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Abstract

Granular materials composed of particles with differing grain sizes, densities,
shapes, or surface properties may experience unexpected segregation during
flow. This review focuses on kinetic sieving and squeeze expulsion, whose
combined effect produces the dominant gravity-driven segregation mecha-
nism in dense sheared flows. Shallow granular avalanches that form at the
surface of more complex industrial flows such as heaps, silos, and rotating
drums provide ideal conditions for particles to separate, with large particles
rising to the surface and small particles percolating down to the base. When
this is combined with erosion and deposition, amazing patterns can form
in the underlying substrate. Gravity-driven segregation and velocity shear
induce differential lateral transport, which may be thought of as a secondary
segregation mechanism. This allows larger particles to accumulate at flow
fronts, and if they are more frictional than the fine grains, they can feedback
on the bulk flow, causing flow fingering, levee formation, and longer runout
of geophysical mass flows.
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Granular avalanche:
a shallow
gravity-driven
free-surface flow of
grains

Kinetic sieving:

a gravity- and shear-
driven percolation
process in which small
particles are more
likely than large grains
to fall down into gaps
that open up beneath
them

Squeeze expulsion:
the process by which
particles are squeezed
upwards out of a layer
during shear

Gravity-driven
segregation: the
combination of kinetic
sieving and squeeze
expulsion

Inverse grading:
particle-size
distribution coarsens
upwards (e.g., large
over small)
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1. INTRODUCTION

Shallow granular free-surface flows (or granular avalanches) are one of the most common particle
transport mechanisms in industry and in our natural environment, as well as in our kitchens, e.g.,
pouring one’s muesli into a bowl at breakfast! It is precisely these dense sheared granular flows
that are highly efficient at segregating particles by size through the combined mechanisms of
gravity-driven kinetic sieving (Middleton 1970) and squeeze expulsion (Savage & Lun 1988). The
combination shall be termed gravity-driven segregation. There are at least ten other mechanisms
for the segregation of dissimilar grains in granular flows (McCarthy 2009), including spontaneous
percolation (Scott & Bridgwater 1975), convection (Ehrichs et al. 1995), fluidization (Schréter
etal. 2006), inertia, collisional condensation (Jenkins & Yoon 2001), density, differential air drag,
trajectory segregation (Schulze 2008), clustering (Mullin 2000), and ordered settling. However,
gravity-driven segregation is the most important one, and this review focuses exclusively on it and
its immediate consequences.

As particles are sheared downslope, the avalanche acts as a random fluctuating sieve in which
small particles are statistically more likely than the large grains to percolate down under the action
of gravity because they are more likely to fit into gaps that open up beneath them (Middleton
1970, Savage & Lun 1988). In dense frictional flows, this kinetic sieving mechanism is opposed
by squeeze expulsion, which gives an equal probability for all particles to be levered upwards,
resulting in a net flux of small particles to the base and large grains to the surface of the flow
(Savage & Lun 1988). Once the grains have segregated vertically into inversely graded layers
(with large particles above fine ones), velocity shear through the depth leads to the preferential
transport of large particles toward the front, where they can be overrun, resegregated, recirculated,
and accumulated. Counterintuitively then, gravity-driven segregation leads to secondary lateral
segregation, which may combine with frictional or shape differences between the particles to
produce a strong feedback on the bulk flow (Pouliquen et al. 1997, Iverson & Vallance 2001).

Avalanches frequently develop at the free surface of heaps (Williams 1968), silos (Bates 1997,
Schulze 2008), and rotating tumblers (Hill et al. 2004) and strongly interact with the underlying
deposit through erosion and deposition. The gravity-driven segregation in the surface avalanche
can therefore be preserved in the underlying deposit, often creating amazingly structured and
beautiful patterns. In industry, these same patterns are problematic, often leading to severe han-
dling difficulties that can degrade the quality of the final product (Johanson 1978, Bates 1997).
Given that the bulk chemical, pharmaceutical, mining, agricultural, and food industries process
a trillion kilograms of granular material per year in the United States alone (Shinbrot & Muzzio
1998), this problem is not to be underestimated. A fundamental understanding of how grains flow
and segregate is therefore of wide-ranging industrial and environmental significance.

2. GRAVITY-DRIVEN SEGREGATION EXPERIMENTS

One of the principal reasons why particle segregation has remained somewhat mysterious is that
it has been difficult to measure the evolving particle-size distribution to provide quantitative data
with which to calibrate and test the models.

2.1. Gravity-Driven Chute Flow Experiments

Savage & Lun (1988) used a chute with a rough bed to study the segregation of large (1.4
1.68 mm) white beads and small (0.85-1.0 mm) black beads. Their apparatus is shown in Figure 14
and Supplemental Video 1. It featured a movable hopper and a series of splitter plates at the
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(@) A sketch of Savage & Lun’s (1988) original chute flow experiment. Adapted with permission from Savage & Lun (1988).
Photographs of (b) large (white) and small (black) particles exiting the movable hopper and flowing down the chute and (¢) splitter plates
separating the grains into bins at the end of the chute. Readers are also referred to Supplemental Video 1, courtesy of Stuart Savage.

outflow that could bin up to five samples through the depth of the flow. By repeating the experiment
several times with the hopper placed at different positions, they built up a series of samples of the
steady-state particle-size distribution in the flowing avalanche. Savage & Lun (1988) focused
on flows with relatively few small particles (10-15%) so that they could make comparisons to
concentration shocks that formed in the dilute limit of their theory (see Gray & Thornton 2005
for a complete derivation). The experiments showed that for an inflow gate height of 15 mm and
a slope angle of 26°, the initially well-mixed inflow separated into sharply segregated inversely
graded layers, with all the large particles on top of the fine ones by 55 cm downslope (Figure 15,c).

Vallance & Savage (2000) used Savage & Lun’s (1988) apparatus to show that the strongest
segregation occurs at angles where the material is just able to flow and that at steeper angles the
particle-size distribution becomes progressively more diffuse. They also performed experiments
with particles of the same size but differing density and found that the denser particles segregated
to the bottom. Particle-density segregation was much weaker than particle-size segregation except
at high-inclination angles, and as a result, sharp concentration shocks did not form. The rate of
particle-size segregation also decreased markedly in experiments with a viscous interstitial fluid,
and there was little evidence of any segregation in neutrally buoyant flows. This implies that gravity
is one of the key driving mechanisms for segregation in dense sheared flows, with shear-induced
segregation playing a secondary role in the absence of gravity.

Dolgunin & Ukolov (1995) and Dolgunin et al. (2006) also performed chute flow experiments.
However, the best data set on steady-state segregation was obtained by Wiederseiner etal. (2011).
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Figure 2

Experimental measurements of the steady-state small particle concentration distribution ¢° in a chute flow with a normally graded
inflow, showing () a grayscale image taken through the sidewall, (9) the inferred concentration distribution ¢*(x, 2), and (¢) a numerical
simulation using a flux-based model. The x-axis points down the chute and the z-axis is along the upward-pointing normal. The
downstream velocity profile (4) is exponential with depth, and the fully developed concentration distribution (e) has an S-shaped
profile. Adapted with permission from Wiederseiner et al. (2011).

