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Abstract

With advances in artificial intelligence (AI) technologies, the development
and implementation of digital food systems are becoming increasingly pos-
sible. There is tremendous interest in using different AI applications, such
as machine learning models, natural language processing, and computer vi-
sion to improve food safety. Possible AI applications are broad and include,
but are not limited to, (a) food safety risk prediction and monitoring as well
as food safety optimization throughout the supply chain, (b) improved pub-
lic health systems (e.g., by providing early warning of outbreaks and source
attribution), and (c) detection, identification, and characterization of food-
borne pathogens. However, AI technologies in food safety lag behind in
commercial development because of obstacles such as limited data sharing
and limited collaborative research and development efforts. Future actions
should be directed toward applying data privacy protection methods, im-
proving data standardization, and developing a collaborative ecosystem to
drive innovations in AI applications to food safety.
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Artificial intelligence
(AI): a computer
program that can
sense, reason, act, and
adapt

1. INTRODUCTION

Food safety remains a global concern, as supported by its estimated global impact on the econ-
omy and public health.Most recent estimates by theWorld Health Organization (WHO) indicate
that globally every year, foodborne illnesses cause 600 million cases, resulting in 420,000 deaths
and the loss of 33 million disability-adjusted life years (DALYs) (WHO 2015). Overall, progress
in reducing foodborne illnesses globally has been slow and challenging. For example, foodborne
illness rates for key foodborne pathogens in the United States (e.g., Salmonella, Listeria monocy-
togenes) have been relatively steady over the past decade (CDC 2021) and the United States has
consistently failed to meet many of its “Healthy People” food safety–related public health goals.
For example, although Healthy People (2020) targeted a reduction in Salmonella incidence from
15.0 cases to 11.4 cases per 100,000 people by 2020, Salmonella incidence reached 17.1 cases per
100,000 people in 2019 (Tack et al. 2020).

The challenges to reducing foodborne illnesses are multifaceted and complex and differ sub-
stantially by region, country, and the specific pathogen and foods of concern. In many countries,
foodborne illness burdens are essentially unknown, primarily due to a lack of both public health
surveillance systems and systematic food surveillance for foodborne pathogens. Although a focus
on other public health issues perceived to be more urgent and impactful (e.g., malaria and HIV)
may be one reason for the lack of surveillance, the costs and complexity of good foodborne disease
surveillance also represent a barrier.Notably, theWHO recently recognized the public health im-
pact of foodborne illness (including its impact on the health of children< 5 years), which may help
enhance foodborne disease surveillance in some countries and regions (WHO 2021). However,
analytical tools are still needed to support the (a) design of improved and efficient surveillance
systems and (b) interpretation of surveillance data.

However, even in countries with relatively sophisticated surveillance systems (e.g., the United
States, United Kingdom, some Western European countries, New Zealand), improved control
of foodborne illnesses remains a challenge. Reasons for this include the extreme diversity of
the food supply system (e.g., large agricultural and food operations as well as hyperlocal small
operations) and different foodborne pathogens with distinct ecologies, transmission pathways,
and contamination sources, ranging from pathogens where preharvest contamination is a key
concern (e.g., Salmonella Enteritidis) to organisms where contamination from human sources,
typically at the location of meal preparation, is the main concern (e.g., norovirus). However,
the issue is not as simple as one may think; even with limited preharvest control, Salmonella
Enteritidis could ideally be controlled effectively if all consumers would practice perfect food
safety strategies (e.g., no cross contamination and no consumption of raw eggs). Although im-
proved detection and testing may help reduce foodborne illnesses, testing cannot assure safety, as
foodborne illnesses and contamination events are typically rare and heterogeneously distributed
[e.g., a listeriosis outbreak in the United States involved one human illness per 339,200 servings
(Pouillot et al. 2016)]. Hence, novel approaches and strategies are essential for improved control
of foodborne pathogens. In particular, through improved data analytics and predictive capabilities,
artificial intelligence (AI) shows tremendous potential for improving food safety, as further detailed
below.

