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Abstract

Numerical models of surface tension play an increasingly important role in
our capacity to understand and predict a wide range of multiphase flow prob-
lems. The accuracy and robustness of these models have improved markedly
in the past 20 years, so that they are now applicable to complex, three-
dimensional configurations of great theoretical and practical interest. In this
review, [ attempt to summarize the most significant recent developments in
Eulerian surface tension models, with an emphasis on well-balanced estima-
tion, curvature estimation, stability, and implicit time stepping, as well as test
cases and applications. The advantages and limitations of various models are
discussed, with a focus on common features rather than differences. Several
avenues for further progress are suggested.
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1. INTRODUCTION

Natural philosophers have noticed the effects of surface tension since the time of Aristotle, who
recorded that flat pieces of iron or lead could float on the surface of water [see Aristotle 1922
(350 BC)]. A solid understanding of the phenomenon had to wait until 1805, when Young and
Laplace independently published comprehensive theories of capillarity inspired by the speculations
of their predecessors [including Newton, von Segner, and Monge; for a history of surface tension,
the readeris referred to the article by Maxwell (1889) and the commentary on it by Pomeau (2013)].
Besides its connection to modern understanding of the molecular nature of matter, surface tension
is closely associated with major developments in differential geometry [by Clairaut, Monge, and,
especially, Gauss (1830), who formalized the analysis of minimal surfaces].

The coupling between volumetric fields and the geometry of surfaces is, indeed, at the heart
of theoretical and numerical models of surface tension. From an analytical perspective, taking
into account the (nonlinear) boundary conditions imposed on a surface that is itself part of the
unknown solution presents formidable difficulties; analytical solutions are thus usually restricted
to small surface deformations or static configurations (many of which were already obtained by
Young, Laplace, Gauss, and, later, Plateau).

A natural way to obtain numerical approximations for surface tension is to use boundary-
conforming discretizations, in which a Lagrangian description of volumetric fields is constructed
so that the boundaries of volume elements coincide with the moving interface or free surface.
Imposing the boundary or jump conditions given by surface tension is then relatively straight-
forward (see, e.g., Fyfe et al. 1988 for an early example). The price to pay for this conceptual
simplicity is the geometric complexity of Lagrangian methods, where the mesh needs to adapt to
the underlying deformation of space.

Due to the necessity of dealing with very large deformations, Eulerian field descriptions are
a natural choice for fluid mechanics (in contrast to solid mechanics). They can be coupled with
either a Lagrangian or an Eulerian representation of the interface. Lagrangian interface repre-
sentation methods include the pioneering marker-and-cell method of Harlow & Welch (1965),
the immersed-boundary method of Peskin (1972), the front-tracking method of Tryggvason and
collaborators (Unverdi & Tryggvason 1992, Tryggvason et al. 2001), and the marker technique of
Popinet & Zaleski (1999). Eulerian interface representations include the volume-of-fluid (VOF)
(Scardovelli & Zaleski 1999), level-set (Sussman et al. 1994, Sethian & Smereka 2003), and phase-
field methods (Anderson et al. 1998).

Surface (interface) and volume (fields) representations are then coupled through either
(#) interface kinematics, i.e., the transport by the Eulerian velocity field of the Lagrangian or
Eulerian interface description, or (4) interfacial dynamics, i.e., changes in material properties
(density and viscosity) and boundary or jump conditions associated with the interface. For La-
grangian interface representations, transport is simple and accurate; however, difficulties arise for
large deformations and especially for breakup and coalescence. Eulerian interface descriptions
can deal transparently with changes of topology but lead to more complex transport schemes.
The solution to this kinematic problem has seen major progress in the past 25 years, with the de-
velopment of higher-order geometric VOF methods that guarantee nondiffusive, sharp interface
motion (Gueyffier et al. 1999); conservative level-set methods (Desjardins et al. 2008, Xiao et al.
2011); and coupled VOF-level-set methods (Sussman & Puckett 2000).

The situation for interfacial dynamics, and surface tension in particular, is more complex, and
a wide range of methods or combinations of methods is available, often with limited information
on the relative merits of each method. The aim of this review is to highlight the most significant
developments in Eulerian surface tension models in the past 20 years, with a specific emphasis on
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well-balanced estimation, curvature estimation, stability, and implicit time stepping, as well as test
cases and applications.

2. SURFACE TENSION FORMULATIONS
Let us consider the Navier—Stokes equations for incompressible flow with surface tension:
op+u-Vp =0,
p@u+u-Vu)y=V-[u(Vu+V'u)]-Vp +f,
V.u=0,

where p and p are the variable density and viscosity, respectively; u is the velocity; p is the
pressure; and f,, is the surface tension force per unitvolume. The equation of continuity requires the
solution of the kinematic problem mentioned in Section 1, i.e., (nondiffusive) interfacial transport.
The assumption of incompressibility means that pressure loses its thermodynamic definition and
reduces to the constraint necessary to impose a divergence-free velocity. This can be used to
rearrange body forces, as is done below.

2.1. Integral Formulation

Perhaps the most natural way to derive an expression for £, is to consider the forces acting on a two-
dimensional curve under tension, as was done by Young (1805). In the case of interfaces between
fluids (which is different for thin membranes), two-dimensional tension is simply a force per unit
length tangential to the curve, which can be expressed as o't, where t is the unit tangent vector
and o is the surface tension coefficient. If we now consider an elementary volume €, intersected
by the curve in two points 4 and B, the total tension force acting on € is

B
/fg Zf O'dtZO'BtB—O'AtA, 1.
Q A

where the second integral is along the interface and where o4 and o3 are the (possibly different)
surface tension coefficients at A4 and B. The resultant of surface tension forces on the control
volume thus reduces to the sum of tensions at the entry and exit points of the interface.

From a numerical perspective, this formulation has several advantages. First, it only involves
low-order derivatives of the geometry, which should lead to accurate numerical estimates. Second,
in a manner similar to flux-based integration of the divergence operator in finite-volume schemes,
the contributions of surface tension forces to neighboring control volumes cancel out exactly (the
directions of the unit tangent vectors in Equation 1 are simply reversed). This can be interpreted
as the divergence of a surface stress and is related to the continuum surface stress formulation of
Gueyffier et al. (1999). This ensures exact local and global momentum conservation for surface
tension. In particular, the net force exerted on the fluid by a closed interface is exactly zero. This
is not the case for the volumetric force formulations discussed in Section 2.2.

Popinet & Zaleski (1999) used this formulation in combination with a Lagrangian represen-
tation of the interface and obtained very accurate results (compared to methods available at the
time), in particular for Laplace balance and capillary waves. This required a consistent finite-
volume discretization of the pressure gradient, taking into account the pressure jump across the
interface at the intersection points.

In the context of front-tracking techniques, the generalization of Equation 1 to three dimen-
sions (Weatherburn 1927) has been used by Tryggvason etal. (2001) to define a globally conserva-
tive interfacial force. However, this has not been combined with the corresponding finite-volume
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integration on the Eulerian grid (instead, the surface force is spread over the Eulerian grid using a
smoothing kernel), so that the final scheme shares some of the properties of the volumetric force
formulations in the next section.

2.2. Volumetric Formulation

Using the first Frenet formula for parametric curves dt = knds, where « is the curvature, n is the
unit normal, and s is the curvilinear coordinate, gives (for a constant surface tension coefficient)

B B
/ﬁ;:% Gdt:% O‘Knd_Y:fUKn8w
Q A A Q

where &, is a surface Dirac §-function that is nonzero only on the interface (see Tryggvason et al.
2011, appendix B, for a detailed derivation). Note that, in the case of variable surface tension,
tangential (Marangoni) stresses need to be added to this formulation (whereas they are naturally
taken into account in the integral formulation).

Volumetric formulations are based on a numerical approximation of the surface Dirac function,
which allows a direct evaluation of the volumetric force oxné;. This approach can be traced back
to the original immersed boundary method of Peskin (1972), although this link is not always
acknowledged in subsequent articles. Most methods belong to this category regardless of the way
the interface is represented. The idea is to use the relation

okdn=okVH(x—x,),

where H is the Heaviside function and x, is the position of the interface. The next step is to choose
a suitable numerical approximation H . of the Heaviside function, which will typically depend on
a (small) parameter € such that

113(1) H.=H.
The small parameter € is a length scale related to the characteristic thickness of the interface.
Depending on this choice, which is linked to the type of interface representation, different methods
can be constructed.

In the continuum surface force (CSF) method of Brackbill et al. (1992), the interface is rep-
resented through the volume fraction field ¢, and one simply sets H, = ¢ with € = A the mesh
size. In the original CSF paper (Brackbill et al. 1992), ¢ is replaced with a filtered or smoothed
version ¢, which increases the characteristic interface thickness €. This is not necessary at this
stage, however, as it mostly relates to a different issue, the estimation of interfacial curvature,
which is addressed in Section 4.

The original method of Peskin (1972) is designed for elastic membranes, rather than interfaces,
and relies on an explicit Lagrangian description of the membrane. Unverdi & Tryggvason (1992)
extended this approach to interfaces using an indicator function reconstructed from the Lagrangian
description as an approximation of the Heaviside function. Sussman et al. (1994) proposed to use
a representation of the interface as the zero contour of a level-set function ¢. The Heaviside
function is then approximated as a smooth function such as

0 if p(x) < —e€
_x) = _J1 if p(x) > €
H.(x—x) = H(p(x) 1+ /e + sin(re/e)/n . . 2.
2

In the common case, where ¢ is chosen to be the signed distance to the interface, € is the charac-
teristic interface thickness (see Engquist et al. 2005 for a detailed discussion).
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Another type of surface tension discretization usually associated with level-set interface rep-
resentations is the ghost fluid method (GFM) (Fedkiw et al. 1999, Kang et al. 2000). Although
this may not be obvious at first, this method can also be recast as a volumetric force formulation.
Rather than including the surface tension as a surface force, Fedkiw et al. (1999) proposed to
directly include the corresponding jump condition in the discretization of the pressure gradient
operator. This is essentially the immersed interface approach of LeVeque & Li (1994), itself a
formalization of Peskin’s immersed boundary method.

