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Abstract

The fluid dynamics of microswimmers has received attention from the fields
of microbiology, microrobotics, and active matter. Microorganisms have
evolved organelles termed cilia for propulsion through liquids. Each cilium
periodically performs effective and recovery strokes, creating a metachronal
wave as a whole and developing a propulsive force. One well-established
mathematical model of ciliary swimming is the squirmer model, which
focuses on surface squirming velocities. This model is also useful when
studying active colloids and droplets. The squirmer model has been recently
used to investigate the behaviors of microswimmers in complex environ-
ments, their collective dynamics, and the characteristics of active fluids.
Efforts have also been made to broaden the range of applications beyond
the assortment permitted by the squirmer model, which was established to
specifically represent ciliary flow and incorporate biological features. The
stress swimmer model imposes stresses above the cell body surface that
enforce the no-slip condition. The ciliated swimmer model precisely repro-
duces the behaviors of each cilium that engages in mutual hydrodynamic
interactions.Mathematical models have improved our understanding of var-
ious microbial phenomena, including cell–cell and cell–wall interactions and
energetics. Here, I review recent advances in the hydrodynamics of ciliary
swimming and then discuss future challenges.
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Cilia: hair-like
organelles, which are
abundant and short,
with the same
structure as flagella,
which are long and
sparse

Eukaryotic flagellum:
whip-like organelle
with distributed
dynein molecular
motors

Metachronal wave:
a wave that propagates
across the entire cilia
due to the phase lag of
adjacent ciliary strokes

1. INTRODUCTION

“The role of the infinitely small in nature is infinitely large”; these are the words of Louis Pasteur
(1822–1895), who is regarded as the founder of modern microbiology. Although microorganisms
cannot be observed with the naked eye, they are broadly distributed worldwide and have extensive
effects on human life (Ingraham& Ingraham 2003). In efforts to understand microbial physiology
and function,many natural scientists have focused on motility and swimming ( Jahn &Votta 1972,
Brennen & Winet 1977, Pedley & Kessler 1992, Berg 2004, Lauga & Powers 2009, Guasto et al.
2012, Persat et al. 2015, Lauga 2016, Bees 2020). Fluid dynamics has important roles in various
microbial phenomena, including oceanic red tides (Durham et al. 2009), symbiosis (Raina et al.
2019), and multicellularity (Goldstein 2015). These biological functions emerge in the interplay
between cellular motility and the surrounding environment.

To swim freely in liquids, microorganisms have evolved organelles such as flagella and cilia
(Khan & Scholey 2018). Eukaryotic flagella and cilia have a nearly identical structure: nine outer
doublet microtubules and two central pairs of microtubules (i.e., 9+ 2 structure) (Figure 1d). The
doublet microtubules are cross-linked by dynein molecular motors and can actively bend using
the sliding forces generated by dynein (Fisch & Dupuis-Williams 2011). The distinction between
flagella and cilia is not strict, but long and sparse organelles are considered flagella, whereas short
and abundant organelles are considered cilia. Each cilium generates thrust by repeating effective
and recovery strokes (Figure 1c); metachronal waves of ciliary strokes (Figure 1b) propagate on
the cell surface (Brennen & Winet 1977) (Figure 1a). Microorganisms change their swimming
directions and speeds by actively modulating the beating of cilia or flagella or by passively moving
within their physical environment. The ability to change swimming direction in response to a

a

f
b

c

d
e

Figure 1

Hierarchical structure of ciliary movements. (a) Metachronal ciliary waves covering the body of a ciliate. (b) Coordinated ciliary
movement creates the metachronal waves. (c) Each cilium performs an effective stroke and a recovery stroke. (d) Cross-section of a
cilium showing the 9 + 2 structure and the dynein molecular motors that drive activity. (e) Scanning electron micrograph of Paramecium
caudatum. Panel adapted with permission from Hausmann & Allen (2010). ( f ) Light appearance of Volvox carteri. Panel reproduced with
permission from Aurora Nedelcu, University of New Brunswick.
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Taxis: behavior of an
organism toward a
certain direction in
response to a physical
stimulus

Ciliate: a group of
protists, alveolates,
characterized by many
short cilia arranged in
rows

Algae: generic term of
photosynthetic
eukaryotic organisms
that excludes mosses,
ferns, and seed plants

Squirmer:
microswimmer model
with surface squirming
velocity

Stokes flow: flow with
negligible inertia,
i.e., Re → 0; also
called creeping flow

physical stimulus is known as taxis; types of taxis include phototaxis in response to light, chemo-
taxis in response to a concentration field, gravitaxis in response to a gravity field, and rheotaxis in
response to a flow field.

Ciliates are representative of microorganisms that possess cilia for swimming or crawling, as
well as phagocytic food capture. Their habitats are diverse, including oceans, ponds, soil, fish gills,
and mammalian digestive tracts. Paramecium spp. are well-known ciliates that have been the focus
of many fluid dynamics studies. The body length and width of Paramecium caudatum (Figure 1e)
are approximately 250 and 50 µm, respectively; approximately 15,000 cilia are distributed over
the entire body of an individual organism, with a density of approximately 50 cilia per 100 µm2

(Brennen&Winet 1977).The cilia are approximately 10–15µm in length and 0.2µm in diameter;
they beat at a frequency of approximately 30 Hz. The organism swims approximately 10 body
lengths per second. Other microorganisms that use cilia for swimming include volvocine green
algae. Volvox carteri (Figure 1f ) has a spherical body covered by approximately 4,000 cilia (Kirk
1998). The spherical shape of V. carteri is mathematically tractable; thus, it has been used as a
model organism in studies of phototaxis,mass transport, the emergence of metachronal waves, and
hydrodynamic interactions (Goldstein 2015). Many microorganisms also use cilia for swimming,
and analysis of such swimming can increase the broader understanding of microbial physiology
and function. In recent years, attempts have been made to artificially produce cilia (Milana et al.
2020, Wang et al. 2022). An understanding of ciliary flow and swimming also aids such efforts.

In 1952,M.J.Lighthill performed amathematical analysis of ciliary swimming (Lighthill 1952).
He focused on the surface created by the ciliary tips and assumed that the displacement and
stretching of that surface could be expressed as a velocity boundary condition. This model with
surface squirming velocities is what is now called a squirmer. The squirmer model has since been
extended by Blake (1971) and Pedley et al. (2016) and used for various ciliary swimming analyses.
In recent years,models aside from the squirmer model that more accurately reproduce ciliary flow
and incorporate biological features have also been developed. To provide a thorough understand-
ing of the mechanics of ciliary swimming, this review describes the fundamental hydrodynamics
of ciliary swimming.

Section 2 first explains the hydrodynamics of microswimmers, which differ from the hydro-
dynamics of large swimmers because the effect of inertia is negligible and Stokes flow can be
assumed. The relationship between forces exerted by flagella or cilia and the resulting swimming
speeds is then discussed. Ciliary swimming as well as artificial self-propelled droplets and parti-
cles have been extensively analyzed with a squirmer model. Section 3 describes recent advances in
squirmer hydrodynamics. Efforts have beenmade to broaden the range of applications beyond the
squirmermodel by representing ciliary flow in greater detail and incorporating biological features.
Section 4 reviews studies using the stress swimmer model, which imposes stresses above the cell
body. Section 5 reviews studies that use the ciliated swimmermodel to precisely reproduce individ-
ual ciliary motion. Finally, current issues and future research prospects are discussed in Section 6.

2. HYDRODYNAMICS OF MICROSWIMMERS

2.1. Flow Around a Swimming Microorganism

The Reynolds number (Re) is a dimensionless number that describes flow conditions and indicates
the ratio of inertial forces to viscous forces. It is defined as Re = ρUL/µ, where ρ is the fluid
density,U is the swimming velocity, L is half of the body length, and µ is the fluid viscosity. The
half body length of most microorganisms ranges from approximately 1 to 100 µm, and they swim
at speeds of approximately 1 to 10 body lengths per second (Brennen & Winet 1977). The Re
using density and viscosity of water ranges from Re = 1 × 10−5 to 1 × 10−1. Therefore, the flow
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Stresslet:
a force-dipole,
consisting of two
forces (thrust and
drag) of the same
magnitude and
opposite direction
placed on the same line

Bioconvection:
when microorganisms
accumulate near the
water surface, the
upper region becomes
denser than the lower
region, creating
overturning
convection similar to
Rayleigh–Bénard
convection

field around a microorganism can be approximated as a Stokes flow; inertia can be neglected.
Note, as a special case, that the effect of inertia may appear when large ciliates synchronize their
ciliary strokes in escaping from an aggression (Hamel et al. 2011).

