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Abstract

There is an increasing consumer demand for natural colors in foods. How-
ever, there is a limited number of available natural food sources for use by
the food industry because of technical and regulatory limitations. Natural
colors are less stable and have less vibrant hues compared to their synthetic
color counterparts. Natural pigments also have known health benefits that
are seldom leveraged by the food industry. Betalains, carotenoids, phyco-
cyanins, and anthocyanins are major food colorants used in the food industry
that have documented biological effects, particularly in the prevention and
management of chronic diseases such as diabetes, obesity, and cardiovas-
cular disease. The color industry needs new sources of stable, functional,
and safe natural food colorants. New opportunities include sourcing
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new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is
an imperative need for toxicological evaluation to pave the way for their regulatory approval.

INTRODUCTION TO THE NEED FOR NATURAL PIGMENTS

The impetus behind the increased application of natural color sources as additives in foods, bev-
erage products, and cosmetics is driven largely by the swelling consumer demand for natural in-
gredients, which are generally considered safer than their synthetic counterparts. Although this
distinction is not strictly valid, it remains true that most health-literate consumers advocate clean
labels and exclusion of ingredients with chemical-sounding names that are difficult to recognize
or pronounce. This consumer perception represents a serious problem for the food and cosmetics
industries because to satisfy consumer demand and maintain business competitiveness, they need
to replace synthetic colorants with natural colors. Reformulation of products to contain all-natural
color sources is a challenge because there is a limited number of commercially available natural
colorants because of regulatory restrictions and technical problems. Food and cosmetics regula-
tions restrain or slow down the approval of new sources of natural colorants. Natural food colors
are not as bright and stable as synthetic colorants, particularly at neutral and high pH values. The
food industry is thus seeking technological advances to improve the functional characteristics of
existing natural colorants as well as the identification, characterization, and safety assessment of
new natural sources of colorants. Reliable sources of green, blue, and red natural colorants that are
stable at high pH values remain a critical need in industry—in particular, sources of blue that are
stable in beverage applications. Spirulina, or Arthrospira platensis, is a blue-green alga that contains
phycocyanin and is a potential resource for natural blue pigment. It is approved in the United
States only for powdered beverages and confectionary products, is not very light or heat stable,
and does not perform well at low pH.

Few consumers are aware that many of the naturally derived pigments from fruit and vegetable
sources are not only safe, natural, and clean label but also have their own documented health bene-
fits and may confer these benefits when used as ingredients in a processed product. At present, the
food industry is primarily marketing their products based on the consumer perception of natural
colors.Most consumers turn to natural colors to avoid synthetic chemicals, not because they real-
ize that the natural colors could be health beneficial. However, because of recent attention in the
popular press, many consumers have become aware of the healthy value of β-carotene, turmeric,
and even anthocyanins. Therefore, the understanding and communication of the biological func-
tion and potential health benefits of natural colorants represent an unexploited opportunity to
leverage the health benefits of a natural colorant in the introduction of a new naturally colored
food product.

The objective of this review is to describe the potential sources of natural colorants that, de-
pending on the regulatory environment of a given country or region, can be used as natural ingre-
dients by the food or cosmetics industry. Furthermore, this review details the biological function
and potential health benefits of natural colorants.

MAJOR FOOD COLORANTS

Table 1 presents the potential sources of natural colorants and the corresponding biological ac-
tivity of the pigments. Figure 1 presents the comparison of colors and chemical structures of dif-
ferent representative pigments. Figure 2 presents the chemical structures of major carotenoids,
including lycopene, lutein, and zeaxanthin as well as the major carotenoid pigments from annatto
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Comparison of colors and chemical structures of different representative nature-made pigments: anthocyanins, betalains, carotenoids,
and phycocyanins.

(bixin and norbixin), a natural orange-red condiment. A full description of these major food pig-
ments follows.

Betalains

Betalains are nitrogenous and water-soluble pigments that can be divided into two groups: red-
violet betacyanins and yellow betaxanthins (Azeredo 2009, Esquivel 2016, Polturak & Aharoni
2018, Rodriguez-Amaya 2016). They are rare in nature, found only in the plant order Caryophyl-
lales, and are believed to have protective qualities against biotic stress (Polturak & Aharoni 2018).
Betalain chemistry and structure have been recently reviewed in depth (Esatbeyoglu et al. 2015,
Esquivel 2016, Khan & Giridhar 2015).

Currently, there is only one Food and Drug Administration (FDA)-approved food colorant
isolated from red beetroot (Beta vulgaris), betanin. However, there has been increased interest in
betalains as a source of food colorants. Food industries have a strong mandate to replace the use of
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Figure 2

Chemical structures of major carotenoids, including lycopene, lutein, and zeaxanthin as well as the major
carotenoid pigments from annatto (bixin and norbixin), a natural orange-red condiment.

the synthetic dye Red 40 (given consumer backlash over synthetic colors in foods). Isolated betanin
from beetroot has been the most heavily utilized natural pigment used by industry to replace
Red 40. Betanin has a multitude of approved uses, including providing a red hue to items such as
candy, ice cream, meat substitutes, and beverages (Aberoumand 2011, Carocho et al. 2015, Khan
2016).

The focus on beet as the only betalain source leaves a wealth of undeveloped and underuti-
lized plant resources, including many edible species such as prickly pear (Opuntia spp.), dragon
fruit (Hylocereus spp.), pigeonberry plant (Ravina humilis), and quinoa (Chenopodium quinoa) as well
as several others reviewed by Azeredo (2009), Gengatharan et al. (2015), Giridhar et al. (2015),
Martins et al. (2016), and Polturak & Aharoni (2018). Because betalain pigments include a group
of deep crimson/red hues (betacyanins) and another group of orange to yellow pigments (betax-
anthins), there is potential to create a gradient of natural color hues from these pigments (Khan
2016, Polturak et al. 2017). Plant sources from the Cactaceae, including cactus fruits, prickly pear,
and dragon fruit, have particular potential for use as colorants, as they tend to have a more muted
flavor profile than beet (and thus would not impart an undesirable flavor in a food product). Cacti
are easily grown with minimal upkeep and can provide a wider color spectrum for betalains than
beet, including the coveted yellow-orange (Azeredo 2009). However, their fruits contain pectins
that can interfere with betalain isolation (Aberoumand 2011, Azeredo 2009).

