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Abstract

Sequencing technologies have deeply changed our approach to the study
of food microbial communities. This review describes recent exploitations
of high-throughput sequencing applications to improve our knowledge of
food microbial consortia. In the past 10 years, target amplicon sequencing
has become routinely used in many food microbiology laboratories, pro-
viding a detailed picture of food-associated microbiota. Metagenomics and
metatranscriptomics approaches are still underexploited in food microbial
ecology, despite their potential to uncover the functionality of complex com-
munities. In a near future, sequencing technologies will surely advance our
understanding of how to effectively use the invaluable microbial resources
to improve food quality and safety.
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INTRODUCTION

The relationship between foods and their microbiome is fundamental to their quality and safety.
Beneficial microbial communities can be responsible for rheological and organoleptic traits of
fermented foods. However, undesirable microbes may also be present, and their development
may affect the quality of food, leading to spoilage or other food safety issues. Food microbiology
has traditionally relied on culture-based techniques. However, in addition to their low sensitivity,
such techniques may require unknown growth factors and/or growth conditions present in natural
habitats but not easy to reproduce in laboratory media. Such limitations may lead to an underes-
timation of microbial diversity. Culture-independent techniques, based on the analysis of nucleic
acids (NAs) extracted directly from the food matrix, can help in overcoming these limitations. Dif-
ferent methods have been widely applied in microbial ecology studies, with denaturing gradient
gel electrophoresis, temporal temperature gradient gel electrophoresis, and real-time quantitative
polymerase chain reaction (qPCR) the most common techniques used in food microbial ecology
(Cocolin et al. 2013).

The advent of high-throughput sequencing (HTS) technologies in 2004 revolutionized our
approach to microbial ecology. After the launch on the market of the first pyrosequencer by 454
Life Sciences in 2004 and of Genome Analyzer by Solexa in 2005, different sequencers followed,
with constant improvements in throughput (number of reads produced per single run) and read
length (Mayo et al. 2014). HTS ensures higher sensitivity compared with traditional culture-
independent approaches, allowing the detection of nondominant communities that may play an
important role in the studied ecosystem. However, the great advantage of these methods is the
unprecedented potential for quantitative detection of the structure of microbial communities: The
number of reads detected for a given organism is proportional to its abundance in the sample.
Moreover, HTS greatly reduced the price per base compared to Sanger sequencing, boosting
the spread of these technologies in microbiology laboratories and their application in multiple
fields. A search of the Web of Science database (https://apps.webofknowledge.com) for “food”
AND either “microbiota” OR “microbiome” produced 17,916 hits published from 2008 to (April)
2017, with a huge increase in the number of published papers beginning in 2011–2012, when
HTS technologies started to be routinely used in food microbial ecology studies (Figure 1). Two
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Figure 1
Number of hits found in Web of Science (https://apps.webofknowledge.com) database for search terms
“food microbiome” or “food microbiota” (bar graph), and “high-throughput sequencing” (line graph) in
articles published from 2008 to 2016 (search on April 2017).
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Figure 2
Graphic representation of possible high-throughput sequencing applications for the study of food
microbiota or microbiome. Abbreviations: NA, nucleic acid; OTU, operational taxonomic unit; PCR,
polymerase chain reaction.
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substantially different approaches can be used: targeted amplicon sequencing and shotgun se-
quencing (Figure 2). In both cases, NAs are directly extracted from food samples. When the
amplicon-based approach is employed, a PCR step is necessary for the selection of the desired
target gene. Taxonomically relevant genes are the common targets of this analysis, with the 16S
ribosomal RNA (rRNA) gene considered the universal target for bacteria. Reads obtained can
be aligned to appropriate databases, thereby obtaining the taxonomic composition of the micro-
biota in a given sample. Besides the identification of the operational taxonomic units (OTUs)
present, their relative abundance can be estimated, because the number of reads associated with
a given taxon will be proportional to its levels in the sample. In the shotgun-based approach,
the whole DNA or RNA (after the synthesis of complementary DNA) is fragmented by enzy-
matic or mechanical methods prior to being sequenced. The final output represents the whole
genomic potential (metagenome) of the microbial populations present in the sample: Bioinfor-
matics analysis allows identification of the presence and abundance of specific genes of interest
and reconstruction of metabolic pathways in addition to providing information on taxonomic
composition. When RNA, in particular, messenger RNA (mRNA), is the target of this analysis, a
picture of the metatranscriptome can be achieved.
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Pangenome: the
entire set of genes
found in a microbial
species, including
those genes present in
all strains (core
genome) and those
present in only some