Normal grading:
particle-size
distribution coarsens
downwards (e.g., small
over large)

Diffusive remixing:
a diffusive effect that
occurs due to the
random collisions
between the particles
as they are sheared

They used a high-speed camera to take 2,000 images through the transparent sidewall, averaged
them in time at 10 downstream locations, and then stitched the data together to form a grayscale
image of the whole chute (Figure 24). It was then possible to use a calibration curve to infer the
local concentration of small particles (Figure 25). In an attempt to avoid three-dimensional 3D)
segregation effects, they used a channel that was only 2 cm wide, which meant that the downstream
velocity (Figure 2d) was affected by sidewall friction and had an exponential profile (GDR MiDi
2004). The inflow was sharply normally graded (small on top of large). As the small particles
were swept downstream, they percolated down to the base of the flow, whereas the large grains
rose to the surface, reaching a steady, fully developed state approximately 70 cm downstream
(Figure 2a,b). The inflowing layer of small particles was much thinner than the outflowing layer
due to the larger velocities, and hence larger fluxes, in the near-surface layers. Conversely, the
thick layer of large particles that enters the chute becomes much thinner at the outflow. The fully
developed concentration distribution (Figure 2e) is not a shock but has a smooth S-shaped in-
versely graded profile. This indicates that diffusive remixing due to the random collisions between
the grains as they are sheared competes against gravity-driven segregation. It is possible to capture
all of this behavior with relatively simple segregation models (Section 3.4).

2.2. Experiments in Shear Boxes and Annular Shear Cells

Some of the earliest quantitative experiments on particle-size segregation were performed by Scott
& Bridgwater (1975), who used a rectangular hinged box packed with large 18.6-mm spheres that
could be sheared backwards and forwards into the shape of a parallelogram. Holes were cut in the

Gray



a ° P t,

38 T T T T H,
’g ]

£
- —

=

H(t) .%
° |
3 Hmin_
Bottom plate Shear 0 500 1,000 1,500

f=49 mHz

Time (s)

Figure 3

(@) A sketch of the annular shear cell of Golick & Daniels (2009). Photographs taken through the sidewall window show how (&) the
initially sharply normally graded particles (c) mix and then () segregate into inversely graded layers. The height of the top plate (e) acts
as a proxy for the progress of the segregation with time. Readers are also referred to Supplemental Video 2. Adapted with permission
from Golick & Daniels (2009). Abbreviations: H, final top plate height; H in, minimum top plate height.
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base plate to allow smaller particles to be collected after percolating down from an initial position
near the top of the box. Scott & Bridgwater (1975) found that by far the most important parameter
controlling segregation was the grain-size ratio, with the percolation rate decreasing markedly for
a grain-size ratio of 1.28 compared to 3.1.

Golick & Daniels (2009) and May et al. (2010) used an annular shear cell with a rotating
bottom plate and a top plate that was free to move vertically to generate a shear flow with an
exponential velocity profile (Figure 34). Experiments were performed, starting from a normally
graded initial state, and the evolution could be viewed through a sidewall window (Figure 356-d).
The particles rapidly mixed up and then resegregated from one another on a much slower
timescale. This correlated with the initial drop in the top plate height and its exponential re-
covery with time (Figure 3e), an effect that is due to the bidisperse mixture packing slightly
more densely than either of the monodisperse phases, even during shear. Golick & Daniels (2009)
found that the timescale for segregation was a nonmonotonic function of the grain-size ratio,
with a peak segregation rate occurring at a grain-size ratio of two. Additionally, they found that
increasing the normal pressure significantly suppressed the rate of mixing and segregation, which
is indicative of the fact that dilatation of the sheared layer is important for segregation to oc-
cur. Surface avalanches, which can shear and dilate freely, therefore provide ideal conditions for
segregation.

In a modern reworking of Scott & Bridgwater’s (1975) experiment, van der Vaart et al. (2015)
constructed a shear box with a closed base and used an index-matched fluid and a laser light
sheet (Figure 4a) to scan across the cell after each cycle. By using information from adjacent
slices, they were able to determine the size and position of every particle (Figure 4b-d) and hence
reconstruct the temporal evolution of the small particle concentration through the depth of the cell
(Figure 4e). These data look very similar to those obtained by Wiederseiner et al. (2011) for
chute flows (Figure 2b), except that in this laterally uniform time-dependent problem, there are
no mass flux differences with height that cause the layer thicknesses to change. The experiments
were performed with a 50/50 mix of grains by volume, so all things being equal, one might expect
that the first small particle would arrive at the base at the same time that the first large particle
reaches the surface. The experimental data in Figure 4e,h show that this is not the case. Instead,
there is an asymmetry that implies that a single small particle percolates rapidly down through a
matrix of large grains in a series of steps, whereas a single large particle is squeezed upwards in
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(@) Schematic diagram of the shear box showing the laser-illuminated plane used to (b—d) reconstruct the particle positions and

() determine the one-dimensional evolution of the small-particle concentration in space and time. Numerical simulations of the
small-particle concentration ¢°(z, t) assuming (f) a quadratic flux and (g) a cubic flux. (b)) Graph of the positions of a single small

(red )/large (green) particle as it percolates/rises in a matrix of large/small particles, where d] is the large particle diameter. Adapted with
permission from van der Vaart et al. (2015). () Photograph of the shear box, showing a large and a medium particle in a transparent
bath of small particles. Readers are referred to van der Vaart et al. (2015) for further details and to Supplemental Videos 3 and 4.

a slower and more continuous manner. This reflects the fact that a single large grain has many
contacts with the surrounding small grains, and a collective motion is required for it to move.

CDSUpplemental Material  Supplemental Video 3 is particularly interesting to watch, as it shows a large and a medium
opaque particle rising slowly up through a matrix of transparent smaller particles (Figure 47) and
undergoing seemingly random rotations.

3. PARTICLE-SIZE SEGREGATION MODELS

3.1. Convective-Diffusive Structure of the Segregation Equations

The actively segregating material is often confined to a thin surface avalanche, as shown in
the rotating drum experiment in Figure 5. An aligned coordinate system Oxyz is defined with
the x-axis pointing downslope at an angle ¢ to the horizontal, the y-axis pointing across it, and the
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Figure 5

The formation of (#) a radial particle-size distribution in a rotating drum filled with a mixture of large green (500-750 pm), medium
white (400-500 um), and small red (75-150 pum) particles. Most of the grains are in solid-body rotation, but there is a shallow rapidly
moving surface avalanche (b)) where all the particle-size segregation takes place. It is useful to define a coordinate system Oxyz with the
x-axis pointing down the slope, the y-axis pointing across the slope and into the page and the z-axis being the upward-pointing normal.
Adapted with permission from Gray & Ancey (2011).

z-axis being the upward-pointing normal. As a reasonable first approximation, the bulk velocity
u = (u, v, w) is assumed to be incompressible,

V-u=0, 1.

and the solids volume fraction is uniformly distributed through the avalanche depth (GDR MiDi
2004). Assuming that the mixture can be divided into a discrete distribution of grain-size classes
thatare relatively narrow and well-separated from one another, one can define the volume fraction
¢" € [0, 1] of particles in size class v per unit granular volume. By definition, these volume fractions
sum to unity over all size classes:

o' =1 2.