Let us consider a simple second-order discretization of a one-dimensional pressure gradient
operator, which can be written

(Vp)icip = %,

where A is the grid spacing. The GFM proposes to modify this operator locally in order to take
into account the pressure jump induced by surface tension. This leads to the following scheme:

(VD)1 = 1 |p; —pir  if theinterfaceisin [x;_; : ;]
Pli-12 = A |pi—pii  otherwise

’

with the ghost fluid value p; = p; £ (0«);_1,2, where the sign of the jump depends on the
orientation of the interface. This can be rewritten as

Vp)ic1a = (Vpicip — (0k8)i—1)2,
with

s _J£1/A  if the interface is in [a;_1 : %]
=120 otherwise ’

Note that §;_y,; is indeed a consistent approximation of a Dirac delta function. The corresponding
approximation of the Heaviside function is

H; = , 4.

1 if &; is inside the interface
0 otherwise

and §,_1, in Equation 3 is

H;—H,;,

—

The GFM is indeed naturally suited to a level-set representation of the interface because the inside

Sicip=(VH)i1p =

the interface condition in Equation 4 is then ¢; > 0. Note, however, that it is also applicable to a
VOF representation of the interface. The standard CSF approximation of the Dirac delta,

Sic12 = (Ve)iciya,

can simply be replaced with 8,_;, = (VH );_1,, where H is the equivalent of the GFM approxi-
mation (Equation 4):

1 ife; > 0.5

Hi = . .
0 otherwise

The CSF method (typically combined with a VOF interface representation), the smoothed Heav-
iside method (typically combined with level set or front tracking), and the GFM method (typically
combined with level set) can all be summarized as

okdn=okVH.

The different approximations for H are summarized in Table 1.
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Table 1  Approximations of the interface Heaviside function for different volumetric methods

Method Heaviside function H
CSF (VOF) ¢

0 if ¢ <—e
Smooth (level set/front tracking) 1 if¢p>e

[1+ ¢/€e +sin(wo/e)/m]/2 otherwise

1 if ¢ > 0 (level set) or ¢ > 0.5 (VOF)

GFM (level set/VOF) 0 herwi
otherwise

Abbreviations: CSF, continuum surface force; GFM, ghost fluid method; VOF, volume of fluid.

The corresponding graphs for H and § (normalized by €) are represented in Figure 1. The
fact that the approximation of the Heaviside function for the GFM looks exact has led to the claim
that the GFM leads to a sharp interface representation, in contrast with the other methods. It is
clear, however, that the approximation of the Dirac function is not significantly sharper for the
GFM than for the other methods. In fact, all methods lead to a characteristic interface thickness of
order € = A. This is obvious for the Dirac approximations but is also true for the sharp Heaviside
approximation of the GFM method because this approximation is insensitive to a shift of +¢/2 of
the actual position of the interface.

10 A

0.8 [ -

06 [ -

Continuum surface force
Smooth
Ghost fluid method

0.6 - —
de
04 -

02 -

Figure 1

Approximations of the (#) interface Heaviside and () (normalized) Dirac functions for different volumetric
methods.
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3. WELL-BALANCED METHODS

A classic and nontrivial problem when designing numerical schemes for partial differential equa-
tions is ensuring that specific equilibrium solutions of the (continuous) equations are recovered
by the (discrete) numerical scheme. This problem arises for a wide range of equations and appli-
cations: hyperbolic systems of conservation laws with source terms (LeVeque 1998), hydrostatic
balance in o-coordinate ocean or atmosphere models (Mesinger 1982), the topographic source
term in shallow-water equations (Audusse et al. 2004), and more. Numerical schemes that recover
these equilibrium solutions are often called well-balanced methods.

In the case of surface tension, setting u = 0 in the Navier-Stokes equations, we get the
equilibrium condition

—Vp +oknd;, =0,

which is verified for

[p] = ox,

K = constant,

where [p] is the jump of the pressure across the (spherical) interface. This is the well-known
Laplace’s relation between pressure and surface tension in a drop in equilibrium. If we assume
that each of the (nonzero) terms in the Navier—Stokes equations is approximated with second-order
accuracy, the leading-order discrete equilibrium condition can be written

Vp+CyA* = oknd, + C, A%,

where C, and C, are scheme- and solution-dependent factors that control the pressure gradient
and surface tension errors, respectively. If special care is not taken, these errors have no reason to
cancel, and the best that one can hope for is that the equilibrium condition is verified to within
the accuracy of the scheme, i.e., asymptotically to within O(A?). Although this may be acceptable
for some applications, for example, when surface tension is not the dominant force or when the
interface is far from this equilibrium solution, in practice, two-phase interfacial flows often include
drops or bubbles close to Laplace’s equilibrium.

For many years, numerical methods were not able to recover this simple equilibrium solution,
and the resulting quasistationary velocity pattern became known as spurious or parasitic currents, of
varying intensity depending on the method. Interestingly, the volumetric force formulation leads
to a very simple condition for discrete equilibrium, as first pointed out by Renardy & Renardy
(2002). Indeed, we have the (exact) relation

—Vp+oknd, = -Vp+okVH =0,
which, in the case of constant o and «, can be approximated as
—V*(p—oxkH)=0,

where V* is a numerical approximation of the gradient (assumed to be a discrete linear operator).
The exact discrete numerical solution, which guarantees exact balance between surface tension
and pressure in the case of constant «, is then simply

p = ok H + constant, 5.

where H is one of the approximations in Table 1.
For a staggered, markers-and-cell (MAC) discretization, where velocity components are stored
at midpoints, and pressure at the centers of a regular Cartesian grid, a simple well-balanced
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scheme is

i+1 = pi Hi, —H,
_¥ + @R
Unfortunately, this was not the scheme adopted by Brackbill et al. (1992) in the original CSF
article (for which H = ¢). They instead chose to compute the midpoint surface tension force

as the average of cell-centered values. This means that different operators are used to compute

6.

the gradient of the pressure (at midpoints) and volume fraction (at centers), thus breaking the
well-balanced property. The motivation for this choice was probably related to the desire to
reuse the normal components also used to compute x = V - n at cell centers.

Thus, one explanation for the relative confusion around the issue of spurious currents is linked
to the contradictory requirements of a well-balanced formulation and accurate curvature estima-
tion. A well-balanced formulation requires that the gradient of a (usually) smooth function (the
pressure) be estimated using the same discrete operator as that used to estimate the gradient of a
discontinuous function (the Heaviside approximation/volume fraction). It is also well known that
such a gradient estimate will lead to a poor approximation of né, and an even poorer estimate of
the curvature k = V - n. However, when looking for a better estimate of «, one may be tempted
to also use the better estimate of né; associated with it; unfortunately, this will break the well-
balanced property. This is what happened in the original CSF formulation and many other early
implementations.

It is thus necessary to decouple the estimate of ng, and the estimate of x. Note that this is what
happens naturally for level-set methods. In these methods, the normal is estimated as n = V¢ and
the curvature as k = V - n; however, né, is estimated as VH, where H is computed using either a
smooth function or the GFM (see Table 1).

Well-balanced estimation, as applied to surface tension, can (and should) be applied to any
system for which a source term can be balanced by the pressure gradient. If this source term can
be expressed as the gradient of a potential, a consistent discretization of the pressure and potential
gradients will lead to a well-balanced scheme.

If we assume that a body force can be expressed as the gradient of a potential ¢ times a material
property f, we have

—Vp+fVp==Vp+V(fp)—¢Vf=-Vp —¢Vf,

with p’ = p — f¢. If we now assume that the material property jumps from a constant value fj to
a constant value fj across the interface, we have

fH)=(fo— fH + fi=[f1H + fi,

where H is the Heaviside function associated with the interface. This gives
“Vp+ [V =-Vp' —[fIQVH = —Vp'~[fl¢né. 7.

The body force can thus be replaced by an interfacial force equal to the potential times the jump
of material properties across the interface. Surface tension itself can be reformulated using this
general relation as

—Vp —0oHVk =—-Vp' +oknd,, 8.

with p = p’ — ok H (using ¢ = k and f = —o H, as in Equation 7). This has the advantage of
giving a naturally balanced scheme for a constant curvature without any constraint on the choice
of the discrete gradient operators (aside from V constant = 0) (see Ghidaglia 2016 for a detailed
derivation).
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Similarly, the acceleration of gravity can be reformulated as
—Vp +pg=-Vp'—lplg-xnd,

with p’ = p — pg -x (using ¢ = g-xand f = p, as in Equation 7). The hydrostatic pressure is
thus subtracted analytically, which is advantageous for ensuring exact hydrostatic balance across
the interface and also simplifies boundary conditions for open domains (see, e.g., Wroniszewski
etal. 2014 for an application to breaking waves).

More complex models can also be simplified using the relation in Equation 7. For example,
Mabhady et al. (2016) proposed to discretize the disjoining pressure induced by a potential of the
form ¢ = (b*/y)”, where y is the distance to the substrate, as

—Vp+KVp =—Vp' — ¢[K]n,,

which avoids dealing with the divergence of the potential close to the substrate (this divergence is
balanced analytically by the corresponding divergence of the pressure p).