Stokes flow exhibits the unique properties of instantaneousness, reversibility, and superposition
of solutions. Instantaneousness refers to when a microorganism stops the swimming apparatus (a
flagellum or a cilium), and the surrounding flow instantaneously ceases and the microorganism
does not move. Reversibility refers to when flagellar motion is reversed and the flow field and the
velocity of a microorganism are also reversed. Thus, if the swimming apparatus simply beats back
and forth, a microorganism oscillates in place. This is the Purcell scallop theorem (Purcell 1977).
To move, flagella and cilia perform nonreciprocal effective and recovery strokes. The superposi-
tion of solutions can be attributed to the linearity of Stokes flow. Suppose that flow A is induced
by external force A at one point in a fluid, whereas flow B is induced by external force B at another
point. The flow induced by the simultaneous imposition of forces A and B is the sum of flows A
and B. These basic properties of Stokes flow support an understanding of microbial swimming.

Another important property of Stokes flow is that the flow field induced by a force and higher
moments of a cell’s force distribution (e.g., a torque, a stresslet) can be analytically obtained bymul-
tiplying the moments by kernel functions called the propagators (Kim & Karrila 1991). Stresslet
is a force-dipole, in which two forces of the same magnitude and opposite direction are placed
along the same line. Stresslet is a first-order moment like torque, but torque induces an asymmet-
ric stress tensor and stresslet induces a symmetric stress tensor. When the thrust forces exerted
by flagella and cilia are known, the surrounding flow fields can be calculated by multiplying the
kernel function by the thrust force.

Microbial density may differ from ambient fluid density. When the sedimentation velocity
caused by a density difference is much smaller than the swimming velocity, the density differ-
ence may be ignored. In this situation, the thrust and drag forces on the microorganism are in
balance; the microorganism is force free (i.e., no external force acts on the microorganism). How-
ever, when sedimentation and swimming velocities are of the same order of magnitude (Drescher
et al. 2009), or when discussing velocity fields far away from the microorganism (Drescher et al.
2010a), the effect of sedimentation cannot be ignored. Furthermore, in bioconvection, a convec-
tion phenomenon produced by microorganisms under gravity, the effects of sedimentation cannot
be ignored (Hill & Pedley 2005, Bees 2020). In bioconvection, microorganisms that are denser
than water accumulate near the water surface (because of taxis), leading to density instability that
results in a descending plume.

The microbial center of gravity is not necessarily the geometric center; some microalgae, such
as V. carteri, are bottom heavy (i.e., with a center of gravity behind the geometric center) (Drescher
et al. 2009). This property causes the microorganisms to undergo external torque to orient verti-
cally upward. By comparison, if a microorganism with asymmetric shape descends due to a density
difference, the centers of gravity and drag may be misaligned, generating external torque (Roberts
& Deacon 2002, Kage et al. 2020). This changes the microbial orientation to vertically upward or
downward. For artificial microswimmers, external torque can be imparted by a magnetic force or
other means to control the swimming direction.

2.2. Hydrodynamic Models of Ciliated Microswimmers

When an external force is applied to a microorganism, this induces flow in the surrounding
fluid, and the disturbance velocity decays inversely proportional to the distance r. Moreover, the
velocity induced by an external torque or a stresslet (force-dipole) decays at a rate dictated by r−2.
Higher-order moments decay more rapidly; the distant flow fields induced by microorganisms
are dominated by external forces, torques, and stresslets. Figure 2e shows a spherical ciliated
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Figure 2

Models of ciliated swimmers. (a) The point stresslet (force-dipole) model with stresslet S and a prescribed swimming velocity U. (b) A
squirmer model with radius a and orientation e, with the surface squirming velocities. (c) A stress swimmer model in which shear stress
is applied to the fluid on a sphere of radius (1 + ϵ )a; the fluid satisfies the no-slip condition on the spherical surface at radius a. (d) A
torque swimmer model in which a torque is applied to the fluid on a sphere of radius (1 + ϵ )a. (e) The ciliated swimmer model that
precisely reproduces the behavior of each cilium.

swimmer such as the microalga V. carteri. In the absence of external forces and torques, the
simplest hydrodynamic model of a ciliated swimmer is the point stresslet in Figure 2a. Because
the point stresslet does not swim, the swimming velocity U is given additionally.

Between the ciliary swimming of Figure 2e and the point stresslet of Figure 2a, modeling
at various resolutions is possible (Figure 2b–d). The model that comprehensively analyzes the
motion of each cilium quantitatively evaluates the interactions between cilia and energy dissipation
in the ciliary layer; however, it cannot manage a large number of swimmers owing to the large
computational cost, and it is not applicable to other swimming bodies because of its excessive
detail. In contrast, the simple point stresslet model is general in nature and can be applied to a wide
range of swimmers; nevertheless, it does not consider the near-field hydrodynamic interactions
nor the excluded volume effects and thus cannot be applied to highly concentrated suspensions
or interactions between microbes and walls. No single hydrodynamic model is applicable to all
problems; a model appropriate for the phenomenon of interest should be selected. In most cases,
it is better to choose the minimal model that can describe the mechanism of the phenomenon of
interest.

Figure 2b shows a squirmer model; the squirming velocity lies on the surface of a sphere of
radius a. Although the body is not required to be spherical, we assume that it is for the sake of
simplicity.When the surface created by the tips of all cilia is regarded as a body surface, a material
point of that surface undergoes movement and stretching that can be expressed as a surface veloc-
ity. Thus, the body surface is represented by a velocity boundary that determines the swimming
speed under specific force and torque conditions (for details, see Section 3).

In actual ciliary swimming, the cilia extending from the body move, but the shape of the body
surface does not change.Therefore, the velocity on the body surface satisfies the no-slip condition.
A cilium exerts a force on the fluid, and the reaction force is transmitted to the body as thrust. This
thrust is balanced by the drag force. To model this mechanical condition, Ishikawa et al. (2020)
developed a stress swimmer model; rather than imposing a squirming velocity on the surface, a
shear stress was applied to the fluid on a sphere of radius (1 + ϵ )a, where ϵa represents the ciliary
length.The fluid must satisfy the no-slip condition on the spherical surface at radius a (Figure 2c).
This model is useful when discussing cell–cell and cell–wall interactions because it approximately
represents the flow in the ciliary layer (for details, see Section 4).

The force exerted by a cilium on fluid and the reaction force transmitted to the basal part of
the cilium can be modeled as a torque. Ishikawa et al. (2016) developed a torque swimmer model;
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Figure 3

Models of flagellated swimmers. (a) The point stresslet model with stresslet S and a prescribed swimming velocity U. (b) The
multiple-point-force model with force F and a prescribed swimming velocity. (c) The sphere and multiple-point-force model. The body
has radius a and orientation e. The swimming velocity is obtained under force-free conditions. (d) The multiple-sphere model in which
flagellar beats are represented by the rotations of spheres. (e) The flagellated swimmer model that precisely reproduces the behavior of
each flagellum.

a torque is applied to the fluid on a sphere of radius (1 + ϵ )a and the no-slip condition is applied
to the body surface (Figure 2d). This model is useful when cells deform because the force-free
condition can be strictly imposed with the torques (for details, see Section 4).

The ciliated swimmer model of Figure 2e precisely reproduces each cilium. Ito et al. (2019)
used the waveform of each cilium to analyze swimming. This model calculates the hydrody-
namic interactions among cilia and thus can treat energy dissipation within the ciliary layer. The
drawback is that the computational cost is high (for details, see Section 5).

2.3. Hydrodynamic Models of Flagellated Microswimmers

Figure 3e shows an example of a flagellated swimmer, the microalga Chlamydomonas, that uses two
flagella to move via the breaststroke. Several models have been developed that precisely reproduce
the two flagellar waveforms. In the absence of external forces and torques, motion can be modeled
as a simple point stresslet (Figure 3a), similar to the model for a ciliated swimmer. Between the
flagellar swimming model of Figure 3e and the point stresslet model of Figure 3a, other models
offer various resolutions (Figure 3b–d).

The flagellum produces a thrust force, whereas the cell produces a drag force. The multiple-
point-force model of Figure 3b seeks to reproduce the points of action of the thrust and drag
forces. Drescher et al. (2010a) used this model to express the time-averaged velocity field around
Chlamydomonas. Ishimoto et al. (2017) reported that the unsteady velocity field around a human
sperm could also be reproduced by varying the positions and magnitudes of the three forces over
time. However, these models do not consider excluded volume effects, and the no-slip condition
is not satisfied on the body surface.