In the original formulation, Gray & Ancey (2011) used multicomponent mixture theory and
Gray & Thornton’s (2005) pressure-sharing argument to derive expressions for the percolation
velocities of each species from the individual constituent momentum balances. These were then
substituted into the constituent mass balances to derive a general multicomponent theory for
segregation. For the purposes of illustration, it is easier to assume that each phase v satisfies a
convection—diffusion equation,
ap
ot

where F" is the segregation flux vector for species v, and the diffusion coefficient D is the same

+V-(¢"u)+ V- -F =V.(DVy"), 3.

for all species. By summing the convection—diffusion Equation 3 over all constituents and using
the summation constraint of Equation 2, one sees that the bulk velocity field u is incompressible
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provided that
Y F'=o0. 4,

Additionally, because percolation and squeeze expulsion (Savage & Lun 1988) are fundamentally
gravity driven, the segregation flux vector is aligned with gravity, i.e.,
S 5.
gl
where g = g(sin¢, 0, — cos ¢) is the gravity acceleration vector and g is the constant of gravitational
acceleration. The minus sign is used to ensure that positive segregation rates correspond to particles
going upwards.

Assuming the avalanche has a characteristic depth H, which is much smaller than its lateral
extent L, incompressibility implies that if typical downslope velocities are of order U, then slope-
normal velocities will be of magnitude ¢U, where the aspect ratio ¢ = H/L is small. Typical
segregation velocities are assumed to be much smaller than the downstream velocity and are also
scaled as eU. This suggests the nondimensionalization
eU 2

(xayaz) = L(J?J,SZ), (u,v,w) = U@L, D, ew), = (L/U)Za F' = cos¢

6.

which, when substituted into Equation 3, implies that the component of segregation in the x-
direction is of order ¢ and the diffusion in the &, y-plane is of order &2. It follows that to leading
order, the nondimensional segregation equation for constituent v is

96" aF" 8 [ 3¢
V. (¢ -2 (p2), .
or TV QW 8z< 8z> /

where D; is the nondimensional coefficient of diffusive remixing and the tildes have been dropped
for simplicity. The temporal evolution of the local small-particle concentration is a result of
advection by the bulk flow, as well as segregation and diffusive remixing through the avalanche
depth z. It should be noted that the reduced form of the segregation Equation 7 is only valid in
the slope-aligned coordinate system.

3.2. Bidisperse Flux Functions and Segregation Velocities

For a bidisperse mixture, the summation constraint of Equation 2 implies that the concentration
of large particles ¢' is equal to 1 — ¢°, where ¢° is the concentration of small grains. Additionally,
Equation 4 implies ¥ = —F', where the constituent letters/ and s denote large and small particles,
respectively. One of the most important properties of segregation models is that the small-particle
flux F* must shut off when either of the species is in a pure phase, i.e.,

FF=0 when ¢*=0,1. 8.

Bridgwater et al. (1985) were the first to spot this simple property and suggested purely for
illustrative purposes a cubic concentration dependence,

F* = —8:0°(1 — ¢°) = Fidgewaters 9.

where S is the nondimensional segregation rate of large and small particles. Dolgunin & Ukolov
(1995) suggested a quadratic function instead,

F* = —S5¢°(1 — ¢°) = Fpolgunin Ukolovs 10.

which has the merit that it is the simplest function that satisfies the constraints of Equation 8.
Motivated by the shear box experiments of van der Vaart et al. (2015), Gajjar & Gray (2014)

Gray
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(@) Segregation flux functions and () the large- and small-particle segregation velocities for the models of Bridgwater et al. (1985)
(blue), Dolgunin & Ukolov (1995) (red), and Gajjar & Gray (2014) (green), with y = 0.2, 0.4, 0.6, and 0.8, respectively. For y € [1/2,1],
these flux functions develop an inflection point at ¢° . = (1 4 y)/(3y) (4, white circles), and a group of large particles rises fastest at

Ooic = 1/Q2y) (b, white circles). (c) The slow rise of a single large particle compared to () the percolation of a single small grain and (e)

the faster rise of a group of large particles. Adapted with permission from Gajjar & Gray (2014).

suggested the cubic segregation flux function,
F = _SISA)/¢(1 - ¢)(1 - V¢) = FGajjarGray, 11.

where the parameter y € [0, 1] allows a smooth transition from the quadratic flux function of
Dolgunin & Ukolov (1995) for y = 0 to the cubic function of Bridgwater et al. (1985) for y = 1.
To make the amplitude of the flux curves comparable, one chooses the normalization factor 4,
so that the maximum magnitude of the flux is the same as for the quadratic flux function, i.e.,
max(|F°[) = /4.

The symmetric flux function of Dolgunin & Ukolov (1995) is concave everywhere, as are the
asymmetric flux functions of Gajjar & Gray (2014) for y € [0,1/2) (Figure 6a). However, for
v € [1/2,1], FgajjarGray develops an inflection point, which produces a zone of convexity for high
small-particle concentrations. This skewing and change in convexity have a significant influence
on the normal velocities of the large and small particles (Gray & Thornton 2005, Gajjar & Gray
2014), which in the absence of diffusive remixing are

R G )
w=w

~ (9%
— and w'=w+ ,
1— ¢s d)s
respectively. For the quadratic flux function of Dolgunin & Ukolov (1995), the squeeze expulsion
and percolation velocities therefore have a linear dependence on concentration,

12.

wl =w+ Slsd)S and w'=w — Sls(l - d)s)a 13.

as shown in Figure 6b. The maximum rise rate of large particles occurs in the limit of all small
particles, whereas the maximum percolation rate of fine particles occurs in the limit of all large
particles (Figure 6¢,d). This is also true for the cubic flux function in Equation 11, provided that
y € (0,1/2). However, as y increases, the maximum rise rate of large particles decreases, whereas
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the maximum percolation rate of small particles progressively increases. For y € [1/2,1], the
large-particle rise rate decreases so much thata group of large particles achieves maximum velocity
at concentration ¢3; = 1/(2y) € (1/2, 1). Physically, this probably corresponds to a disruption to
the local packing structure, so that it is easier for a group of large particles to move upwards, e.g.,
by reducing the number of contacts with the fine particles surrounding them (Figure 6e).

3.3. The Bidisperse Particle-Size Segregation Equation

Substituting the flux function in Equation 11 into Equation 7 implies that the leading order
bidisperse segregation equation for the concentration of small particles ¢* € [0,1] is

a¢*
ot

HY- 0 - o [S,e - -] = - (D)), 14
where y € [0, 1]. The nondimensional segregation rate S, and the coefficient of diffusive remixing
D are really shorthand for functions that contain additional dependencies on other nondimen-
sional groups such as the grain-size ratio, the solids volume fraction, and the inertial number
I =24||D||/(p/p:)"* (GDR Midi 2004), where d is the particle size, p is the pressure, p, is the
intrinsic density of the grains, and [|D|| = [tr(D?)/2]"/? is a second invariant of the strain-rate
tensor D.

