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Abstract

This article reviews the characteristics and behavior of counter-rotating
and corotating vortex pairs, which are seemingly simple flow configura-
tions yet immensely rich in phenomena. Since the reviews in this journal by
Widnall (1975) and Spalart (1998), who studied the fundamental structure
and dynamics of vortices and airplane trailing vortices, respectively, there
have been many analytical, computational, and experimental studies of vor-
tex pair flows. We discuss two-dimensional dynamics, including the merging
of same-sign vortices and the interaction with the mutually induced strain, as
well as three-dimensional displacement and core instabilities resulting from
this interaction. Flows subject to combined instabilities are also considered,
in particular the impingement of opposite-sign vortices on a ground plane.
We emphasize the physical mechanisms responsible for the flow phenomena
and clearly present the key results that are useful to the reader for predicting
the dynamics and instabilities of parallel vortices.
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1. INTRODUCTION

Vortices are basic ingredients of transitional and turbulent flows, and studying their fundamental
dynamics and interactions helps us understand the behavior of the often-complicated flows en-
countered in nature or industry. A pair of straight parallel vortices is one of the elementary vortex
configurations considered in the literature, motivated to a large extent by its relevance to the prob-
lem of aircraft trailing wakes. Any horizontally flying vehicle generates a counter-rotating vortex
pair in its far wake, which can represent a potential hazard for following vehicles, and corotating
configurations are present in the near wake of aircraft wings with lowered flaps.

Despite their conceptual simplicity, vortex pairs exhibit a variety of complex behaviors, ranging
from two-dimensional dynamics (rotation, merging) to three-dimensional instabilities. Figure 1
shows an example in which the simultaneous growth of two distinct instabilities of a counter-
rotating vortex pair is observed in a laboratory experiment, a numerical simulation, and a full-scale
aircraft wake.

a

Re = 2,750

Re = 6 × 107

c

Re = 2,400Re = 2,400

bb

Figure 1
Visualizations of long-wave and shortwave instabilities developing in counter-rotating pairs of equal-
strength vortices. (a) Dye visualization in a water tank at Re = 2,750. The field of view is approximately
14 cm × 42 cm. Panel a taken with permission from Leweke & Williamson (1998). (b) Numerical simulation
with Re = 2,400. Panel b taken with permission from Laporte & Corjon (2000), copyright AIP Publishing
LLC. (c) Photograph of the jet condensation trails from a Boeing 747 at Re ≈ 6 × 107. The field of view is
approximately 150 m × 520 m. Panel c copyright 2011, Herbert Raab, reproduced with permission.
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In the following, we review the dynamics and instabilities of vortex pairs in a homogeneous
incompressible fluid. After recalling the properties of the two-dimensional base flows, which
depend primarily on the circulation ratio of the two vortices, we focus on three major evolution
mechanisms characterizing these flows: two-dimensional merging of corotating vortices, the three-
dimensional Crow instability of counter-rotating vortices, and shortwave elliptic instability. The
results concerning the structure and growth rate of these instabilities are then used to analyze the
configuration of a vortex pair approaching a solid wall. We also address the interactions between
the various phenomena.

Previous reviews including this topic were provided by Widnall (1975) and Saffman (1992).
Much of the recent work related to aircraft trailing vortices is summarized in a special issue edited
by Crouch & Jacquin (2005) and in Breitsamter (2011), following several earlier surveys (NATO
1996, Spalart 1998, Rossow 1999, Gerz et al. 2002).

2. TWO-DIMENSIONAL DYNAMICS

In this section, we consider two-dimensional dynamics of both counter-rotating and corotating
vortices and discuss the most common vortex models to represent such vortex pairs. We analyze
the strain field and elliptic flows within vortices and discuss the phenomenon of vortex merging.

2.1. Vortex Pair Models and Their Properties

As long as the vortices are far apart, their displacements can be described in the framework of
point vortices by concentrating the circulation of each vortex in its center. The circulation and
vortex center are defined by

� =
∫
D
ω dS and Xc = 1

�

∫
D

Xω dS, (1)

where dS is a surface element at coordinate X of the planar domain D containing the vorticity ω of
the vortex. A vortex Reynolds number can be defined as Re = �/ν, where ν is the kinematic viscos-
ity of the fluid. All possible arrangements for two point vortices, with circulations �1 and �2, pre-
serve the distance (b) between them. This is a consequence of the conservation of linear or angular
impulse. A symmetric counter-rotating pair (�1 = −�2 = �) translates with a constant straight-
line speed U = �/(2πb) (Figure 2a). For all other counter- and corotating cases in Figure 2,
for which �1 + �2 �= 0, the vortices rotate around each other [i.e., around the invariant vorticity
center (�1Xc

1 + �2Xc
2)/(�1 + �2)] at an angular velocity � = (�1 + �2)/(2πb2).

As shown below, it is crucial to interpret the vorticity dynamics in the comoving frame when
studying vortex pair flows. The streamlines for equal-strength vortices are shown in Figure 3.
In the comoving reference frame, the counter-rotating pair comprises an inner and outer region,
bounded by a separatrix streamline. The corotating pair exhibits a more complex structure, with
an outer recirculation region, an inner core region, and a region between the two, referred to as
the inner recirculation region, in which the fluid travels around both vortices. These regions are
key to understanding vortex merging (see Section 2.3).

For each finite-size vortex, a characteristic radius a can be defined from the second-order
moment of vorticity:

a2 = 1
�

∫
D

|X − Xc|2ω dS. (2)

When this core size is small compared to the separation distance b, an asymptotic theory in the
limit of small a/b can be used to describe the vortex core characteristics (Ting & Tung 1965). Each
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Figure 2
Trajectories of two-dimensional point vortex pairs, with separation distance b and circulation � > 0: (a,b) equal-strength counter- and
corotating pairs and (c,d ) unequal counter- and corotating pairs. The straight arrows represent the instantaneous velocity of each
vortex, and the × in panels b–d marks the vorticity center of the pair.

vortex is then axisymmetric at leading order and is characterized by its radial profiles of vorticity
and axial velocity, in the cylindrical reference frame (r, θ, z) centered on its Xc (see Figure 4a).
The axial flow component affects only the three-dimensional dynamics; we do not consider it
further in this section.

Most studies have focused on the Rankine vortex model (a circular patch of uniform vorticity)
for its analytical convenience or the Lamb-Oseen vortex model (Gaussian vorticity profile) for its
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Figure 3
Streamline patterns of equal-strength point vortex pairs in the frame of reference moving with the vortices. (a) Counter-rotating pair in
the translating frame. (b) Corotating pair in the rotating frame. Various regions can be identified, bounded by separatrices (thick lines)
connected to hyperbolic points.
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Figure 4
(a) Schematic illustration of vortex velocity profiles. (b) Vorticity ω and (c) swirl velocity vθ for Rankine and Lamb-Oseen vortices. A
possible additional velocity vz in the direction of the vortex axis is assumed to be proportional to the vorticity. W is a nondimensional
parameter representing the ratio between the maximum axial velocity and maximum swirl velocity.

good agreement with experimental data. The profiles of vorticity and azimuthal velocity of these
models are as follows:

Rankine vortex : ω =
{
�/(πa2) r ≤ a

0 r > a
, vθ =

{
�r/(2πa2) r ≤ a
�/(2πr) r > a

, (3)

Lamb-Oseen vortex : ω = �

πa2
exp(−r2/a2), vθ = �

2πr
[1 − exp(−r2/a2)]. (4)

These classic distributions are illustrated in Figure 4. For both cases, the characteristic core radius
a is given by the relation in Equation 2. A list of other vortex models, used primarily to describe
aircraft wake vortices, can be found in Gerz et al. (2002).