Betalains as a whole have some challenges as a food colorant, such as a tendency to degrade
upon exposure to light and high temperature and an unappealing earthy taste at higher concen-
trations.However, they have several advantages over other natural food colors, e.g., anthocyanins,
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such as higher water solubility, tinctorial strength, and stability at acidic to neutral pHs (Giridhar
et al. 2015, Martins et al. 2016, Mumford et al. 2018, Tumolo & Lanfer-Marquez 2012).

Biological effects of betalain pigments. In addition to satisfying consumer demand for natu-
ral color sources, betalains have several well-documented biological effects, including antioxidant,
anticancer, antilipidemic, and antimicrobial capacities, as recently reviewed by Azeredo (2009),
Esatbeyoglu et al. (2015), Esquivel (2016), and Gengatharan et al. (2015). The majority of stud-
ies, however, have focused on in vitro and animal-based work, leaving human applications still
unmapped.

Nevertheless, a novel clinical application of betalains has come from sports science. In humans,
betalains have been harnessed in supplement form, primarily based on their nitrate content, to
assist in athlete performance. Companies such as Sur PhytoPerformanceTM, a plant-based per-
formance supplement company, markets AltRed as a performance supplement that can improve
endurance, or the ability to run fast for longer times, and reduce recovery time in athletes. Stud-
ies have been conducted utilizing the supplement betalain-rich concentrate (BRC) or a control
prior to athletic testing (Van Hoorebeke et al. 2016, Montenegro et al. 2016). Van Hoorebeke
et al. (2016) focused on the effect of BRC supplementation on 5-km racing and saw that in 10 of
the 13 male subjects, 5-km performance time was lower and recovery was faster in BRC athletes
compared to controls. Montenegro et al. (2016) used a similar study setup, including predosing
with BRC prior to testing. In competitive triathletes, after completing 40 min of cycling followed
by a 10-km run, the run time was lower and indicators of fatigue were reduced. This suggests that
supplementation with BRC has possible implications in athlete metabolic health, training, and
performance. Several other studies with a similar design have supported these findings, demon-
strating an improvement in cycling, eccentric exercise recovery, and sprint test recovery with be-
talain supplementation (Clifford et al. 2016a,b, 2017; Mumford et al. 2018; Rokkedal-Lausch et al.
2019).

Future prospects for betalain development.When it comes to increasing the usability of beta-
lains as a food colorant, there are two options: improve the sources we already have or develop new
ones. One important research direction taken for betalains lies in genetic modification. Support-
ing the theory that betalains protect their host plants against biotic stress, Polturak et al. (2017)
led studies examining the effect of transgenic betalain-producing tobacco plants on gray mold
infection (Polturak & Aharoni 2018, Polturak et al. 2017). Not only were the investigators able
to metabolically engineer betalain production to protect against infection in tobacco plants, but
they were also able to induce betalain coloration in tomato, eggplant, and potato as well as an
ornamental (Petunia × hybrida).Their novel vector (termed pX11) could open the door for novel
or increased betalain production in plants (Granell et al. 2015, Polturak et al. 2017).

Given that genetic modification techniques are not readily viable options for most food appli-
cations, another future strategy is to explore other common plant resources for the pigment and
provide documented research to shepherd their approval through FDA.

Carotenoids

Carotenoids are a class of red, orange, and yellow pigments found primarily in fruits and veg-
etables. Structurally, carotenoid pigments are composed of isoprene units. These account for the
brilliant colors of fruits and vegetables thanks to the presence of a conjugated double-bond sys-
tem or polyene chain, allowing them to absorb light at the visible spectra. There are more than
700 carotenoids found in nature; among them, α-carotene, β-carotene, β-cryptoxanthin, lutein,
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zeaxanthin, and lycopene are major dietary carotenoids. α-Carotene, β-carotene, and β-
cryptoxanthin, i.e., provitamin A carotenoids, can be converted to vitamin A by the human body;
the others are non-provitamin A carotenoids (Eroğlu & Harrison 2013). Dietary carotenoids are
found in circulation or in human tissues after consumption. Carotenoids can also be classified
into two categories based on functional groups: xanthophylls, which are those containing oxy-
gen, such as β-cryptoxanthin, lutein, and zeaxanthin; and carotenes, which are composed of purely
hydrocarbon chains and include α-carotene, β-carotene, and lycopene. Primary dietary sources of
carotenoids in the United States are carrots for α-carotene and β-carotene, tomatoes for lycopene,
spinach for lutein and zeaxanthin, and oranges for β-cryptoxanthin.

Carotenoids are extracted using organic solvents because of their hydrophobicity. Nonpo-
lar solvents like hexane or tetrahydrofuran are suitable for the extraction of nonpolar carotenes,
whereas polar solvents like acetone, ethanol, and ethyl acetate can be used for the extraction of
polar carotenoids. Common steps used in extraction and quantification from natural sources in-
clude sample preparation, pretreatments (physical, chemical, or biological), cell disruption and
extraction, saponification, chromatographic separation, and analysis (Saini & Keum 2018, Saini
et al. 2015). Atmospheric pressure chemical ionization–tandem mass spectrometry in positive ion
mode is the preferred method for identification and characterization of carotenoids (Rivera et al.
2014). The analytical methods used to examine carotenoids in foods have been extensively re-
viewed by Rodriguez-Amaya (2015).

As a natural food colorant, carotenoids have the ability to produce a gradient range of pigments,
including yellow, orange, and red, depending on the source. Currently, the most well-known
carotenoids are limited in their use as food colorants. According to US regulations, carotenes
can be isolated only from carrots, lycopene can be isolated only from tomatoes, and lutein can be
used only in chicken feed (Mortensen 2006). The compound annatto, which is a mixture of bixin
and norbixin, is more widely available as a colorant. This compound provides a slightly redder
color than β-carotene and is typically used to color cheddar cheese (Mortensen 2006). Spices such
as paprika and saffron contain a mixture of carotenoids with a range of yellow to orange pigmen-
tation, and although typically considered spices, they have been used to provide natural coloring
to foods (Mortensen 2006).