4. CURVATURE ESTIMATION

The accurate estimation of interface curvature is, of course, central to the performance of volumet-
ric surface tension force models (for integral formulations, only the interface normal is required).
Although the details depend on the particular technique used for interface representation, one
can essentially distinguish between two classes of methods: (#) direct derivation from the im-
plicit representation of the interface and (4) discrete differential geometry operators applied to
an explicit description of the location of the interface (provided directly by the interface tracking
representation or reconstructed from an implicit description of the interface).

4.1. Level-Set Methods

The first class of methods is the primary argument in favor of level-set interface representations.
In the ideal case, where the level-set function ¢ is the signed distance to the interface, the curvature
is simply obtained using the relations

n=V¢ and «=V-.n. 9.

The level-set function ¢ is smooth, and discrete schemes can be easily constructed to estimate
both n and « to any order of accuracy. This is the approach adopted in early articles that used the
level-set method to represent interfaces and surface tension (e.g., Sussman et al. 1994). Although
useful schemes can be obtained with this approach, it has an important limitation that is evident
when considering the well-balanced property of the previous section. Let us consider the simple
well-balanced discretization

_pH—lA Pz + (UK)i+1/2 I—I(quﬂ)A H(¢z),
where H is a suitable approximation of the Heaviside function (e.g., Equation 2 or the GFM

10.

approximation in Table 1). A simple estimate of the curvature is

Kiv12 = [V - (V®)it1)2s 11.

where the divergence and gradient operators are suitable discrete approximations. To recover
Laplace’s equilibrium relation (Equation 5), the estimate of the curvature needs to be constant for
a spherical droplet. Note, however, that the relations in Equation 9, as well as their discretization
(Equation 11), define a curvature thatis everywhere in the domain, notjust on the interface (¢ = 0).
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The curvature given by Equation 9 is indeed the curvature of the local contour rather than that
on the interface. In the case of a spherical interface, Equation 11 will thus return an estimate of
the curvature that will not be constant, and Laplace’s equilibrium will not be guaranteed. The
deviation from the equilibrium solution will be controlled by the distance between the interface
and the points where the curvature is estimated (i.e., at 7 + 1/2) times the value at these locations
of the gradient of the Heaviside function. This distance obviously scales like the thickness of the
interface (i.e., essentially the grid size) and will thus tend toward zero with spatial resolution, which
makes the method consistent but not well balanced. This limitation of naive level-set methods
has been recognized by, for example, Sussman & Ohta (2009), who advocated the use of a height-
function curvature calculation (described below), rather than the relations in Equation 9, even in
the case of a level-set description of the interface.

A closely related issue is the explanation of the improved performance of the GFM relative to
the classical smoothed Heaviside level-set formulation. In the initial article by Kang et al. (2000),
the decrease in spurious currents observed with the GFM is attributed to the sharper surface
tension representation provided by the GFM, a conclusion that was contested in a later article
by Francois et al. (2006) in connection with their sharp surface force (SSF) model (this model
is actually identical to the Dirac formulation of the GFM; see Equation 3). The improvement
is not due to the difference in Dirac approximations summarized in Table 1, but rather to the
interpolation formula proposed by Kang et al. (2000) to estimate the pressure jump (i.e., the
curvature) at the location of the interface [based on earlier work by Fedkiw et al. (1999)]:

Kilpivt| + Kiv1lil
|i| + [it1l

i.e., a distance-weighted average of the cell-centered values of the curvature, which are computed

Kit12 =

using Equation 9. In the case of a spherical interface, it is clear that this formulation will lead to
values of the curvature in Equation 10 that are much closer to a constant than, e.g., the simple
average k;412 = (k; + ki11)/2 often used for the classical level-set formulation. This has recently
been confirmed by Abadie et al. (2015), who showed that the GFM/SSF level-set formulation
leads to exact balance, in contrast to the classical level-set formulation, which gives significant
spurious currents.

The benefits of ensuring a close-to-constant curvature estimate in the case of a spherical
interface are also obvious for the alternative surface tension formulation in Equation 8, which
has a built-in well-balanced property (irrespective, in this case, of the specific choice of gradient
operators).

The main drawback of level-set formulations is the lack of discrete volume/mass conservation.
This can be minimized by employing frequent redistancing and reinitialization of the level-set
function. Unfortunately, this redistancing step tends to perturb the curvature and prevents the
system from reaching the constant curvature required to guarantee exact balance (see Abadie et al.
2015).

4.2. Smoothed Volume Fraction

The normal and curvature relations (Equation 9) can, in principle, be applied to any field that
provides an approximation of the interface position as a local isocontour. This was the observation
that led Brackbill et al. (1992) to propose the original CSF model, in which the curvature is
approximated using

ve

n=—
[vel
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where ¢ is a smoothed (i.e., diffused) version of the sharp volume fraction field. The smoothing
was adopted to try to circumvent the difficulty of differentiating a discontinuous function. Al-
though results do improve when stronger diffusion is applied, several studies have since showed
that this method is not consistent for curvature, i.e., errors on curvature tend to increase with spa-
tial resolution (see, e.g., Williams et al. 1998, Cummins et al. 2005, Tryggvason et al. 2011). This
inconsistency of the curvature estimate, often combined with the lack of balance of the gradient
terms described above, explains most of the difficulties encountered with early CSF implementa-
tions. For many years, this has been a strong argument in favor of level-set methods, which, even
for their naive, not-well-balanced versions, are at least consistent and give much better results
for surface tension. Although this argument has often been repeated in recent publications, the
smoothed volume fraction method should be considered obsolete because much better alternatives
now exist, as described in the next section.

4.3. Height Functions

The height-function method relies on the simple observation that one can always define a local
coordinate system in which a surface is described as the graph of a function. The simplest case is
that of a nearly horizontal interface that can be simply described by y = &, (x) and for which the
curvature is given by

b
/1ib_;2'

Provided that the values of 4, (the height function) are known exactly at discrete locations, one
can easily derive discrete schemes to estimate « at any order of accuracy. This reasoning is easily

K =

generalized to any number of spatial dimensions. Of course, an issue arises when the slope of the
interface tends to infinity and the graph becomes multivalued. One can then simply switch to a
different, well-behaved local representation of the interface, such as x = 5,.(y).

This simple idea has a long history, possibly starting with Poo & Ashgriz (1989). It was first
described comprehensively in the context of two-phase flows by Sussman (2003) and later analyzed
in detail by Cummins et al. (2005). The key to the success of this method is having access to
sufficiently accurate discrete values of the height function. Indeed, as double differentiation is
required to estimate curvature, the height function needs to be known with higher than second-
order accuracy to get a consistent (i.e., converging) estimate of the curvature. In the case of VOF
methods, if we assume that the discrete volume fractions ¢; ; are known exactly [for example, using
volume fractions obtained by analytical integration based on the exact interface (Bna et al. 2015)],
we can write without approximation

j=00

Xiy1/2 o
/ hi(x) dx = Ab; = Z ¢ij + constant, 12.
X172 j=—00

where 5, is the exact average height function value for a given column. The 400 limits of the
sum on the right-hand side simply indicate that vertical summation of the volume fractions is
performed on the entire column. A symmetric relation is, of course, derived for integration along
rows, which allows one to perform the coordinate system rotation described above. Once these
exact average values are computed, one can use simple differencing such as

(himi —2b; + bi1)/A?
K = = =
VI+[(hiv1 — bi)/QA)
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to obtain second-order accurate estimates of the curvature. Both second- and fourth-order con-
vergence (using five-point stencils) have been demonstrated in practice for circular interfaces
(Cummins et al. 2005, Sussman & Ohta 2006, Bornia et al. 2011). Generalization of the method
to three dimensions is straightforward.

Besides its conceptual simplicity and good convergence properties, the method has several
advantages that are particularly relevant in the context of the well-balanced property discussed
above. First, the method naturally defines curvatures on the interface. Second, the method is
insensitive to the exact distribution of volume fractions within a column. This is important for
robustness because VOF schemes often lead to the formation of small interfacial fragments. Using
these small fragments as markers of interface position can lead to erroneous curvature estimates
(for example, when using the interpolation techniques described in Section 4.4). The spatial av-
eraging performed by the height-function method naturally avoids these artifacts. Third, more
generally, the connection between interface representation (and transport) and surface tension
is very direct when combining VOF, balanced surface force discretization, such as Equation 6,
and height-function curvature estimation: This tight coupling minimizes the possibility of uncon-
trolled numerical modes and gives a robust method.

Several issues must be addressed when implementing the method in practice, however. The
summation limits on j in Equation 12 need to be specified. Early implementations only used a fixed
number of cells (typically seven) in each column. If one considers a nearly horizontal interface,
described using a nondiffusive VOF method, only three cells in the vertical direction are necessary
to obtain a consistent value for the average height. However, some interface configurations may
require up to nine cells in the vertical direction to obtain consistent height functions (see, e.g.,
Popinet 2009 for a discussion and examples). More generally, although consistent height-function
approximations can always be obtained when the spatial resolution is high enough (i.e., when the
product k A is small enough), things become more complicated as soon as this product is larger
than approximately 1/5.

A first useful step is to use a variable stencil height, which adjusts automatically to the local
topology of the interface, in order, in particular, to ensure that vertical summation is only applied
across a single interface. This also permits the use of optimal stencils (e.g., three instead of seven
cells) in the simpler cases (for examples of this approach, see Lépez et al. 2009, Popinet 2009).