A first departure from axisymmetry, involving elliptic rather than circular streamlines, is asso-
ciated with the strain field felt by each vortex (Figure 5). The combination of strain and rotation
causes the elliptic streamlines to be oriented at 45◦ to the principal stretching axis. The vortex
of circulation �1 generates at the center of the second vortex, of circulation �2, a strain field of

Counter-rotating pair Corotating pair

a b

Figure 5
Schematic illustration of the elliptic streamlines resulting from the vortex core vorticity and strain (colored arrows) induced by the
neighboring vortex for (a) counter-rotating and (b) corotating pairs.
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Figure 6
(a) Radial profiles of the (azimuthally averaged) strain increase �S for vortices placed in a weak, uniform, and stationary (nonrotating)
external strain field of strength Se. The jump at r = a for the Rankine vortex is linked to the discontinuity of the vorticity at the core
radius. (b) Maximum strain increase at the vortex center for external strain fields rotating at angular velocity �. For the Lamb-Oseen
vortex, diamond symbols represent numerical results, and the red line represents Equation 5.

amplitude Se = �1/(2πb2). As shown by Sipp et al. (2000) and Le Dizès & Verga (2002), an
equilibrium state of the vortex in this strain field is possible when a2/b is sufficiently small. The
interaction between vorticity and strain is, however, strongly nonlinear (Moffatt et al. 1994, Le
Dizès 2000A). Interestingly, the strain field in the core is enhanced by this interaction (i.e., the
strain rate Si in the center of the vortex is larger than the strain rate Se induced solely by the other
vortex) (Figure 6a). The external strain causes a deformation of the vortex. This deformation in
itself further increases the strain within the vortex. The ratio s0 = Si/Se depends on the rescaled
angular rotation � = �(2πa2

2/�) of the vortex system. For the Rankine vortex, it is given by
the exact relation s0 = 2(1 − �)/(1 − 2�). For the Lamb-Oseen vortex, it is well fitted by the
expression

s0(�) = 1.5 + 0.1323(0.32 −�)−9/5, (5)

valid for −0.4 < � < 0.2 (Le Dizès & Laporte 2002). These relations are plotted in Figure 6b.
s0 diverges for a finite value of � (0.32 for the Lamb-Oseen vortex, 0.5 for the Rankine vortex).
In this situation, strong additional nonlinear effects are expected.

2.2. Equilibrium Solutions

Equilibrium states of uniform-vorticity patches were studied by Moore & Saffman (1971) for a
strained vortex and then by Saffman & Szeto (1980) for vortex pairs using contour dynamics meth-
ods (Pullin 1992). Families of uniform-vorticity patches have been discovered by different continu-
ation techniques, providing stability characteristics and bifurcation diagrams (e.g., Dritschel 1985,
1995), and the extension of these results to nonuniform vorticity has been investigated (Ehrenstein
& Rossi 1999, Meunier et al. 2002). The stability of the nonuniform Lamb-Chaplygin vortex pair
has been addressed by Luzzatto-Fegiz & Williamson (2012), who found stability in the inviscid
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Figure 7
Imperfect velocity-impulse diagrams for equal-area pairs of uniform vortices: (a) opposite-signed pairs and (b) same-signed pairs. In
both diagrams, line 1 represents stable solutions with distinct vortices, and line 2 represents unstable solutions. Panel a adapted with
permission from Luzzatto-Fegiz & Williamson (2012) and panel b adapted with permission from Cerretelli & Williamson (2003a) and
Luzzatto-Fegiz & Williamson (2010).
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case, whereas more recently Brion et al. (2014) found that the pair is apparently unstable in the
presence of viscosity.

The stability of such equilibria was initially the subject of some debate. Saffman & Szeto (1980)
proposed an argument linking a particular bifurcation diagram (involving energy and impulse) to
stability properties. In a study of the equilibrium and stability of up to eight corotating vor-
tices, Dritschel (1985) pointed out the need for a rigorous basis for such an approach and noted
that this methodology would miss instabilities associated with hitherto-undiscovered bifurcations.
Dritschel (1995) calculated equilibria for same-signed and opposite-signed pairs with equal and
unequal areas and performed detailed linear stability analyses. He found that the stability argu-
ment of Saffman & Szeto (1980) failed to detect the instability boundary for a large subset of
opposite-signed pairs.

Although the topic of bifurcation methods for vortex dynamics deserves a separate review,
it is relevant to mention here that an approach implementing imperfect velocity-impulse (IVI)
diagrams has recently been introduced to define families of equilibrium vortex solutions for
counter-rotating and corotating vortex pairs (Figure 7) (Luzzatto-Fegiz & Williamson 2010,
2012). Information concerning stability is given by turning points in impulse. Imperfections are
introduced as a means to discover otherwise-hidden bifurcation branches. The IVI diagram for
counter-rotating vortex pairs in Figure 7a is obtained by starting with stable solutions for the
classical symmetric pair (shown by line 1). Introducing a small imperfection in the calculations
enables the discovery of a new branch of solutions (branch 2), which is unstable. Surprisingly,
despite their shape, these vortices translate along a straight line. Repeated use of imperfections
also uncovers vortices without symmetry (branch 3) and antisymmetric equilibria (branch 4).
Same-signed pairs are shown in Figure 7b (Cerretelli & Williamson 2003a, Luzzatto-Fegiz &
Williamson 2010). The family involving two distinct stable vortices is labeled 1; these continue
into a series of singly connected, unstable, dumbbell-shaped vortices (labeled 2), which are quite
representative of vorticity distributions just prior to merging.
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2.3. Merging of Corotating Vortices

Two identical vortices ultimately merge in viscous flow. A body of work has addressed the ques-
tion of a critical core size above which merging takes place. Much early work comes from the
computation of uniform-vorticity patches (Roberts & Christiansen 1972; Saffman & Szeto 1980;
Overman & Zabusky 1982; Dritschel 1985, 1986) and from experiment (e.g., Hopfinger & van
Heijst 1993). All of the above studies measured the normalized critical core size for the onset
of merging to be a/b = 0.29–0.32. Meunier et al. (2002) deduced a criterion based on the core
size as defined in Equation 2, which works well for vortices with a range of different vorticity
distributions, with a critical size of typically a/b ≈ 0.24.

The question of whether merging could be a consequence of an instability is still under debate.
It has been associated with a change of the stability of vortex patches by Overman & Zabusky
(1982) and Dritschel (1985), who found that vortices do not need to touch to become unstable;
instability sets in when the gap between vortices decreases below 6% of the two-vortex length.
This is consistent with the IVI diagram of Figure 7b, in which instability occurs immediately
before the red dot between branches 1 and 2 (actually at the maximum in impulse, before the two
vortices touch). Intriguingly, the first mode to become unstable is antisymmetric and corresponds
to what is found in experiment.

In the past few years, there has been a renewed focus on the physical mechanism of merging.
The first step in understanding merging keys on the work of Dritschel (1985), who considered the
corotating reference frame for same-sign vortices (Figure 3b). This reference frame was also used
by Melander et al. (1987, 1988), who observed in their computations that the diffusing vorticity
could spill over from the inner core and inner recirculation region into the outer recirculation
region, in which the velocity field of this so-called ghost vortex stretches the vorticity out into
filaments. They viewed merging as an equivalent mechanism to what they proposed for a single
elliptical vortex; namely, the vortex aspect ratio is reduced by an inviscid axisymmetrization process.
In essence, the tilting of the corotating streamline pattern, relative to the vorticity contour pattern,
gives rise to a reduction in the length of the ellipse. Melander et al. (1988) identified two stages
during merging: the viscous metastable stage, governed by the dissipation timescale, and the
convective merger stage, in which viscous effects are minimal and the vortices move toward each
other rapidly. Meunier & Leweke (2001) and Meunier et al. (2002) defined a third stage: the final
diffusion of the merged vortex. Cerretelli & Williamson (2003b) added a fourth stage (second
diffusive stage), described below.

Figure 8 illustrates the stages of merger by the evolution of the vortex pair separation b. In
the first diffusive stage, this distance is reasonably constant, as the vortex core grows according
to the viscous diffusion law a2 = a2

0 + 4νt (Meunier & Leweke 2001, Le Dizès & Verga 2002).
When the vortex cores reach their critical size, the convective stage follows (see the central column
of images in Figure 9), in which vortex separation rapidly reduces. Meunier et al. (2005) explained
that, because some of the vorticity is advected to the outer region, thus increasing angular momen-
tum, the vortex cores are forced together to conserve the total momentum. At the end of the con-
vective phase, there is a second diffusive stage, in which the separation diminishes very slowly from
Biot-Savart induction. The final merging of the two vorticity peaks is essentially achieved by diffu-
sion of the vortices into each other, resulting in a single peak. One then reaches the merged diffusive
stage, in which the vortex gradually becomes more axisymmetric. At sufficiently high Reynolds
numbers, the vortex is surrounded by fine concentric filaments (right column in Figure 9).
Josserand & Rossi (2007) studied the different merging phases over a wide range of Reynolds
numbers and deduced that various parts of the flow field contribute to the rapid approach during
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Figure 8
Evolution of the normalized vortex separation (b/b0) with time during symmetric merging. (a) Experiment at Re = 530. Panel a
adapted with permission from Cerretelli & Williamson (2003b). (b) Direct numerical simulation at Re = 10,000. Panel b adapted with
permission from Josserand & Rossi (2007), copyright Elsevier Masson SAS. From these curves, it is possible to distinguish four distinct
stages in the merging process.

the convective stage of merging. They found that approximately 30% of the total circulation orbits
the central merged vortex during the final stage.