Biological effects of carotenoids.Themost well-known health-relevant function of carotenoids
is their enzymatic conversion to retinol (vitamin A) in the body (Eroğlu et al. 2012). Vitamin A is
an essential micronutrient, as it is involved in maintenance of normal growth and development,
immunity, epithelial barrier integrity, reproduction, and vision (Clagett-Dame & DeLuca 2002,
McCullough et al. 1999, Saari 1999). Vitamin A deficiency (VAD) is a major public health problem
affecting low-income populations in developing countries. Populations at risk of VAD depend on
dietary provitamin A carotenoids to a greater extent to meet their vitamin A needs, as fruits and
vegetables provide nearly 90% retinol equivalents in those regions in comparison to approximately
60% in developed nations (WHO 2009).

Anti-obesity and antidiabetic effects. Obesity and type-2 diabetes mellitus (T2DM) are two pub-
lic health challenges with worldwide significance. It is well recognized that eating a well-balanced
diet can have major impacts on future disease progression, including obesity management and
development of T2DM. Carotenoids have been studied in the context of obesity and diabetes. An
intervention with carotenoids for at least four weeks has shown a positive impact in both adults
and children (Asemi et al. 2016, Canas et al. 2017, Y.F. Li et al. 2015, Lum et al. 2019). Lycopene
from tomato and watermelon has been shown to reduce body weight, body fat, and overall body
mass index (BMI) in a range of body types (Y.F. Li et al. 2015, Lum et al. 2019).
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Cardiovascular protection. Several epidemiologic studies have suggested that naturally occurring
dietary carotenoids may provide health benefits against cardiovascular diseases (CVDs), including
the complications associated with metabolic syndrome (Sluijs et al. 2015, Leermakers et al. 2016).
Recently, preclinical and case studies revealed that dietary carotenoids can offer protection against
CVDs because of their antioxidant and anti-inflammatory properties (Palozza et al. 2010, Wang
et al. 2014). In a recent clinical trial, participants with diagnosed heart failure, a condition asso-
ciated with chronic inflammation, were either administered lycopene in the form of a serving of
V8 juice for 30 days or provided no intervention. C-reactive protein levels significantly decreased
in the intervention group; however, this effect was evident only in female patients (Biddle et al.
2015).

Neuroprotection. Lutein and zeaxanthin contain hydroxylated ionone rings at both ends of the
molecule that dictate their tissue specificity and their biological function in the body. As the only
dietary carotenoids that accumulate in the eye (Bernstein et al. 2016), these pigments function in
ocular health by filtering out blue light before it reaches the retina (Barker et al. 2011). Accord-
ingly, these carotenoids offer health benefits for ocular function. Age-related macular degenera-
tion (AMD) is a rising health problem among the elderly individuals globally (Wong et al. 2014).
The Age-Related Eye Disease Study 2 reported that supplementation with lutein and zeaxanthin
led to a reduction in the progression of AMD (Chew et al. 2013, 2014). Another study reported
a negative association between the risk of developing cataracts and lutein/zeaxanthin status (Liu
et al. 2014). Several intervention studies have been conducted recently, examining either the effects
of mixed carotenoids or a combination of lutein and zeaxanthin on ocular function (Huang et al.
2015;Nolan et al. 2015, 2016; Renzi-Hammond et al. 2017; Thurnham et al. 2015).On the basis of
these reports, arguments have beenmade regardingwhether lutein and zeaxanthin can be classified
as conditionally essential nutrients (Ranard et al. 2017, Semba & Dagnelie 2003). High concen-
trations of lutein have also been found in brain tissues, and it is the most abundant carotenoid in
the brain (∼170 pmol/g) (Erdman et al. 2015). Placebo-controlled trials have reported that sup-
plementation with lutein or lutein plus zeaxanthin may improve cognitive performance in elderly
populations (Hammond et al. 2017). Even in younger individuals, supplementation with 10 mg
of lutein and 2 mg of zeaxanthin for one year improves spatial memory, reasoning ability, and
complex attention (Renzi-Hammond et al. 2017). In addition, it was found that lutein may play an
important role in hippocampal function among adults who are overweight or obese (Cannavale
et al. 2019).

Anticarcinogenic properties. Epidemiological studies have reported a negative correlation be-
tween the levels of circulating dietary carotenoids and the risk of developing breast cancer (Hu
et al. 2012), gastric cancer (Zhou et al. 2016), and prostate cancer (Key et al. 2015). Lycopene, a
red pigment, is the most abundant dietary carotenoid in tomatoes and can also be found in water-
melon, pink grapefruit, and guava, albeit at lesser amounts. It is primarily accumulated within the
prostate gland (Clinton et al. 1996; Grainger et al. 2015, 2018), and there is an inverse association
between lycopene intake and prostate cancer based on a large body of clinical trials (Rowles et al.
2017).

Future prospects for carotenoid development. As with the other pigments discussed in this
review, carotenoids face the challenge of stability and limitation of approved sources. There have
been advances in genetic modification and growth conditions of plants to produce higher quanti-
ties of carotenoids to improve nutritional values; however, these could also be beneficial in the de-
velopment of additional food colorants (Campbell et al. 2015, Zhu et al. 2018). Alternative sources
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of carotenoids have been examined, such as the gac fruit aril (Momordica cochinchinensis), which has
been found to contain β-carotene and lycopene with higher bioavailability than those found in
carrots and tomatoes, respectively (Müller-Maatsch et al. 2017). Carotenoids have also been ex-
tensively synthesized utilizingmicrobial sources (Bogacz-Radomska&Harasym2018,Sajid 2018).
However, as has been the case for all other natural color resources, acceptance and incorporation
of new carotenoid sources into commercial products have been limited by FDA regulations and
requirements for rigorous safety assessments.