As spatial resolution decreases further, consistent height functions are increasingly difficult to
obtain: When one reaches k A = 1, at best a single value of the height function can be constructed
in each direction, and differentiation to obtain curvature is no longer possible. Although one
cannot reasonably expect accurate solutions at such low resolutions, it is important to ensure that
the overall method remains robust across these transitions. This can be achieved by switching
progressively to the interpolation methods described in the next section. A complete example of
this approach was described by Popinet (2009). An alternative approach was proposed by Owkes
& Desjardins (2015), who used a rotated height-function stencil.

4.4. Differential Geometry of Discrete Surfaces

The second class of methods for curvature estimation relies on an explicit, often local discretization
of the surface. It is the natural method to use for front tracking, where the interface is defined
explicitly, for example, using Lagrangian vertices connected by triangular facets.

The approximation of surfaces using discrete elements has many applications besides interfa-
cial flows, such as three-dimensional laser scanning, mesh compression and denoising, minimal
surfaces, and geodesics. Approximations of differential quantities, such as Gaussian and mean
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curvatures or principal directions, have recently seen a surge of interest in the general context
of computational geometry. An interesting review of the connections between the continuous
mathematical concepts and their discrete equivalents is given by Meyer et al. (2003). They found
the derivation of a discrete equivalent of the mean curvature normal operator, which is directly
related to surface area minimization. This discrete operator mimics several of the important
properties of the continuous operator; in particular, it minimizes a discrete version of the surface
energy. Note that the techniques described in this review have not yet, as far as I am aware, been
applied to front-tracking codes.

Besides this discrete formulation, two main types of techniques can be applied depending on
whether a globally continuous approximation is required or a local approximation is sufficient.
In global methods, local surface patches are constructed and continuity conditions are imposed
between patches, which leads to the inversion of a system for the entire surface. Splines and B-
splines belong to this family. In the context of interfacial flows, spline curves have been used, for
example, by Popinet & Zaleski (1999), to connect Lagrangian markers in two dimensions, whereas
B-splines have been used by Torres & Brackbill (2000) to obtain a global interface representation,
also in two dimensions. These methods are accurate and benefit from the robustness provided by
a global reconstruction [which can be seen as minimizing a global surface energy functional, i.e.,
the bending energy for 2D splines (Birkhoff & De Boor 1965)]; however, they are also expensive
and complex, particularly in three dimensions.

In practice, local surface approximations are much more common. A standard technique is to
approximate the surface by least-square minimization of the quadratic form

Zwi(xi'AX,'-’-Il-X,'-f-b)z, 13.

where nis a unit vector approximating the normal and A is a symmetric matrix. Further constraints
can be used to reduce the number of free parameters. For example, Renardy & Renardy (2002)
argued that one can get a consistent, second-order approximation by imposing the condition that
the axis of the paraboloid defined by Equation 13 be aligned with n, i.e., An = 0. Popinet (2009)
used a similar argument to reformulate the approximation problem in a local coordinate system
aligned with n. A sufficient number of points x; are then chosen in a local neighborhood to make
the system in Equation 13 invertible. The coefficients w; are optional ad hoc weights accounting
for differences in accuracy of the positions. Besides the normal n, the mean curvature is then given
by k = 2 tr(A).

With the possible exception of triangulated surfaces of known connectivity (Tryggvason et al.
2001), it is clear that such local approximations are not nearly as simple or systematic as level
sets or even height functions. Although the least-square minimization is not particularly complex
or computationally expensive, the logic of point (and weight) selection can be complicated and
somewhat fragile. Besides its application to front tracking, variants of this method have been used,
in particular, in the parabolic reconstruction of surface tension (PROST) method of Renardy &
Renardy (2002). In their article, it is not the discrete interface locations that are fitted through
Equation 13, but the volume fractions given by the intersection of the quadratic surface with each
cell of a local stencil. The resulting minimization problem is nonlinear and very expensive to solve
numerically but provides accurate normal and curvature estimates directly from the volume frac-
tion field. Ad hoc weighting is used to avoid computational modes and to increase the robustness
of the method. Variants of this method have also been used in the generalized height-function
method of Popinet (2009). As described above, when kA < 1/5, the number of consistent dis-
crete heights may not be enough to allow differentiation. It is then necessary to use other types
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of surface approximations. Ideally, switching from one approximation (e.g., height function) to
the next (e.g., least-square minimization) should be done while minimizing the potential jumps in
the estimated curvature. A first step is to obtain interface positions by combining horizontal and
vertical heights and applying Equation 13. If the number of interface positions obtained in this
way is too small, one can switch, as a last resort, to interface positions given directly by the VOF
geometric reconstruction.

Popinet’s (2009) application, and many subsequent ones, of the method to complex problems
has shown that this method is both accurate and robust. The computational cost is limited because
the relatively expensive least-square problems need to be solved only in marginal cases. The main
cost is, rather, the added code complexity, which is, however, quite manageable (see, for example,
Popinet 2014 for a complete open-source implementation).

4.5. Mixed Methods

The relative advantages and drawbacks of various methods have led to techniques seeking to
combine several interface representations. The primary motivation was the improvement of in-
terface kinematics, particularly their accuracy and mass conservation properties, but the accuracy
of surface tension representation was also an important factor.

One of the better-known mixed methods is the coupled level-set and volume-of-fluid
(CLSVOF) method of Sussman & Puckett (2000), which couples a geometric VOF represen-
tation (for conservative transport) with a level set (for simple curvature estimation). Many variants
of this approach have since been developed and successfully applied to complex interfacial flow
problems. The main weakness of this technique is common to all mixed methods: It is difficult to
switch between interface representations without loss of accuracy on the interface position. These
errors can become dominant when computing curvature. For example, Cummins et al. (2005)
have analyzed the curvature errors induced by their reconstructed distance function (RDF) proce-
dure, which is close to that employed in CLSVOF methods. Using a second-order-accurate RDF
reconstruction, they demonstrated that, as expected, normals estimated from the RDF converge
at a first-order rate, whereas curvature errors do not converge with resolution. More generally,
one can expect that this reconstruction error will affect most types of redistancing algorithms
used to ensure the consistency of level-set representations. This should be particularly clear when
considering the well-balanced cases discussed above: In these cases, redistancing (or CLSVOF
coupling) will lead to a continuous injection of curvature errors, which will prevent an equilib-
rium curvature from being reached. This assumption has been confirmed for the spurious currents
test cases discussed in Section 6.1.

Another common class of mixed interface representations combines front tracking/Lagrangian
particles with level set/isosurfaces/VOF. From a kinematic point of view, the goal is to combine the
high accuracy of Lagrangian advection schemes with the topological flexibility of level-set/ VOF
interface representations. The improved kinematic properties of these schemes have been demon-
strated by Enright et al. (2002) and Hieber & Koumoutsakos (2005) for particles combined with
level set and Aulisa et al. (2003) for particles combined with VOF. The level contour reconstruc-
tion method (LCRM) of Shin et al. (2005) uses (temporary) interface markers reconstructed from
the isosurface of the indicator (i.e., level-set) function. This eliminates the need to keep track
of surface connectivity (i.e., topology) of standard front-tracking techniques. The curvature is
computed using the local triangulated isosurface reconstruction, and surface tension is then im-
plemented using balanced CSF applied to the indicator function. Although the convergence of
curvature errors is not discussed by Shin et al. (2005) (one can expect the same difficulties as in
the RDF method), good results are obtained for the spurious currents test cases.

Popinet



5. STABILITY AND IMPLICIT TIME STEPPING

As first discussed briefly by Brackbill et al. (1992), a time-explicit discretization of the surface
tension term should lead to a stability constraint of the form

A3
At<,/MzAtM 14.
dro

where At is the time step and p; and p, are the densities on either side of the interface. The physical
justification is that the time step must be small enough to resolve the fastest capillary waves in
the system, which are obtained for the wave number # = /A, and verify the dispersion relation
¢o = +J/ok/(p1 + p2). A more formal stability analysis can be found, for example, in the work of
Sussman & Ohta (2009). Note that the assumptions that lead to the 47 constant in Equation 14
are debatable (for a detailed discussion, see Galusinski & Vigneaux 2008, Denner & van Wachem
2015).

Explicit schemes for the transport of interfaces are subject to the standard CFL constraint
At < A/|u| = Atygy. The ratio of these two stability constraints is, thus,

At, ZA
_ [(p1 + p2)lul - /Wen,
Atady 4o

where We, is the cell Weber number, which estimates the ratio of inertial to surface tension forces.
In the absence of viscosity, the minimum characteristic scale (i.e., radius of curvature) of interfaces
is due to the balance of inertial and surface tension forces. This implies that a well-resolved

numerical simulation will necessarily verify We, <« 1, so that the minimum characteristic scale
of interfaces (e.g., minimum droplet size) is (much) larger than the mesh size. This means that the
capillary time-step restriction Az, must always be more restrictive than the CFL constraint for
interface advection. For example, if we consider a 1-mm air bubble rising in water with a terminal
velocity of 0.1 m/s, we get

Als _ [Wen = /WepN 12 ~ 01N 12,

Atady

where Wep, is the bubble Weber number (based on diameter D) and N is the number of grid
points per bubble diameter. For a moderate resolution of N = 10, the capillary time step is thus
32 times smaller than the advection time step.