Shotgun-based DNA sequencing may also be used when starting from the DNA of a pure
culture as a quick and cost-effective method for whole-genome sequencing (WGS). Thanks to
the reduced sequencing costs, several complete and draft genomes of different strains of the same
microbial species are now available in public databases. This allows comparative genomics studies
to identify the core genome and pangenome of a species. One promising application offers the
potential to reconstruct draft and complete genomes directly from metagenomics reads, avoiding
previous cultivation and isolation, overcoming the limitation of the culture-based techniques, and
allowing in situ strain monitoring.

Below, the application of metagenomics in food microbial ecology studies is described, with
emphasis on the use of metagenomics in the monitoring of food fermentation or spoilage dynamics
and in food safety. Finally, recent promising approaches for data analysis are described and issues
and pitfalls are discussed.

FOOD MICROBIAL ECOLOGY STUDIES

High-Throughput Investigation of Food Fermentations

Thus far, most of the HTS-based studies discussed have focused on the monitoring of micro-
bial populations during food fermentations (De Filippis et al. 2017c). A comprehensive, although
not exhaustive, list of studies using amplicon-based HTS in foods and food environments is
provided in Supplemental Table 1. HTS has been useful in characterizing the microbiota in-
volved in the manufacturing and ripening of several traditional fermented products (Figure 3).
Most of the studies relied on the use of amplicon-targeted HTS, which gave a comprehensive
and more sensitive picture of the microbiota but provided only a description of the popula-
tions involved and did not add appreciably to our knowledge of the microbiota of fermented
foods. Lactic acid bacteria (LAB) were confirmed as the main players in many food fermen-
tations (Figure 3), although the higher sensitivity of this method highlighted the presence of
minor communities never reported previously (Quigley et al. 2012b). After an initial publica-
tion on Irish cheeses (Quigley et al. 2012b), the microbial ecology of a wide variety of fresh
and ripened dairy products was investigated (Supplemental Table 1). A comprehensive charac-
terization of the microbiota in traditional cheeses that are granted a specific/protected label-
ing may help in defining their typicality and tracing their origin (Aldrete-Tapia et al. 2014;
De Filippis et al. 2014, 2016a; Dolci et al. 2014; Delcenserie et al. 2014; Ercolini et al. 2012;
Fuka et al. 2013). Moreover, a better understanding of the manufacturing and ripening process
may be achieved, emphasizing differences in microbial composition in different parts of the same
cheese (Calasso et al. 2016; De Filippis et al. 2016a; De Pasquale et al. 2014, 2016; O’Sullivan et al.
2015).

Besides cheeses, other types of food fermentations have been investigated using a sequencing-
based taxonomic approach (Figure 3; Supplemental Table 1). Fermentation of sourdough used
to produce traditional bread and sweet leavened products has also been explored. Although dif-
ferent types of flours harbor complex and diverse microbiota (Ercolini et al. 2013), as soon as
fermentation proceeds, a selected core microbiota including few taxa can be identified in all the

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Heat plot showing presence (red ) or absence (blue) of the most abundant microbial taxa in food samples analyzed in 64 published studies
(listed on the left). Only taxa with abundances greater than 1% (as reported in the original publication) are included. The row bar is
colored according to the type of food matrix, whereas the column bar shows taxa belonging to lactic acid bacteria ( green) or others (blue).
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samples during sourdough propagation (Ercolini et al. 2013, Lattanzi et al. 2013, Lhomme et al.
2015) (Figure 3).

The presence of a resident microbiota in food processing facilities has also been frequently
investigated (Supplemental Table 1), describing the occurrence of beneficial microbes that may
be involved in the fermentative process of cheese (Bokulich & Mills 2013a, Calasso et al. 2016,
Stellato et al. 2015), sourdough (Minervini et al. 2015), and fermented beverages (Bokulich et al.
2012a, 2012b, 2015a). However, the facility environment may also be a primary source of potential
spoilers or pathogens (Bokulich et al. 2015b, Stellato et al. 2015).