Phycocyanins

For manufacturers of food and cosmetic products, the quest to find a vibrant, stable source of nat-
ural blue colorants has proved to be elusive. Anthocyanins include pigment combinations in the
blue range between pH 5–7; however, they tend to shift to pink or violet hues in highly acidic food
and beverage products, and color vibrancy cannot be maintained (Newsome et al. 2014). For this
reason, the FDA’s 2013 certification of phycocyanin pigments from Spirulina (A. platensis) as GRAS
(generally recognized as safe) has added a new source of blue color to the natural color portfo-
lio (Finamore et al. 2017). Spirulina, a microscopic, filamentous gram-negative cyanobacterium,
produces phycobiliproteins that can be isolated. From the phycobiliproteins, the blue-producing
protein known as phycocyanin can be recovered. Phycocyanin production and stability from Spir-
ulina have been well documented and reviewed by Chaiklahan et al. (2012) and Vernès et al. (2015).

Currently, phycocyanins from Spirulina provide the only approved natural blue colorant in the
United States, Europe, and Asia. Phycocyanins represent more than 20% of the dry weight of
Spirulina and are stable only within a narrow pH range of 5.0–7.5 at 25°C (Newsome et al. 2014,
Pandey et al. 2013, Vernès et al. 2015, H.L.Wu et al. 2016). Because of this limited range, phyco-
cyanins were initially used only to color candies and chewing gum. More recently, innovations in
food processing have allowed the range of products colored with phycocyanins to be expanded to
dairy products, soft drinks, and cosmetics (Pandey et al. 2013). Incorporation into beverage prod-
ucts has been the primary application to date, but problems with stability at low pH continue to
limit wider application.

Biological effects of phycocyanins. Similar to the case for other natural pigment sources, phyco-
cyanins have documented health-relevant bioactivities, including free-radical scavenging, antioxi-
dant activity, and anti-inflammatory, antiviral, anticancer, and cholesterol-lowering effects. The in
vitro chemopreventive capacity of phycocyanins has been extensively reviewed over multiple cell
lines and cancer types (Yin et al. 2017). However, much like the betalains, most of the evidence
for health benefits has been limited to cell culture and animal research (Pandey et al. 2013, Vernès
et al. 2015).

As previously described for the betalains, there have been a limited number of clinical stud-
ies with phycocyanins as a dietary supplement, and most are focused on chronic pain therapy.
There have been two clinical studies aimed to examine the effects of aqueous cyanophyta extract
(ACE), which contains phycocyanin as its primary component. The first trial was a combination
of two pilot studies using a product called CyActiveTM, produced and marketed by Cerulle LLC,
evaluating the effects of 250 mg, 500 mg, and 1 g of ACE on chronic pain ( Jensen et al. 2016a).
In the first pilot study, when treated with ACE, individuals with chronic joint pain (six or more
months) revealed significant pain reduction in a dose-dependent manner. The second pilot clin-
ical study focused on the safety of ACE at a dose of 2.3 g/day, which is equivalent to a dose of
1.0 g phycocyanin/day—the highest dose in the previous pilot trial ( Jensen et al. 2016b). At this
dose, ACE supplementation provided a significant reduction in chronic pain and did not reduce
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blood coagulation. No adverse effects were seen in either liver function or metabolism, indicating
that at this dose ACE can be considered safe.

In humans, the focus has been less on phycocyanins as an individual compound and more on
the overall health benefits of Spirulina, which contains many important nutritional components
other than phycocyanins. Spirulina products have been certified GRAS for human consumption
by the FDA (Finamore et al. 2017). In several studies, it has been demonstrated that Spirulina, at a
dose as low as 1.0 g/day, can have an impact on reducing body weight and BMI in obese individuals
as well as on reducing serum triglycerides and increasing insulin sensitivity in diabetics (Yousefi
et al. 2019).

Future prospects for phycocyanin development.There is a continued focus on improving the
stability of phycocyanins.Companies, such asMars Inc., are working withOhio StateUniversity to
develop a bluemore similar to the hue of synthetic BlueNo. 1, as the Spirulina blue is not as intense
(Ghose 2019). Another improvement has come from the upscaling of Spirulina production. As
consumers and developers are reaching for this natural blue hue, product development must grow
to reach demand. A Scotland-based biotech, Scot Bio, has developed a reactor-based process to
upscale the production of Spirulina to help meet these demands and, if successful, other companies
may follow its path (Wyers 2018).

Anthocyanins

Anthocyanins are one of the main families of natural pigments in the plant kingdom, conferring
to plant organs a diversity of colors from orange and red to blue and purple (D. Li et al. 2017).
Anthocyanins play a crucial role in plant environmental adaptation, attracting pollinators and seed
dispersers and,more importantly, protecting plants frombiotic and abiotic stresses (Gutierrez et al.
2017, Zhang et al. 2019a). It is generally accepted that biosynthesis of anthocyanins is regulated
by a transcription complex, called the MYB-bHLH-WD40 complex, consisting of myeloblastosis
(MYB), basic helix-loop-helix (bHLH), and WD40 proteins (Liu et al. 2018). Regulation at both
transcriptional and post-transcriptional levels has been shown to improve anthocyanin accumula-
tion in certain plant tissues (Allan et al. 2019, Zhao et al. 2018).