A number of authors have suggested that the segregation rate Sj is an increasing function of
the strain rate (Bridgwater et al. 1985, May et al. 2010, Schlick et al. 2015). For a steady uniform
Bagnold flow on an inclined plane (GDR Midi 2004), making Sj; just proportional to ||D|| would
imply that the strongest segregation occurs at the base of the flow, and the segregation rate would
decay to zero at the free surface, where ||D|| tends to zero. However, experiments show that in
Bagnold flows, particles are able to separate rapidly into almost pure layers, so a dependence of the
segregation rate on inertial number seems more plausible. Even this dependence is not clear-cut,
as the inertial number is a function of the monodisperse grain size d. A generalized inertial number
can be defined in a bidisperse mixture by replacing the grain size 4 by the volume fraction-weighted
average grain size, d = ¢'dy + ¢°d,, where di and d; are the large and small particle diameters,
respectively (Rognon et al. 2007). One consequence of this is that, unlike monodisperse flows,
the inertial number is no longer constant for a steady uniform flow on an inclined plane but
evolves locally as the mixture segregates. Probably one of the most important consequences of
the shear is that the matrix of avalanching grains dilates enough to allow particles to percolate
(Golick & Daniels 2009). This is the reason why grains segregate in the surface avalanche shown
in the rotating drum in Figure 56 but do not continue to segregate beneath it. However, once
sufficient dilation has taken place for percolation to occur, one may anticipate that there is only
weak dependence on shear rate or inertial number thereafter.

Mixture theory (Gray & Thornton 2005) provides a useful framework in which to derive
the segregation Equation 14 and also shows that the maximum dimensional segregation velocity
q = (B/c)g cos ¢ has an explicit dependence on gravity, the slope inclination ¢, and the coefficient
¢ from the linear velocity—dependent drag law. However, the nondimensional function B, which
determines how far the stresses are perturbed away from the lithostatic pressure distribution, is
unknown. The functions S and D, therefore have to be determined either empirically (e.g., see
Savage & Lun 1988, Wiederseiner et al. 2011, van der Vaart et al. 2015) or by discrete element
model (DEM) simulations.

Coarse graining (Goldhirsch 2010, Weinhartetal. 2013) can be used to extract continuum fields
from DEM simulations and hence determine useful functional laws (Rognon et al. 2007, Thornton
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et al. 2012, Staron & Phillips 2014, Tunuguntla et al. 2017). This is trickier than one might
expect because the segregation and the dynamics are coupled, i.e., changing the grain-size ratio
or concentration changes the velocity and the frictional interaction with the base. Existing studies
have therefore focused on periodic box simulations, in which the steady state is independent of the
downslope velocity profile (see Section 3.4). The agreement between DEM and diffuse solutions of
Equation 14 is remarkably good (Thornton etal. 2012), with the strength of the S-shaped transition
determined by the Peclet number for segregation, Pe = S,/ D,. Thornton etal. (2012) showed that
Pe increases with increasing grain-size ratio up to a maximum at 1.7 and then decreases slightly.
The most recent simulations have focused on the physical processes involved (Jing et al. 2017)
and show that small particles percolate through voids without enduring contacts, whereas large
particles are rolled upwards, under shear, by the frictional contacts with the surrounding particles.
In particular, segregation of the large grains can be suppressed if the friction is not strong enough or
if there is no rotation. DEM simulations have also been used to motivate theories that take account
of kinetic stress gradients (Khakhar et al. 1999; Fan & Hill 2011; Hill & Tan 2014; Larcher &
Jenkins 2013, 2015; Hill & Fan 2016) in which large particles segregate to regions of higher
granular temperature.

3.4. Exact and Numerical Solutions for Bidisperse Segregation

Exact solutions to the 2D bidisperse segregation Equation 14, assuming constant S, and D; and
prescribed /4 (x) and u(x, z), have greatly helped our understanding. In the inviscid case when
D, = 0, Equation 14 reduces to a scalar conservation law that can be solved by the method of
characteristics. These reduced problems are best solved in stream function coordinates (Gray &
Ancey 2009), which eliminate the explicit velocity dependence until the solutions are mapped back
into physical coordinates.

Figure 7a shows the steady-state segregation from a uniformly mixed inflow (Savage & Lun
1988, Gray & Thornton 2005), which consists of three regions of constant concentration that
are separated by three concentration shocks. The characteristics sweep the inflow concentration
downstream unchanged, while small particles percolate downwards and large ones are squeezed
upwards. At the base, however, there are no large particles to rise up; instead, the small particles
separate out into a pure phase across a concentration shock whose position can be calculated
using a jump condition across the discontinuity (Chadwick 1976, Gray & Thornton 2005). A
similar shock develops at the surface, where a pure region of large particles forms. The two shocks
eventually meet and form a third shock, which is parallel to the chute base and separates a pure
region of large particles from a pure region of fine particles below. Gray et al. (2006) and Shearer
et al. (2008) have constructed exact time-dependent 2D solutions to this and other cases and have
shown that expanding shock regions and breaking shocks appear. Gajjar & Gray (2014) solved
the steady problem with the cubic flux Equation 11 and showed for y € [1/2,1] that the lower
shock may be replaced by an expansion fan or a semishock and an expansion fan, depending on
the initial concentration.

When the inflow is normally graded (Figure 7b), the particles initially mix in an expansion
fan before separating into inversely graded pure regions across three concentration shocks. The
inviscid model captures the thickening and thinning of the layers observed by Wiederseiner et al.
(2011) due to varying flux at different heights (Figure 2a,b). In Figure 2c, there is a numerical
solution of the same problem with diffusion (Wiederseiner et al. 2011). It is very similar to the
exact case except that the shocks are smoothed out. The final steady-state concentration has an
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Figure 7

Two-dimensional exact solutions for (#) the steady-state small-particle concentration in a chute with a
homogenously mixed inflow (Gray & Thornton 2005), (5) the steady state for a sharply normally graded
inflow (Thornton et al. 2006), and (¢) a breaking size-segregation wave that travels downslope with speed
Uens = 0.828 (Thornton & Gray 2008). The segregation rate Sjs equals 1, Dy equals 0, and the downslope
velocity is linear through the depth: # = o + 2(1 — &)z, with & = 1/7. The fine gray lines show the particle
paths, and the thick blue lines show the shocks.

S-shaped profile (Figure 2e) given by

1 A exp(—Pe ¢) — exp(—Pe) Pe — i

9@ = 1 + Aexp(Pez)’ B 1 —exp(—Pep) D’

15.
where ¢ is the depth-averaged concentration of small particles. Wiederseiner et al. (2011) found
that typical values of the Peclet number ranged from 11 to 19 in their experiments.

Gray & Chugunov (2006) showed that 1D time-dependent problems with a quadratic flux and
diffusion could be mapped to Burgers equation, and hence the Cole—-Hopf transformation could
be used to construct exact solutions for arbitrary initial conditions. The experiments of Golick
& Daniels (2009) and van der Vaart et al. (2015) can be solved by this method. Figure 4f shows
the grains rapidly mixing before exponentially tending toward a steady inversely graded solution,
consistent with Golick & Daniels’ (2009) top-plate data. However, because the interface initially
lies at z, = 1/2, large particles reach the surface at exactly the same time that small particles reach
the base, which contradicts the observation (Figure 4e) that small particles reach the base first.
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This provides strong evidence for the cubic flux Equation 11, which is able to capture this effect
(Figure 4g). The final steady state for the quadratic flux is a given by Equation 15 with Pe = 20.9.
Exact steady-state solutions for cubic fluxes have also been investigated by Gray & Ancey (2015).