The model in Figure 3c, which approximates the flagellum as a point force and models the cell
body as a sphere, was used by Jibuti et al. (2014) to investigate the jet instability of concentrated
Chlamydomonas suspensions. Maleprade et al. (2020) modeled the colonial alga Gonium by adding
immobile thin rods to the disk-shaped body and imparting multiple flagellar forces. The thin rods
mimic the flagellar drag when flagella stop beating. A model that represents the flagellar volume
as a sphere and rotates the spheres with the flagellar beat frequency was proposed by Friedrich
& Julicher (2012) (Figure 3d). By modeling the flagellum as a sphere, researchers can discuss the
hydrodynamic interactions between flagella. Using this model, Brumley et al. (2012) reproduced
the metachronal waves of V. carteri.
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Figure 4

Force balances of the three types of microswimmers: a puller, a pusher, and a neutral swimmer. (a) The puller swimmer with radius a
exhibits a propulsion apparatus in front of the body and exerts a point force −F on the fluid at a distance r from the center of the
sphere. The puller gains the thrust F as the reaction, and U is the resultant swimming velocity. (b) A subproblem in which a force F is
exerted on a sphere. (c) A subproblem in which a point force −F is exerted on the fluid at a distance r from the center of the sphere.
(d) A pusher swimmer exhibits a propulsion apparatus behind the body and exerts a point force −F on the fluid at a distance r from the
center of the sphere. (e) A neutral swimmer exerts two point forces lateral to the body. The two forces possess magnitude −F/2 and are
imparted at a distance r from the center of the sphere.

2.4. Flagellar Force During Free Swimming

Here, we comprehensively discuss flagellar thrust. For simplicity, consider a spherical microswim-
mer of radius a and density equal to the surrounding fluid density, which is freely swimming at
velocity U (Figure 4a). Suppose that the microswimmer exhibits a propulsion apparatus (such as
a flagellum) in front of the body and exerts a point force −F on the fluid at a distance r from the
center of the sphere, where r > a. The microswimmer gains the thrust F as the reaction. Assume
that Stokes flow is present around the microswimmer and that the thrust is balanced by the fluid
drag (i.e., force free).

We derive the swimming velocity U. Because Stokes flow permits superposition of solutions,
the problem depicted in Figure 4a can be split into two subproblems (Figure 4b,c). In the sub-
problem depicted in Figure 4b, a thrust force F is exerted on the sphere, and the sphere moves
with velocity Ub. According to Stokes law, the velocity is Ub = F/(6πµa). The subproblem de-
picted in Figure 4c considers the motion of the sphere induced by the external point force −F
at the distance r. The sphere moves with velocity −Uc because of the flow field generated by the
point force. The importance of the subproblem depicted in Figure 4c is sometimes ignored; how-
ever, this significantly affects actual swimming velocity.The velocityUc can be analytically derived
(Kim & Karrila 1991), and the resultant swimming velocity U is expressed as

U = Ub − Uc = 1
6πµa

(
1 − 3a

2r
+ a3

2r3

)
F. 1.

When r/a → ∞, the equation converges to Stokes law, i.e.,U = Ub = F/(6πµa).When r
a = 2,

U ∼= 0.31Ub, and approximately 70% of the thrust force does not contribute to propulsion.When
r
a = 1.1 (reflecting the real cilia length), U ∼= 0.012 Ub. Thus, approximately 99% of the thrust
force does not contribute to propulsion. The distance r has a significant effect on the swimming
velocity. If the cell body is fixed and the necessary force is measured, as described by Böddeker
et al. (2020), the relationship between the force −F exerted by the flagellum and the force f to be
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Puller: propulsion
apparatus in front of
the body, as in
microalgae
Chlamydomonas spp.

Pusher: propulsion
apparatus behind the
body, as in Escherichia
coli bacteria

measured is

f = −
(
1 − 3a

2r
+ a3

2r3

)
F. 2.

The microswimmer of Figure 4a can be classified as a puller (the propulsion apparatus
is in front of the body). When the propulsion apparatus is located behind the body, as in
Figure 4d, the microswimmer is a pusher. Suppose that the pusher exerts a force −F on the
fluid at a distance r from the center of the sphere (Figure 4d). Then, the swimming velocityU of
the pusher and puller are equivalent and can be determined with Equation 1.

When the centers of the thrust and drag forces are identical, the microswimmer is a neutral
swimmer. For example, consider a spherical swimmer with two point forces imparted lateral to
the body as shown in Figure 4e. Both forces possess magnitude −F/2 and lie at a distance r from
the center of the sphere. The velocity of a sphere induced by a transverse point force can also be
analytically derived (Kim & Karrila 1991). The swimming velocity U of the neutral swimmer is

U = 1
6πµa

(
1 − 3a

4r
− a3

4r3

)
F. 3.

When r
a = 1.1,U ∼= 0.13 Ub, and approximately 87% of the thrust force does not contribute

to propulsion. The decrease in swimming velocity is smaller than the decrease represented by
U ∼= 0.012Ub for the puller and pusher because the flow generated by the transverse point forces
is not directed toward the sphere.

To fully understand ciliary swimming,wemust carefully consider the drag exerted on the swim-
mer by the cilia-generated flow (Figure 4c). Note that the linearity of Stokes flow allows for
superposition of solutions. Accordingly, the effects of multiple forces can be superimposed.When
the forces act diagonally, they can be separated into components parallel and perpendicular to
the line connecting the point force and the center of the sphere; the forces can then be discussed
separately. Additionally, although only translational motion is discussed in this section, analytical
solutions are available for the torques induced by the point forces on the sphere (Kim & Karrila
1991). Thus, the rotational velocity of a microswimmer can also be derived.

3. BEHAVIORS OF SQUIRMERS

Studies using the squirmer model have been reviewed by Ishikawa (2009) and Pedley (2016). In
this section, I summarize the basics of the model and review recent studies, published mainly after
the review by Pedley (2016).

3.1. The Squirmer Model

The first model of a spherical squirmer was established by Lighthill (1952) and then extended
by Blake (1971) and Pedley (2016). The extension of the squirmer to a spheroidal body shape
was made by Keller & Wu (1977). Considering the envelope created by the tips of the cilia, a
material point of the envelope surface undergoes movement and stretching; it can be expressed as
a surface velocity. The radial, circumferential, and azimuthal surface velocities can be written as
infinite series of Stokes equation eigenfunctions that describe arbitrary, time-dependent squirming
velocities.

Although the original squirmer model imposed no restriction on surface velocity, many studies
have assumed for simplicity that the surface velocity is steady, axisymmetric, and tangential to the
surface. Furthermore, rather than using infinite series (Ghose & Adhikari 2014), only the first
two squirming modes are considered because, for a solitary squirmer, the first mode defines the
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Squirmer parameter
β: the ratio of
second-mode to
first-mode squirming
velocity in the infinite
series of squirming
velocities; positive β is
a puller and negative β

is a pusher

swimming speed and the second mode defines the suspension viscosity. In this simple situation,
the tangential surface velocity uθ of the spherical squirmer is

uθ = 3U0

2
(sinθ + β sinθ cosθ), 4.

where U0 is the swimming speed of the solitary squirmer and θ is the angle with the orientation
vector e. β is regarded as the squirmer parameter and constitutes the ratio of second-mode to
first-mode squirming. A squirmer with a positive β is a puller; a squirmer with a negative β is a
pusher. The actual microbial values of β are approximately 0.28 for P. caudatum (Ishikawa &Hota
2006) but very small for V. carteri (Short et al. 2006).

In recent years, artificial microswimmers have received considerable attention. The squirmer
model has been useful, although it was originally developed for microorganisms. Some active
colloids self-propel in aqueous media by generating local gradients of concentration or electric
potential via surface reactions. During the mathematical analysis of phoretic microswimmers, the
fluid domain is often split into two regions: the bulk region and the interfacial region around
the particle (Moran & Posner 2017). Under the assumption that phoretic effects are confined to
the thin interfacial region, such effects can be represented as surface slip velocities. Therefore, a
phoretic microswimmer can be modeled as a squirmer. Some droplets also self-propel in aqueous
media by generating Marangoni flow that can be attributed to interfacial energy gradients on the
droplet interfaces (Seemann et al. 2016). Thutupalli et al. (2011) and Herminghaus et al. (2014)
reported that the surface slip velocities of self-propelled droplets were similar to the velocity of a
neutral squirmer with β = 0.