2. BACKGROUND ON ARTIFICIAL INTELLIGENCE

2.1. Overview

AI is conceptualized as the ability of a computer program or robot to perform human tasks
(Copeland 2021). Moreover, AI programs are expected to have the ability of an intelligent being
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Computer vision:
a field of artificial
intelligence that aims
to analyze images and
other visual
information

Natural language
processing: a field of
artificial intelligence
that aims to interpret
human language

to interact with the environment and learn from the experience. Although not always visible,
AI technology is ubiquitous in our lives in the form of software or embedded in hardware (Eur.
Comm. 2018). Motivations to use AI are broad and generally include (a) mimicking human
behaviors with the same level of competence and therefore reducing human labor or improving
efficiency [e.g., an auto-driving car that can recognize obstacles while making appropriate driving
decisions (Gupta et al. 2021)]; (b) performing complex tasks that require a high level of intelligence
[e.g., AlphaGo, which outperformed humans in chess (Chen 2016)]; and (c) performing tasks
beyond human capability or intuition [e.g., Netflix recommendation systems that automatically
find and display movies that users will possibly like (Ranjan et al. 2019) and drug and vaccine
discovery (Goodswen et al. 2021)]. The agri-food industry has also embraced the AI revolution
by adopting different AI technologies for crop yield prediction (Sinwar et al. 2020), product
quality control (Kondakci & Zhou 2016), improved traceability (Wang et al. 2017), and product
development (Garver 2018). Although many review papers have already discussed AI applications
in the food industry (Kakani et al. 2020, Mavani et al. 2021, Misra et al. 2020), this article focuses
on AI applications in food safety, particularly microbial food safety.

2.2. Categories of Artificial Intelligence Systems

AI systems in the food industry can support decision-making based on the data streams fed through
various processing equipment, instruments, and devices. Depending on how an AI system pro-
cesses data and generates decisions, AI applications can be divided into two groups: (a) rule-based
AI and (b) data-driven AI. A rule-based AI has a list of behavioral rules preprogrammed in advance.
These rules are usually based on previous knowledge or experience about the physical food sys-
tem and are often determined by expert opinions. As an example, a rule-based system using fuzzy
rule-based reasoning was designed to assess the risk of violation for a cross-border e-commerce
commodity (Song et al. 2019). Although a rule-based AI can be useful in making real-time de-
cisions, one of its weaknesses lies in the inability to improve itself automatically. For example, if
there are changes to the system (e.g., changes in weather patterns or production processes) that
might impact the rules governing the food system and thus management decisions, then a rule-
based AI system needs to be reviewed or verified by experts to remain relevant. Another weakness
is that due to the complexity of food systems, rules in such AI systems are often (a) transformed
to qualitative or semiquantitative via fuzzy logic, which might limit the exploitation of the data’s
full potential, and (b) limited to those rules that can be defined with human intuition. In contrast,
a data-driven AI system can overcome these drawbacks by (a) improving performance with the
continuous collection of new data and (b) uncovering patterns beyond human knowledge. How-
ever, it is worth noting that sometimes an AI system can have components from both rule-based
and data-driven applications, allowing it to be more flexible in handling different data sources. For
example, a digital system named Supply-chain Pedigree Interactive Dynamic Explore (SPIDER)
was proposed in a study (Wang et al. 2013) and has both a case-based reasoning engine and a neu-
ral network (NN) as part of the platform. The synergistic effects between these two techniques
allow it to support and verify the implementation of Hazard Analysis and Critical Control Points
(HACCP), which is a well-established management system for food safety. Despite this example,
overall, AI is moving toward data-driven applications (Rajan & Saffiotti 2017), which are the fo-
cus of this review. Key subfields of data-driven AI relevant to food safety include (a) computer
vision, (b) natural language processing, and (c) analytical tools (Figure 1), which are discussed in
greater detail below, with examples from the (a) supply chain, (b) public health, and (c) microbial
data collection (Figure 2).
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Figure 1

Conceptual illustration of key components within the realm of artificial intelligence (AI). Machine learning is one of the subfields of AI.
Unsupervised learning, supervised learning, and reinforcement learning are learning methods within machine learning. Classic and
neural networks are supervised learning algorithms. Random forest (RF), support vector machines (SVMs), and Kernel regression are
algorithm subtypes within the classic algorithms, whereas recurrent neural network (RNN) and convolutional neural network (CNN)
are algorithm subtypes of the neural network algorithms. Computer vision, natural language processing, and analytical tools are AI
fields. Rectangular boxes depict examples of food safety applications in each AI field. The color percentage of each circle and rectangle
(representing AI fields and food safety applications, respectively) represents a rough estimate of the proportion of algorithm types used
in each AI field or for each food safety application type (based on the reviewed literature). Adapted from Mega Map of Machine
Learning provided by While True: Learn() (https://luden.io/wtl/).