Figure 7c¢ shows a breaking size-segregation wave (Thornton & Gray 2008), which consists of
two shocks and two expansion fans that are arranged in a lens-like structure that moves downslope
with speed #)ens. It connects an inversely graded flow to a region of pure large particles ahead of
the wave and is fundamental to the formation of large-particle-rich fronts (see Section 4). The
solution is steady in a moving frame & = x — #enst. In this frame, material is swept from left to
right above the no-mean-flow line and from right to left below it. Large particles that are below
the no-mean-flow line are caught up by the wave and once they are overtaken by it, they rise up
and eventually exit on a particle path that lies above the no-mean-flow line and move downslope
faster than the wave (Figure 7¢). Conversely, small particles that start above the no-mean-flow
line catch up with the breaking wave, move down through it, and exit on a particle path that moves
slower than the breaking wave. Because the wave does not occupy the full height of the flow, there
is a net transport of large grains across the top, which allows the large-particle region to grow.
Gajjar et al. (2016) used a gravity-driven flow on a conveyor belt to visualize the breaking wave
in the moving frame using the index-matching technique (see Section 2.2). They also constructed
exact solutions for the cubic flux Equation 11, which for sufficiently skewed functions allows a few
large particles to take a very long time to be recirculated. Additionally, Gray & Ancey (2009) and
Johnson et al. (2012) have investigated breaking waves that move at the same speed as the flow
front, either by depositing the net flux of large particles that arrive at the front onto the underlying
substrate or by advecting them out of plane into levees (see Section 4).

3.5. Particle-Size and -Density Segregation and the Effect of Interstitial Fluid

The segregation Equation 14 has also been used to successfully model particle density—driven
segregation (Dolgunin & Ukolov 1995; Khakhar et al. 1997, 2003; Vallance & Savage 2000; Gray
& Chugunov 2006; Tripathi & Khakhar 2013; Xiao et al. 2016), and the theory has also been
extended to particle-size and -density segregation (Tunuguntla et al. 2014, Gray & Ancey 2015).
A cubic flux emerges naturally out of the mixture theory derivation. However, it is important to
realize that the bulk velocity u is no longer incompressible but satisfies the bulk mass balance,

ap
V. =0 16.
97 (ou) >

where p = p'+p°, pu = plu'+ p*u’, p” = ¢"p"*, and p'* and p** are the intrinsic densities of large
and small particles, respectively (Morland 1992). The bulk density p therefore varies in space and
time as the particles segregate. As a result, the barycentric velocity field u can no longer simply be
prescribed. Gray & Ancey (2015) have derived a particle-size and -density segregation equation that
automatically accounts for the compressibility if the down- and cross-slope velocity components
are given. Dependent on the density and grain-size ratio, a rich variety of asymmetric flux curves
are generated that can be strictly positive, strictly negative, or positive and negative. Curiously,
the existence of density differences between the particles makes size segregation stronger so that
even small differences in particle size may compete with much larger density ratios.

A three-phase mixture theory has also been used by Thornton et al. (2006) to show that for
large and small grains of intrinsic density p¢* and an interstitial fluid of density p™, the particle-
size segregation rate is moderated by a nondimensional buoyancy term p = (o¢* — pf*)/p2*. If the
densities of the particles and the fluid are equal, then size segregation shuts off, which is consistent
with the experiments of Vallance & Savage (2000).
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3.6. Flux Functions for Multiple Discrete Grain-Size Classes

In a polydisperse mixture, the segregation flux F* of grain-size class v is closely related to the two-
component case. In particular, for any two-component submixture it must reduce to precisely the
bidisperse case. This suggests an additive decomposition (Gray & Ancey 2011) in which the flux
of constituent v is the sum of the bidisperse flux functions with all the other phases. Given the
quadratic flux model of Equation 10, this implies that

F’ = Z Sy’ ", 17.
"

where S,, = —S,,, is the nondimensional segregation rate of constituent v with respect to con-
stituent u. The antisymmetry property ensures that the summation constraint of Equation 4
is automatically satisfied. For a general mixture of # grain-size classes, there are 7 segregation
equations in slope-aligned coordinates of the form

99" a4 o) = 2 (p, %"
ot +V'(¢ u)+az(;suu¢ ¢M>_3Z (Dr 8Z> 18.

The summation constraint of Equation 2 implies that these can be reduced to #» — 1 independent

segregation equations, which require #(n — 1)/2 segregation rates. In principle, these may be
determined from bidisperse DEM simulations using different grain-size ratios (Thornton et al.
2012), such as those shown in Figure 84.

Marks et al. (2012) have developed an alternative continuum theory for polydisperse segrega-
tion with a continuous grain-size distribution that is closer to the reality of both industrial and
geophysical systems. The segregation is also driven by large particles supporting more of the stress
than the fine particles (Gray & Thornton 2005), and the resulting population balance equation
looks somewhat similar to the bidisperse segregation Equation 14, except that it must be solved
in five dimensions: space, time, and the grain-size coordinates. Marks & Einav (2015) have also
generalized cellular automata models for bidisperse segregation (Makse etal. 1997, Marks & Einav
2011) to polydisperse systems and investigated the effects of crushing and segregation, which may
occur in fault gouge and pyroclastic flows.

3.7. Exact and Numerical Solutions for Polydisperse Segregation

Consider a ternary mixture of large, medium, and small particles with local concentrations ¢!, ¢™,
and ¢, respectively. Using the summation condition of Equation 2 to eliminate ¢™ = 1 —¢° — ¢/,
one can use the multicomponent theory of Equation 18 to yield two independent segregation
equations for the concentration of large and small particles:

8¢1 1 0 1 1 B 1,s7 0 ad)l
a¢5 s 0 s o1 s 1 s _i 3¢S
V0= [Si00+ S,00 - g -] = - (D). 20,

where S, S and S, are the segregation rates between the large and small, large and medium,
and medium and small particles, respectively. Note that if there are no medium-sized particles,
#' + ¢° = 1 and the system reduces to the bidisperse segregation Equation 14 with the quadratic
flux function of Equation 10. In the absence of diffusion, Equations 19 and 20 form a system of
hyperbolic equations, except if S < S, and S < Sps, when it is of mixed type for some initial
concentrations, implying that it is linearly ill-posed (Joseph & Saut 1990). Such a situation is
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(a,b) One-dimensional (1D) time-dependent simulations of the concentration in a ternary mixture of large, medium, and small particles
for Sy = 1/8, Sim = 1, Sms = 3/8, and D; = 1073 (Gray & Ancey 2011). The solid blue lines are the exact shock solutions in the
absence of diffusion. There is a small sinusoidal perturbation to the initial concentrations of q% =0.2 and ¢j = 0.4 (#) and of ¢(l) =0.32
and ¢§ = 0.45 (5). () The local concentration can be read off the triangular contour scale. (d) Discrete element model simulation of the
Peclet number as a function of the grain-size ratio on a 25° slope (Thornton et al. 2012). (¢) 2D steady-state solutions assuming an
exponential downslope velocity profile # = B exp(B8z)/[exp(8) — 1], with 8 = 3.3; inflow concentrations ¢%) =1/2 and ¢y = 1/6;
segregation rates Sjs = 1, Sy, = 0.8, and Sy = 0.5; and D, = 0.05. (f) Steady fully developed concentrations through the depth for the
problem in panel ¢ for large (green), medium (gray), and small (red) particles. Adapted with permission from Gray & Ancey (2011).

possible if the segregation rate S, is a nonmonotonically increasing function of the grain-size
ratio, which Golick & Daniels’ (2009) experiments and Thornton et al.’s (2012) DEM simulations
suggest is possible (Figure 84). This provides a strong argument for the inclusion of diffusive
remixing, which regularizes the system, although instabilities may still arise (Gray & Ancey 2011).