3.2. Behaviors Under Geometric Constraints

Microorganisms often live under geometric constraints, such as near a solid object, at a water
surface, in granular matter, or in a porous medium. The behaviors of general microswimmers
at interfaces were comprehensively described by Spagnolie & Lauga (2012). When a squirmer
swims very close to a wall, a lubricating flow develops between the wall and the swimmer. The
lubrication forces exerted on a squirmer in the vicinity of a solid wall, a rigid sphere, and a free
surface are summarized by Ishikawa (2019b). All puller squirmers experience lubrication torques
to swim away from a wall, regardless of the entry angle; strong pusher squirmers with β ≤ −2 can
be trapped by the lubrication torques, depending on the entry angle. The residence time on the
wall surface increases monotonically according to the entry angle (Schaar et al. 2015). For a free
surface, however, pusher squirmers experience lubrication torques to escape from the free surface,
regardless of the entry angle; strong puller squirmers may be entrapped, depending on the entry
angle. Overall, squirmer behaviors at solid walls and free surfaces differ considerably.

Squirmer behaviors at more complex interface geometries have also been reported: at a slip
wall (Poddar et al. 2020), a fluid–fluid interface (Gidituri et al. 2022), and a deforming interface
(Shaik & Ardekani 2017). Ishikawa & Kikuchi (2018) investigated squirmer behavior between two
flat plates set at an acute angle.There was a dead-end line in the region of plate contact. Squirmers
hydrodynamically escaped from that line, drawing symmetrical trajectories. A similar tendency in
the ciliate Tetrahymena thermophila was observed (Figure 5a). The squirmer model explained the
Tetrahymena escape mechanism, which involved lubrication torques exerted by the two walls.

Chamolly et al. (2017) modeled a porous medium as an infinite lattice of inert spheres and
investigated the behaviors of a squirmer (Figure 5b). They observed four swimmer behaviors:
straight trajectories, random walks, orbits, and stuck. Puller squirmers followed nearly straight
paths through the lattice at nearly uniform speeds. Weak pusher squirmers were deflected by
the inert spheres and thus performed random walks. When a pusher became stronger than
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Figure 5

Behavior analyses of one or two squirmers. (a) Experiments with Tetrahymena thermophila seeking to avoid the dead end (squirmers
behave similarly). The image is based on the work of Ishikawa & Kikuchi (2018). (b) A squirmer in an infinite lattice of inert spheres
mimicking a porous medium. Panel adapted from Chamolly et al. (2017). (c) Stable side-by-side swimming of a dumbbell puller
squirmer; hydrodynamic torque exerted by squirming velocity is balanced by the elastic torque of the spring. Panel adapted from
Ishikawa (2019a).

approximately β ≤ −1.8, a sharp transition to a trapped state was observed. A squirmer orbited
a single inert sphere at small volume fractions, but it became stuck at larger volume fractions.
Behavior was strongly influenced by the squirmer parameter and volume fraction.

Rheotaxis refers to the tendency of microorganisms to migrate in a certain direction rela-
tive to the background flow (Marcos et al. 2012, Kantsler et al. 2014). Rheotaxis by a spherical
squirmer near a wall under shear flow was investigated by Uspal et al. (2015). For strong pullers
with β = 7, rheotaxis developed because of the balance of torques induced by the squirming ve-
locity and the background shear flow. Although puller squirmers generated lubrication torque to
swim away from the wall (Ishikawa 2019b), strong pullers hydrodynamically returned to the wall
and swam in a periodic manner (i.e., bouncing off the wall) (Li & Ardekani 2014). Ishimoto &
Gaffney (2013) analyzed the swimming of not only spherical but also spheroidal squirmers and
found a stable solution that allowed a strong puller squirmer to swim at a constant distance and
angle from the wall. Through comprehensive studies of rheotaxis, Ishimoto (2017) explained the
upstream (downstream) migration of a puller (pusher) squirmer by hydrodynamic interactions
and interpreted the mechanism as similar to a weather vane, as the squirmer tail was directed
downstream by the flow.

Rheotaxis is also evident in channel flow. Zöttl & Stark (2012) reported that squirmer rheo-
taxis emerged when thermal fluctuations were present; the squirmer moved in closed orbits in
the absence of noise. A puller squirmer with thermal fluctuations in a Poiseuille flow gradually
swam upstream along the centerline or was attracted to the tube wall, depending on its initial
position and orientation. However, for pusher squirmers, all trajectories eventually converged to
swinging motions around the centerline. Qi et al. (2020a) comprehensively studied this topic,
and Dey et al. (2022) used self-propelling droplets to experimentally demonstrate such rheotaxis.
Omori et al. (2022) showed that an unsteady microswimmer undergoing cyclic body deformation
and variations in swimming velocity exhibited rheotaxis regardless of noise. The unsteady swim-
mer gradually became oriented against the channel flow and migrated to the channel center. The
mechanism was mathematically explicable (Walker et al. 2022).

An understanding of microswimmer responses at walls might enable such motion to be con-
trolled. Simmchen et al. (2016) prepared microscale steps that guided self-propelled, spherical
Janus particles along edges over a long period. A simple squirmer model explained the mecha-
nism involved. Dhar et al. (2020) numerically showed that the swimming directions of squirmers
could be controlled by an appropriate wall geometry of a periodically tapered channel. Moreau &
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Ishimoto (2021) used oscillatory background flow generated by an active wall for active squirmer
control. Thus, geometric constraints significantly affect squirmer behavior.

3.3. Swimming in Complex Fluids

The physical environment inhabited bymicroorganisms is rich in variety, and the properties of the
ambient fluid are also diverse. For example, temperature and concentration gradients often induce
viscosity gradients. Datt & Elfring (2019) investigated squirmer behaviors in prescribed viscos-
ity gradients. Squirmers swam straight in the absence of a viscosity gradient, but they turned
toward regions of lower viscosity if a gradient was present. When the gradient was small, the
rotational velocity vector � generated by the gradient was � = − 1

2η0
U × ∇η, where U is the ve-

locity vector, η0 is the mean viscosity, and ∇η is the viscosity gradient. Shaik & Elfring (2021)
further explored the disturbance of the viscosity field caused by the squirmer. Regardless of the
details of the disturbance, the squirmers tended to align down viscosity gradients, thus exhibiting
negative viscotaxis. Another example is the density gradient of a pycnocline, which significantly
affects squirmer swimming, energetics, and nutrient uptake (Doostmohammadi et al. 2012, Shaik
& Ardekani 2021).

Fluids that become less viscous with increasing shear rate are known as shear-thinning fluids;
examples include polymer solutions and blood, in which shear destroys the microstructures. Qiu
et al. (2014) showed that a single-hinge microswimmer could self-propel in a shear-thinning fluid;
the Purcell scallop theorem was no longer applicable. Squirmer behaviors in a shear-thinning
fluid were investigated by Datt et al. (2015) using the Carreau–Yasuda model as the constitutive
law.When shear-thinning was weak, the squirmer swam slower than in a Newtonian fluid, and the
swimming velocity difference between a puller and a pusher disappeared.The swimming efficiency
of a squirmer increased in shear-thinning fluids (Nganguia et al. 2017).

Fluids with elasticity are termed viscoelastic fluids. For example, in many biological fluids, the
elastic forces in polymer chains elongated by flow ultimately return the polymers to their original
lengths. Zhu et al. (2012) found that the squirmer swimming velocity was slower in a viscoelas-
tic fluid than in a Newtonian fluid (similar to the findings in a shear-thinning fluid; see above).
However, in contrast to a shear-thinning fluid, the pusher and puller swimming velocities differed
in a viscoelastic fluid; the pusher swam more slowly when the elasticity was strong. Corato &
D’Avino (2017) investigated the equilibrium orientation of a squirmer in a sheared viscoelastic
fluid. Viscoelasticity caused the orientation vector to drift toward either the vorticity axis or the
shear plane depending on viscoelastic strength; pullers and pushers had opposing equilibrium ori-
entations.When a neutral squirmer swims in the Poiseuille flow of a viscoelastic fluid, swimming
lift is exerted (Choudhary & Stark 2022). The swimming lift is two orders of magnitude stronger
than the passive lift, thereby accelerating the centerline focusing of neutral squirmers.