One might wonder whether viscosity can relax the stability condition. This could be particularly
relevant for small-scale flows, such as those occurring in microfluidics devices, and has been studied
in this context by Galusinski & Vigneaux (2008). They concluded and demonstrated numerically
that, for capillary-driven Stokes flows, the relevant stability criterion is

A [pA?
At < max (M, p) s
o o
where the first term corresponds to a CFL condition built with the Stokes velocity o /. The
combined criterion thus becomes advantageous whenever the Stokes velocity is smaller than the

speed of the shortest capillary waves, i.e., o/ < /o /pA, which gives

2
A<, = M—,
po
where /,, is the viscocapillary length, which only depends on the fluid properties. As a reminder,
we have /, ~ 14 x 107 m and o/p ~ 72 m/s for an air—water interface and /, ~ 2.5 cm and

o/pn ~ 4.5 cm/s for an air-glycerol interface. Note that microfluidics devices typically use mineral
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oils, which have viscosities and surface tensions comparable to those of water and channel widths of
the order of 10 pm. A well-resolved simulation will have a spatial resolution of order A ~ 0.1 pm,
which is still much larger than the viscocapillary length. It is thus not obvious that the relaxed
Stokes criterion is beneficial for these applications, unless one considers significantly more viscous
fluids or smaller channels. In practice, explicit surface tension stability is thus a stringent constraint
for microfluidics applications (see Ling et al. 2016 for a detailed discussion).

Time-implicit discretizations are a standard way to relax time-step restrictions. Fast modes
are damped rather than resolved and do not constrain the overall stability. One of the first articles
discussing time-implicit schemes for surface tension was by Binsch (2001), who proposed a
variational formulation coupled with a Lagrangian finite-element discretization of the interface
[see also the interesting review by Buscaglia & Ausas (2011)]. This was inspired by earlier work on
the computation of minimal surfaces through discretization of the mean curvature flow equation
(Dziuk 1990). Hysing (2006) extended these ideas to an Eulerian interface description. The
scheme is derived starting from the standard differential geometry relation (Weatherburn 1927)

Ax; = kn,

where x; = x4, is the Lagrangian interface position and A is the Laplace-Beltrami operator (or
surface Laplacian). The surface tension force can then be written

f, = oknd; = 0 Ax,6;.
The idea is to then use the interface position predicted at the next time step by
Xyl = X + Atu, 4
to obtain a semi-implicit discretization of the surface tension force as
f,r1 =0 (AX,), . 8, = 0 (AX,), 8, + Ato (Aw), 8, = o(knd;), + Ato (Au), 5 ,.

The scheme is not fully implicit, particularly because the time level is not taken into account
for &, (which is always defined at time #). The scheme is equivalent to the addition of a surface
viscosity proportional to Ato that will dampen fast capillary waves and lead to stabilization.
Hysing (2006) demonstrated gains of one order of magnitude in time step compared to standard
explicit schemes. The method is also applied in a finite-volume/VOF context by Raessi et al.
(2009), who found similar stability properties.

More recently, Sussman & Ohta (2009) proposed to estimate the curvature at z + 1 using the
mean curvature flow equation

09X, = okn = o Ax; 15.
rather than the full coupled Navier-Stokes system. The stationary solutions of this equation

minimize the surface energy, which is clearly a desirable property when considering the stability
of integrations with large time steps, for which they obtain the stability condition

Aoy + p2)
2
They then numerically demonstrate improved stability compared to the standard discretization,
with increases in time step of the same order as for the method of Hysing (2006).
These two equations are problematic, however, because neither is dimensionally consistent.

At < 16.

The analysis can be fixed by noting that Equation 15 is not an equation describing the evolution
of an interface under the effect of surface tension, despite its connection with minimal surfaces.
Indeed, dimensional consistency implies that the coefficient o in Equation 15 has dimensions
L*>T 7', i.e., those of a diffusion coefficient. The mean curvature flow equation (Equation 15) is
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simply a surface diffusion equation that will filter high-frequency surface modes and, therefore,
stabilize the solution. This is well known in the computer graphics community, where Equation 15
is used to denoise surface meshes (Desbrun et al. 1999).

The scheme can be reformulated consistently as the level-set evolution equation (Chopp 1993)

0.9 =k, 17.
where the pseudo-time t has the dimension of length squared. A filtered curvature can then be
defined as
R ()~ 60
=— kdr = ————=,

A S, A2
where ¢(A?) is obtained by advancing Equation 17 from zero to A%, with A a characteristic
smoothing length. The amount of smoothing required is found by considering the linear stability

=t

of the resulting scheme, which gives the stability condition

o
A> At [——— = Atca,
Alpr + p2) 8

where ¢, is the capillary wave speed for the (smallest) wavelength A. The correct interpretation
of the scheme of Sussman & Ohta (2009) is thus stabilization by diffusive surface smoothing over
the characteristic travel distance of the fastest capillary waves: A = Azc,.

The schemes of Sussman & Ohta (2009) and Hysing (2006) thus work in a similar manner:
Added surface damping filters high-frequency modes and thus stabilizes the solution. An important
difference between the two schemes, however, is that the method of Sussman & Ohta directly filters
the interface position/curvature while the scheme of Hysing filters the (surface) velocity field. In
particular, the scheme of Hysing will not affect equilibrium shapes for which u = 0, but the
scheme of Sussman & Ohta will. More generally, these schemes are not very scale-selective filters
(because they are both based on low-order differential operators), i.e., they will also significantly
dampen lower-frequency modes that do not restrict stability.

Pushing this approach further, one can devise, at least formally, near-optimal filtering schemes.
If we consider the simpler case of a one-dimensional interface defined through its graph n(x, 7),
the Fourier transform of the corresponding curvature is given by

I/é(k, t) = _kzﬁ(k7 t))

where #(k,t) is the Fourier transform of the interface position and where we have assumed a
vanishing interface slope. An optimal filtered curvature can then be defined in Fourier space as

p1+ P2
T ok AR

k(k,t) = min (1 ) k(k,1).

Computing the inverse Fourier transform and using the resulting filtered curvature will then
ensure stability of the explicit scheme. The filtering is optimal because only the necessary (mode-
dependent) amount of damping is added. This scheme works well in practice, for example, using fast
Fourier transforms (FFT's) for periodic graphs in one or two dimensions; however, generalizing it
to more complex topologies seems difficult. For front-tracking interface representations, spectral
mesh processing could be a solution (see Lévy & Zhang 2010 for an interesting introduction).

6. TEST CASES

Test cases are important for the development and assessment of new numerical schemes. Cross-
referencing publicly accessible automated test suites (for examples, see Popinet 2003, Popinetetal.
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2013) with journal articles is also an excellent way of ensuring reproducibility and independent
peer review of the numerical results. In this section, I try to point out a minimal set of test cases
for surface tension models, as well as their shortcomings and common pitfalls.

6.1. Laplace’s Equilibrium and Spurious Currents

Laplace balance between surface tension and pressure gradient provides a trivial equilibrium solu-
tion thatis, nevertheless, difficult to reproduce numerically, leading to the production of numerical
artifacts, the so-called spurious or parasitic currents. This was first observed and discussed in de-
tail in the context of lattice Boltzmann methods for two-phase flows (Gustensen 1992), and many
variants of this test case have since appeared in the literature.

An important issue is that of the timescale required to reach equilibrium. There are two natural
timescales in this simple system: the period of oscillation scaling, i.e., Ty = /pD3 /o, where D
is the droplet diameter, and the viscous dissipation timescale T, = pD?/u. The ratio of these
two timescales is T/ T}, = i1/+/po D, the Ohnesorge number. To reach the asymptotic regime
corresponding to the equilibrium solution, one then needs to make sure that the simulations are
run on a timescale (much) larger than either of these two timescales. Detailed parameters for such
a setup are provided, for example, by Lafaurie et al. (1994) and Popinet & Zaleski (1999).

Note that many studies have been published that do not verify this condition of asymptotic
convergence. For example, Francois et al. (2006) used a version of this test where a few time steps,
or even a single time step, are performed before measuring the amplitude of spurious currents.
In the case of well-balanced schemes, the cause of spurious currents after a few time steps is only
the deviation from constant of the initial curvature computed by the scheme. This deviation is
better characterized by, for example, a convergence test on the curvature estimate for a spherical
interface (see, e.g., Cummins et al. 2005, Popinet 2009), without running the risk of confusing
several properties of the scheme (i.e., balance versus curvature estimation).

However, if the test respects the asymptotic conditions ¢t > T, and ¢ > T,, one expects a
consistent, well-balanced method to converge toward an interfacial shape that will ensure ex-
act equilibrium (i.e., u = 0 to within machine accuracy). This interfacial shape may not itself
be exact (i.e., an exact circle or sphere), and the evolution of the velocity around the interface
is expected to reflect the physical evolution (through damped capillary waves) from the initial
perturbed condition toward the numerical equilibrium solution. Of course, one expects this nu-
merical equilibrium interface shape to converge toward the exact equilibrium (circular) shape
as spatial resolution is increased. Popinet (2009) demonstrated this convergence in the case of
the VOF and height-function-CSF surface tension method. Note that such a convergence is
not trivial, however, because it requires that the scheme guarantee evolution toward a constant
curvature.