Figure 84,b shows numerical simulations of the 1D time-dependent equations in the stable and
unstable regimes, using D, = 1073. The initial concentration has a small sinusoidal perturbation to
an otherwise constant state that, for the unstable case, grows to form a series of stripes (Figure 85),
which die off as the grains segregate into two-component submixtures. An exact hyperbolic so-
lution (Gray & Ancey 2011) consisting of six constant-concentration regions separated by eight
shocks is superimposed on the stable case (Figure 84). Figure 8¢ shows a steady-state 2D so-
lution with a larger diffusion coefficient D, = 0.05. The final segregated state (Figure 8f) has
high concentrations of large particles near the surface, medium particles in the middle, and fine
particles at the bottom, just like the avalanche at the surface of the rotating drum experiment
shown in Figure 5. This is known as inverse- or reverse-distribution grading, because all the
particles in the distribution are segregated into inversely graded layers by size. The strength of the
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steady-state transitions is determined by the Peclet number Pe" for segregation of phases v and
w. It is stronger for large and medium particles (Pe™ = 16) than for medium and small particles
(Pe™ = 10) in Figure 8f. For the exponential velocity profile used here, the shocks are shifted
vertically to account for larger mass fluxes near the free surface and give a useful approxima-
tion of where to expect high concentrations of each phase at the outflow (Figure 8e). Gray &
Ancey (2011) have also investigated solutions for reverse coarse-tail grading, where just the largest
size fractions segregate into inversely graded layers, but fine particles are found throughout the
mixture. Schlick et al. (2016) have also investigated polydisperse segregation in bounded heaps.

4. SECONDARY SEGREGATION DUE TO LATERAL TRANSPORT

Kinetic sieving and squeeze expulsion tend to segregate larger grains to the faster-moving free-
surface layers of the flow and smaller particles toward the slower-moving base. If there is strong
velocity shear, then the large and small particles may experience markedly different lateral trans-
port. The combination of gravity-driven segregation and velocity shear can therefore be thought
of as an important secondary segregation mechanism.

4.1. Segregation-Induced Levee Formation in Geophysical Mass Flows

One of the most striking examples of differential particle transport in nature occurs in debris
flows (Pierson 1986, Davies 1988, Vallance & Savage 2000). Large boulders are segregated to the
surface of the flow and then preferentially transported to the front by the bulk flow. Once there,
they are overrun and resegregated upward by a breaking segregation wave (Figure 7¢), allowing
the bulk flow to carry them back toward the front again (Gray & Ancey 2009). Large particles are
constantly recirculated at the front, which grows in size as more and more large particles arrive
from behind. Because the mobility of debris flows is intimately linked to high pore pressures
(Iverson 1997, Iverson et al. 2010), large-particle-rich fronts tend to be more resistive to motion
than the bulk flow, as the larger gaps between the grains allow the pore pressure to dissipate more
readily. As a result, bouldery flow fronts tend to act as moving dams that hold up the more mobile
material behind (Iverson & Vallance 2001).

Figure 94 shows a debris flow composed of a water-saturated mixture of sand and 32-mm
rock on the 82-m-long US Geological Survey (USGS) flume (Johnson et al. 2012). Due to the
strong preferential transport of large particles, the front half of the flow appears to be slightly
darker than the more sandy rear half. As the flow exits the flume and flows onto the runout
pad (Figure 9b-d), the more resistive bouldery front wants to stop, and the coarse grains are
shouldered aside by the more mobile material behind to form static lateral levees. The flow is
therefore able to spontaneously form a channel, preventing the high—pore pressure, inversely
graded mixture flowing down the central channel from spreading and hence allowing longer
runout. The combination of preferential large-particle transport and decreased mobility is not
restricted to debris flows, but also occurs in other geophysical mass flows such as pyroclastic flows
(Branney & Kokelaar 1992, Calder et al. 2000) and snow avalanches (Bartelt & McArdell 2009).

4.2. Leveed Channels and Fingering in Small-Scale Experiments

For a continuous inflow of a bidisperse mixture of large rough grains and smaller less frictional
ones, Pouliquen et al. (1997) and Pouliquen & Vallance (1999) showed that a uniform front
propagating down an inclined plane broke down into a series of granular fingers (Figure 10/)
with a lobe and cleft structure. Colored tracers were used to show that the large coarse grains
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Figure 9

(@) A photograph of a debris flow, composed of sand, 32-mm rounded rock, and water, flowing down the 82-m-long US Geological
Survey flume. As it emerges onto the runout pad, colored tracers are dropped on top and a sequence of overhead images (b—d) shows
their motion and the formation of large rich (darker colored) static levees on either side of the rapidly moving (Vighter colored) flow in the
central channel. Readers are also referred to Supplemental Videos 5-7. Reprinted with permission from Johnson et al. (2012).

C)Supplemental Material

were transported to the flow front and were recirculated there before being pushed into the clefts.
Woodhouse et al. (2012) released a finite mass of a similar bidisperse mixture on an inclined plane,
and the lobes and clefts also formed in the initial stages. However, once the supply of material to
the front waned, the large-particle-rich clefts stopped, and the width of the fingers became fixed.
This produced a series of discrete leveed channels that were morphologically similar to those
observed at the USGS flume (Figure 95-d).

Félix & Thomas (2004) showed that it was possible to generate a single leveed channel with an
almost monodisperse granular material (300-400 um), due to thinner regions being more resistive
to motion than the thicker parts of the flow (Pouliquen & Forterre 2002). There were three phases
of motion. Initially, the flow height increased until the channel width stabilized. Then, after a small
decrease in height, there was a steady regime in which the height and width were constant and the
levees were static. Finally, when the inflow ceased, the channel partially drained, leaving raised
levee walls and a thinner central channel. For a bidisperse mixture of grains, Félix & Thomas (2004)
found that this morphology was strongly enhanced, with the central channel almost completely
drained at the end. Goujon et al. (2007) went on to show that with a bidisperse mixture of large
(755 um) and small (327 pm) beads, the runout was strongly composition dependent, with the
maximum at a 40% mix of large particles.
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Kokelaar et al. (2014) used an impregnation technique to capture vertical sections across
the bidisperse leveed channel (Figure 10a—e). By changing of the color of fine particles from
red to blue midway through the experiment, they showed that as the resistive coarse-grained
levee was emplaced, it was also lined with fine red particles (Figure 10d). This provides a
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(@) Arrested flow of a 30/70 mix of dyed black sand (300-355 pm) and red and blue ballotini (150-250 um) on a 29° slope. Reprinted
with permission from Kokelaar et al. (2014). (b—e) Close-up views of specific locations shown in panel 4. (f) Schematic diagram showing
the levee-formation process. Courtesy of Chris Johnson. (g—%) Fully coupled numerical simulations of segregation-induced fingering
solved using a finite-volume scheme. (/) A photograph of fingering in a bidisperse mixture of 80% white ballotini (75-150 pum) and
20% brown carborundum (305-355 pm) on a base of turquoise ballotini (750-1,000 pm). Readers are also referred to Supplemental
Videos 8 and 9. Reprinted with permission from Baker et al. (2016b).
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minimal frictional surface for the grains in the blue inversely graded central channel to flow down
(Figure 104). Longer runout of bidisperse leveed flows is therefore not just a result of preventing
lateral spreading, but also of minimizing the basal friction. These concepts are summarized in
the schematic diagram in Figure 10f; which shows an inversely graded central channel feeding
a large-particle-rich head. Immediately behind the front is a breaking size-segregation wave that
allows both large and small particles to be recirculated, forming a large-particle-rich outer levee
that is lined with fine-grained material. Figure 10e shows a section through the breaking wave,
with large particles throughout the flow depth.