Squirmer behaviors in a nematic liquid crystal have also been explored. Hydrodynamic cou-
pling between the flow field around a squirmer and the liquid crystalline director led to squirmer
reorientation (Lintuvuori et al. 2017). Soni et al. (2018) found that nematic liquid crystal activity
significantly increased the squirmer swimming velocity. All the studies mentioned in this section
illustrated that fluid rheological properties significantly influence squirmer swimming. In Stokes
flow, inertia is negligible; the viscous effect is dominant and the constitutive equations governing
rheological properties become important.

3.4. Hydrodynamics of a Squirmer Pair

Two-body interactions are important when exploringmany-body interactions.The hydrodynamic
interactions between two squirmers were comprehensively investigated by Ishikawa et al. (2006).
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They used Faxén relationships to analyze far-field interactions, whereas near-field interactions
were explored using lubrication theory. Further, the authors used a boundary element method to
numerically calculate the intermediate regime. Squirmers coming into near contact exhibited sub-
stantial changes in orientation and eventually separated. Ishikawa et al. (2006) created a database
of squirmer interactions, which enables the prediction of squirmer motions. Papavassiliou &
Alexander (2017) derived exact solutions for the axisymmetric translation and rotation of a
squirmer in the presence of a spherical or planar boundary. The results are valid at any separation
(from near-field to far-field), though the exact motions in the perpendicular directions were not
obtained.

Although lubrication theory states that two inert spheres cannot collide within a finite
time, squirmers with surface slip velocities collide hydrodynamically (Potomkin et al. 2013).
Jabbarzadeh & Fu (2018) showed that puller squirmers generate a feeding current that draws
particles toward the swimmer, enabling them to approach target particles of any size. Therefore,
when performing dynamic simulations of squirmers, short-range repulsive forces must be intro-
duced to avoid squirmer collisions. The effect of the repulsive force on the two-body interaction
of squirmers is not negligible when squirmers are in close proximity for long periods (Ishikawa
2022), but the effect is small for short-term collisions.

Darveniza et al. (2022) showed that lubrication theory combined with short-range repulsive
forces reproduced the in-plane scattering of a pair of squirmers; the data were compared with the
full numerical solutions. Dynamic scattering was divided into four categories: transient scattering,
stationary binding, pairwise swimming, and circular orbiting. Theers et al. (2016) investigated the
dynamic scattering of a pair of spheroidal squirmers in a narrow slit between two flat walls. There
was a stable mode in which the two pullers could swim cooperatively in a wedge-like conformation
with a small constant angle. The effects of inertia on two-squirmer interactions were discussed by
Li et al. (2016) (up to a Re of 100). Inertial effects changed the scattering dynamics by induc-
ing hydrodynamic attraction between two puller squirmers. More & Ardekani (2021) considered
density stratification when exploring the effects of inertia and density on the interactions of two
squirmers.

To generate stronger forces or enhance large-scale mixing, researchers have attempted to con-
struct microswimmer assemblies (Wang et al. 2015). An understanding of the swimming behaviors
and stability of a dumbbell squirmer is important when constructing a large assembly. A pair of
puller squirmers connected by a spring achieved stable side-by-side swimming (Ishikawa 2019a)
(Figure 5c); the squirming-induced hydrodynamic torque was balanced by the elastic torque of
the spring. The swimming and transport of dumbbell squirmers were examined under thermal
fluctuations (Clopés et al. 2020, 2022) and in a tube (Ouyang et al. 2022b). Large assemblies of
squirmers, including a squirmer rod (Ouyang & Lin 2021) and a squirmer array (Ouyang et al.
2022a), have been analyzed in recent years. The findings will aid future design of microswimmer
assemblies.

3.5. Collective Swimming

Chaotic active flow has been observed in suspensions of bacteria, sperm cells, and self-propelled
colloids, despite the lack of inertia; this is known as active turbulence (Alert et al. 2022). The hy-
drodynamic interactions among self-propelled particles can create complex spatiotemporal flow
structures (Koch & Subramanian 2011). Many continuum and discrete models have been used
to explore the physical origin of chaotic active flow (Ishikawa 2009). Collective swimming of
squirmers was first investigated by Ishikawa & Pedley (2008). In a monolayer setting, the squirmer
aggregation, mesoscale spatiotemporal motion, and band formation could be attributed to purely
hydrodynamic interactions.
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Figure 6

Collective behaviors of many squirmers. (a) Collective swimming of spheroidal pusher squirmers of β = −0.3 in a monolayer. Panel
adapted from Kyoya et al. (2015). (b) A sheared concentrated suspension of squirmers used to explore rheological properties. Graphic is
based on the work of Ishikawa et al. (2021a). (c,d) Active droplets driven by the collective motions of enclosed squirmers (β = −3) under
gravity. Internal squirmers induce velocities on the droplet surface, and the entire droplet begins to exhibit single-squirmer behavior.
Panels c and d adapted from Huang et al. (2020). (e, f ) The instabilities of a jet of active fluid modeled using a suspension of squirmers.
(e) For an active fluid of pullers, the jet breaks into droplets (similar to a Newtonian fluid). ( f ) For pushers, the jet buckles and exhibits
waving instability. Panels e and f adapted from Ishikawa et al. (2022).

Kyoya et al. (2015) dynamically simulated spheroidal squirmers interacting hydrodynamically
in a monolayer (Figure 6a). The near-field hydrodynamics played major roles in collective
squirmer motion; the effects could be attributed to nearest-neighbor two-body interactions.
Yoshinaga & Liverpool (2017) separated the contributions made by different length scales.
During collective squirmer motion, lubrication forces and long-range hydrodynamic interactions
were equally important. Brumley & Pedley (2019) showed that pairwise lubrication interactions
combined with a short-range repulsive force reproduced the stable collective motions of squirm-
ers. The importance of steric interactions was emphasized by Zantop & Stark (2022). Thus,
near-field interactions play major roles in collective squirmer motion in concentrated suspensions.

For neutral squirmers, the orientational order is induced by hydrodynamic interactions
(Ishikawa et al. 2008). Order stability is strongly affected by the squirmer parameter β and weakly
affected by volume fraction (up to very high fractions) (Evans et al. 2011). By separating the con-
tributions of different length scales, Yoshinaga & Liverpool (2018) found that the polar order was
formed primarily by lubrication forces. Delfau et al. (2016) reported similar findings.

Notably, squirmer suspensions can exhibit phase separation. Zöttl & Stark (2014) analyzed
squirmer suspensions in a slit bounded by two parallel walls. Phase separation could also be at-
tributed solely to among-squirmer hydrodynamic interactions, although the equilibrium phase
separation was commonly induced by attractive interparticle forces. A clear phase separation into
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gaseous and clustered phases was observed for neutral squirmers, whereas a more gradual ap-
proach toward the cluster state was observed for strong pusher and puller squirmers. Theers et al.
(2018) compared the phase separations of squirmers in the presence of active Brownian particles;
the particles suppressed phase separation of spherical squirmers but enhanced phase separation of
elongated squirmers.

Collective squirmer swimming is altered by geometric constraints. Shen & Lintuvuori (2019)
investigated the behaviors of squirmers sedimented onto a flat wall. Although the squirming veloc-
ity was axisymmetric, the near-field hydrodynamic interactions induced the formation of rotating
dimers or trimers (i.e., two or three squirmers bound together). Pusher squirmers created a stable
polar order on a flat wall. Rühlea & Stark (2020) introduced both top and bottom walls into a
suspension of bottom-heavy squirmers that settled via gravity. Collections of sinking squirmers
formed rolls and plumes reminiscent of bioconvection observed in earlier experiments (Hill &
Pedley 2005, Bees 2020). Oyama et al. (2016) reported that a squirmer population formed a trav-
eling wave between flat parallel walls. Thus, both collective and solitary squirmer swimming are
strongly influenced by the physical environment.

3.6. Suspension Properties

A suspension of active particles exhibits unusual macroscopic rheological properties caused by
microscale active stresses (Saintillan 2018). In a suspension of squirmers, both the particle stress
5p and the normal viscous stress are present. The particle stress tensor and the stresslet S ex-
erted by an individual squirmer are related by the equation 5p = 1

V 6S; the stresslet is summed
over the volume V (Batchelor 1970). The stresslet of a solitary squirmer in a fluid otherwise at
rest is S0 = 2πµa2Uβ(3ee − I), where e is the orientation and I is the identity tensor (Ishikawa
et al. 2006). Thus, the rheological properties of a dilute squirmer suspension are governed by
the squirmer orientation; an isotropic orientation is associated with zero particle stress and a po-
lar order results in stresses that stretch or contract in the direction e, depending on the sign of
β. Ishikawa & Pedley (2007b) explored the rheology of semidilute squirmer suspensions. The
shear viscosity of bottom-heavy puller (pusher) squirmers increased (decreased) in horizontal shear
flow. When vertical shear flow was applied, this trend was reversed. The rheological properties
in the concentrated regime were analyzed by Ishikawa et al. (2021a), who dynamically simulated
a sheared monolayer suspension of squirmers (Figure 6b). For non-bottom-heavy squirmers, the
shear viscosity increased more rapidly according to volume fraction compared with the shear
viscosity of inert spheres. However, for bottom-heavy pusher squirmers, the viscosity could de-
crease even below the viscosity of the fluid phase. Thus, viscosity was strongly associated with the
squirmer parameter β, bottom heaviness, and shear direction.