In an important extension of this test proposed by Popinet (2009), a constant background
velocity field ensures uniform translation of the droplet across the grid in a spatially periodic
domain. Laplace’s equilibrium solution is, of course, still valid in the frame of reference of the
droplet. This test is more relevant to practical applications, particularly when considering low-
velocity and high-surface-tension cases such as microfluidics or multiphase flow through porous
media. This test was used extensively in the interesting comparative study of Abadie et al. (2015),
who underlined the detrimental effect of interface (and curvature) perturbations induced by either
interfacial transport (for VOF) or redistancing and interface reconstruction (for level set and
coupled level set/VOF) (see also the demonstration of consistent balance for level-set methods
without redistancing in Abadie et al. 2015, section 5).
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6.2. Capillary Oscillations

Capillary oscillations around equilibrium solutions are the next logical step. Analytical solutions
can be obtained through classical linear stability analysis in the limit of vanishing amplitude
and viscosity for both planar and circular or spherical interfaces (Lamb 1932). Fyfe et al. (1988)
considered the oscillation of a two-dimensional elliptical droplet in an inviscid fluid, for which the
oscillation frequency is given by

3 (e}

@ = n)(pl + p2)a’’ 8
where the droplet shape is given in polar coordinates by » = # + € cos(n6). This is an extension
to two phases of a result by Rayleigh (1879), who considered the stability of the cross section of a
jet. Although many variants of this test case exist, one of the most challenging is for large density
ratios (1/1,000) without viscosity. Details can be found in, e.g., the work of Torres & Brackbill
(2000), Herrmann (2008), and Fuster et al. (2009). The total energy (surface plus kinetic) should
remain constant, and any decay is a sign of numerical dissipation, which should be minimized.
Conversely, increasing total energy is a clear signature of surface tension imbalance. This setup is
a stringent test of the accuracy of the surface tension representation because physical or numer-
ical viscosity cannot intervene to limit spurious currents. In addition to minimizing dissipation,
good numerical schemes can give second-order spatial convergence in the estimated oscillation
frequency compared to Equation 18 (see Fuster et al. 2009 for results with different schemes).

Analytical solutions can also be obtained when viscosity is taken into account. The simplest
analysis leads to exponential damping of oscillating modes; however, as studied in detail by
Prosperetti (1981), this gives significant deviations (several percent) compared to initial-value
solutions, taking into account the time dependence of vorticity diffusion into the medium.
Prosperetti (1980, 1981) derived closed-form solutions for the Laplace transform of shape
evolution for both planar and spherical interfaces. These solutions are the basis for a now-classical
test case, first proposed by Popinet & Zaleski (1999), which considers the oscillations of a linearly
perturbed, planar interface. Although less stringent than the inviscid case, due to a simpler
geometry that is less affected by imbalance and spurious currents, this test evaluates the quality of
the full coupling between interfacial motion, surface tension, viscosity, and inertia. Again, good
schemes can demonstrate second-order convergence toward the analytical solution with a small
prefactor (see Popinet 2009 for a comparison of different schemes).

6.3. More Complex Test Cases

Simple-looking test cases, for which analytical solutions exist, are often the most challenging, as
illustrated by the history of spurious currents. More complex test cases are also useful, however,
particularly for assessing practical applicability, including speed and robustness, of numerical
schemes. An important issue for these tests is the availability of reference solutions. Analytical
solutions are usually not available or have restrictions (e.g., on amplitudes or Reynolds numbers)
that can be difficult to enforce in numerical simulations; experimental reference data may be
available, but error bars may be large, and the experiments often include physical effects (e.g.,
surfactants, temperature gradients, or compressibility) that complicate their comparison with
simpler numerical models. A popular example of this class is the case of rising bubbles, often
used for validation of surface tension models. Due to a lack of accurate reference solutions, the
validation is often qualitative, with a visual comparison of the shapes obtained experimentally or
numerically. Although this was useful when methods were inaccurate enough to cause obvious
departure from the expected solutions (for example, the extreme case of bubbles bursting due
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Figure 2

to spurious currents), this is insufficient to assess the relative accuracies of modern numerical
methods. A useful approach, which requires substantial effort, is to provide accurate, converged,
numerical reference solutions for nontrivial problems. For example, Hysing etal. (2009) and Turek
et al. (2008) gave reference solutions, using different numerical methods, for rising bubbles that
can be reproduced accurately by other methods (see rising.c in Popinet et al. 2013). A similar
effort was made for Taylor bubble solutions by Marschall et al. (2014) and Abadie et al. (2015).

7. SELECTED APPLICATIONS

Numerical simulations are particularly useful in combination with laboratory experiments. Their
advantages and drawbacks are often complementary, so that simultaneous design of labora-
tory and numerical experiments can lead to deeper insight into complex physical phenomena.
Figure 2 illustrates an example of this approach. A millimeter-sized water droplet impacts on a
pool and creates a complex splash structure. Figure 24 illustrates a close-up view of the impact
zone, seen as a vertical cut through the center of the drop. This configuration was studied in detail
both numerically and experimentally by Thoraval et al. (2012). The experiment and the numer-
ical simulation are both very challenging due to the wide range of spatial scales and the short

duration of the phenomenon. Care was taken to ensure converged axisymmetric simulations. This

oroidal bubbles
T N °
L]

(@) Side view of an axisymmetric numerical simulation of the von Kdrman vortex street created by the impact of a millimetric water
droplet impacting on a pool. The axis of revolution is aligned with the left border of the image. The pool is colored in blue and the
droplet in red for visualization purposes, but there are only two fluids: water and air (/ight green). (b) High-speed experimental imaging
of the bubble rings (yellow arrow) created by the vortex street for different pool depths. Figure adapted with permission from Thoraval
etal. (2013, figures 10 and 11).

68

Popinet



required spatial resolutions of order 10* grid points per drop diameter, i.e., resolved structures
of order 1 pm. Besides an accurate surface tension model (well-balanced, height-function VOF-
CSF), several numerical ingredients were necessary: adaptive mesh refinement, efficient multigrid
pressure solver, and parallelism (Popinet 2009, Agbaglah et al. 2011). The numerical results were
very consistent with experimental observations for the whole range of impact regimes (see also
Agbaglah etal. 2015 for an impressive comparison with high-speed X-ray imaging), but predicted
aregime characterized by the unexpected von Kdrman vortex street of Figure 2. This is associated
with complex dynamics of the ejecta sheet, which periodically entraps toroidal air bubbles. This
regime was not observable using the side-view camera of the original experimental setup. This
numerical result led to the redesign of the experiment to use bottom-view cameras with the goal of
observing the bubble rings predicted by the numerics (Thoraval et al. 2013). A sample of the im-
ages obtained is illustrated in Figure 25 for different pool depths. Although the subsequent three-
dimensional breakup of the toroidal bubbles (some of them are still intact in the right-most frame of
Figure 2b) cannot be predicted by the axisymmetric simulations, the experimental results spec-
tacularly confirmed the numerical discovery.

The motion of gas bubbles in a liquid is a canonical example of the subtle balance among surface
tension and viscous and buoyancy forces. The transitions between various regimes (straight, zigzag,
or spiraling ascent) are particularly difficult to capture, either experimentally or numerically. They
have been investigated numerically in a recent series of articles by Cano-Lozano et al. (2015,
2016). In contrast with the previous example, full three-dimensional simulations are necessary.
The boundaries between regimes are controlled by the coupled interaction of the shape of the
deformable bubble and the associated vorticity generation and wake formation. An example of the
resulting trajectory, wake structure, and bubble shapes is given in Figure 3. Accurate modeling of
surface tension is vital to minimize spurious vorticity generation at the interface. As in the previous
study, Cano-Lozano etal. (2016) were careful to check the numerical convergence of their results.
This required a resolution of 128 grid points per bubble diameter. A very large tank of 8 x 8 x 128
diameters is necessary to be able to follow the bubble for a long time. This leads to formidable
resolution requirements: 23* ~ 17 billion grid points on a regular grid! Adaptive mesh refinement
brings this down to around 10 million grid points and makes the simulations possible but still
expensive (see http://basilisk.fr/src/examples/bubble.c for a full example). A large number of
time steps is necessary to capture the transition to established regime, in particular because of the
explicit time-step restriction discussed above. Note also that the parameters chosen correspond
to those for a millimetric air bubble rising in a liquid roughly 10 times more viscous than water.
Further refinement would be necessary to properly capture the boundary layers for an air—water
bubble.

These two examples illustrate the capabilities, as well as limitations, of state-of-the-art models
of surface tension. Obtaining numerically converged results clearly requires considerable com-
puting power. This is feasible but challenging for complex two-dimensional (or axisymmetric)
configurations. Provided care is taken, very valuable insight can be gained from such simulations
(for a small representative sample, see, e.g., Samanta et al. 2011, Fuster et al. 2013, Hoepffner &
Paré 2013, Deike et al. 2015).

In three dimensions, only relatively simple configurations can be studied with confidence that
results are fully independent from the numerics. That said, the situation was similar for two-
dimensional simulations 15 years ago, with the added limitation of less accurate surface tension
models. Under-resolved three-dimensional simulations can still give very useful qualitative results
for flows that are challenging to study experimentally, provided one controls for the effect of
resolution and checks consistency with the available experimental data and theoretical models.
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Figure 3

Numerical simulation of the () trajectory (units are bubble diameters), (b) vorticity distribution, and (c) shapes of a gas bubble rising in
a liquid in the spiraling regime. The density ratio is close to air and water. The Galileo and Bond numbers are 100.25 and 10,
respectively. Figure adapted with permission from Cano-Lozano et al. (2016, figures 10 and 11).

Representative examples of this approach include studies of atomization (Herrmann 2010, Chen
etal. 2013, Desjardins etal. 2013, Jain etal. 2015, Ling et al. 2017), industrial processes (Mencinger
et al. 2015), and waves (Deike et al. 2016). A balanced trio of experimental, theoretical, and
numerical approaches can be extremely effective, and I expect numerical models of surface tension
to play an important role in future advances in our understanding of complex multiphase flows.

FUTURE ISSUES

1. None of the methods presented in this review satisfy both balance and momentum conser-
vation, properties that are required for consistency and robustness. Integral formulations,
which have been relatively neglected, could be a promising research direction.