Chemically, anthocyanins belong to the flavonoid class of polyphenols and are structurally
based on the polyhydroxy or polymethoxy derivatives of 2-phenylbenzopyrylium (flavylium ion).
Six aglycones, also known as anthocyanidins, are mostly mentioned in common anthocyanin-
rich foods: cyanidin (Cy), peonidin (Pn), pelargonidin (Pg), delphinidin (Dp), petunidin (Pt), and
malvidin (Mv) (D. Li et al. 2017, Smeriglio et al. 2016). Among these, the three nonmethylated
anthocyanidins, Cy, Dp, and Pg, represent approximately 70% of all pigmented plant materials
(Smeriglio et al. 2016). More than 700 anthocyanins have been identified and registered in the
literature (Zhang et al. 2019a). Individual differences between anthocyanins can be found in the
(a) number and position of the hydroxyl (OH) groups; (b) methylation degree of the OH groups;
(c) nature, number, and location of sugars bound to the structure; and (d) presence of aliphatic
or aromatic acids linked to the sugar moieties (Castaneda-Ovando et al. 2009). It is believed that
glycosylation renders high stability and water solubility to the parental anthocyanidins, and acy-
lation further improves anthocyanin stability (He & Giusti 2010). In general, the most abundant
anthocyanins in nature are glycosylated in the 3-OH position and, to a lesser extent, in both the
3-OH and 5-OH positions (Fernandes et al. 2014).

Optimization of extraction conditions allows efficient recovery of anthocyanins from plant tis-
sues, food products, and waste sources (Blackhall et al. 2018, Parra-Campos & Ordóñez-Santos
2019,Pintać et al. 2018, Silva et al. 2017,Zhang et al. 2019b). Several modern and nonconventional

162 de Mejia et al.



FO11CH07_deMejia ARjats.cls February 28, 2020 14:9

technologies, such as pressurized liquid extraction, sub/supercritical fluid extraction, ultrasonica-
tion, and pulsed electric field extraction, have emerged (Machado et al. 2017, Monroy et al. 2016,
Pataro et al. 2017). These methodologies offer high extraction yields with increased mass transfer,
reduced processing time and temperature, and less energy consumption (Barba et al. 2016, Zhang
et al. 2019b). Application of green and nonflammable solvents, e.g., deep eutectic solvents (DES),
is another alternative to traditional solvent extraction (Duan et al. 2016). DES have been applied
to extract anthocyanins from different plant sources (Bubalo et al. 2016, Dai et al. 2016, Sang
et al. 2018). Precipitation, membrane-based techniques, solid-phase extraction, and chromato-
graphic techniques are among the methods commonly used to concentrate, purify, and isolate
anthocyanins (Martin et al. 2018, Silva et al. 2017). A solvent system composed of methyl-t-butyl
ether,n-butanol, acetonitrile,water, and trifluoroacetic acid was proposed to separate anthocyanins
from a wide range of food materials (Choi et al. 2015, Y. Li et al. 2017, Thornton et al. 2018, Zhou
et al. 2018).

Isolated anthocyanins are readily unstable compounds and thus very susceptible to degradation
reactions and color fading. The major internal factor that affects anthocyanin stability is their
chemical structure, although pH, temperature, light, oxygen, metal ions, and enzymes are the
primarily external factors that influence the stability of these molecules (Fernandes et al. 2014,
Sigurdson et al. 2017). Researchers have been seeking methods to improve anthocyanin stability
and expand its applications as a cost-effective food colorant (Cortez et al. 2017, Sigurdson et al.
2017).

Glycosyl acylation has been shown to improve color expression of anthocyanins and enhance
their chemical stability in vitro and in vivo (Iliopoulou et al. 2015, Oliveira et al. 2019, Zhao et al.
2017). A procedure that acylates, reacylates, or deacylates glycosyl groups of anthocyanins has an
impact on their stability (thermostability, oxidation stability, and color stability), which further
affects their physicochemical features, bioavailability, and biological properties (Guimarães et al.
2018; Yan et al. 2016; Yang et al. 2018, 2019). In this regard, the sugar and acyl groups of flavonoids
were shown to influence their absorption and metabolic pathways; therefore, the glycoside or
aglycone forms of anthocyanins typically exhibited largely varied bioactivities (Veitch & Grayer
2011). Overall, the anthocyanin-stabilizing effect of aromatic acyl groups is stronger than that of
aliphatic ones, and the acyl groups with higher hydrophobicity or more free OH groups render
higher stability to the anthocyanins (Zhao et al. 2017).

Copigmentation is another efficient approach that stabilizes anthocyanins through molecular
or complex associations (Castaneda-Ovando et al. 2009, Fan et al. 2019). A variety of compounds
have been applied as copigments, including organic acids, polyphenols, alkaloids, nucleotides,
polysaccharides, proteins, and metals (Aguilera et al. 2016, Bimpilas et al. 2016, Fan et al. 2019,
Luna-Vital et al. 2018, Qian et al. 2017, Tan et al. 2018d, Trouillas et al. 2016, Türkyılmaz et al.
2019).

Additionally, advanced drying procedures, such as spray drying, freeze drying, encapsulation,
and hard-panned candy coating, have shown to maintain the color attributes of anthocyanins
(Cortez et al. 2017, Robbins 2016, Weber et al. 2017). Combining the zinc ion (Zn2+) with
alginate improved the half-life of cy-3-O-glucoside to 7.5 weeks compared with Zn2+-only
(5.7 weeks) or alginate-only (4.2 weeks) groups (Luna-Vital et al. 2018). Encapsulation of
polysaccharide/catechin-pigmentated anthocyanins retained or even intensified the color of
anthocyanins, provided improved stability, and prolonged release in the gastrointestinal environ-
ment (Tan et al. 2018a,b,c,d,e).

Biological effects of anthocyanins. In addition to the coloring attributes, numerous studies have
shown that anthocyanins display a wide range of biological activities. During the past decade,
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interest toward these natural colorants with health-promoting features has intensified. In this sec-
tion, we summarize recent evidence of the biological effects of anthocyanins and the underlying
mechanisms of actions.