Why do the vortices get rapidly pushed together and merge? One could attempt to answer this
question by superposing the vorticity onto its own streamline pattern in the corotating reference
frame (Figure 9c). The first image shows vorticity diffusing across the separatrices, from the core
into the inner recirculation region, also called the exchange band, while some of the vorticity seeps
into the outer recirculation region. In the middle image of Figure 9c, anticlockwise vorticity is
naturally concentrated by the velocity field upward and to the left of the left-hand vortex core, as
well as downward and to the right of the right-hand vortex core. By Biot-Savart induction, one can
immediately see that the core of the left-hand vortex is in proximity to a region of anticlockwise
vorticity above it. The net result is that this vortex will move toward the other vortex; essentially
both vortices rapidly move toward each other. There has been some debate, in a number of papers,
as to whether the filaments are responsible for the merger (e.g., Velasco Fuentes 2005; Brandt &
Nomura 2007, 2010; Josserand & Rossi 2007). One issue with such discussion is that the answer
depends on the definition of the term filament, which could, for example, be taken to mean the
tip all the way to the root (right next to the vortex cores) or could be just the thin filament within
the outer region.

Rather than debate this point, one can directly deduce the vorticity responsible for the merger
by decomposing the total field ω into symmetric and antisymmetric components ωS and ωA

(Figure 10) (Cerretelli & Williamson 2003b):

ω(x, y) = [ω(x, y) + ω(x,−y)]/2 + [ω(x, y) − ω(x,−y)]/2 = ωS(x, y) + ωA(x, y), (6)

with the coordinates x and y as defined in Figure 10a. The conditions for the symmetric vorticity
follow ωS(x, y) = ωS(−x, y) = ωS(x,−y); therefore, the symmetric vorticity does not contribute
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Figure 9
Merging of two equal laminar vortices. (a) Experimental dye visualization and (b) vorticity from a direct
numerical simulation at Re = 2,000. Panels a and b reproduced with permission from Meunier et al. (2005),
copyright Elsevier Masson SAS. (c) Experimental vorticity distribution and streamlines in the corotating
frame at Re = 530. Panel c reproduced with permission from Cerretelli & Williamson (2003b).
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Figure 10
(a) Total vorticity field during the convective merging stage at Re = 530 and decomposition into (b) symmetric and (c) antisymmetric
fields. Only the antisymmetric vorticity is responsible for merging. Figure adapted with permission from Cerretelli & Williamson
(2003b).
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Figure 11
Various two-dimensional evolution scenarios for pairs of unequal, corotating vortices. (a) Partial straining out. Contour dynamics from
Dritschel & Waugh (1992), reproduced with permission, copyright AIP Publishing LLC. (b) Complete straining out. Experiments
from Trieling et al. (2005), reproduced with permission, copyright AIP Publishing LLC. (c) Partial merger. Numerical simulations
from Brandt & Nomura (2010), reproduced with permission.

to the merging because the horizontal velocity anywhere along the x axis through the vorticity
centroids is uS(x, 0) = 0. This means that the entire velocity pushing the centroids together comes
solely from the antisymmetric vorticity. The structure of the antisymmetric vorticity (Figure 10c)
comprises two counter-rotating vortex pairs, whose induced velocity readily pushes the vortex
centroids together. Obviously, the picture will be influenced by the Reynolds number, but the
approach does yield an understanding of why vortices merge.

Most studies have focused on the symmetric merger of two identical vortices, but corotating
vortices could have a different size or different circulation. Phenomena such as partial straining
out and partial merging (Figure 11) can be found in Dritschel & Waugh (1992), Yasuda &
Flierl (1995), Brandt & Nomura (2010), and Jing et al. (2012). One vortex can be too weak to
support the strain field generated by the other vortex. In this case, the weak vortex is stretched
and destroyed by an elongation process that has been described, for instance, by Trieling et al.
(1997). A continuous erosion process is also often active, in which part of the vorticity is stripped
away (Legras & Dritschel 1993, Mariotti et al. 1994) when the hyperbolic stagnation point of the
streamline pattern (see Figure 3b) moves inside a vorticity region.

3. THREE-DIMENSIONAL INSTABILITIES

In this section, we review two mechanisms leading to three-dimensional instability in vortex pairs.
The first involves perturbations displacing the vortices locally as a whole (i.e., without a change in
their core structure), with wavelengths that are large compared to the core radius. For counter-
rotating vortex pairs, these perturbations produce the long-wave Crow instability (Crow 1970).
The second mechanism is linked to the amplification of shortwave perturbations inside the vortex
cores. The growth of these modes results from the modification of the core structure by the external
strain field induced by the neighboring vortex, as explained in the previous section. These effects
produce the so-called elliptic instability (Kerswell 2002) in both counter- and corotating pairs.

www.annualreviews.org • Dynamics and Instabilities of Vortex Pairs 517
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Dye visualization Vortex filament simulationa b

Figure 12
Long-wavelength Crow instability of a counter-rotating vortex pair. (a) Dye visualization in a water tank at Re = 1,450. The field of
view is approximately 16 cm × 50 cm, and the vortices are moving toward the observer. Panel a reproduced with permission from
Leweke & Williamson (2011), copyright AIP Publishing LLC. (b) Vortex filament simulations (inviscid) by Winckelmans et al. (2005),
with the view along the center plane.

Vortex reconnection:
breaking and rejoining
of vortex lines

3.1. Crow Instability

A well-known feature observed in counter-rotating vortex pairs is a periodic long-wave deforma-
tion, which eventually leads to the decay of the pair. It can frequently be observed in the sky, behind
aircraft flying at high altitude, when the wake vortices are visualized by condensation (Figure 1c).
Colloquially, these aircraft wakes are called contrails (condensation trails). Experiments and nu-
merical simulations of this phenomenon (Figure 12) show that the sinusoidal deformations are
symmetric with respect to the center plane of the pair and that they are inclined by approximately
45◦ to the line joining the two vortices (Figure 13a). The deformation amplitude increases until
the two vortex cores eventually touch and overlap at periodic locations. The subsequent vortex
reconnection (Kida & Takaoka 1994) transforms the initial pair of line vortices into a series of
three-dimensional vortex rings, which may persist for a certain time following their own oscillating
dynamics (Dhanak & De Bernardinis 1981).

During the long-wave instability, the vortices are locally displaced as a whole, which is why
this phenomenon can be described by a filament approach involving Biot-Savart induction. This
was first carried out by Crow (1970) for the case of two counter-rotating Rankine vortices of
equal strength. The analysis revealed the three main ingredients whose interaction leads to what
is now called the Crow instability of counter-rotating vortex pairs. A given sinusoidal perturbation
of the initially straight vortex is subject to the following mechanisms (Figure 13b). First, there
is its self-induced rotation, in the direction opposite the rotation of the core fluid, whose rate
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(a) Schematic illustration of the symmetric displacement mode associated with the Crow instability. (b) Illustration of the different
mechanisms acting to rotate and stretch the plane containing the wavy perturbation (for the right vortex).

depends on the core size and the axial perturbation wavelength λ (Kelvin 1880). Second, there is
the motion induced by the other vortex, assumed unperturbed, which, in the frame moving with
the pair, consists of a plane stagnation point flow with maximum stretching in the 45◦ direction
(Figure 5a). Finally, there is the motion due to the combined perturbations of the two vortices.
Similar to the previous effect, this motion induces a rotation and radial stretching on the pertur-
bation plane (the plane containing the waviness), but it also depends on λ. Instability arises when,
for a given combination (a, λ, θ ), the three rotation effects cancel each other and the wave is held
at a constant angle θ for which the total radial stretching rate is positive.

Widnall et al. (1971) extended the stability analysis toward more general vortex velocity profiles,
also including an axial component, by introducing the concept of an equivalent Rankine vortex
having the same self-induced dynamics for long wavelengths (λ � 16a). The equivalent core size
ae, to be used in Crow’s approach, can be calculated from the velocity profiles. For the case of a
Batchelor vortex of radius a (Equation 4) and axial flow parameter W (Figure 4b), one finds

ae = a
√

2 exp
[

1
4

− γ

2
+ W 2

2

]
≈ 1.36 a exp

(
W 2

2

)
, (7)

where γ ≈ 0.577 is Euler’s constant.
If the circulations of the two vortices are not equal and opposite, the rotation of the vortex

pair needs to be taken into account in the analysis. For the perturbation plane to remain aligned
with the strain field rotating at the same angular velocity� as the pair, the various rotation effects
now have to add up to a rotation with �. For a pair of equal corotating vortices, Jiménez (1975)
showed that this condition can never be achieved. Subsequently, in the framework of the filament
approximation, Klein et al. (1995) and Fabre (2002) demonstrated that all corotating vortex pairs
are stable, while all counter-rotating pairs are unstable, with respect to the Crow mechanism.