2. Although high-order height-function schemes have been demonstrated for curvature es-
timation, current volumetric formulations are formally first-order accurate. This follows
from detailed analysis of Peskin’s scheme by LeVeque & Li (1994). Although immersed
interface schemes have been extended to the second order (LeVeque & Li 1994, 1997;
Peskin 2002; Xu & Wang 2006), they have so far only been applied to Lagrangian in-
terface discretizations and fluid—structure interactions. Their generalization to generic
two-phase flows, with an implicit interface representation, remains an open question.
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3. Robust time-implicit schemes have already been formulated for Lagrangian immersed
interface methods (Mayo & Peskin 1992, Newren et al. 2007), and there is no reason
to believe that these results cannot be generalized to surface tension; however, recent
efforts in this direction have yielded somewhat confusing results (Denner & van Wachem
2015).

4. Extensions to more than two phases, including the consistent treatment of triple points
or lines, have only been considered recently (see, e.g., Li et al. 2015).

5. The schemes described in this review, and especially the height-function method, are
most easily implemented on regular Cartesian grids (or their adaptive versions). Their
generalization to unstructured grids, usually favored for industrial applications, has so
far concentrated on kinematics rather than dynamics. Surface tension schemes on these
grids, often based on diffuse algebraic VOF formulations, are currently quite limited
compared to the state of the art on regular grids.

6. Finally, efforts should be pursued to provide standardized, benchmark cases showing
numerical convergence (even if only first order) for relevant, nontrivial physical
configurations.

DISCLOSURE STATEMENT

The author is not aware of any biases that might be perceived as affecting the objectivity of this
review.

ACKNOWLEDGMENTS

I would like to thank all the colleagues and friends who made this review possible, especially
Patrick Ballard, Christophe Josserand, Yue Ling, Yves Pomeau, Pascal Ray, Marie-Jean Thoraval,
and Stéphane Zaleski.

LITERATURE CITED

Abadie T, Aubin J, Legendre D. 2015. On the combined effects of surface tension force calculation and
interface advection on spurious currents within volume of fluid and level set frameworks. 7. Comput. Phys.
297:611-36

Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C, etal. 2011. Parallel simulation of multiphase flows
using octree adaptivity and the volume-of-fluid method. C. R. Méc. 339:194-207

Agbaglah G, Thoraval MJ, Thoroddsen ST, Zhang LV, Fezzaa K, Deegan RD. 2015. Drop impact into a
deep pool: vortex shedding and jet formation. 7. Fluid Mech. 764:R1

Anderson DM, McFadden GB, Wheeler AA. 1998. Diffuse-interface methods in fluid mechanics. Annu. Rev.
Fluid Mech. 30:139-65

Aristotle. 1922 (350 BC). The Works of Aristotle Translated into English, Vol. IV, 313a: De Caelo, transl. JL Stock.
Oxford, UK: Clarendon

Audusse E, Bouchut F, Bristeau MO, Klein R, Perthame B. 2004. A fast and stable well-balanced scheme with
hydrostatic reconstruction for shallow water flows. SIAM 7. Sci. Comput. 25:2050-65

Aulisa E, Manservisi S, Scardovelli R. 2003. A mixed markers and volume-of-fluid method for the reconstruc-
tion and advection of interfaces in two-phase and free-boundary flows. 7. Comzput. Phys. 188:611-39

Binsch E. 2001. Finite element discretization of the Navier—Stokes equations with a free capillary surface.
Numer. Math. 88:203-35

www.annualyeviews.org o Numerical Models of Surface Tension

71



72

Birkhoff G, De Boor CR. 1965. Piecewise polynomial interpolation and approximation. Approx. Funct.
1965:164-90

Bna S, Manservisi S, Scardovelli R, Yecko P, Zaleski S. 2015. Numerical integration of implicit functions for
the initialization of the VOF function. Comput. Fluids 113:42-52

Bornia G, Cervone A, Manservisi S, Scardovelli R, Zaleski S. 2011. On the properties and limitations of the
height function method in two-dimensional Cartesian geometry. 7. Comput. Phys. 230:851-62

Brackbill J, Kothe DB, Zemach C. 1992. A continuum method for modeling surface tension. 7. Comput. Phys.
100:335-54

Buscaglia GC, Ausas RF. 2011. Variational formulations for surface tension, capillarity and wetting. Comzput.
Methods Appl. Mech. Eng. 200:3011-25

Cano-Lozano JC, Bolafios-Jiménez R, Gutiérrez-Montes C, Martinez-Bazdn C. 2015. The use of volume
of fluid technique to analyze multiphase flows: specific case of bubble rising in still liquids. Appl. Math.
Model. 39:3290-305

Cano-Lozano JC, Martinez-Bazin C, Magnaudet J, Tchoufag J. 2016. Paths and wakes of deformable nearly
spheroidal rising bubbles close to the transition to path instability. Phys. Rev. Fluids 1:053604

Chen X, Ma D, Yang V, Popinet S. 2013. High-fidelity simulations of impinging jet atomization. Az. Sprays
23:1079-101

Chopp DL. 1993. Computing minimal surfaces via level set curvature flow. 7. Comput. Phys. 106:77-91

Cummins SJ, Francois MM, Kothe DB. 2005. Estimating curvature from volume fractions. Comput. Struct.
83:425-34

Deike L, Melville WK, Popinet S. 2016. Air entrainment and bubble statistics in breaking waves. 7. Fluid
Mech. 801:91-129

Deike L, Popinet S, Melville WK. 2015. Capillary effects on wave breaking. 7. Fluid Mech. 769:541-69

Denner F, van Wachem BG. 2015. Numerical time-step restrictions as a result of capillary waves. 7. Comput.
Phys. 285:24-40

Desbrun M, Meyer M, Schréder P, Barr AH. 1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. Proc. Annu. Conf. Comput. Graph. Interact. Tech., 26th, Los Angeles, pp. 317-24. New York:
ACM Press

Desjardins O, McCaslin J, Owkes M, Brady P. 2013. Direct numerical and large-eddy simulation of primary
atomization in complex geometries. At. Sprays 23:1001-48

Desjardins O, Moureau V, Pitsch H. 2008. An accurate conservative level set/ghost fluid method for simulating
turbulent atomization. 7. Comsput. Phys. 227:8395-416

Dziuk G. 1990. An algorithm for evolutionary surfaces. Numer. Math. 58:603—11

Engquist B, Tornberg AK, Tsai R. 2005. Discretization of Dirac delta functions in level set methods.
7 Comput. Phys. 207:28-51

Enright D, Fedkiw R, Ferziger J, Mitchell I. 2002. A hybrid particle level set method for improved interface
capturing. 7. Comput. Phys. 183:83-116

Fedkiw RP, Aslam T, Merriman B, Osher S. 1999. A non-oscillatory Eulerian approach to interfaces in
multimaterial flows (the ghost fluid method). 7. Comput. Phys. 152:457-92

Francois MM, Cummins SJ, Dendy ED, Kothe DB, Sicilian JM, Williams MW. 2006. A balanced-force
algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework.
7 Comput. Phys. 213:141-73

Fuster D, Agbaglah G, Josserand C, Popinet S, Zaleski S. 2009. Numerical simulation of droplets, bubbles
and waves: state of the art. Fluid Dyn. Res. 41:065001

Fuster D, Matas JP, Marty S, Popinet S, Hoepffner J, et al. 2013. Instability regimes in the primary breakup
region of planar coflowing sheets. 7. Fluid Mech. 736:150-76

Fyfe DE, Oran ES, Fritts M. 1988. Surface tension and viscosity with Lagrangian hydrodynamics on a trian-
gular mesh. 7. Comput. Phys. 76:349-84

Galusinski C, Vigneaux P. 2008. On stability condition for bifluid flows with surface tension: application to
microfluidics. 7. Comput. Phys. 227:6140-64

Gauss CF. 1830. Principia Generalia Theoriae Figurae Fluidorum in Statu Aequilibrii. Géttingen, Ger.: Dieterichs

Ghidaglia JM. 2016. Capillary forces: a volume formulation. Eur. 7. Mech. Fluids 59:86-89

Popinet



Gueyffier D, LiJ, Nadim A, Scardovelli R, Zaleski S. 1999. Volume-of-fluid interface tracking with smoothed
surface stress methods for three-dimensional flows. 7. Comput. Phys. 152:423-56

Gustensen AK. 1992. Lattice-Boltzmann studies of multiphase flow through porous media. Ph.D. Thesis, Mass.
Inst. Technol, Cambridge, MA

Harlow FH, Welch JE. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface. Phys. Fluids 8:2182-89

Herrmann M. 2008. A balanced force refined level set grid method for two-phase flows on unstructured flow
solver grids. 7. Comput. Phys. 227:2674-706

Herrmann M. 2010. Detailed numerical simulations of the primary atomization of a turbulent liquid jet in
crossflow. 7. Eng. Gas Turbines Power 132:061506

Hieber SE, Koumoutsakos P. 2005. A Lagrangian particle level set method. 7. Comput. Phys. 210:342-67

Hoepftner J, Paré G. 2013. Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring.
F- Fluid Mech. 734:183-97

Hysing SR. 2006. A new implicit surface tension implementation for interfacial flows. Int. J. Numer. Methods
Fluids 51:659-72

Hysing SR, Turek S, Kuzmin D, Parolini N, Burman E, et al. 2009. Quantitative benchmark computations
of two-dimensional bubble dynamics. Int. 7. Numer. Methods Fluids 60:1259-88

Jain M, Prakash RS, Tomar G, Ravikrishna R. 2015. Secondary breakup of a drop at moderate Weber numbers.
Proc. R. Soc. Math. Phys. Eng. Sci. 471:20140930