Antioxidant activity. Anthocyanins are well-recognized free-radical scavengers and therefore
their antioxidant capacity has been extensively investigated (Pojer et al. 2013). In cellular and ro-
dent models, anthocyanins have shown to reduce the generation of reactive oxygen species (ROS)
and protect mammalian cells from ROS-mediated oxidative damage (Neves et al. 2019, Shen et al.
2016). In healthy and overweight humans, intake of anthocyanin-rich foods and supplements en-
hances plasma antioxidant capacity and decreases oxidative stress markers in serum and urine
(Table 1) (Cardoso et al. 2015, Kim et al. 2017, Urquiaga et al. 2017, Wiczkowski et al. 2016).
Anthocyanins directly inactivate ROS through donating hydrogens or electrons to the highly re-
active molecules, showing superior activity to synthetic antioxidants, such as butylated hydroxy-
toluene, butylated hydroxyanisole, and Trolox (Ali et al. 2016, Bellocco et al. 2016). Indirectly, an-
thocyanins stimulate endogenous antioxidant defense systems via enhancing antioxidant enzyme
activities, preventing DNA damage and fragmentation, and modulating mitochondrial respiration
and arachidonic metabolism (Bellocco et al. 2016, Neves et al. 2019, H. Zhang et al. 2016).

Anti-inflammatory effects. Inflammation is a complex biological response that involves a series
of well-coordinated events and is closely associated with the development of multiple metabolic
disorders (Hotamisligil 2017). A plethora of evidence has suggested that dietary anthocyanins po-
tentially ameliorate inflammatory processes in vitro, in vivo, and in silico. Epidemiological studies
implied that increased consumption of food-derived anthocyanins is inversely associated with in-
flammatory biomarkers in adults (Cassidy et al. 2015). Intervention with bilberry extract decreased
plasma proinflammatory cytokine levels and enhanced anti-inflammatory mediators in patients
with mild to moderate ulcerative colitis (Roth et al. 2016). The anti-inflammatory effects of an-
thocyaninsmainly involve (a) relief of oxidative stress, (b) suppression of proinflammatory enzymes
activity and expression, (c) modulation of pro/anti-inflammatory signaling pathways, and (d) reg-
ulation of inflammation-related gene transcription (Li et al. 2014, Nunes et al. 2016, Pereira et al.
2017, Q. Zhang et al. 2019). Additionally, new evidence highlights the crucial role of gut micro-
biota in modulation of the immune system, inflammation, and associated complications (Marchesi
et al. 2016). Studies have shown that anthocyanins from strawberry, blackberry (Fernández et al.
2018), bilberry (Li et al. 2019), and Lycium ruthenicum (Peng et al. 2019) reduced the populations
of proinflammatory bacteria in the gut microbiota. In obese individuals, daily supplemented an-
thocyanins with prebiotics decreased the Firmicutes:Bacteroidetes ratio and exerted impact on
intestinal and whole-body inflammation (Hester et al. 2018).

Anti-obesity and antidiabetic effects. Epidemiological studies have indicated that higher con-
sumption of anthocyanin-rich foods reduces the occurrence of obesity and T2DM (Guo et al.
2016, Tucakovic et al. 2018). In patients with insulin resistance (IR) and T2DM, intake of berry
anthocyanins showed beneficial metabolic effects by attenuating dyslipidemia and oxidative stress
and improving insulin sensitivity (D. Li et al. 2015, Park et al. 2016).

In healthy individuals, supplementation with anthocyanin-rich Queen Garnet plum juice
downregulated body weight and BMI with increased blood adiponectin and decreased leptin con-
centrations (Tucakovic et al. 2018). From a mechanistic perspective, the antiadipogenic/obesity
potential of anthocyanins derived from their abilities to (a) suppress food intake and lipid absorp-
tion, (b) stimulate energy expenditure, (c) regulate lipid metabolism, (d) modulate gut microbiota,
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and (e) resolve oxidative stress and metaflammation (Luna-Vital et al. 2017, Wu et al. 2018, Xie
et al. 2018, You et al. 2017).

IR and T2DM are characterized by enhanced blood glucose levels, either because of the defi-
ciency in insulin secretion or the defects in insulin-sensitizing cells that limit their ability to use
insulin, or a combination of both (Gowd et al. 2017). Through in vitro and in vivo approaches,
researchers have demonstrated that anthocyanins could potentially combat obesity and associated
disturbances by acting on different molecular targets and cell signaling pathways. In short, an-
thocyanins could reduce blood glucose level, on the one hand, by protecting pancreatic β-cells
to increase insulin secretion and, on the other hand, by improving the functionality of insulin-
targeted cells through insulin receptor–dependent or –independent pathways (Chen et al. 2018,
Choi et al. 2016, Jiang et al. 2018, Johnson & de Mejia 2016, Yan & Zheng 2017).

Cardiovascular protection. The protective effects of anthocyanins on cardiovascular homeosta-
sis have been indicated in several epidemiological observations (Huang et al. 2016, Kimble et al.
2018, Luís et al. 2018, Yang et al. 2017a). In a study of 146 hypercholesterolemic individuals, in-
take of purified anthocyanins decreased plasma platelet chemokine levels and serum low-density
lipoprotein (LDL) cholesterol, suggesting a reduced risk of dyslipidemia and atherosclerosis (X.
Zhang et al. 2016). In patients with acute myocardial infarction, supplementation of bilberry with
standard medical therapy increased exercise capacity and decreased LDL oxidation when com-
pared to the medical-therapy control (Arevström et al. 2019). Ćujić et al. (2018) reported that
anthocyanins from chokeberry reduced blood pressure, oxidative stress, and lipid peroxidation in
spontaneously hypertensive rats. Furthermore, anthocyanin-rich extract frommulberry preserved
endothelium-dependent relaxation in the aortas of high-fat-diet-fed rats through upregulation of
nitric oxide bioavailability (Lee et al. 2019). However, interestingly, a few controversial outcomes
arose. Several human trials showed that intake of anthocyanins did not alter vascular function or
other biomarkers of CVD risk in comparison to the placebo-treated group (Hollands et al. 2018,
Richter et al. 2016). The discrepancies observed among studies could be due to the differences in
sample size and population, follow-up period of the trial, analytical and statistical methodologies,
and type and dose of ingested anthocyanins (Hollands et al. 2018).