Microbiome studies are very often completed with a certain amount of metadata, the more the
better. A great potential of taxonomic studies is the option to correlate the abundance of micro-
bial taxa with other continuous variables. Such analyses do not prove causal effects and the results
should be considered carefully, as the correlative link is not always due to ecologically mean-
ingful relationships. However, statistically relevant associations can be very useful in supporting
a hypothesis on the role of certain microbial species in the food. Correlation analysis between
the abundance of microbial taxa and chemical determinations may highlight the possible species
responsible for the production of metabolites important for the properties of the final products
(De Filippis et al. 2017b, De Pasquale et al. 2014, Lattanzi et al. 2013).

The use of shotgun metagenomics and metatranscriptomics may give more useful information
about the microbial activities involved in food production. Although this approach is still underex-
ploited, a few studies have emphasized its potential in understanding the cheese-ripening process
(De Filippis et al. 2016a, Dugat-Bony et al. 2015, Lessard et al. 2014, Monnet et al. 2016, Wolfe
et al. 2014).

Wolfe et al. (2014) used metagenomics to study the main microbial activities contributing
to the flavor of surface-ripened cheeses. Different surface-ripened cheeses (bloomy, natural, and
washed-rind cheeses) were analyzed and pathways related to sulfur and branched-chain amino acid
degradation were found to be enriched in washed-rind cheeses, leading to compounds character-
ized by more pungent aromas. Moreover, new cold-adapted lipase and protease were identified
that are possibly involved in cheese flavor production during refrigerated cheese aging and storage
(Wolfe et al. 2014). Metagenomics may help in understanding potential activities of the microbial
community. In contrast, the use of metatranscriptomics may sometimes be preferable to identify
which genes are expressed in the food and to observe patterns of functional change over time or in
response to a modulation of the technological parameters (e.g., temperature, relative humidity).
In other studies, model surface-ripened cheeses were inoculated with bacterial and fungal strains
and their transcriptomes studied over the ripening period, highlighting changes that occur in the
expression of microbial genes and pathways related to carbohydrate fermentation, proteolysis, and
amino acid catabolism, which lead to the production of flavor-active molecules (Dugat-Bony et al.
2015, Lessard et al. 2014). In addition, Monnet et al. (2016) studied the metatranscriptome of
inoculated strains during ripening of a Reblochon-type cheese, clarifying the role of the strains
in the different phases of ripening. The authors suggested that the yeast Geotrichum candidum was
important in the first phase of the ripening process when the expression of genes associated with
amino acid catabolism from this strain reached a maximum. As ripening proceeds, Debaryomyces
hansenii takes over, underlining a different role for the inoculated starters in determining the flavor
and texture of the final cheese.

To date, only one research study has focused on the metatranscriptome of a cheese produced
with the addition of an undefined natural starter (De Filippis et al. 2016a). The natural fermenta-
tions are particularly interesting cases in which microbial activities involve a complex and undefined
microbiota, usually with unpredictable results in terms of manufacturing and ripening quality and
kinetics. In a ripened pasta filata cheese, the effect on microbial gene expression of a change in the
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ripening parameters (humidity and temperature) was studied, showing how the increase of ripen-
ing temperature enhances the expression of genes involved in proteolysis, lipolysis, and amino
acid and lipid catabolism in LAB, possibly influencing cheese texture and aroma (De Filippis et al.
2016a). Such information at the molecular level can be useful in predicting how technological pa-
rameters can be utilized to accelerate the dynamics of cheese ripening. Undefined starter cultures
possess high genetic diversity, which may be important in flavor development. Erkus et al. (2013)
used a combination of metagenomics and pangenomics to understand the mechanisms involved
in maintaining the genetic diversity of an undefined milk starter used in cheese manufacturing
during several propagation cycles. The authors suggested that a kill-the-winner mechanism sub-
sists: The phage sensitivity of the fittest strain was regulated by its concentration in the culture,
preventing the extinction of other genetic lineages during back-slopping routines (Erkus et al.
2013). Genomic comparison of foodborne bacteria and fungi may be very useful in understanding
their adaptive mechanisms to the food matrix and highlighting the presence of technologically
important differences among closely related strains (Ercolini 2017). Indeed, comparison of Penicil-
lium spp. genomes enabled the identification of recent horizontally transferred elements present
only in domesticated strains isolated from cheeses (Ropars et al. 2015). The authors identified
genes on these elements that contributed to a competitive advantage in utilizing cheese nutrients,
conferring to the strains carrying the genes the ability to grow faster in a cheese matrix (Ropars
et al. 2015).