Following Fabre (2002), the growth rate σ of a wavy Crow-type perturbation with wavelength
λ (wave number k = 2π/λ) of a pair of counter-rotating vortices having circulations �1 > 0 and
|�2|<�1, equivalent core radii a1 and a2, and a separation distance b is given by

σ = �1

2πb2
�(Emax), (8)
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where Emax is the eigenvalue with the largest real part of the matrix

L =

⎡
⎢⎢⎢⎣

η1 1 +1 0 �ψ

−1 − 2�−1 η1 �χ 0
0 ψ η2 �(1 +2)
χ 0 −2 −�(1 +2) η2

⎤
⎥⎥⎥⎦ , (9)

with � = �2/�1. The self-induction ( ), mutual-induction (ψ , χ ), and viscous damping (η)
functions are given by

i = (kb)2

2 + 0.955kai + 0.438(kai )2

[
ln
(

2 + 2.151kai

kai

)
+ 1

4
− γ

]
, (10)

ψ = (kb)2 K0(kb) + kbK1(kb), χ = kbK1(kb), (11)

ηi = −(2π/Re)(ai/b)−2[1.54kai + (kai )2]. (12)

The Kj are modified Bessel functions of the second kind of order j, and the Reynolds number
Re = �1/ν here is based on the stronger vortex.  and η are provided as numerical fits to the
dispersion relation of the Crow perturbation mode, with η estimated based on results for the
Lamb-Oseen vortex (without axial core flow).

From Equations 8–12, one can determine stability diagrams and growth rate curves. The
examples in Figure 14 for equal-strength vortices show the shortwave cutoff of the unstable
domain. Because Equation 10 represents the exact self-rotation frequency, and not a long-wave
approximation like the one used by Crow (1970), the spurious unstable wavelength band found
in this initial study [and in Widnall’s (1975) review] does not appear here. The agreement, in
Figure 14b, with a set of measurements from experiments such as those shown in Figure 12a is
very good.

For vortices of equal strength, the most unstable wavelengths fall in a range between 6 and
10 times the separation distance b, depending on the relative core size a/b. For unequal vortices,
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Figure 14
Crow instability for equal-strength counter-rotating vortices (� = −1). (a) Stability diagram for inviscid flow (the region with ae/b> 0.5
has no physical relevance, as the cores are overlapping there). (b) Growth rate as a function of the normalized axial wavelength. The
symbols represent experimental measurements in the range 1,500 < Re < 2,500 (the instability could not be forced to take on the
wavelengths marked by square symbols), and the line is the theoretical prediction (Equation 8) for Re = 2,000 and a/b = 0.22, which is
representative for all experiments. Figure adapted with permission from Leweke & Williamson (2011), copyright AIP Publishing LLC.
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ba

Numerical simulation Dye visualization

Figure 15
Crow instability of counter-rotating vortices of unequal strength with � ≈ −1/3 (here as part of a four-vortex system), as found, for
example, in the wake of a wing with flaps. (a) Numerical simulation. Panel a reproduced from Chatelain et al. (2008), with permission
from Elsevier. (b) Dye visualization from towing-tank experiments. Panel b reproduced with permission from Ortega et al. (2003).

�-loops: vortex loops
shaped like the Greek
letter �, resulting
from a wavy filament
in a strong external
strain

significantly smaller instability wavelengths, of the order of one spacing, can occur. One such case
arises during the interaction of a vortex pair with a no-slip wall, as described in more detail in
Section 5. Another configuration consists of four parallel line vortices, symmetrically arranged
as two unequal counter-rotating pairs, each representing the vortex system behind an aircraft
wing with outboard flaps. Although the four vortices evolve collectively, the initial dynamics
are dominated by the asymmetric Crow instability of each pair. The numerical simulations by
Chatelain et al. (2008) and experimental visualizations by Ortega et al. (2003) in Figure 15 show
how the perturbations of the weaker vortex develop into a series of �-loops, while the stronger
vortex is much less affected by the instability.

Four-vortex systems, involving both corotating and counter-rotating pairs, have attracted some
attention in the context of aircraft wake turbulence (Crouch et al. 2001, Fabre et al. 2002). The
faster perturbation growth in the closely spaced pair behind each wing (σ ∼ b−2) may trigger
and enhance the development of the Crow instability of the final primary vortex pair farther
downstream and therefore accelerate the decay of the hazardous wake vortices.

3.2. Elliptic Instability

In addition to the long-wavelength Crow instability, vortex pairs develop shortwave perturbations
inside the core of each vortex, with axial wavelengths scaling on the core radius. Clear visual-
izations of this phenomenon were obtained by Leweke & Williamson (1998) and Meunier &
Leweke (2005) for counter- and corotating pairs, respectively. Figure 16 shows the characteristic
deformations associated with this instability, involving an invariant stream tube whose diameter is
almost precisely half the axial wavelength. The vorticity field has a qualitatively similar structure,
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a b

Counter-rotating pair Corotating pair

Figure 16
Water-tank dye visualizations of the elliptic instability: (a) counter-rotating vortex pair at Re = 2,750 (close-up of Figure 1a) and
(b) corotating vortex pair at Re = 4,140. Panel a reproduced with permission from Leweke & Williamson (1998) and panel b
reproduced with permission from Meunier & Leweke (2001), copyright AIP Publishing LLC.

Kelvin mode: linear
perturbation mode of
an axisymmetric
vortex, usually neutral
or stable

and these features can be used to help identify the elliptic instability in visualizations or numerical
simulations.

The origin of this instability was first explained by Moore & Saffman (1975) and Tsai &
Widnall (1976), following an analysis by Widnall et al. (1974) of the instability of a vortex ring.
It results from a resonance mechanism between two perturbation waves (Kelvin modes) of the
underlying axisymmetric structure of each vortex and the modification of this base flow induced
by the strain from the other vortex. This resonance can lead to an exponential amplification of the
involved Kelvin modes, causing the instability of the vortex. In the literature, it has been called the
Moore-Saffman-Tsai-Widnall instability (e.g., Fukumoto 2003) or the Widnall instability (e.g.,
Sipp & Jacquin 2003). As discussed in Section 2 (Figure 5), an external strain produces flow with
elliptical streamlines in the vortex core, which has been shown to be three-dimensionally unstable
(see below). The shortwave instability is therefore now also referred to as elliptic instability. This
phenomenon occurs in a variety of flow configurations (reviewed in Kerswell 2002).

The linear modes of a Rankine vortex were first determined by Kelvin (1880), whereas the linear
modes of a Lamb-Oseen or Batchelor vortex were deduced by Le Dizès & Lacaze (2005) and Fabre
et al. (2006). The velocity field of a Kelvin mode can be expressed as un(r) · exp[i (kz + mθ − ωt)].
Here, k, m, and ω are the axial and azimuthal wave numbers and the (complex) frequency of the
mode (not to be confused with the vorticity ω of Section 2) in the comoving reference frame
of the vortex (Figure 4a). The integer n characterizes the radial complexity of the mode; for a
given azimuthal wave number m, it labels the branches of the dispersion relation ω(k). The elliptic
perturbation induced by the strain of a neighboring vortex has azimuthal wave number m = 2;
it is stationary (ω = 0) in the comoving frame and uniform in the axial direction (k = 0). The
condition of a triadic resonance of this perturbation with two Kelvin modes, (k1,m1, ω1, n1) and
(k2,m2, ω2, n2), is therefore given by

k1 = k2, |m1 − m2| = 2, ω1 = ω2. (13)

For given m1 and m2, this condition is fulfilled for various combinations (n1, n2). It is, however,
observed that elliptic instability is strongest when the two modes have a similar radial structure
(i.e., n1 = n2 = n). In the following, the resulting instability modes will be referred to by the
azimuthal wave numbers of the two contributing Kelvin modes and the label of their radial struc-
ture: (m1,m2, n).
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Critical layer: fluid
layer located at a radial
distance where
ω = mvθ /r + kvz and
where the inviscid
perturbation with
(k, m, ω) is singular

Leweke & Williamson (1998) and Meunier & Leweke (2005) demonstrated that the core defor-
mations observed experimentally in their vortex pairs without axial flow (Figure 16) correspond
to a combination of two stationary helical waves, i.e., an instability mode (m1,m2, n) = (−1, 1, 1),
as initially suggested by Widnall et al. (1974) in the context of vortex rings. Tsai & Widnall (1976)
calculated the growth rate of this mode for the case of a Rankine vortex. Eloy & Le Dizès (2001)
and Fukumoto (2003) showed that numerous other unstable modes with similar growth rates exist
in this type of vortex; none of them, however, was observed in experiments. This can be explained
by the results obtained for the more realistic Lamb-Oseen vortex, for which only the stationary
modes of the form (−1, 1, n), the so-called bending modes, were found to have a significant growth
rate (Eloy & Le Dizès 1999, Sipp & Jacquin 2003). For the other resonant configurations, the
presence of a critical-layer singularity always dampens one of the involved Kelvin waves (Le Dizès
2004, Le Dizès & Lacaze 2005, Fabre et al. 2006). Only strongly deformed vortex pairs with large
cores, such as the Lamb-Chaplygin dipole, were found to develop another subdominant instability
mode of type (2, 0, n) (Billant et al. 1999, Donnadieu et al. 2009).