4.3. Depth-Averaged Segregation Models

Segregation-induced levee formation is a very complicated 3D process that involves coupling
between the evolving particle-size distribution and the bulk flow field. One way of simplifying the
problem (Gray & Kokelaar 2010) is to use Leibniz’s integral theorem to average the segregation
Equation 14 through the avalanche depth 4. Applying the surface and basal kinematic and no flux
conditions, one obtains

- 9, — e —
g(/ﬂb) + a(/ﬂﬁﬂ) + a(lﬂbv) =0, 21.

where the depth-averaged small-particle concentration and depth-averaged small-particle fluxes
in the downslope and cross-slope directions are defined as

B 1 h o 1 h . 1 h
qb:;/o ¢° dz, dbu:;/o ¢*udz, q}v:;fo ¢°vdz, 22.

respectively. Explicit formulas for these integrals can be derived by making assumptions about
the vertical structure through the depth of the avalanche. In particular, if the avalanche is sharply
inversely graded and the velocity is linear with depth, i.e., if

s 0, n=z<h B B o
’ _{1, 0<z2<np and  (,v) = [a + 2(1 — a)(z/ b)] (@, V), 23.
then
bp=n, and (’?%JJ%)Z[n—(l—a)n(l—g)](ﬁ,ﬁ), 24.

where 7 is the interface height between large and small particles, the depth-averaged velocity u has
components (i, v) in the x, y-plane, and « € [0, 1] allows the velocity profile to vary continuously
from plug flow (@ = 1) to simple shear (@ = 0). Substituting the formulas in Equation 24 into
Equation 21 and eliminating 7 yields the large-particle transport equation (Gray & Kokelaar 2010,
Woodhouse et al. 2012, Baker et al. 2016b),

%(/w}) + div(bid) — div [(1 — a)bid(1 — §)] = 0, 25.

where div is the 2D divergence operator. This equation has a term that is proportional to ¢(1 — @),
which acts to segregate particles in a similar manner to the bidisperse segregation Equation 14 with
y = 0. The remarkable thing about this case is that small particles are segregated laterally, in the
opposite direction to u, instead of through the avalanche depth z. Large particles are transported
toward the flow front and accumulate there (hence the name). This is precisely what is required
to model the USGS flume experiments (Figure 9) and segregation-induced levees (Figure 10).
In this depth-averaged world, the complex structure of the breaking size-segregation waves in the
full theory (Figure 7c¢) is reduced to depth-averaged concentration shocks that move at the same
speed as the breaking waves (Gray & Kokelaar 2010).
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4.4. Coupled Models of Segregation-Induced Fingering

The large-particle transport Equation 25 fits naturally into recent avalanche models (Gray &
Edwards 2014, Baker et al. 2016a) that include depth-averaged viscous effects based on the (1)
rheology (GDR MiDi 2004, Jop et al. 2006). The depth-averaged mass and momentum balances
of such avalanche models are

b
iv(hi) = 26.
or + div(hu) = 0, 6

] 1 -
a(i}ﬁ) + div(ha ® 0) + grad (Eg/yz cos ;) = hgS + div (v4*/°D), 27.

where grad is the 2D gradient operator, ® is the dyadic product, D = [grad @+ (grad @)”]/2 is the
depth-averaged strain-rate tensor, and v is a coefficient in the depth-averaged viscosity vh'/?/2.
The source term is composed of a component of gravitational acceleration that pulls the avalanche
downslope and a term that resists the motion,

S =isin¢ — p(a/lal) cos¢, 28.

where iis the unit vector in the downslope direction and y is the effective basal friction. Pouliquen
& Vallance (1999) suggested coupling the equations by assuming that v was a depth-averaged
concentration-weighted average of the large- and small-particle friction coefficients, ! and i,
ie.,

w=pu(l—¢)+ue, 29.
where p! > u° for fingering to occur. When v = 0, Equations 26 and 27 reduce to standard
avalanche models (e.g., see Grigorian et al. 1967; Savage & Hutter 1989; Gray et al. 1999, 2003).
However, Woodhouse et al. (2012) showed that in this case, the coupled equations are linearly
ill-posed (Joseph & Saut 1990) and the finger wavelength is grid dependent. The depth-averaged
u(I) rheology (Gray & Edwards 2014) adds the key missing physics that makes the equations
well-posed for v > 0.

The fully coupled viscous system of Equations 25-29 has been solved numerically by Baker
et al. (2016b). After the initial release, large particles are preferentially transported to the
flow front where they accumulate across a concentration shock and form a resistive margin
(Figure 10g). The width of this layer grows with time, progressively slowing the larger parti-
cles until they are shouldered aside by the more mobile finer-grained mixture that pushes through
from behind (Figure 10b). The fingers coarsen and begin to elongate with time (Figure 10i).
Each finger has a pure region of slowly moving large particles at either side of the central channel,
which is filled with a mixture of grains that is moving faster than the steady, uniform inflow that
feeds it (Figure 10k). Large particles that reach the tip are continuously pushed to the side to
build the levees and hence advance the finger forward. There are also more subtle effects, such
as the clefts at the back of the fingers being slowly eroded by the oncoming flow, which is also
observed in experiments (Figure 10/). There are still open questions, however. In particular, it is
still not fully clear what sets the finger wavelength, because the compositional dependence of v on
 is not known and the levees may need to become completely static before any coarsening stops.

5. SEGREGATION WITH EROSION AND DEPOSITION

The full complexity of particle segregation becomes apparent when there is mass exchange between
the free-surface avalanche, where all the gravity-driven segregation takes place, and an underlying
substrate that can preserve the particle-size distribution in the deposit.
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5.1. Segregation in Rotating Drums

Due to their industrial significance, there is a huge literature on segregation in rotating drums
(e.g., see Khakhar et al. 1997, Hill et al. 1999, Ottino & Khakhar 2000). Figure 5 shows a rotating
drum filled with a mixture of three grain sizes (Gray & Ancey 2011). The vast majority of grains are
in solid body rotation, and there is a thin avalanche along the inclined surface. The exact interface
between the avalanche and the rotating material is not sharp but decays exponentially below a
certain depth (GDR MiDi 2004). Nevertheless, it is still possible to see a very clear active layer in
Figure 5b where all the segregation takes place. The initially homogeneously mixed material is
slowly rotated into the active layer along the upper half of this interface (Figure 54), and along the
lower half, material is continuously deposited in a sequence of radial bands that coarsen toward
the outside of the drum. This pattern develops because the inversely graded surface avalanche is
progressively deposited from the base, with the small red particles first, then the medium white
grains, and finally the large particles near the drum wall. Although the avalanche only occupies
a very thin surface layer, the segregation within it completely determines the radial segregation
pattern in the drum (Khakhar et al. 1997).