Only a few studies have addressed the potential of shotgun metagenomics in foods other than
cheese, such as kimchi ( Jung et al. 2013), Chinese rice wine (Hong et al. 2016), and cocoa beans
(Illeghems et al. 2015). Nevertheless, omics-based approaches promise to reveal the contribution
of fermentative microbes in several biotechnologically relevant processes. Application of omics
will elucidate the pathways leading to the desired properties in different food products and help
in understanding approaches to quality enhancement. Moreover, comparing genomes from food
isolates, or those retrieved directly from metagenomics reads, has the potential to uncover the
hidden properties of several foodborne microbes and thereby exploit them to enhance quality and
safety.

Tracking Microbial Contamination Routes and Monitoring Food Spoilage

Understanding the evolution of the specific spoilage organisms (SSOs) in the dynamics of food
spoilage is another key topic for food microbiologists. Most of the studies on this topic in the
literature focus on fresh meat spoilage, monitoring the development of the SSOs during stor-
age and/or their diversity changes according to different packaging conditions (Supplemental
Table 1). Figure 4 shows the most abundant microbial genera associated with the spoilage of
seafood and several meat products (fresh meat, minced meat, raw sausages) in previously pub-
lished studies extracted from FoodMicrobionet (http://www.foodmicrobionet.org) (Parente
et al. 2016). FoodMicrobionet is a database that contains data from 33 studies on food-associated
bacterial communities and related metadata. Samples are classified using the FoodEx classifica-
tion (http://www.efsa.europa.eu/en/data/data-standardisation), and even inexperienced users
can easily extract subsets of samples for the food matrix of interest and use them in compara-
tive studies. Data can be easily processed for α- and β-diversity analyses using ad hoc R scripts
(https://www.r-project.org). Fresh meat, fish, and environmental samples show high bacterial
diversity that decreases during spoilage when SSOs are selected by the storage conditions used:
The spoilage of sausages (stored in a vacuum) is characterized by the presence of LAB, whereas
Pseudomonas and Brochothrix dominate in aerobically spoiled meat (Figure 4a,b). Nevertheless, a
spoilage-associated core microbiota can be observed, common to both meat and seafood products
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as well as to the production environment (Figure 4c), highlighting the importance of the food
processing environment as a source of potential spoilage microbes. These types of observations
may help to identify the main microbial players in the spoilage process along with their poten-
tial contamination routes, thereby emerging as a useful tool available for the management of the
hygiene practices in food processing plants.

Indeed, Chaillou et al. (2015) highlighted that with some differences, similar spoilage dynamics
can be observed in meat and seafood products. The importance of extrinsic factors related to
storage conditions (temperature, type of packaging) was also emphasized: Whereas the microbiota
of aerobically stored beef was dominated by Pseudomonas and led to more rapid spoilage, LAB were
associated with vacuum packaging, and both Brochothrix thermosphacta and Carnobacterium were
identified as SSOs in modified-atmosphere packaging (60% O2 and 40% CO2), leading to different
spoilage-associated metabolomes (Ercolini et al. 2011). In addition, intrinsic factors, such as the
addition of preservatives, may influence the spoilage rate and SSOs involved: Reducing the salt
content in raw pork sausages stored under vacuum revealed a decrease of bacterial diversity with
the development of a spoilage-associated microbiota (LAB, B. thermosphacta, Enterobacteriaceae),
leading to more rapid unacceptability of the product (Fougy et al. 2016). Moreover, the addition
of sodium lactate and diacetate to sausages led to a dramatic change in the microbiota involved in
spoilage: Several LAB and Pseudomonas were replaced by Lactobacillus graminis, which dominated
in samples to which the antimicrobial mixture was added (Benson et al. 2014).