The generic character of the elliptic instability was demonstrated by Pierrehumbert (1986) and
Bayly (1986), who analyzed the behavior of plane-wave solutions in an unbounded uniform elliptic
flow. In the limit of small strain (Si), Waleffe (1990) derived the now well-known expression for
the maximum instability growth rate, σmax = (9/16)Si , which was further generalized by Le Dizès
(2000b) to account for arbitrary wave orientations and for rotation of the strain field. Applying
these results locally at the vortex center, Le Dizès & Laporte (2002) provided a general expression1

for the growth rate of the elliptic instability modes (−1, 1, n) in a Lamb-Oseen vortex pair. They
also included an estimate of the viscous damping, using the simple expression for plane waves
given by Landman & Saffman (1987), but it was later shown that this overestimates the viscous
damping rate (Roy et al. 2008, Donnadieu et al. 2009). An improved estimate can be made based
on the numerically determined damping rate of the relevant Kelvin modes.

We here provide a corrected operational formula for the growth rate of the elliptic instability
in a pair of Lamb-Oseen vortices with parameters (�1, �2, a1, a2, b). The growth rate of the first
two modes (−1, 1, n), with n = 1, 2, in vortex 1 is given by

σ
(n)
1 =

√√√√(3
4

− �1

4

)4

s 2
0 (�1)

�2
2

4π2b4
− (
 (n) −�1

)2 �2
1

4π2a4
1

− ν

2πa2
1
ζ (n), (14)

where �1 = (a1/b)2(�1 + �2)/�1, s0(�1) is as defined in Equation 5, and

 (1) = −0.135(ka1 − 2.26), ζ (1) = 74.02 + 64.15(ka1 − 2.26), (15)

 (2) = −0.084(ka1 − 3.95), ζ (2) = 229.6 + 104.3(ka1 − 3.95). (16)

Equations 15 and 16 represent linear fits of the real and imaginary parts (frequency and damping
rate, respectively) of the complex frequency of the first two Kelvin modes with azimuthal wave
number m = 1, which can be written as ω · (2πa2/�) =  (n) − iζ (n)/Re , close to the resonant wave
numbers k(1)

c = 2.26/a and k(2)
c = 3.95/a . They provide good approximations of the numerically

determined values in the interval |k−k(n)
c |a < 1 and for Re> 500. In Equation 14, only the viscous

damping term is different from Le Dizès & Laporte’s formula. The growth rates of the instability
in vortex 2 are obtained by exchanging the subscripts 1 and 2 in all expressions.

1There is a misprint in the main formula of Le Dizès & Laporte (2002, equation 6.1 and 6.2), where (b/a1)2 and (b/a2)2

should be replaced by (b/a1)4 and (b/a2)4, respectively.
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Figure 17
(a) Growth rate of the elliptic instability for a pair of identical corotating Gaussian vortices (� = 1) with a/b = 0.14 and Re = 14,000.
Purple and dark yellow symbols represent data from numerical simulations using two different codes; the gray lines represent the
theoretical prediction in Equation 14. Panel a adapted with permission from Roy et al. (2008), copyright AIP Publishing LLC.
(b) Maximum growth rate [inviscid (solid lines) and Re = 1,000 (dashed lines)] and (c) critical Reynolds number for pairs of vortices with
equal circulation.

Figure 17a compares the prediction of Equation 14 to results from direct numerical simulations
of the instability in a pair of identical corotating Lamb-Oseen vortices. Other configurations have
also been tested (Le Dizès & Laporte 2002, Donnadieu et al. 2009, So et al. 2011), each time
showing the same good agreement. Equation 14 can then be used to explore the variation of
the instability characteristics with the vortex pair parameters. Figure 17b plots the maximum
growth rate for equal-strength pairs as a function of the rescaled core size a/b, for both inviscid
and viscous (Re = 1,000) flow. Corotating vortices are found to be more unstable than counter-
rotating vortices, and because their most unstable wavelength is larger, they are also less affected
by viscosity. For a given ratio a/b, the vortex pair becomes unstable above a critical Reynolds
number (Figure 17c).

3.2.1. Effect of axial core flow. Axial flow may be present within the vortices. This is particularly
the case for wing-tip vortices, which motivated Batchelor (1964) to develop his vortex model.
Considering the effect of axial flow on the elliptic instability may therefore have some relevance
for the problem of aircraft wake turbulence.

The axial velocity component does not modify the two-dimensional dynamics of the vortices,
but it affects the three-dimensional elliptic instability, as it changes the characteristics of the vortex
Kelvin waves. Lacaze et al. (2005) analyzed a Rankine vortex with a constant axial velocity in its
core (see the right axis in Figure 4b). They observed that the axial jet breaks the symmetry and
that the resonance of the helical Kelvin modes with m = ± 1 no longer leads to a stationary
sinuous deformation. As for the case without axial flow, many other resonances are found, with
growth rates close to the one for infinite elliptical flow, (9/16)Si.

The case of the Batchelor vortex, i.e., a Lamb-Oseen vortex with a Gaussian axial velocity
profile of amplitude W �/(2πa) (Figure 4b), was treated by Lacaze et al. (2007), who used the
method of Moore & Saffman (1975) to systematically compute the growth rate associated with
each vortex wave resonance. They showed that, as the axial flow amplitude increases, the station-
ary elliptic instability modes (−1, 1, n) are stabilized and replaced by oscillatory modes involving
different azimuthal wave numbers. The theoretical predictions were validated using direct numer-
ical simulations of counter-rotating vortex pairs. Although many different modes are unstable, the
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Figure 18
Elliptic instability modes. (a) Bending mode (−1, 1, 1) in a vortex without axial core flow and (b) double-helix mode (−2, 0, 1) in a
vortex with axial flow. Experimental data reproduced with permission from Leweke & Williamson (1998) and Roy et al. (2011), and
numerical simulation data reproduced with permission from Ryan & Sheard (2007). (c) Cross-sectional view of both modes, showing
the axial perturbation vorticity. The dashed circle has radius a.

instability mode (−2, 0, 1), corresponding to the resonance of the first branches of the m = −2
and m = 0 Kelvin modes, plays a particularly important role, as it is the most unstable in a
large domain of the k-W parameter space; it is expected to be the dominant instability mode for
0.3 < W < 0.65 (see Lacaze et al. 2007). Numerical simulations (Ryan & Sheard 2007) and water
channel experiments with wing-tip vortices (Roy et al. 2011) have provided clear evidence of the
(−2, 0, 1) instability mode [see Figure 18, which also includes a direct comparison with mode
(−1, 1, 1)]. For W> 0.65, the elliptic instability analysis is no longer relevant because each vortex
is unstable with respect to the swirling jet instability (Mayer & Powell 1992), which has a much
higher growth rate than does the elliptic instability.

Results obtained by direct numerical simulations of corotating Batchelor vortices of the same
strength (Roy et al. 2008) or of different strengths (Ryan et al. 2012) show that the rotation of the
vortex system does not fundamentally modify the stability characteristics. The modes observed
for counter-rotating pairs are also present in corotating pairs, but as before, corotation tends to
increase the growth rate and shift the unstable wave-number band to smaller values (Roy et al.
2008). We mention that various other instability modes, corresponding to resonances of Kelvin
modes with possibly different labels n, can be observed in both corotating and counter-rotating
systems, when either the Reynolds number or the relative core size a/b becomes large. Roy et al.
(2008) showed that the instability bands of these modes tend to overlap as a/b increases, making
the vortex system unstable to a wide spectrum of wavelengths.

3.2.2. Nonlinear evolution. The nonlinear evolution of the elliptic instability was previously
discussed by Kerswell (2002). Although a weakly nonlinear evolution leading to a saturation of the
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unstable mode is a priori possible (Waleffe 1989), Kerswell (1999) predicted that this mode could
be destabilized by a secondary instability, again involving a triadic wave resonance mechanism,
followed by other instabilities, possibly leading to a transition to turbulence. Eloy et al. (2003)
observed this scenario for elliptical flow in a closed geometry, which also revealed more com-
plicated breakdown and relaminarization processes that could be related to what was previously
termed resonant collapse (see Kerswell 2002). For a strained vortex in an open configuration,
Schaeffer & Le Dizès (2010) demonstrated numerically that a limit cycle for the elliptic mode
(−1, 1, 1) could be obtained very close to the instability threshold Rec (Figure 17c). Far from this
threshold, more complex dynamics are observed, involving the ejection of some of the vorticity
away from the vortex core and the development of small scales rapidly dissipated by viscosity
(Laporte & Corjon 2000, Schaeffer & Le Dizès 2010). After this turbulent regime, the vortex
relaminarizes, and a new vortex with a larger core is formed, on which the elliptic instability
can grow again (Laporte 2002, Schaeffer & Le Dizès 2010). This instability-breakdown-
relaminarization process can repeat itself, leading to a rapid increase of the vortex core size on
a convective timescale. This process could be the mechanism responsible for vortex core growth
at very high Reynolds numbers, encountered, for example, in aeronautical applications (Laporte
2002).