Swimming microorganisms facilitate mass transport in suspensions. Leptos et al. (2009) re-
ported enhanced tracer diffusion in suspensions of Chlamydomonas reinhardtii; they also derived
the short-term probability density functions (PDFs) of displacements involving Gaussian cores
and robust exponential tails. Ortlieb et al. (2019) found that the long-term PDFs generated by
C. reinhardtii became Gaussian; a squirmer model reproduced the PDFs. These trends were sys-
tematically described by Thiffeault (2015). In semidilute squirmer suspensions (Ishikawa et al.
2010) and in packed squirmer lattices (Kogure et al. 2023), tracer diffusion was significantly en-
hanced by swimming. The squirmer model adequately describes the mixing phenomena of larger
organisms. Ouillon et al. (2020) measured effective diffusivity induced by the collective vertical
migration of a swarm of Artemia salina (brine shrimp) through a stably stratified density inter-
face. The squirmer model successfully explained the increase in effective diffusivity that could
be attributed to swimming. Wang & Ardekani (2015) found that diapycnal eddy diffusivity was
enhanced by squirmer activities in a regime of intermediate Re.
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Self-diffusion in a suspension involves the diffusion of cells themselves rather than material
diffusion. Translational squirmer self-diffusivity in a semidilute regime is inversely proportional
to the squirmer volume fraction, whereas rotational squirmer self-diffusivity is proportional to
the squirmer volume fraction (Ishikawa & Pedley 2007a). Rotational self-diffusivity is enhanced
by more than one order of magnitude in polymer solutions (Qi et al. 2020b); this enhancement
can be explained by asymmetrical encounters between polymers and squirmer surfaces, which
create additional torque and random noise that can be attributed to rotational motion. Aragones
et al. (2018) observed a significant increase in squirmer rotational diffusivity within a suspension
of passive spheres; the squirmers trapped themselves in the suspension. Modica et al. (2022) mea-
sured the behavior of Janus particles in a porous medium; the translational diffusivities of active
swimmers exhibited greater decreases compared with passive Brownian particles.

3.7. Active Fluids

An active fluid is a suspension of particles that can actively generate stress on the microscale (Zöttl
& Stark 2016, Saintillan 2018). Kree et al. (2017) first analyzed the self-propulsion of spherical
droplets of active fluid; internal active forces propelled the droplets.Kree et al. (2021) then showed
that internal stresslets and quadrupoles could also induce self-propulsion of the active droplets.
Huang et al. (2020) explored active droplets driven by the collective motion of enclosed squirmers
under gravity (Figure 6c). The squirmers induced droplet migration in directions determined by
the squirmer parameter β. Internal squirmers created velocities on droplet surfaces; the droplets
then behaved as single squirmers (Figure 6d).

Ishikawa et al. (2022) investigated the instability of a jet of active fluid by considering a
suspension of squirmers as an active fluid. The squirmers were assumed to be bottom heavy
and heavier than the surrounding fluid, such that a downward jet self-assembled under gravity.
The jets of active fluids were unstable; the instabilities of pullers and pushers differed. In an
active fluid with pullers, the jet broke into droplets (similar to Plateau–Rayleigh instability of a
Newtonian fluid) (Figure 6e). Kessler (1986) observed similar bulbous formation in experiments
using Chlamydomonas nivalis. In an active fluid with pushers, by comparison, the jet buckled and
exhibited waving instability (Figure 6f ). The physical mechanisms involved were adequately
explained on the basis of active stresses generated by squirmers. Studies of squirmer suspensions
will broaden our understanding of the properties of active fluids.

4. STRESS AND TORQUE SWIMMERS

A ciliary swimmingmodel different from the squirmermodel has been proposed tomore faithfully
reproduce actual ciliary swimming and to incorporate biological features. The stress swimmer
model imposes shear stresses on the fluid of a sphere of radius (1 + ϵ )a, where ϵa represents the
ciliary length (Figure 2c). The use of stresses (not velocities) is more realistic in modeling a ciliate,
particularly when the microbes come close to each other or to a wall, because no slip is permitted
on the body surface at r = a. On the other hand, the force exerted by a cilium on the fluid and
the reaction force transmitted to the basal part of that cilium can be modeled as a torque. The
torque swimmer model imposes torques on the fluid of a sphere of radius (1 + ϵ )a (Figure 2d).
This model is useful when cells deform because it strictly applies the force-free condition under
such circumstances.

4.1. Stress Swimmers

Active surfaces can be specified by using stresses rather than velocities. Keller et al. (1975) ana-
lyzed an ensemble of discrete forces exerted by cilia when creating a continuum distribution of
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an unsteady force field. Short et al. (2006) modeled V. carteri as a rigid sphere with surface shear
stress. The stress swimmer model with a shear stress shell over a no-slip body surface (Figure 2c)
was used by Ohmura et al. (2018) and fully analyzed by Ishikawa et al. (2020). They derived the
swimming speedU and rotation rate � of a neutrally buoyant stress swimmer in an infinite fluid
otherwise at rest as

U = πα

6µ

(
4α3 − 3α2 − 1

4α

)
fθ, � = − π

8µ
(
α3 − 1

)
fϕ, 5.

where α = 1 + ε, and fθ and fϕ are the shear stress components in the polar and azimuthal di-
rections, respectively. When ε → 0, both U and � asymptotically approach zero in proportion
to ε. This tendency is equivalent to the tendency shown in Equation 3 for a spherical swimmer
with two point forces applied lateral to the body (Figure 4e). The stress swimmer model explicitly
represents the ciliary forces, as well as the viscous drag exerted on the body by ciliary flow.

Pairs of V. carteri colonies exhibit intriguing hydrodynamic bound states. When hovering un-
der a top horizontal wall, the colonies are mutually attracted, such that they orbit each other in
a waltz-like manner (Drescher et al. 2009). Ishikawa et al. (2020) used the stress swimmer model
to simulate dancing V. carteri. The stress swimmer model was chosen because the squirmer model
would generate a torque between the wall and the colony that is too large: The leading-order
lubrication torque induced by the constant velocity surface increases as log(1/ζ), where ζ is the
minimum distance between the wall and the velocity surface, whereas it is constant in the con-
stant stress condition (Ishikawa 2019b). Hence, the waltzing motion of V. carteri was much more
unstable in the squirmer model than in the experiment. To model the rotational swimming of
V. carteri, Ishikawa et al. (2020) set the inclination angle in the direction of shear stress (relative to
the colonial axis) to 15°.The two colonies hovering immediately below the top wall were mutually
attracted by a flow that drew fluid in from the side and ejected it downward. The waltzing motion
developed because the bottom-heaviness-induced torque that turned the organisms upward was
balanced by the hydrodynamic-interaction-induced torque that forced the change in direction,
resulting in orbital rotation at a tilted angle. In contrast, at the bottom of the container, V. carteri
colonies oscillated horizontally back and forth in a minuet-like manner (Drescher et al. 2009).
This bound state was also reproduced by the stress swimmer model (Ishikawa et al. 2020).

Ferracci et al. (2013) reported that the ciliate T. thermophilawas hydrodynamically entrapped at
a water–air interface but could escape from a solid wall. To clarify the entrapment phenomenon,
Manabe et al. (2020) used the stress swimmer model to investigate behaviors at a water–air in-
terface and a solid wall. Two major shape parameters dominated the entrapment phenomenon:
fore-and-aft asymmetry and constriction (Figure 7a).When the stress swimmer exhibited a small
amount of negative curvature, it was trapped by the water–air interface but escaped from a solid
wall, consistent with experimental observations.Entrapment was explained by the balance between
two opposing rotational velocities: a repulsive velocity that could be attributed to the ciliary beat
and an attractive velocity that reflected collision at the interface.