Kang M, Fedkiw RP, Liu XD. 2000. A boundary condition capturing method for multiphase incompressible
flow. 7. Sci. Comput. 15:323-60

Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G. 1994. Modelling merging and fragmentation in
multiphase flows with SURFER. 7. Comput. Phys. 113:134-47

Lamb H. 1932. Hydrodynamics. Cambridge, UK: Cambridge Univ. Press

LeVeque RJ. 1998. Balancing source terms and flux gradients in high-resolution Godunov methods: the
quasi-steady wave-propagation algorithm. 7. Comput. Phys. 146:346-65

LeVeque R, Li Z. 1994. The immersed interface method for elliptic equations with discontinuous coefficients
and singular sources. SIAM 7. Numer. Anal. 31:1019-44

LeVeque RJ, Li Z. 1997. Immersed interface methods for Stokes flow with elastic boundaries or surface
tension. SIAM 7. Sci. Comput. 18:709-35

Lévy B, Zhang HR. 2010. Spectral mesh processing. In ACM SIGGRAPH 2010 Courses, ed. JL Mohler, art. 8.
Los Angeles: ACM Press. https://doi.org/10.1145/1837101.1837109

Li G, Lian Y, Guo Y, Jemison M, Sussman M, et al. 2015. Incompressible multiphase flow and encapsulation
simulations using the moment-of-fluid method. Int. 7. Numer. Methods Fluids 79:456-90

Ling Y, Fullana JM, Popinet S, Josserand C. 2016. Droplet migration in a Hele-Shaw cell: effect of the
lubrication film on the droplet dynamics. Phys. Fluids 28:062001

Ling Y, Fuster D, Zaleski S, Tryggvason G. 2017. Spray formation in a quasiplanar gas-liquid mixing layer at
moderate density ratios: a numerical closeup. Phys. Rev. Fluids 2:014005

Lépez ], Zanzi C, Gémez P, Zamora R, Faura F, Herndndez J. 2009. An improved height function technique
for computing interface curvature from volume fractions. Comzput. Methods Appl. Mech. Eng. 198:2555-64

Mahady K, Afkhami S, Kondic L. 2016. A numerical approach for the direct computation of flows including
fluid-solid interaction: modeling contact angle, film rupture, and dewetting. Phys. Fluids 28:062002

Marschall H, Boden S, Lehrenfeld C, Hampel U, Reusken A, et al. 2014. Validation of interface capturing
and tracking techniques with different surface tension treatments against a Taylor bubble benchmark
problem. Comput. Fluids 102:336-52

Maxwell JC. 1889. Capillary action. In Scientific Papers of James Clerk Maxwell, Vol. 2, ed. WD Niven,
pp- 541-91. New York: Dover

Mayo AA, Peskin CS. 1992. An implicit numerical method for fluid dynamics problems with immersed elastic
boundaries. Contemp. Math. 141:261-77

Mencinger J, Bizjan B, Sirok B. 2015. Numerical simulation of ligament-growth on a spinning wheel. Inz. 7.
Multiph. Flow 77:90-103

Mesinger F. 1982. On the convergence and error problems of the calculation of the pressure gradient force
in sigma coordinate models. Geophys. Astrophys. Fluid Dyn. 19:105-17

www.annualyeviews.org o Numerical Models of Surface Tension

73


https://doi.org/10.1145/1837101.1837109

74

Meyer M, Desbrun M, Schréder P, Barr AH. 2003. Discrete differential-geometry operators for triangulated
2-manifolds. In Visualization and Mathematics, Vol. 111, ed. H-C Hege, K Polthier, pp. 35-57. Berlin:
Springer

Newren EP, Fogelson AL, Guy RD, Kirby RM. 2007. Unconditionally stable discretizations of the immersed
boundary equations. 7. Comput. Phys. 222:702-19

Owkes M, Desjardins O. 2015. A mesh-decoupled height function method for computing interface curvature.
7 Comput. Phys. 281:285-300

Peskin CS. 1972. Flow patterns around heart valves: a numerical method. 7. Comput. Phys. 10:252-71

Peskin CS. 2002. The immersed boundary method. Acta Numer. 11:479-517

Pomeau Y. 2013. Surface tension: from fundamental principles to applications in liquids and in solids. Proc.
Warsaw School Stat. Phys., Sth, Kazimierz Dolny, Pol., pp. 1-33. Warsaw: Warsaw Univ. Press

Poo J, Ashgriz N. 1989. A computational method for determining curvatures. 7. Comput. Phys. 84:483-91

Popinet S. 2003. Test suite. Gerris Softw. http://gerris.dalembert.upme.fr/gerris/tests/tests/index.html

Popinet S. 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. 7. Comput. Phys.
228:5838-66

Popinet S. 2014. Basilisk. Basilisk Softw. http://basilisk.fr/src/curvature.h

Popinet S, Fullana J-M, Kirstetter G, Lagrée P-Y, Lopez-Herrera J, De Vita F. 2013. Test cases. Basilisk Softw.
http://basilisk.fr/src/test/ README

Popinet S, Zaleski S. 1999. A front-tracking algorithm for accurate representation of surface tension. Int. 7.
Numer. Methods Fluids 30:775-93

Prosperetti A. 1980. Free oscillations of drops and bubbles: the initial-value problem. 7. Fluid Mech. 100:333-47

Prosperetti A. 1981. Motion of two superposed viscous fluids. Phys. Fluids 24:1217-23

Raessi M, Bussmann M, Mostaghimi J. 2009. A semi-implicit finite volume implementation of the CSF method
for treating surface tension in interfacial flows. Int. J. Numer. Methods Fluids 59:1093-110

Rayleigh JW. 1879. On the capillary phenomena of jets. Proc. R. Soc. 29:71-97

Renardy Y, Renardy M. 2002. PROST" a parabolic reconstruction of surface tension for the volume-of-fluid
method. 7. Comput. Phys. 183:400-21

Samanta A, Ruyer-Quil C, Goyeau B. 2011. A falling film down a slippery inclined plane. 7. Fluid Mech.
684:353-83

Scardovelli R, Zaleski S. 1999. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev.
Fluid Mech. 31:567-603

Sethian JA, Smereka P. 2003. Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35:341-72

Shin S, Abdel-Khalik S, Daru V, Juric D. 2005. Accurate representation of surface tension using the level
contour reconstruction method. 7. Comput. Phys. 203:493-516

Sussman M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and
collapse of vapor bubbles. 7. Comput. Phys. 187:110-36

Sussman M, Ohta M. 2006. High-order techniques for calculating surface tension forces. In Free Boundary
Problems: Theory and Applications, ed. P Colli, C Verdi, A Visintin, pp. 425-34. Berlin: Springer

Sussman M, Ohta M. 2009. A stable and efficient method for treating surface tension in incompressible
two-phase flow. SIAM 7. Sci. Comput. 31:2447-71

Sussman M, Puckett EG. 2000. A coupled level set and volume-of-fluid method for computing 3D and
axisymmetric incompressible two-phase flows. 7. Comput. Phys. 162:301-37

Sussman M, Smereka P, Osher S. 1994. A level set approach for computing solutions to incompressible
two-phase flow. 7. Comput. Phys. 114:146-59

Thoraval MJ, Takehara K, Etoh TG, Popinet S, Ray P, et al. 2012. Von Kdrmén vortex street within an
impacting drop. Phys. Rev. Lett. 108:264506

Thoraval MJ, Takehara K, Etoh TG, Thoroddsen ST. 2013. Drop impact entrapment of bubble rings.
F- Fluid Mech. 724:234-58

Torres D, Brackbill J. 2000. The point-set method: front-tracking without connectivity. 7. Comput. Phys.
165:620-44

Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, et al. 2001. A front-tracking method for the
computations of multiphase flow. 7. Comput. Phys. 169:708-59

Popinet


http://gerris.dalembert.upmc.fr/gerris/tests/tests/index.html
http://basilisk.fr/src/curvature.h
http://basilisk.fr/src/test/README

Tryggvason G, Scardovelli R, Zaleski S. 2011. Direct Numerical Simulations of Gas—Liquid Multiphase Flows.

Cambridge, UK: Cambridge Univ. Press

Turek S, Becker C, Kilian S, Méller M, Buijssen S, et al. 2008. Bubble benchmark. Featflow Softw. http://www.
featflow.de/en/benchmarks/cfdbenchmarking/bubble.html

Unverdi SO, Tryggvason G. 1992. A front-tracking method for viscous, incompressible, multi-fluid flows.
7 Comput. Phys. 100:25-37

Weatherburn CE. 1927. Differential Geometry of Three Dimensions, Vol. 1. Cambridge, UK: Cambridge Univ.
Press

Williams M, Kothe D, Puckett E. 1998. Accuracy and convergence of continuum surface tension models. In
Fluid Dynamics at Interfaces, ed. W Shyy, R Narayanan, pp. 294-305. Cambridge, UK: Cambridge Univ.
Press

Wroniszewski PA, Verschaeve JC, Pedersen GK. 2014. Benchmarking of Navier-Stokes codes for free surface
simulations by means of a solitary wave. Coast. Eng. 91:1-17

Xiao F, Ii S, Chen C. 2011. Revisit to the THINC scheme: a simple algebraic VOF algorithm. 7. Comput.
Phys. 230:7086-92

Xu S, Wang ZJ. 2006. An immersed interface method for simulating the interaction of a fluid with moving
boundaries. 7. Comput. Phys. 216:454-93

Young T. 1805. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95:65-87

www.annualyeviews.org o Numerical Models of Surface Tension

75


http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html

