 ~ 8;2 is in qualitative agreement
with B ~ exp(—gy) predicted by the MKT of Section 3.2.2 for moderate values of 4.

A more complete model for the MSWF was developed by Barrat & Bocquet (1999) by rewriting
(F?) in terms of the density—density correlation function (Boon & Yip 1991). By approximating
the solid-liquid interaction force in the slip direction in terms of the dominant term in a Fourier
decomposition, they reach the expression

AN FY) ~ SpSQr /a) f2, 52.

where S denotes the structure factor (Boon & Yip 1991) of the liquid inside the FLL. This ex-
pression correlates slip data quite well (within a multiplicative constant) in a variety of settings
(Priezjev et al. 2005, Priezjev & Troian 2006, Falk et al. 2010), although in some cases empirical
corrections are necessary (Barrat & Bocquet 1999, Priezjev 2007). Although unquestionably useful
for providing insight into the physics of slip flow, Equation 52 requires knowledge of quantities
that require MD simulations from which (F?) or even 8 could have been measured directly. In
other words, a model that connects (F?) to material properties easily accessible to experiments is
still needed.

We close by emphasizing that Equation 51 approximates the GK estimate of the slip, which is
associated with the hydrodynamic wall location 28X

Sy
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4. DISCUSSION

One of the lessons learned from more than a quarter century of research in microfluidics and
nanofluidics is that the (Navier-)Stokes description is remarkably robust, at least in this application
domain. A signature of this robustness is the low rate at which the accuracy of this description
degrades when used beyond its nominal limits of applicability (see, e.g., Hadjiconstantinou 2005,
2006; Falk et al. 2010). Slip boundary conditions are instrumental contributors to the wide range
of scales over which this description can be applied.

Both dilute-gas and dense-liquid slip-flow theories provide some opportunity for misuse. In the
dilute gas case, the presence of Knudsen layers means that (Navier—)Stokes theory alone cannot
capture the flow field in the vicinity of the walls. To use the theory correctly, one has to resist the
temptation to force agreement in this region using ad hoc constructs with adjustable parameters.
In the dense liquid case, complexity is introduced by the concept of hydrodynamic wall location,
which depends on the liquid state in a nontrivial manner and can be at a distance from the physical
wall location that can be a significant fraction of the slip length, when the latter is small. Unless the
hydrodynamic wall location is properly accounted for, slip measurements from different methods
will not be consistent.

The mathematical sophistication of the dilute-gas slip-flow theory stands in stark contrast to
the simplicity of the gas—solid interaction model on which it was primarily built, which dates back
to the first papers written on the subject. The sensitivity of slip on the gas—surface interaction, as
evidenced, for example, by the significant increase in slip as accommodation decreases, only serves
to highlight this deficiency. In other words, more realistic gas—surface interaction models need to
be both developed and incorporated within the asymptotic theory described in Section 2.

In addition to contributing to our fundamental understanding of the atomistic processes gov-
erning slip in liquids, tractable models are desirable as substitutes for expensive MD calculations
but also as a means of relating slip to quantities accessible to experiments, potentially sidestepping
MD limitations associated with the fidelity of interatomic interaction potentials. The models dis-
cussed in Section 3.2 are useful first steps toward a complete theory of slip for dense liquids. It is
also encouraging that some aspects of these models appear to translate to slip of more complex
fluids (Niavarani & Priezjev 2008, Priezjev 2009, Hatzikiriakos 2012).

Most theoretical results discussed in this review have been validated by molecular simulations.
This can be attributed, at least in part, to the challenges associated with experimentally accessing
the relevant length scales for quantifying slip, related phenomena, and their origins, especially
in the dense liquid case. Although the contribution of molecular simulation methods in guiding
and validating model development is invaluable and a testament to their ability to probe atomistic
length scales, ultimately experimental validation of theoretical or simulation results is necessary,
as additional effects, not included in MD simulation or equivalent models, may be important (for
example, see the conclusions in Secchi et al. 2016).

As discussed by Lauga et al. (2007), experimental investigations of slip can be performed by
direct or indirect measurement, with the latter approach relying on a measurement of the effect
of slip on some other quantity. A discussion of some of the experimental setups used to quantify
slip can be found in the reviews by Lauga et al. (2007) and Bocquet & Charlaix (2010). These
discussions show that, in general, indirect methods are more common, perhaps as a result of the
flexibility they afford. On the other hand, converting the experimental measurement into a predic-
tion for slip requires a carefully constructed, accurate model for the effect of slip on the measured
quantity (Cottin-Bizonne et al. 2008, Secchi et al. 2016, Cross et al. 2018). Second-order slip co-
efficient measurement in dilute gases serves as a cautionary tale of the importance of the model
connecting slip to the quantity measured in the experiment; as discussed in Section 2.3, measure-
ments of the flow rate enhancement compared with a no-slip baseline provide information on an
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effective second-order coefficient that is different from the actual slip coefficient, a fact that has
been neglected in a large number of published studies.

The GK-based model of Section 3.2.4 can be improved by finding a description for the MSWF
in terms of quantities more easily accessible to experiments. The other main ingredient in this
model, namely, the approximation Iy = 7, /Dg, would benefit from further characterization of its
limits of applicability and from methodologies for calculating the value of Dg from first principles.

By taking a higher-order gradient into account, second-order slip provides a measurable im-
provement in accuracy in the case of dilute gases. Development of a rigorous second-order slip
model for the dense liquid case may prove to be equally beneficial.
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