Some studies have aimed to elucidate the possible contamination routes in food handling and
processing plants. Beef carcasses contained high microbial diversity and the well-known genera
associated with meat spoilage (De Filippis et al. 2013), with differences due to slaughtering practices
and occurring at different areas of the carcass (Korsak et al. 2016). De Filippis et al. (2013) suggested
that bacteria originally present on the carcass colonize the butchery environment, where they
become resident as they are well adapted to meat exudates and low temperature. This resident
microbiota represents a primary contamination source for fresh meat (De Filippis et al. 2013). HTS
has been widely used to track contamination sources in different types of food processing plants:
fresh meat (De Filippis et al. 2013, Stellato et al. 2016); cooked sausages (Hultman et al. 2015);
salmon fillets (Møretrø et al. 2016); and ready-to-eat, composite meals (Pothakos et al. 2015). In
all cases, a resident microbiota was found and its importance as the primary contamination source
was highlighted, as was the need for adequate cleaning and sanitation practices in food-handling
environments.

Shotgun-based sequencing approaches are a promising tool for exploiting spoilage dynam-
ics, but to the best of our knowledge, only one study exists. Nieminen et al. (2012) compare
spoiled marinated and unmarinated poultry meat and report that the spoilage dynamics were as-
sociated with the catabolism of carbohydrates and the marinade was able to inhibit some SSOs,
such as B. thermosphacta, that produce off-flavors from carbohydrate degradation (Casaburi et al.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
Structure of microbial communities in raw and spoiled meat and seafood and related processing environments. Data were extracted
from five studies that included meat or seafood products contained within FoodMicrobionet (Parente et al. 2016; data retrieved April
2017; http://www.foodmicrobionet.org). (a) A bipartite network was produced from rarefied operational taxonomic unit tables. The
width of the upper boxes is proportional to the taxon abundance, whereas the width of the ribbons connecting upper (taxa) and lower
(food groups) boxes is proportional to the number of sequences assigned to that taxon in each food group. (b) Modules of taxa
significantly associated with food groups are outlined in red, whereas the taxon relative abundance is indicated by the depth of the
purple shading. (c) A Venn diagram reveals shared microbial genera among fresh or spoiled meat and seafood and related processing
environments. Only genera with abundance greater than 3% are included. Numbers indicate the number of shared taxa.
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2014). Although still largely underexploited, metagenomics and metatranscriptomics will aid in
the understanding of food spoilage dynamics, highlighting the main microbial pathways leading
to sensorial spoilage for the production of off-flavors or other undesirable compounds. In this
regard, it is of utmost importance to design studies and molecular and bioinformatics protocols to
address spoilage microbes at the strain level, as different strains of the same species can have dif-
ferent effects on the release of spoilage-associated metabolites, and such features are strictly strain
specific and dependent on storage conditions (Casaburi et al. 2011, 2014; Ercolini et al. 2010).

The food industry benefits from improved knowledge of spoilage mechanisms. In addition,
the effect of applying different technological hurdles may be explored to achieve a more in-depth
understanding of the spoilage process and the best ways to limit or retard it.

Omics and Food Safety Issues

Reliable detection, identification, and tracking of foodborne pathogens are fundamental for food
safety. Pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat anal-
yses are the currently used subtyping methods for surveillance and detection of foodborne dis-
ease outbreaks. However, they have limited discriminatory power for some pathogens, partic-
ularly for specific Salmonella spp. serovars (Allard et al. 2012, Ranieri et al. 2013, Zheng et al.
2011). In contrast, genome comparison and single nucleotide polymorphism detection have
greater discriminatory power, as they are able to cluster the isolates in epidemiologically rele-
vant groups during outbreaks of listeriosis, pathogenic Escherichia coli infections, Campylobacter
enteritis, vibriosis, salmonellosis, and norovirus infections (Baillie et al. 2012, Ronholm et al.
2016). This enables more rapid identification of outbreak-related strains and tracking of the
transmission routes, enabling a prompt response by public health authorities. Moreover, the large
number of genomes now available from pathogenic microbes is an important resource that can
be used in outbreak investigations to track down the geographic origin and food source of a
pathogen during or after an outbreak. For this reason, the US Food and Drug Administration
promoted a program named GenomeTrakr (http://www.fda.gov/Food/FoodScienceResearch/
WholeGenomeSequencingProgramWGS) for WGS of microorganisms isolated during food-
borne illness outbreaks throughout the world to implement a database of foodborne pathogens,
and genomes from more than 67,000 isolates (as of April 2017) have already been collected.
Genome-sequencing efforts will not only improve outbreak detection and source tracking but
also contribute large numbers of foodborne pathogen genomes to public databases, which is use-
ful for data-mining efforts that could provide new insights into foodborne pathogen biology and
transmission mechanisms.