Neuroprotection. Anthocyanins seem to have beneficial effects on improving cognitive func-
tion and memory performance and preventing age-related neurodegeneration diseases, such as
Alzheimer’s and Parkinson’s diseases (Bell et al. 2015, dos Santos et al. 2019). A study of 1,329 older
adults showed that intake of polyphenols from red wine, berry, and citrus reduced the long-term
risk of dementia and Alzheimer’s disease (Lefèvre-Arbogast et al. 2018). Additionally, in elderly
people with mild to moderate dementia, consumption of anthocyanin-rich cherry juice signifi-
cantly altered cognitive function via improving verbal fluency and short- and long-term memory
(Kent et al. 2017). On the basis of in vitro and in vivo studies, the proposed mechanisms of antho-
cyanins on neurometabolic health include the regulation of oxidative damage and neuroinflam-
mation, prevention of neuron degeneration and neuroapoptosis, modulation of synaptic plasticity,
and clearance of intra/extracellular toxic proteins (Ali et al. 2018, Rehman et al. 2017, Wei et al.
2017). Limited human studies exist that have detailed the impact of anthocyanins on cognition and
their underlying mechanisms of actions, highlighting the need for more clinical investigations in
this field.

Anticarcinogenic properties. Accumulating evidence implies that administration of dietary an-
thocyanins reduces the occurrence of certain types of cancer, such as prostate (Lall et al. 2015)
and gastrointestinal cancers (Grosso et al. 2017,Wang et al. 2018, Xu et al. 2016). Therefore, the
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anticarcinogenic properties of anthocyanins have been extensively investigated in a series of can-
cers in vitro, in vivo, and in silico, such as breast (Amatori et al. 2016, C.H. Wu et al. 2016), liver
(Urias-Lugo et al. 2015, Zhou et al. 2018), pancreatic (Kuntz et al. 2017), prostate (Singh et al.
2017), cervical (Pan et al. 2019), blood (Eskra et al. 2019,León-González et al. 2018), and digestive-
tract cancers (Mazewski et al. 2017, 2018; Peiffer et al. 2016; Wang et al. 2016). Furthermore,
the anthocyanin-based derivatives and metabolites have also shown to suppress cell proliferation
and migration and induce cell apoptosis in various cultured cancer cell lines (Kubow et al. 2017,
Kuntz et al. 2017, López de las Hazas et al. 2016, Teixeira et al. 2017). The mechanism of action
of anthocyanins to prevent cancer include (a) modulation of cell differentiation and transforma-
tion; (b) inhibition of cell proliferation; (c) induction of cell cycle arrest, apoptosis, and autophagy;
(d) suppression of cell invasion and metastasis; (e) promotion of the innate immune system; and
( f ) reversal of multidrug resistance (Fan et al. 2017, Kuntz et al. 2017, León-González et al. 2018,
Lin et al. 2017, Mazewski et al. 2017, Su et al. 2018). Additionally, Fantini et al. (2015) discov-
ered that a combination of phenolic compounds, such as quercetin and (−)-epigallocatechin-3-O-
gallate, synergistically leads to higher anticancer effects than the individual compounds.However,
the interactions between anthocyanins and other phenolic compounds are scarcely understood,
highlighting the need for more research in this area.

Future prospects for anthocyanin development. Apart from the well-recognized health ben-
efits of anthocyanins, these molecules have been increasingly appealing to the food industry as
natural pigments (Cortez et al. 2017). Commercially available anthocyanins are typically extracted
from fruits and vegetables and provide hues from vibrant orange-red to pink and purple in a large
variety of water-soluble applications (Carle & Schweiggert 2016). Utilization of anthocyanins in
foodstuffs has been approved within Europe (EU E No. E163), the United States, Japan, and
many other countries, and they are primarily involved in beverages, bakery, dairy, frozen treats,
fruit preparations, and confectioneries (Carocho et al. 2015). Anthocyanins display negligible cy-
totoxicity and simplified manufacturing processes but have decreased color stability and shorter
shelf-life (Carle & Schweiggert 2016, Prince 2017). During the past few decades, natural color
companies, such as D.D.Williamson (Louisville, KY), Gold Coast Ingredients (Commerce, CA),
and Lycored (Orange, NJ), have been looking for methods to improve the stability and function-
ality of anthocyanins so that they can replace artificial colorants. In short, focusing on the inno-
vations that can help to improve the performance of anthocyanins and choosing the appropriate
colorant based on the matrix and environmental challenges are among the best ways to expand
the future of anthocyanin-based pigments.

ALTERNATIVE SOURCES OF NATURAL COLORS:
MICROBES AND INSECTS

Microbes (bacteria and fungi) are capable of producing a range of natural pigments that have the
potential to provide color ranges and applications that botanical sources are unable to deliver.
Microbes have a proven capacity to produce all of the pigments previously discussed in plants,
but microbes are less limited by issues of seasonal variation (especially when cultivated in vitro).
Extraction can be greatly simplified from microbial sources and may offer economies of scale
(Dufossé 2018, Dufossé et al. 2014, Panesar et al. 2015, Sajid 2018). At the present time, however,
most natural colorant industries have not been able to capitalize on microbial resources. In part,
this is because plants have been the primary source for natural colors, and conversion to micro-
bial production requires expensive conversions in technology and infrastructure in addition to
complying with regulatory requirements.
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Bacteria have some clear advantages as color resources compared to fungi. Bacteria are typically
easier to genetically modify and have a shorter life cycle (Rao et al. 2017). However, there is much
that is unknown about bacterial pigment production, which leaves room for expanding research
and development.For example, a laboratory at Rensselaer Polytechnic Institute inTroy,NewYork,
has created a way to use Escherichia coli and glucose to produce anthocyanins (Borman 2017, Jones
et al. 2017). Although this investigation is still in its early stages, its goal is to produce anthocyanins
at g/L levels that are industrially relevant. This method is not only economical but also relies on
a readily available food source to sustain the bacteria.