The nonlinear evolution of the elliptic instability mode (−2, 0, 1) was analyzed by Ryan
et al. (2012) for two counter-rotating, unequal-strength Batchelor vortices. They showed that
the growth of this mode in the weaker vortex leads to the formation of secondary filamentary
vortex structures, which are wrapped around the other vortex. It is not clear, however, if an
instability-breakdown-relaminarization process also exists in the presence of axial flow.

The effect of a stable stratification on the mechanisms involved in the evolution of vortex
pairs described in Sections 2 and 3 (i.e., merging and long- and shortwave instabilities) has been
investigated by a number of authors. An overview of these studies is given in the sidebar, Vortex
Pairs in a Stratified Fluid.

VORTEX PAIRS IN A STRATIFIED FLUID

Two main configurations can be determined in which the vortex axes are either parallel to the density gradient
(vertical pairs) or perpendicular (horizontal pairs).

Vertical Pairs
Counter- and corotating vertical pairs in strong stratification exhibit a Crow-type zigzag instability, involving
antisymmetric and symmetric displacements, respectively (Williamson & Chomaz 1997, Billant & Chomaz 2000,
Otheguy et al. 2006). This is possible because the self-induced rotation of the wavy perturbations is in the same
direction as the vortex core rotation (Billant 2010). The elliptic instability is weakened (Miyazaki & Fukumoto
1992) or even suppressed (Waite & Smolarkiewicz 2008) as the stratification is increased. The zigzag instability
leads to a faster merging of corotating vortices (Otheguy et al. 2015).

Horizontal Pairs
Stratification was found to decrease the separation distance of descending counter-rotating pairs, which tends to
enhance the development of the Crow and elliptic instabilities (Delisi & Robins 2000, Garten et al. 2001, Nomura
et al. 2006). Interaction with baroclinic vorticity leads to a rapid decay of the pair (Holzäpfel et al. 2001). Merging
of corotating vortices is delayed for low Reynolds numbers and accelerated for high Reynolds numbers (Brandt &
Nomura 2007).
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4. COMBINED EFFECTS

The previous sections treat each of the principal dynamical features observed in vortex pairs sep-
arately (i.e., two-dimensional merging and the three-dimensional Crow and elliptic instabilities).
In a realistic pair, these phenomena can occur simultaneously, and the combination can produce a
significantly different outcome than each mechanism acting alone. We here present two examples
of such interactions, considering the effect of the elliptic instability on the merging of corotating
vortices and on the development of the Crow instability of a counter-rotating pair.

4.1. Combined Merging and Elliptic Instability

Two parallel corotating vortices in three dimensions will merge in a uniform two-dimensional
manner (Figure 9) for Reynolds numbers below the critical value Rec for elliptic instability
(Figure 17c). When Re is increased above the threshold, not only does the elliptic perturba-
tion become unstable, but the first diffusive stage also lasts longer, leaving more time for the
instability to grow before the convective merging phase. When the nonlinear stage of the instabil-
ity is reached, with breakdown into small scales and the ejection of vorticity away from the cores,
a premature merging can be triggered for core sizes well below the two-dimensional critical size.
This unstable merging was studied experimentally by Meunier & Leweke (2000, 2001, 2005) and
numerically by Laporte (2002), Schaeffer & Le Dizès (2007), and Nybelen & Paoli (2009). These
studies further showed that the final vortex after merging is turbulent and larger than that for the
case of two-dimensional merging without instability. The visualizations in Figure 19a illustrate
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Figure 19
Unstable merging of corotating vortices. (a) Experimental dye visualization (side view and cross-sectional view at two times) at
Re = 4,000. Panel a reproduced with permission from Meunier & Leweke (2005). (b) Three-dimensional merging in a spatially
evolving flow, representing a realistic aircraft wake, showing vorticity contours from a large-eddy simulation at Re = 106. Panel b
adapted with permission from Laporte (2002).
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this process. They were obtained with the same experimental setup as used for the images in
Figure 9a, but at a much higher Reynolds number; the evolution is strikingly different. An asym-
metry develops in the vortices before merging, and the secondary structures appearing during the
later stages of the instability lead to small-scale motion in the final vortex.

Elliptic instability was also observed in the high–Reynolds number simulations of spatially
evolving corotating vortices by Laporte (2002) (Figure 19b) and Deniau & Nybelen (2009), repre-
senting the wake of an aircraft in a high-lift configuration, with flaps lowered for takeoff or landing.
That merging behind each wing occurs much faster than expected from laminar two-dimensional
dynamics may partly result from the interference of the shortwave instability. This mechanism is
also consistent with earlier experimental observations of unsteadiness (Devenport et al. 1999) and
filamentation (Chen et al. 1999) prior to the spatial merging of corotating vortex pairs.

4.2. Combined Crow Instability and Elliptic Instability

In counter-rotating pairs at sufficiently high Reynolds numbers, the Crow and elliptic instabilities
develop simultaneously (Figure 1). Because the growth rate of the elliptic instability in one vortex
scales with the strain induced by the other vortex, and this strain is proportional to b−2, one expects
the instability to grow faster in regions where the vortex spacing is reduced. Figure 1a,b clearly
shows how the amplitude of the shortwave perturbation is increased at the locations where the
Crow instability pushes the vortices toward each other. As for the corotating case, the nonlinear
stage of the elliptic instability leads to the inception of secondary structures, which are drawn
across to the neighboring vortex, and to a subsequent rapid breakdown into small-scale motion.
Figure 20a shows the resulting turbulent structure, to be compared to the evolution of the pure

Experimental dye visualization Direct numerical simulations

ba

PLAN VIEW

SIDE VIEW

Figure 20
Simultaneous Crow and elliptic instabilities. (a) Experimental dye visualization (front and side views) of the late stages after
reconnection at Re = 2,750. Panel a adapted with permission from Leweke & Williamson (1998). (b) Isosurfaces of the vorticity
magnitude from direct numerical simulations at Re = 2,400, with the instabilities triggered by the addition of random noise. Different
cases are shown at the same stage; the ratio of energies initially attributed to the Crow and elliptic instability wave numbers increases
from top to bottom. Panel b adapted with permission from Laporte & Corjon (2000), copyright AIP Publishing LLC.
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Crow instability at lower Reynolds numbers in Figure 12a. One can still distinctly recognize the
wavelength of the long-wave Crow instability, which modulates the evolution of the shortwave
breakdown.

The precise structure of the late stages of this combined evolution depends on the relative initial
amplitude of the respective perturbations. This aspect was explored by Laporte & Corjon (2000),
who presented various scenarios, from almost uniform shortwave breakdown to an only slightly
perturbed Crow instability, as the initial energy in the Crow mode is increased (Figure 20b).

For high–Reynolds number vortex pairs with significantly smaller core size a/b than those
shown in Figures 1a,b and 20a, such as realistic aircraft wake vortices, the exchange of fluid via
secondary structures will not set in immediately. Each vortex may undergo one or several cycles of
shortwave instability-breakdown-relaminarization, mentioned in the previous section, before the
Crow instability reduces their separation enough to initiate the exchange. Figure 1c suggests that,
although short waves appear all along the vortices, the violent breakdown observed in laboratory
experiments remains localized in the regions of reconnection for these configurations.

5. VORTEX PAIRS NEAR THE GROUND

In this section, we consider the interaction between a vortex pair and a wall or ground surface.
Such a configuration is relevant for aircraft near a runway or for junction flows, in which longi-
tudinal vortices are close to a surface. We discuss vortex rebound and the formation of secondary
vorticity, coming from the boundary layer between the primary vortices and the ground plane.
The secondary vorticity becomes unstable, and we look at the possible sources of the instability,
using the stability analyses discussed earlier in this review. In the case of a long-wave instability
of the primary vortices interacting with the wall, we find a vortex collapse phenomenon, in which
strong axial flows cause distinct topology changes in the vorticity.