In addition, metagenomics approaches may be useful in monitoring the diffusion of foodborne
pathogens (Yang et al. 2016) and antibiotic resistance genes (Noyes et al. 2016) along the food
chain. Noyes et al. (2016) examined how the antibiotic resistance potential (resistome) is spread
in cattle and how these genes are transmitted along the meat processing chain up to retail; they
highlighted the importance of this type of study for understanding the mechanisms leading to
the dissemination of antibiotic resistance in foodborne bacteria. Already in progress in urban
biomes, the mapping of microbial genomes in food-associated environments will help to track
the diffusion of antibiotic resistance genes or other important virulence factors, such as toxin
production (MetaSUB Int. Consort. 2016). Correlating this information with different sorts of
metadata (temperature, humidity, etc.) will help in planning ordinary cleaning practices as well as
in the design of novel food processing plants.

Finally, the study of the metatranscriptome of foodborne pathogens can unveil the mechanisms
involved in their response to common antimicrobial agents (Casey et al. 2014, Visvalingam et al.
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2013) or to the conditions normally used during food processing and storage (Fink et al. 2012,
Goudeau et al. 2013), which will help in understanding how to prevent their dissemination and
development.

FOOD MICROBIOME, BIOINFORMATICS, AND DATA ANALYSIS

The typical output of a metagenomic study consists of millions of reads that can be considered
at the same time, which is both the greatest potential and the main drawback of HTS. Bioinfor-
matics analysis is required to translate sequences into meaningful data. The greater the number
of reads, the greater the computational power required for data analysis, which often cannot be
supported by a standard desktop computer. In addition, appropriate bioinformatics skills are nec-
essary. Standardized pipelines for the analysis of data arising from amplicon-based sequencing
have been developed, making this type of analysis more accessible, even to biologists lacking a
bioinformatics background. Although the single steps of a typical amplicon-based analysis are the
same, high variability exists in the possible options and parameters, which can impact the final
result. Therefore, there is a need for standardized data analysis platforms addressing all steps of the
workflow, from sequence quality analysis to OTU selection and taxonomic assignment. Recently,
R packages for standardized analysis have emerged (Callahan et al. 2016, McMurdie et al. 2015).
In addition, although the use of descriptive tools for α- and β-diversity analyses is widespread,
inferential tools are less common in food microbiology, but microbial association network anal-
ysis may offer significant advantages in detecting ecological and biological associations in food
microbial communities (Layeghifard et al. 2016).

More variability in the possible approaches to shotgun data analysis exists, which still requires
computational capabilities and knowledge in bioinformatics that do not commonly occur in all
microbiology laboratories. The typical data analysis workflow includes short-read assembly, gene
prediction, and annotation through mapping to a specific database. Nevertheless, assembly is not
always possible (or satisfying) for low-coverage genes or genomes. In addition, this step becomes
more computationally intensive with an increasing number of sequences, which is sometimes
infeasible. Bioinformatics tools for HTS data analysis are constantly evolving and improving.
A new application offers the possibility of extracting strain-level information directly from the
metagenome (Figure 5). Common pipelines based on genome assembly often fail to reconstruct
genomes for less-abundant species and strains. Therefore, new tools have been developed to
enable pangenome-scale analysis directly from short reads and thereby overcome this limitation.
StrainPhlAn (Truong et al. 2017) extracts species-specific, high-polymorphic marker genes from
metagenomics reads, aligning them to a database of reference genomes and allowing a strain-
level comparison of different samples. Moreover, PanPhlAn (Scholz et al. 2016) enables users to
functionally characterize the strains present in a metagenomics sample, aligning reads to a species
pangenome database built using available reference genomes.

The possibility of a strain-resolution analysis based on HTS of rRNA, species-specific gene
amplicons was also exploited but with unsatisfactory results (De Filippis et al. 2014, Ricciardi et al.
2016). Strain-level dissection of metagenomes promises to overcome these limitations.