There are concerns when it comes to using fungi in the production of natural colorants, as
some secondary metabolites of fungal growth can be harmful to human health. Even the non-
toxicMonascus sp., which produces six major polyketide pigments that range in color from yellow
to red, has not to date gained approval from the United States or European Union because of
concerns over citrinin production, even though the fungus has been successfully utilized in Asia for
hundreds of years (Dufossé et al. 2014, Mapari et al. 2010, Rao et al. 2017). The major benefits to
the isolation and use of these red polyketones are that polyketones are more stable at near-neutral
to alkaline pHs and more soluble than the plant pigments (LeBeau et al. 2017,Mapari et al. 2010).
This has led to manipulation of Monascus sp. growth that can reduce citrinin production, as the
pathway is completely independent of pigment production, or the isolation of other fungal species
that can produce the same colorants (Chen et al. 2015, Mapari et al. 2010).

Monascus has also been utilized in the context of red yeast rice. Red yeast rice is produced by
culturing white rice with strains of Monascus purpureus, which originated in China as both food
and medicinal products (Chen et al. 2015). Red yeast rice gained interest in the United States
and Europe as a supplement because of the quantity of monacolin K isolated. Monacolin K has
been shown to have similar cholesterol-lowering properties to lovastatin but has the benefit of
being safe for patients with statin intolerance (Patakova 2013). However, because red yeast rice is
marketed only as a supplement in these countries, there are no regulations in place to normalize
the amount of monacolin K between brands and servings (Patakova 2013). The potential health
benefits of monacolin K, recently reviewed by Nguyen et al. (2017), demonstrate the need for
market regulation and further research into potential health-related uses.

The use of microbes to produce natural colors can even be taken one step further through the
use of waste material as a source of feed for microbes that generate new colorants. In the agricul-
tural industry, there is production of waste in the form of peels, seeds, and other biodegradable
sources of nutrients, and this waste can be used to nourish natural color–producing microbes
(Panesar et al. 2015).

There are concerns with customer acceptance of food coloring coming from microbes. Ge-
netically modified or engineered food in general tends to be received negatively, and the blurry
line between all-natural and clean products can leave consumers confused. It is important to note
that technology is being used to help create all-natural products that are both consumer and en-
vironmentally friendly. Hopefully, the use of engineered microbes to produce natural colors and
subsequent research to demonstrate the potential benefits of these natural colors can pave the
way for greater consumer appreciation for the product (Butler 2019). Importantly, the potential
health benefits of using microbes and fungi as sources of natural coloring should be made clear to
consumers.

An additional alternative resource for natural dyes, one with a long history of human use dating
back to the ancient Mayan and Aztec civilizations of the Americas, is the cochineal (Dactylopus
coccus) scale insect, which produces carminic acid. The dried insect powder is typically mixed with
calcium or aluminum salts to produce the scarlet-colored carmine dye, which has been used as
a cosmetic, food, or beverage colorant (e.g., for manufacture of CampariTM) or as textile dyes.
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Carmine is also used in the pharmaceutical industry to color ointments or pills.The use of carmine
dye in food products does substitute a natural source for potentially toxic synthetic dyes; however,
the food product can technically no longer be classified as vegan/vegetarian or kosher, as it contains
an animal product. Rarely, individuals may also exhibit allergy/asthma symptoms to carmine dye.
Other than the allergic reactions, there are no known health risks or benefits to the use of carmine.

CONCLUSIONS AND FUTURE PERSPECTIVES

The use of colors from natural sources is important for the food and cosmetic industries to satisfy
the rising consumer demand for natural products and maintain business competitiveness. There
are, however, availability, technical, and regulatory limitations on their use. The number of com-
mercially available natural colorants that have been approved by the FDA for food and beverage
is limited. Technical problems include poor stability of the colorants at different pH values and
rapid color fading, which lead to less attractive color brightness. Some natural color sources may
also affect the organoleptic characteristics of the products. New sources of natural colorants re-
quire long toxicological assessments, which often slow down the regulatory approval processes. As
a result, there are not many options for using existing natural colorants for different applications.
From a marketing point of view, the industry strategy is to promote only the presence of natural
colorants in the products and not their documented health benefits. Industry feels that this is what
consumers want because consumers perceive natural ingredients to be safer than synthetic ingre-
dients. Some color industry representatives even believe that the goal of this industry should be
to sell color, not health. However, there is an unexploited opportunity for the food color indus-
try to create consumer awareness and communicate the biological attributes and potential health
benefits of natural colorants in compliance with existing regulations. Research is also needed to
identify any tangible health benefits of natural food colorant sources, which may further moti-
vate consumer demand beyond the mere preference for natural over synthetics. Depending on
the concentrations of natural pigments in foods and food products, research has already identified
multiple disease-inhibiting or metabolism-enhancing attributes. As previously noted, the health
attributes associated with green Spirulina do drive overall sales, but these benefits have not been
specifically linked to the blue phycocyanin pigment contained in Spirulina.

What the industry needs then is technical improvements of existing natural colorants, pri-
marily in terms of safety, stability, and functionality. In addition, industry would benefit from the
identification and development of new sources of natural colorants, which may include the use
of genetic engineering and microbial production. In this context, safety assessments of these new
sources are imperative to pave the way for regulatory approval. Repeatedly, when representatives
from the natural color industry were asked what research was needed to solve the demand for
new natural pigments, their responses included a need for further research on safety, efficacy,
and toxicology. This research could be expected to shepherd the introduction of novel sources
of natural colors through the regulatory and approvals process and eventually into the market
place.

The use of natural colors in pet foods has seen as strong a market demand over the past few
years as the industry has ever seen.True, a dog does not recognize that he or she is eating a naturally
colored food, but the pet owner is happier knowing that the food is all-natural and safer or more
nutritious as a result. Consumer panels have indicated that they look for ingredients in their foods
and even in their pet’s foods that they can find on their own pantry shelves. Maltodextrin or Red
#40 just does not meet these criteria.

Despite the limitations, the natural colors industry has recently expanded thanks to new tech-
nological and processing innovations that have improved natural color performance, stability, and
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hue. “The last few years have seen real breakthroughs in ‘plugging the gaps in the rainbow,’” ac-
cording to Dave Gebhardt, Sensient Food Colors. “We used to feel like we could only work with
the little 16-crayons in the box, but now we’ve graduated to the big 128-color crayon box!”
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