The approach of a two-dimensional counter-rotating inviscid point vortex pair to a wall was
investigated by Lamb (1932), who showed that the vortices move apart along hyperbolic trajecto-
ries. In actual measurements of wing vortex wake data presented by Dee & Nicholas (1968), the
vortices appeared to rebound as they approached the surface. This curious effect was successfully
explained by Harvey & Perry (1971) and was later studied in simulations by Peace & Riley (1983).
As the vortex pair approaches the wall, a boundary layer is formed at the wall beneath each vortex,
of opposite-signed vorticity. This boundary layer decelerates in the adverse pressure gradient and
ultimately separates from the ground plane, rolling up to form a discrete secondary vortex of
opposite sign to the primary one. This induces an upward velocity on the original primary vortex,
causing the apparent rebound (see also Orlandi 1990, Kramer et al. 2007). As an illustration of
secondary vorticity generation from an essentially two-dimensional flow, Figure 21 includes a
visualization of the interaction between an approaching vortex pair with a horizontal ground plane
(Harris & Williamson 2012). Simulations of wing wakes have also been conducted to explore the
effects of ambient turbulence, crosswinds, and stratification on a vortex pair near a wall. Many of
these cases are discussed in the review by Spalart (1998).

Figure 22a displays typical trajectories of the primary vortices, clearly showing the vortex
rebound phenomenon. The secondary vortices orbit the primary vortices, as a result of their
weaker strength, and the primary vortices are advected away from the wall. We observe a second
rebound in Figure 22a, which is associated with the generation of an additional secondary vortex
(for multiple rebounds, see Orlandi 1990).

Further characterizing the two-dimensional flow-field development, Figure 22b presents an
example of the time evolution of the circulation. The upper curve represents the slow circulation
decay, due to cross-diffusion of vorticity, for an unbounded vortex pair (Asselin & Williamson
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Figure 21
Counter-rotating vortex pair in ground effect. The primary vortices (red ) descend downward under their
self-induced velocity and create a boundary layer at the wall, which can ultimately separate and form
secondary vortices ( green) of opposite rotation. The lower half of the image is a mirror reflection of the
vortices in the polished ground plane. Figure reproduced with permission from Harris & Williamson (2012).

2015), which exhibits good agreement with predictions from Cantwell & Rott (1988). In the pres-
ence of a ground plane, the primary vortices decay more rapidly in proximity with the secondary
vorticity growth near the wall due to diffusion and vorticity cancellation. In essence, vortices in
the presence of a wall lose their strength dramatically.
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a bSIDE VIEWS TOP VIEW

Figure 23
Dye visualization of the three-dimensional Crow-type instability of the secondary vortices at Re = 1,260. (a) Side views, at two
different times, with volume illumination. (b) Top view, with illumination by a light sheet parallel to the wall placed near the center of
the lower image in panel a. Figure reproduced with permission from Harris & Williamson (2012).

5.1. Instability of the Secondary Vortex

The secondary vortex develops a waviness, which is shown clearly in the side view of Figure 23a,
for Re = 1,260 (Harris & Williamson 2012). The secondary vortices are between the primary
vortices. Because the primary vortices have been kept invisible (only the secondary vortices are
selectively marked with fluorescent dye in this case), one may clearly demonstrate an antisymmetric
phase relationship between the instabilities of the two secondary vortices. This symmetry is also
evident in a horizontal cross-sectional image of the secondary vortex waviness in Figure 23b,
where the mushroom vortex pairs move toward each other, ultimately merging the two rows into
a single row of alternating-sign vortices. The instability deforms the complete secondary vortex
tubes in a displacement mode, rather than an elliptic higher-order radial mode, in which one
would observe internal deformations.

The interaction of a single vortex with a wall was originally investigated numerically by Luton
& Ragab (1997), who found that the secondary vortex is unstable in the presence of the primary
vortex (at Re = 2,196), inducing what looks like a shortwave displacement bending mode. In
the simulations of Duponcheel et al. (2015) at higher Reynolds numbers (Re = 5,200), there is
visual evidence in the early stages (Figure 24a) that the structure of the instability is of an elliptic
instability type. In all the above works, the origin of the instability of the weak vortex in a vortex
pair was suggested to be of an elliptic-flow type.

To determine the source of such an instability, whether from a Crow-type displacement mode
or from an elliptic mode, one must choose for analysis a vortex configuration in which there exists
a weaker secondary vortex rotating around a stronger primary vortex (neglecting effects from the
other two vortices, as well as from the image vortices). This is quite similar to the four-vortex
flow analyzed by Bristol et al. (2004) representing an aircraft wing wake. They recognized that
it is essential that the plane containing the perturbation wave rotate with the vortex system, with
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a bOnset of instability Breakdown into small-scale motion

Figure 24
Visualization (by isosurfaces of the vorticity magnitude) of the elliptic instability in the secondary vortices at Re = 5,200. (a) Onset of
the instability. (b) Breakdown into small-scale motion at later times. Figure reproduced with permission from Duponcheel (2009).

angular velocity � (Figure 2c). This significant effect was omitted from the analysis of Luton &
Ragab (1997).

The spread of experimental data for the instability wavelength measurements in Figure 25a
is broadly in agreement with the most unstable wavelength for the displacement mode, and is not
close to the elliptic mode, according to the inviscid analysis of Harris & Williamson (2012). This
inviscid analysis was taken to support the displacement mode observed in the work above and in
the simulations of Luton & Ragab (1997). However, Williamson et al. (2014) showed that in the
viscous case, the wavelengths of both the most unstable elliptic and displacement modes coincided
with experimental measurements; in other words, the wavelength analysis does not decide which

Experimental case with Re = 1,260 DNS case with Re = 5,200

a

0

1

2

0 1 2 3

Experimental
range

b

0

1

2

3

4

5

DNS

0 1 2 3

DisplacementDisplacementt
Inviscid ViscousViscous

EllipticElliptic
DisplacementDisplacement

Inviscid Viscous

EllipticElliptic

Γ
σ 2πb2

Γ
σ 2πb2

λ/b0λ/b0

Figure 25
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pair/ground interactions shown in Figures 23 and 24: (a) experiment at Re = 1,260 (Harris & Williamson 2012) and (b) direct
numerical simulation (DNS) at Re = 5,200 (M. Duponcheel, C. Cottin, G. Daeninck, G. Winckelmans & T. Leweke, submitted
manuscript).
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mode is responsible for the instability. However, the growth rate for the displacement mode
was greater than that for the elliptic mode, thereby again supporting the observations of the
displacement mode in experiments.

A more accurate analysis of the viscous effects in Figure 25a, based on the results in Section 3.2,
seems to yield a slightly different conclusion: The larger growth rate of the displacement mode sug-
gests that we would find this mode experimentally. However, the broad range for peak growth rates
for this mode (at Re = 1,260) does not point to a precise instability wavelength. Conversely, the
narrower peak of the growth rate curve for the elliptic instability, centered around the experimen-
tal range of results, suggests that the length scale is possibly triggered by the elliptic mechanism.
Thereafter, the Crow-type displacement mode takes over as the most unstable disturbance, as ob-
served in experiments. At the higher Reynolds number in Figure 25b, M. Duponcheel, C. Cottin,
G. Daeninck, G. Winckelmans & T. Leweke (submitted manuscript) found two instability wave-
lengths in their spatial spectra, which agree remarkably well with the peak growth rates of the ellip-
tic instability and of the displacement mode. In the simulations, the elliptic instability (Figure 24a)
is clearly evident initially at the wavelength λ/b0 = 0.4, followed by spectral evidence of the dis-
placement mode, λ/b0 = 1.0. As the Reynolds number increases, the most unstable wavelengths
for the two modes become distinctly different.

5.2. Crow Instability in Ground Effect

We here briefly discuss some essential characteristics of the influence of ground proximity on the
development of long-wave instability. (The initial instability is described in Section 3.1.) It is clear
that if the initial height of the vortex pair above the surface is large, then the Crow instability,
and the eventual redistribution of vorticity into vortex rings, will occur prior to wall interaction.
Correspondingly, one must also expect that, if the vortex pair is generated below a critical height to
the surface, then there will not be enough time for the long-wave instability to take hold before the
vortices are separated from each other in wall effect; one might expect that the long-wavelength
instability will be inhibited.

In essence, three regimes of vortex-surface interaction are found, depending on the initial
height at which the vortex pairs are generated (Asselin & Williamson 2015). Each regime involves
the phenomenon of vortex collapse by which strong local axial flows develop, and a segment
of the original vortex tube is reduced to a concentrated region of vorticity, often leaving be-
hind very thin wisps of dye marking weak vorticity. A feature of these flows is that small vortex
rings are generated from the concentrated regions. An example of this phenomenon is seen in
Figure 26 for moderate initial height. The resulting structure is remarkably similar to the small-
scale structure that is left behind when a vortex ring impinges upon a wall obliquely (Lim 1989).
The pressure-driven axial flows transport vorticity away from the parts of the vortex that first
come in contact with the ground plane. This is as true for the ring as it is for the vortex segments
found in Figure 26.