In contrast, Tetrahymena pyriformis cells could reside on, and slide along, a solid wall by low-
ering the beat frequencies of cilia only in the vicinity of the wall (Ohmura et al. 2018). A similar
sliding motion was observed in P. caudatum (Nishigami et al. 2018). Ohmura et al. (2018) used the
stress swimmer model to model the reduction in ciliary beat frequency of T. pyriformis by lowering
shear stress only near the wall (Figure 7b). An advantage of the stress swimmer model is its
inclusion of one-to-one correspondence between ciliary motion and stress boundary conditions.
The model reproduced the sliding phenomenon; asymmetric ciliary activity directed the torque
toward the wall. Thus, the ciliate accumulated on surfaces (Okuyama et al. 2021). Ohmura et al.
(2021) further subjected T. pyriformis to background shear flow. T. pyriformis exhibited positive
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Figure 7

Behavioral analysis of stress and torque swimmers. (a) State diagram of the behaviors of stress swimmers of various shapes at a water–air
interface, in which cell shapes are drawn for reference. The horizontal axis represents the strength of fore-and-aft asymmetry and the
vertical axis represents the strength of negative curvature. Red regions indicate trapped cells; blue regions indicate escaped cells. Panel
adapted from Manabe et al. (2020). (b) The sliding motion of a stress swimmer that lowers the shear stress only near the wall. Panel
adapted from Ohmura et al. (2018). (c) Face-to-face interaction of deformable torque swimmers. Red regions experience high
membrane tension. Panel adapted from Matsui et al. (2020a). Abbreviation: SBA, stop beating area.

rheotaxis at the wall and tended to swim upstream against the flow. Such rheotaxis was also
reproduced by the stress swimmer model. The rheotaxis was explained by the presence of both a
torque toward the wall (attributed to asymmetric ciliary motion) and an upstream torque (caused
by shear flow), which constitute a mechanism similar to a weather vane. These findings illustrate
the utility of stress swimmer models when analyzing the behaviors of ciliates near interfaces.

4.2. Torque Swimmers

Deformation of the ciliate T. thermophila swimming between flat walls was studied by Ishikawa &
Kikuchi (2018).The body width increased by approximately 10%when cells avoided the dead end.
Deformation of microswimmers in active droplets (Nagai et al. 2005, Tarama 2017) and during
amoeboid swimming (Farutin et al. 2013, Morita et al. 2018) has also been reported. To explicitly
account for the effects of body deformation, Ishikawa et al. (2016) developed a deformable torque
swimmer model; the cell body was modeled as a capsule with a hyperelastic membrane and ciliary
and reaction forces were modeled as a torque. Thus, even when the body is largely deformed, the
force-free condition is strictly maintained. Furthermore, the torque swimmer model explicitly
manages cell membrane deformation; the tension on the membranes can be calculated. Because
the avoidance reaction of Paramecium spp. is induced by the opening of cell membrane calcium
ion channels via mechanical stimuli (Naitoh & Eckert 1969), membrane tension is an important
factor.

Ishikawa et al. (2016) investigated the deformation and swimming of torque swimmers.
When the deformation was small, the membrane tension was larger at the anterior end than
at the posterior end. However, when the deformation was large, the swimmer deformed to a
heart-like shape, and the membrane tension was larger at the posterior end. Matsui et al. (2020b)
investigated the behavior of deformable torque swimmers in shear flow. The swimmers tended
to gradually become oriented toward the shear plane or the vorticity axis depending on dipole
strength. Pullers were oriented toward the shear plane, whereas pushers were oriented toward
the vorticity axis. Notably, a similar change in orientation was observed for a rigid squirmer
swimming in a sheared viscoelastic fluid (Corato & D’Avino 2017). Thus, making the swimmer
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itself elastic and making the surrounding fluid elastic are expected to produce similar swimmer
behavior. Matsui et al. (2020b) analyzed the rheology of a dilute suspension of deformable torque
swimmers. The apparent shear viscosity exhibited shear-thinning properties; the first normal
stress difference had a positive sign. These rheological properties were explained by deformation
and the direction of the swimmer’s stresslet.

Matsui et al. (2020a) explored two-body interactions of deformable torque swimmers. Dur-
ing face-to-face interactions, deformation was particularly noticeable in the near-contact region.
The anterior membrane tension was high when the two swimmers were in close proximity
(Figure 7c) because of high pressure between the two near-contact surfaces. The nature of the
strong stress considerably varied according to collision configuration; even when the configura-
tion was the same, the location of strong stress considerably varied over time.When chasing each
other, swimmers were mutually attracted; this phenomenon is not observed in velocity squirmer
models. The torque swimmer model has been successful for discussing cellular deformation.

5. CILIATED SWIMMERS

Thus far, we have regarded ciliary force and velocity as continuous quantities, although cilia are
discrete. The phases of individual ciliary beats do not exactly match; metachronal waves of beats
propagate to the body surface. If the direction of beating is identical (opposite) to the direction of
wave propagation, the metachronal wave is considered symplectic (antiplectic); if the direction of
beating is to the right (left) relative to the wave, the wave is considered dexioplectic (laeoplectic)
(Sleigh 1962). Ciliary flow has been extensively analyzed; both the envelope model, which con-
cerns surface movement and deformation produced by the ciliary tips, and the sublayer model,
which considers each cilium to be discrete, have long histories (Brennen & Winet 1977).

The intriguing mechanism by which metachronal waves emerge has been intensively studied
(Gilpin et al. 2020). Brumley et al. (2014) performed sophisticated experiments; they observed
two micropipette-held somatic cells of V. carteri with a high-speed camera while the separa-
tion distance was controlled. Close spacing induced robust synchrony over thousands of beats;
the flagella were coupled only via fluid. Wan & Goldstein (2016) observed that the flagella of a
Chlamydomonasmutant without filamentous connections between basal bodies exhibited a form of
synchronization that significantly differed from wild-type synchronization. Thus, in addition to
hydrodynamic coupling, intracellular structures facilitate flagellar synchronization by unicellular
microorganisms. Several large-scale numerical simulations of planar ciliary arrays have appeared,
revealing that metachronal waves can form via hydrodynamic interactions alone and that antiplec-
tic metachronal waves are most efficient (Osterman & Vilfan 2011, Elgeti & Gompper 2013,
Brumley et al. 2015).

The metachronal waves of ciliates form on a closed curved surface rather than on a flat sur-
face, and they are continuously exposed to the bulk flow associated with swimming. When the
metachronal waves of ciliates are being modeled, spatiotemporal variations in surface velocity can
be added to the squirmer model; alternatively, spatiotemporal variations in stress can be added to
the stress swimmer model. However, these models assume continuous ciliary activity; the models
do not adequately manage hydrodynamic interactions between cilia or the energetics of the ciliary
layer.To overcome this problem, Ito et al. (2019) developed a ciliated swimmermodel by discretely
placing hundreds of cilia on the surface of a sphere and then imposing a force-free condition dur-
ing swimming (Figure 8a). Although their model is computationally demanding, it accurately
represents flow within the ciliary layer, as well as the hydrodynamic interactions between each
cilium and the surrounding flow during free swimming.

The time-averaged swimming speed of ciliated swimmers is substantially affected by the di-
rection of the metachronal wave (Ito et al. 2019). An antiplectic wave with a wavenumber of

136 Ishikawa



FL56CH06_Ishikawa ARjats.cls December 10, 2023 9:59

Slope 2Slope 2

Chlamydomonas reinhardtii

Tetrahymena thermophilaTetrahymena thermophila

Paramecium chlorelligerum
Paramecium bursaria

Loxodes striatusLoxodes striatus

Loxodes voraxLoxodes vorax

Blepharisma intermedium

Volvox carteriVolvox carteri

Eudorina elegans

Pleodorina starriiEudorina unicoccaEudorina unicocca

100 101 102

Body length

N
um

be
r o

f c
ili

a

a b

Gonium pectorale (8-celled colony)Gonium pectorale (8-celled colony)

Gonium pectorale (16-celled colony)Gonium pectorale (16-celled colony)

Pleodorina californica

100

101

102

103

104

Optimal number of cilia
Antiplectic wave
Symplectic wave
In-phase beating

Species of microalgae
and ciliates found in
nature

Figure 8

Ciliary swimming. (a) Flow field around a ciliated swimmer with approximately 1,000 cilia. Graphic based on the work of Ito et al.
(2019) and provided by Dr. T. Omori (Tohoku University, Japan). (b) Number of cilia as a function of body length; the optimal number
of cilia (filled symbols) increases at a slope of 2, which coincides with species of microalgae and ciliates found in nature (open circles). Panel
adapted from Omori et al. (2020).

approximately 1 is associated with the fastest swimming speed, which is approximately threefold
greater than the speed associated with a symplectic wave. This phenomenon occurs because the
distance between the fore and the aft cilia during the effective strokes is greater for the antiplectic
wave than for the symplectic wave; fluid flows more freely in the ciliary layer. The finding that
antiplectic waves are most efficient is consistent with previous studies regarding ciliary carpets. Ito
et al. (2019) found that more than 90% of energy was dissipated within the ciliary layer, consid-
ering strong shear induced by beating cilia. However, outside the ciliary layer, the conditions are
adequately represented by the squirmer model. Therefore, the choice of using the ciliated swim-
mer model or the squirmer model should be based on whether the analysis considers the internal
flow of the ciliary layer.