Nevertheless, when metagenomics data are not available or cannot be generated/analyzed,
further bioinformatics tools may be employed to analyze amplicon sequences to extract infor-
mation at the subgenus level. For example, oligotyping promises species- or even strain-level
discrimination within a group of highly similar reads arising from 16S rRNA gene amplicon se-
quencing. It decomposes a given taxon into high-resolution units (oligotypes) by considering the
nucleotide positions identified as the most information rich (high-entropy positions) (Eren et al.
2013). Although not comparable to the information obtainable through strain monitoring based
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Figure 5
Different possibilities available for pangenomics analysis directly from metagenomics data. Abbreviation:
SNPs, single nucleotide polymorphisms.

on a shotgun approach, oligotyping may be useful to obtain interesting information at a subgenus
level, which is not always possible with the typical analysis based on de novo OTU clustering
of amplicon reads. Oligotyping was successfully used to find ecologically meaningful differences
within the most abundant genera of the human gut microbiota (De Filippis et al. 2016b, Eren et al.
2015) and in environmental samples (Turlapati et al. 2015), but to the best of our knowledge, only
one application in the food-related environment exists. Stellato et al. (2017) determined that the
same oligotypes of Pseudomonas spp. were present in dairy and meat processing environments and
in related food samples, although their relative abundance differed according to the food matrix
considered. This highlights the presence of species- and possibly strain-related responses to the
selective pressures existing in different foodstuffs.

ISSUES AND LIMITATIONS

Like all molecular methods used for microbial community description, HTS suffers from biases
associated with the procedure used for NA extraction. This issue becomes particularly important in
HTS studies, in which a quantitative description of the microbiota is expected. In fact, differences
in cell wall organization may cause preferential NA extraction from some taxa at the expense of
others, altering the results obtained for the microbial community under study (Keisam et al. 2016,
Quigley et al. 2012a). Also, the PCR step required for amplicon library preparation may lead to
preferential amplification of specific taxa: The selection of the primer set may strongly influence
the qualitative and quantitative descriptions of the microbiota obtained (Bokulich & Mills 2013b,
Cruaud et al. 2017, Sergeant et al. 2012). This issue is particularly relevant for studies of fungal
populations. The most frequently used target for fungi is the internal transcribed spacer (ITS).
Nevertheless, the uneven ITS length among fungal species may lead to preferential amplification
of shorter fragments, further distorting the results (De Filippis et al. 2017a). Therefore, efforts
should be made to promote the use of different targets in HTS-based studies of fungal populations
(De Filippis et al. 2017a), such as 26S and 18S rRNA genes (De Filippis et al. 2017b, Garofalo
et al. 2015, Minervini et al. 2015, Stellato et al. 2015, Wang et al. 2015). For all these reasons,
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taxonomic binning of metagenomics reads may produce more reliable results (Liu et al. 2011).
An additional problem associated with the amplification of ribosomal genes is the operon copy
number, which differs across taxa, distorting the quantitative estimation (Kembel et al. 2012).
Therefore, single-copy target genes, such as recA, radA, rpoA, rpoB, and gyrB, have been suggested
as alternatives (Kembel et al. 2012, Renouf et al. 2006, Vătrovský et al. 2013), but their use is still
limited due to the absence of databases with sufficient coverage.

Although offering remarkable advantages, the widespread application of shotgun-based ap-
proaches is still in the developmental phase for several reasons. First, shotgun-based studies re-
quire more reads per sample, increasing costs. Therefore, these types of studies often focus on only
a few samples, thus limiting the power of the analysis. Furthermore, because DNA (or comple-
mentary DNA after a reverse transcription step) fragmentation is required for library preparation,
the integrity of the extracted NAs is a crucial factor. Specific types of samples, such as meat and
seafood products, present the additional issue of host NA contamination, which may subtract a
substantial number of sequences from the analysis. Finally, when mRNA is the desired target,
further precautions must be taken to deplete the rRNA concentration (usually more than 90% of
total RNA) and block RNase activity, thereby freezing gene expression at the moment of sampling.

A metagenome predictive tool, named PICRUSt, has been developed (Langille et al. 2013) that
promises to predict the functional potential of the bacterial community present in a sample based
on 16S rRNA gene amplicon data. Basically, it relies on the information present in a genomic
database and thus cannot guarantee reliable results for environments where only a few genomes are
available. This pipeline is currently usable only for bacteria (and not for fungi) and obviously cannot
take into account strain-level differences; however, with these limitations in mind, PICRUSt may
still provide useful information at no cost when a real metagenome is not available.