Measurements of the instability amplitude also clearly show the effects of the wall proximity
(Figure 27). The amplitude growth of the waviness is inhibited by the presence of the ground,
and the rather sudden stop to the amplitude increase is correlated with the growth of secondary
vorticity, along with a reduction in the strength of the primary vortex (see the curve for height
h0/b0 = 5). For the larger initial height (h0/b0 = 10), the classical vortex rings are formed before
interacting with the ground, but again the growth of amplitude is diminished as the vortices
encounter secondary vorticity at the wall.
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a b

BEFORE GROUND INTERACTION AFTER GROUND INTERACTION

Figure 26
Dye visualization of the development of the Crow instability in the presence of a wall, for a moderate initial height of the pair
(h0/b0 = 7.5). Primary vortices viewed from below (a) before significant ground interaction and (b) after ground interaction, when
strong local axial flows have generated the set of concentrated vortices (which turn out to be small vortex rings). Figure reproduced with
permission from Asselin & Williamson (2013), copyright AIP Publishing LLC.

In summary, the principal characteristics of the long-wave instability in the presence of the
wall are as follows:

� Even a very slight waviness in each vortex, as it approaches the wall, can trigger a large
pressure gradient and axial flow that strips away the vortex filaments at the trough and forms
concentrated vortices at the peak. One might conclude that the effect of a surface interacting
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Growth of the Crow instability amplitude A (defined in Figure 13a), as a function of the initial distance h0
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inhibited by the interaction with the wall. Figure adapted with permission from Asselin & Williamson (2015).
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with a small perturbation on an otherwise parallel vortex is enough to cause surprisingly large
three-dimensional effects. This might be seen as a fundamental characteristic for a vortex
aligned with a surface.

� The concentrated vortices at the peak either evolve into vertical vortex rings of large diameter
or into smaller horizontal vortex rings, which rise up away from the wall. In essence, vortex
rings are ubiquitous in these flows, despite the apparent complexity of the vortex interactions.

� The Crow instability is inhibited by the presence of the ground, if the initial vortex pair
height is below a critical value.

Finally, it is interesting to note that a single vortex parallel to a solid surface can also be subject to
both Crow and elliptic instabilities, by effectively forming a counter-rotating pair with its image.
This feature was analyzed by Rabinovitch et al. (2012) and Benton & Bons (2014) in the context
of blade tip leakage in turbomachinery.

6. CONCLUDING REMARKS

In this review, we discuss the physical mechanisms involved in the dynamics of pairs of parallel
vortices. We have restricted ourselves to cases in which each vortex retains its identity long enough
to develop the various phenomena (instabilities). This excludes certain combinations of circulations
and core sizes, for which transient dynamics result in a rapid alteration or destruction of one of the
vortices (Figure 11). This conceptually simple flow can be investigated in detail by theoretical,
experimental, and numerical techniques, and several new results have been obtained over the past
three decades. They show in general very good agreement; examples of direct comparisons of
different approaches can be found in Leweke et al. (2001), Laporte & Leweke (2002), and Le
Dizès & Laporte (2002).

We have focused on the mechanisms causing the initial transformation of a given vortex pair.
The later evolution of the flow involves other fundamental flow phenomena, such as vortex re-
connection (Kida & Takaoka 1994) or vortex ring dynamics (Shariff & Leonard 1992) for the
case of the Crow instability. They are not considered further here; they deserve a (new) review of
their own. Additional effects such as fluid stratification (see the sidebar, Vortex Pairs in a Stratified
Fluid), external turbulence (Holzäpfel et al. 2003), and background rotation (Hopfinger & van
Heijst 1993, van Heijst & Clercx 2009), which have relevance for aeronautical and geophysical
applications, are also beyond the scope of this review.

SUMMARY POINTS

1. Two parallel vortices in a homogeneous fluid either translate or rotate around each
other, without changing their separation distance. The strain induced by one vortex
in its neighborhood is enhanced inside the core of the second vortex by the nonlinear
interaction with the vorticity. This effect depends on the rotation of the system.

2. Merging of a corotating pair arises when the core sizes are increased beyond a critical
fraction of the separation distance by viscous diffusion. Several dissipative and convective
stages can be identified. Rapid convective merging can be understood by considering the
vorticity dynamics in the streamline pattern of the corotating reference frame. It generates
antisymmetric vorticity, which causes merging.
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3. Counter-rotating pairs are unstable with respect to three-dimensional displacement
perturbations (Crow instability). This results from the combination of mutually and
self-induced dynamics of the vortices, involving rotation and straining of the wavy
perturbations. Unstable axial wavelengths are in the range of 5–10 vortex spacings for
equal-strength pairs but can be as low as one spacing for unequal vortices. The former
evolve into a series of vortex rings through a reconnection process, whereas in the latter
the weaker vortex is deformed into periodic loops.

4. For sufficiently high Reynolds numbers, all pairs are subject to shortwave instabilities of
the vortex cores. These are induced by a resonance between the mutually induced strain,
which makes the core streamlines elliptic, and linear Kelvin modes of the vortex. The
characteristic unstable perturbations of this elliptic instability have wavelengths of the
order of the core diameter. Their structure varies in the presence of axial flow inside
the vortices. The nonlinear evolution of the elliptic instability leads to a breakdown into
small-scale turbulent motion and rapid dissipation.

5. Elliptic instability can interfere with other phenomena. It can lead to the premature
merging of corotating pairs, with a larger and more turbulent final vortex, or to the
breakdown of a counter-rotating pair, in combination with the Crow instability.

6. The mode structures of the three-dimensional instabilities, and complete sets of equations
for the determination of the respective growth rates in pairs of arbitrary unequal vortices,
can be used to identify these phenomena in other situations involving the interaction of
parallel or nearly parallel vortices.

7. One such configuration is the descending vortex pair in ground effect, in which secondary
vortices are formed from the boundary layer separating from the wall, leading to the
rebound of the pair. These vortices form unequal pairs with the primary vortices, which
can exhibit both Crow and elliptic instabilities. Different evolutions can be predicted
from theory, depending primarily on the Reynolds number, in good agreement with
observations.

FUTURE ISSUES

1. The basic mechanism for vortex merging now seems well established, but some open
questions remain, in particular concerning high Reynolds numbers. The precise origin
of the transition (transient evolution versus instability) is also still under debate.

2. The analysis of long-wave interactions of vortex filaments can be extended to more
complex configurations, also involving an initial curvature and torsion of the vortices.
Examples are arrays of vortex rings and helical vortices, which have previously been
studied by Levy & Forsdyke (1927) and Widnall (1972). Helical vortex systems have
recently regained interest in the context of rotor wake aerodynamics (Vermeer et al.
2003, Leishman 2006, Felli et al. 2011).

3. Curvature and torsion also have an effect on the shortwave core instabilities. The Kelvin-
mode coupling induced by curvature is different from the one caused by an external
strain. Fukumoto & Hattori (2005) have predicted a shortwave curvature instability for
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Rankine-type vortices. Current research is concerned with an extension of these results
to vortices with smooth vorticity profiles (also including axial flow) and with a first
experimental or numerical observation of this instability.
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Jiménez J. 1975. Stability of a pair of co-rotating vortices. Phys. Fluids 18:1580–81
Jing F, Kanso E, Newton PK. 2012. Insights into symmetric and asymmetric vortex mergers using the core

growth model. Phys. Fluids 24:073101
Josserand C, Rossi M. 2007. The merging of two co-rotating vortices: a numerical study. Eur. J. Mech. B Fluids

26:779–94
Kelvin L. 1880. On the vibrations of a columnar vortex. Philos. Mag. 10:155–68
Kerswell RR. 1999. Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech.

382:283–306
Kerswell RR. 2002. Elliptical instability. Annu. Rev. Fluid Mech. 34:83–113
Kida S, Takaoka M. 1994. Vortex reconnection. Annu. Rev. Fluid Mech. 26:169–77
Klein R, Majda AJ, Damodaran K. 1995. Simplified equations for the interaction of nearly parallel vortex

filaments. J. Fluid Mech. 288:201–48
Kramer W, Clercx HJH, van Heijst GJF. 2007. Vorticity dynamics of a dipole colliding with a no-slip wall.

Phys. Fluids 19:126603
Lacaze L, Birbaud AL, Le Dizès S. 2005. Elliptic instability in a Rankine vortex with axial flow. Phys. Fluids

17:017101
Describes the effect of
axial flow on elliptic
instability in realistic
vortices.

Lacaze L, Ryan K, Le Dizès S. 2007. Elliptic instability in a strained Batchelor vortex. J. Fluid Mech.
577:341–61

Lamb H. 1932. Hydrodynamics. Cambridge, UK: Cambridge Univ. Press. 6th ed.
Landman MJ, Saffman PG. 1987. The three-dimensional instability of strained vortices in a viscous fluid. Phys.

Fluids 30:2339–42
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