Omori et al. (2020) comprehensively explored scaling of ciliated swimmers. Considering the
multicellularity of volvocine green algae, scaling proceeded by varying ciliary number and body
radii; the ciliary length was maintained at a constant value. For both antiplectic and symplectic
metachronal waves, the model yielded optimal ciliary number densities that maximized propul-
sive efficiency regardless of body radius. The propulsion efficiency of optimally ciliated swimmers
decreased in an inverse manner, in proportion to the radius. If it is assumed that nutrient uptake
increases according to the square of the radius, a larger body size may aid survival because the
increase in uptake outweighs the decrease in swimming efficiency. The estimated optimal ciliary
densities were consistent with the actual densities of ciliates and microalgae (Figure 8b). Thus,
extant motile ciliates and microalgae may have survived by acquiring the optimal propulsion effi-
ciency. The ciliated swimmer model has also been used to investigate the coordinated motion of
cilia on a sphere (Westwood & Keaveny 2021) and during helical swimming (Rode et al. 2021).

6. PROSPECTS AND FUTURE DIRECTIONS

We have presented four models of ciliary swimming: squirmer, stress swimmer, torque swim-
mer, and ciliated swimmer. Each model has advantages and disadvantages. The squirmer model
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is mathematically simple and widely applicable; velocity on the body surface is the only boundary
condition of the flow field. The squirming velocity can include tangential and radial components,
azimuthal swirling, and unsteady components (Pedley 2016). Furthermore, the model can be ex-
tended to nonspherical body shapes (van Gogh et al. 2022). Squirmers are thus widely used to
represent ciliated microorganisms, as well as self-propelled droplets and particles. However, the
model is unable to manage flow within the ciliary layer or explicitly represent ciliary forces. In
contrast, the stress swimmer model explicitly represents ciliary forces and approximates ciliary
flow by imposing a no-slip condition on the body surface. The disadvantage of the model is its
imposition of a shear stress boundary on another surface, in addition to the velocity boundary
on the body surface; the presence of this boundary complicates the mathematical assessment and
increases the computational load.The advantages of the torque swimmermodel include the advan-
tages of the stress swimmer model, as well as its ability to represent body deformations. However,
such deformation analysis involves solving new governing equations for the solid mechanics of
the membrane, which makes the numerical code more complex and increases the computational
load. The advantage of the ciliated swimmer model is that it represents the motion of each cilium
and thus rigorously describes the hydrodynamics of ciliary swimming; however, this model has a
large computational load. No single hydrodynamic model can solve all problems; there is a need
to select the best model for each problem.

The broader hydrodynamic understanding of ciliary swimming has considerably increased over
the past 50 years, but modeling of the biological response, such as taxis, remains in the early
stages. The phototaxis of microalgae Volvox (Drescher et al. 2010b) and Gonium (Maleprade et al.
2020) colonies was modeled in terms of the responses of individual cells to light. A reduction
in the ciliary beat frequency of light-stimulated cells caused the entire colony to turn toward
the direction of the light. However, it is unclear how phototaxis is controlled in other species.
Gravitaxis can be caused by both bottom heaviness (Drescher et al. 2009) and shape asymmetry
(Roberts & Deacon 2002). Some microalgae exhibit diel vertical migration; they swim toward the
sea surface before dawn but move deeper at dusk (Shikata et al. 2015).They begin the ascent to the
sea surface before the sky brightens, suggesting that phototaxis is not involved; it is unclear how
such organisms control phototaxis and gravitaxis. Future research should explore the possibility
of an internal clock. Because diel vertical migration is closely related to the onset of oceanic red
tides, mathematical modeling and hydrodynamic experiments are necessary.

Although the internal ciliary ultrastructure has been elucidated, the mechanisms by which
dynein molecular motors power three-dimensional ciliary movements remain unclear (Ishikawa
et al. 2021b). In particular, there is uncertainty regarding the mechanisms by which dynein is
activated and inhibited to control waveform and frequency. The mechanisms are important to re-
produce the responses of ciliary movements to physical stimuli. The ciliary responses to flow fields
are unknown and further research is essential.Narematsu et al. (2015) pointed out that ciliary basal
structure is as important as hydrodynamics in the emergence of metachronal waves on Parame-
cium spp. Similar observations for the unicellular organism C. reinhardtii have been made (Wan &
Goldstein 2016). The influence of the ciliary basal structure needs to be further investigated.

The ciliate Paramecium, for example, exhibits avoidance when mechanically stimulated on the
anterior side and escape when mechanically stimulated on the posterior side (Naitoh & Eckert
1969). These responses are evident when cells collide with walls or other cells (Ishikawa & Hota
2006), but the responses are not extensively modeled.Notably, Kunita et al. (2016) explored mem-
ory in the ciliate Tetrahymena. Cells were briefly trapped in a small droplet of water and thus
forced to follow a small circular trajectory. Upon release, the cells continued to travel in this tra-
jectory. One possibility is that Tetrahymena remembers these changes by altering its body shape
and ciliary movements in response to small circular orbits. Another ciliate, Stentor coeruleus, can
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recognize the shape of the surrounding space and adhere to a narrow area (Echigoya et al. 2022).
Because microorganisms exhibit a great range of responses and unexpected behaviors in response
to environmental changes, many discoveries are expected.

When considering large-scale microbial phenomena (e.g., oceanic red tides and bioreactors),
it is essential to mathematically reduce cellular phenomena to the macroscale, as demonstrated
by Pedley & Kessler (1992) and Bees (2020). There is a continuing effort by researchers to build
a continuum model using a cellular activity database (Ishikawa 2012). The applications of such
research must be expanded to environmental studies, medicine, and engineering. Microrobotics
research is rapidly proceeding with respect to artificial cilia and self-propelled particles (Moran
& Posner 2017, Milana et al. 2020, Wang et al. 2021, Wang et al. 2022). The studies introduced
in this review enhance our understanding of flow and swimming in artificial systems. I hope that
this review aids future research focused on swimming microorganisms and microswimmers.

SUMMARY POINTS

1. When cilia length is shorter than the body length, the flow created by the cilia strongly
interferes with the body surface, causing resistance. Therefore, only a small fraction of
the force exerted by the cilia on the fluid contributes to propulsion.

2. Models of ciliary swimming at different resolutions, from a point stresslet to a ciliated
swimmer, are available. No single hydrodynamic model is applicable to all problems; a
minimal model appropriate for the phenomenon of interest should be selected.

3. Squirmer models have been used to analyze microorganisms and self-propelled particles,
helping to elucidate various phenomena, such as collective swimming and active fluid
properties.

4. Ciliates change their flagellar beat or deform their bodies in response to physical stimuli.
Models that take into account these biological characteristics have been proposed.

5. Most of the mechanical energy consumed in ciliary swimming is dissipated within the
ciliary layer. The ciliated swimmer model allows for discussion of the energy of ciliary
swimming.

FUTURE ISSUES

1. The mechanisms of biological responses of microorganisms to physical stimuli are not
well understood, and these need to be clarified andmathematicallymodeled in the future.

2. The regulatory mechanism of the dynein motors in the ciliary axoneme is not yet clear. A
mechanical model of the ciliary axoneme needs to be constructed to elucidate the effects
of hydrodynamics on the ciliary waveform.

3. It is necessary to develop a multiscale analysis method to solve the macroscopic sus-
pension behavior based on the behavior of individual microorganisms. Such a method
will help us understand the macroscopic phenomena that often arise in engineering and
medicine.

4. Fluid dynamics of ciliary swimming is expected to contribute to microrobot propulsion,
mixing, and transport technologies.
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