The bioinformatics pipeline followed for data analysis must be considered a crucial step in
both amplicon- and shotgun-based studies, as the different software and parameters employed
and the reference database used may strongly influence the final results (May et al. 2014).
The choice of a well-curated and up-to-date database is a critical factor, particularly for fungi,
as available fungal databases are considered less curated than bacterial databases (Tedersoo et al.
2011). The ITS is considered the most complete fungal database, but as stated above, this target
may not be the best choice because of length heterogeneity (De Filippis et al. 2017a). Therefore,
food microbiology would greatly benefit from the improvement of available genomics databases,
which should be enriched with genomes from foodborne microbes, and studies aimed at devel-
oping food-specific gene catalogs, as recently proposed for cheese, would be invaluable (Almeida
et al. 2014). As discussed above (see section Food Microbiome, Bioinformatics, and Data Analysis),
bioinformatics analysis can still be considered the bottleneck of HTS-based studies. Indeed, data
analysis requires bioinformatics abilities not always available in a microbiology laboratory.

FUTURE STEPS

After one decade of the widespread use of HTS of the microbial ecology of food, public databases
have accumulated a large amount of data, mostly arising from amplicon-based studies. However,
most of the amplicon-based results are basically descriptive, and although they have a greater
resolution, limited new information has been obtained. Despite this, we have an unprecedented
opportunity for data sharing. Sequence data made available in public databases [e.g., the Sequence
Read Archive of the National Center for Biotechnology Information (http://www.ncbi.nlm.
nih.gov/Traces/sra) and the European Nucleotide Archive of the European Bioinformatics In-
stitute (http://www.ebi.ac.uk/ena)] may be used in comparative meta-studies; a good example is
FoodMicrobionet (Parente et al. 2016), mentioned above.
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Although still underexploited in food microbiology, shotgun metagenomics and metatranscrip-
tomics promise to provide new insights into the functions of food microbial consortia, helping
us to understand the mechanisms of community assembly and their drivers, including the influ-
ence of important environmental factors. This knowledge may be easily transferable to microbial
consortia that inhabit more complex environments, making foods tractable models for dissect-
ing microbial assemblage mechanisms (Wolfe & Dutton 2015). Moreover, with the development
of new bioinformatics tools for data analysis (see section Food Microbiome, Bioinformatics, and
Data Analysis), recovering draft genomes directly from metagenomics reads is now possible (Marx
2016). This is particularly relevant in food microbiology issues, as many technologically relevant
traits (Douillard & De Vos 2014, Hao et al. 2011, Sun et al. 2015) and spoilage-associated activities
(Casaburi et al. 2011, 2014; Ercolini et al. 2010) are strain dependent. This is a groundbreaking
opportunity not only for epidemiologic studies but also for quantitative strain monitoring of mi-
crobial species of interest during fermentative or spoilage processes, directly in the food matrices.
It will be helpful to understand the functional potential of foodborne microbes, how they respond
to technological parameters, and how to exploit or defeat them.

Omics technologies have revolutionized food microbiology laboratories and our approach to
the study of a microbial community. The use of a combination of molecular approaches will enable
in the near future the unveiling of complex interactions that occur within microbial consortia in
food environments, increasing our understanding of how to exploit invaluable microbial resources
to ensure process efficiency as well as food quality and safety.

SUMMARY POINTS

1. HTS of taxonomically relevant genes is the most exploited application in food microbial
ecology. Although these studies provide higher resolution and potential insight into
microbe–process associations, they are basically descriptive and do not add appreciably
to our knowledge of food microbial communities.

2. Shotgun metagenomics and metatranscriptomics are still underexploited. Nevertheless,
the few studies available have revealed that they elucidate the complex activities existing
in food environments and increase understanding of how technological parameters can
be modulated to affect microbial functions.

3. Reduced sequencing costs increased the WGS of several microbial strains from the same
species, making them available for comparative studies and highlighting the presence of
strain-specific traits. Genomic databases are a valuable resource for epidemiologic studies.

4. Extracting genomes of dominant strains directly from metagenomics reads enables quan-
titative strain monitoring directly in food matrices, providing insight into how different
strains respond to abiotic factors.
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