The way in which the avalanche flows and the way it deposits have a radical influence on
the patterns observed. Figure 114 shows a Catherine wheel pattern (Gray & Hutter 1997, Gray
& Chugunov 2006) that forms at a slower rotation rate. Intermittent avalanches flow down the
inclined slope, and a shock wave propagates upslope (Gray et al. 2003), bringing the grains rapidly
to rest in a thick inversely graded slope-parallel layered stripe. As the stripes are rotated, they
build up the arms of the pattern. At higher rotation rates, the same grains produce a radial pattern
(Figure 115). Drums with noncircular cross sections produce particularly interesting patterns
(Hill et al. 1999) due to the periodic rise and fall of the free surface as well as its changes in length
with time (Figure 11c). Mounty (2007) was able to model these patterns in the continuously
eroding and depositing (rolling) regime by letting the thickness of the avalanche tend to zero
and by mapping the large particles that enter the avalanche instantaneously into the deposit
on the lower half of the slope, with the largest grains closest to the drum wall (Figure 11d).
This simple kinematic approach is very effective for most fill levels, but close to 50% full, the
deposited grains rotate around and reenter the avalanche at the same time. As a result, particle-size
segregation can feedback on the dynamics of the avalanche over a number of cycles to create petal-
like patterns (Figure 11e,f) that are controlled by composition-dependent waves that propagate
upslope, even in the rolling regime (Khakhar et al. 2003, Zuriguel et al. 2006). If the rotation rate
increases, the pattern initially destroys itself before the feedback creates a new pattern with less
petals.

The segregation equations introduced in Section 3 provide the basic building blocks for mod-
eling all of these patterns. The bidisperse or polydisperse Equations 14 and 18 can be solved over
the entire domain, assuming that the segregation rates S,,, and the diffusive-remixing rates D, are
zero in the slowly rotating body. Incompressibility (Equation 1) then implies that they reduce to
the tracer equation 9¢"/dr +u - V¢ = 0, so that the particle-size distribution that is deposited
from the avalanche is simply rotated. The bidisperse radial segregation pattern (Figure 11g)
can then be computed (Schlick et al. 2015) by prescribing a velocity field based on a sim-
ple mass balance model for the bulk flow in the continuously avalanching (rolling) regime
(Khakhar et al. 1997, Gray 2001). At a more fundamental level, the recent advances in our un-
derstanding of the rheology of granular materials (GDR MiDi 2004; Jop et al. 2006; Kamrin &
Koval 2012; Henann & Kamrin 2013; Barker et al. 2015, 2017; Barker & Gray 2017; Heyman
et al. 2017) make possible fully coupled time-dependent simulations of the bulk flow and the
segregation.
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Figure 11

(@) Catherine wheel and () radial patterns in a bidisperse drum. Reprinted with permission from Gray & Chugunov (2006).
(¢,d) Continuous segregation in a square drum (Mounty 2007). (¢) Petals in a 50%-full circular drum at a slower and (f) a faster rotation
rate. Reprinted with permission from Zuriguel et al. (2006). (g) Simulations of radial segregation in a 50%-full drum. Adapted with
permission from Schlick et al. (2015). () Segregated and (7) stratified heaps (Gray & Hutter 1997). () Rotated experiment and
(k) simulation of modulated inflow on a heap (Lueptow et al. 2017). (/) Christmas tree pattern in a silo. Readers are also referred to
Supplemental Videos 10-13. Reprinted with permission from Gray & Hutter (1998).

@Supplemental Material

5.2. Segregation in Heaps and Silos

Heaps and silos are the predominant means of storing granular materials and are prone to segrega-
tion due to avalanches forming at the free surface of the deposits. This is a major problem in many
bulk chemical, pharmaceutical, agricultural, and food processes, especially when they are required
to deliver material within narrow particle-size distributions or with specific compositions of active
ingredients. The flows and deposits are closely related to those in a rotating drum. At high flow
rates (Baxter et al. 1998), the surface avalanche can be in a steady state, continuously depositing
the incoming grains onto the underlying substrate (Figure 11b), with the fine ones closest to the
deposit point and the large ones closest to the base of the heap or the silo wall. This is directly
analogous to radial segregation in rotating drums. At lower flow rates, the grains can build up at
the apex of the pile and periodically collapse, forming intermittent avalanches that are brought to

428 Gray


http://www.annualreviews.org/doi/suppl/10.1146/annurev-fluid-122316-045201

rest by upslope propagating waves. This results in the deposit of an inversely graded stripe at the
surface of the pile, which is then buried by subsequent avalanches (Gray & Hutter 1997, Gray &
Tai 1998). The resulting stratification patterns (Williams 1968, Gray & Hutter 1997, Makse et al.
1997, Gray & Ancey 2009) have interleaved layers of large and small particles (Figure 117) and
are directly analogous to the Catherine wheel pattern in a rotating drum. Although industry would
prefer their grains to be evenly mixed throughout, a stratified heap is preferable to a completely
segregated one, and researchers are now investigating modulated inflows (Lueptow et al. 2017)
to purposely stratify the deposit (Figure 11j,k). Rotational feeders, helical chargers, and other
inserts are also commonly used in industry to minimize the formation of avalanches at the free
surface of the deposits, where the initial segregation occurs. In addition, outflows can be drawn
from different areas of the silos to try to blend the output (Bates 1997), although a fundamental
understanding of how to do this effectively is still lacking. In the absence of these countermeasures,
a Christmas tree pattern (Figure 11/) can easily form in tall silos filled from a point source.

SUMMARY POINTS

1. Kinetic sieving and squeeze expulsion are the dominant mechanisms for gravity-driven
segregation in dense sheared granular flows that are free to dilate.

2. The combined effect can be modeled with the convection—diftusion Equation 14 in bidis-
perse flows and with Equation 18 in polydisperse mixtures with # size classes.

3. Velocity shear combined with gravity-driven segregation can lead to the preferential
lateral transport of one species of grains. This is an important secondary segregation
mechanism that can lead to the formation of bouldery margins. If large particles are
more frictional than the fine particles, this can lead to dynamic feedback on the bulk flow
and the formation of fingers and large-particle-rich levees.

4. Erosion and deposition between a surface avalanche, where all the segregation takes
place, and an underlying substrate can produce amazingly complex patterns. This is the
predominant means of segregation in rotating drums, heaps, and silos.

FUTURE ISSUES

1. The use of advanced imaging techniques and DEM simulations have the potential to
revolutionize our understanding of particle segregation and tie down the functional de-
pendencies of the nondimensional segregation and diffusive-remixing rates.

2. Progress in understanding the rheology of granular materials opens up the possibility of
computing particle segregation in 3D time-dependent flows and hence of investigating
mobility feedback due to differing properties of the grains.

3. The nondimensional segregation and diffusion rates are likely to be dependent on some
form of generalized inertial number, which is dependent on the local concentrations and
the particle sizes, rather than just a simple shear-rate dependence. Compressibility is also
likely to play a very important role.

4. Particle segregation in polydisperse granular materials is a particularly open area of
research that is very important for understanding real industrial and geophysical systems.
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