3. ARTIFICIAL INTELLIGENCE APPLICATIONS ACROSS
AGRI-FOOD SUPPLY CHAINS

“Smart” technologies for the food industry have emerged and advanced rapidly in recent years,
with numerous companies using AI technologies, especially at the production level (Kakani et al.
2020). Notably, there has been investment and a growing body of “smart” food industry applied
research, including AI-based digital tools for data collection and analysis. AI applications in food
safety across agri-food supply chains have the potential to support traceability,monitoring, inspec-
tion, and other purposes and processes. To date, however, there has been limited generalizability
and commercialization of available AI technologies for food safety. Here, we present examples of
opportunities for AI applications (Table 1) that support food safety that could be further devel-
oped and implemented in industry across all stages of agri-food chains, including raw materials,
production, processing, packaging, storage, distribution, and retail.
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Machine learning
(ML): a subfield of
artificial intelligence
that leverages data and
learning algorithms to
improve its
performance

Supervised learning:
learning performed on
labeled data (i.e., data
output is well-defined)
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Figure 2

Workflow for AI applications in the areas of the supply chain, public health, and microbial data collection.

3.1. Raw Materials

Machine learning (ML) approaches can be used to support the inspection of foods, including raw
materials. For example, a Bayesian networkmodel based on data from the EuropeanUnion’s Rapid
Alert System for Food and Feed from 2000 to 2013 was used to predict food fraud (Bouzembrak
& Marvin 2016). In addition, since launching a pilot program in spring 2019, the US Food and
Drug Administration (FDA) has been developing an ML-based screening tool using data from
past seafood shipments to facilitate identification of high- and low-risk seafood shipments (FDA
2022a).ML-based approaches can also be used for supplier selection and procurement. For exam-
ple,Mars, Inc., developed an aflatoxin predictive model that has been deployed internally to guide
sourcing options (FDA 2022b). Another study used extreme gradient boosting (XGBoost) ML
algorithms to predict risk factors associated with abundance of Vibrio parahaemolyticus in oyster
farms in Taiwan (Ndraha et al. 2021). Future research should support ongoing efforts by industry
and government to develop tools for food safety inspection and procurement of raw materials,
which would ideally lead to near real-time prediction of high-risk raw materials streams with bet-
ter specificity and speed compared to classical testing-based approaches to assuring low-risk raw
materials.

3.2. Production

At the production level, AI applications have been developed to support data collection and pro-
cessing, analytics, and management of crops, livestock, water, and soil (Astill et al. 2020, Kamble
et al. 2020, Kamilaris & Prenafeta-Boldú 2018, Liakos et al. 2018,Martos et al. 2021, Sharma et al.
2020, Smith 2019). To date, production-level AI food safety research has been primarily focused
onML-based descriptive and predictive tools. For example, numerous supervised learning models
have been developed for predicting foodborne pathogen presence and levels in agricultural water
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Table 1 Potential artificial intelligence (AI) applications in food safety to improve agri-food supply chains

Subfields Specific applications AI branch Reference(s)
Raw materials Alert system to predict food fraud Analytical tool Bouzembrak & Marvin 2016

Screening tool for high- and low-risk shipments Analytical tool FDA 2022a
Supplier selection and procurement Analytical tool FDA 2022b

Production Predicting pathogen presence in agricultural water Analytical tool Belias et al. 2021; Polat et al.
2020; Stocker et al. 2022; Toro
et al. 2022; Weller et al.
2020a,b; 2021a,b

Predicting indicator microorganisms’ prevalence
in poultry farm

Analytical tool Golden et al. 2019a,b

Process and
packaging

Optimizing quality management practices Analytical tool Murphy et al. 2021
Quality and safety assessment of foods with sensor

technology
Analytical tool Chen & Yu 2022, Feng & Sun

2012, Ropodi et al. 2016, Yang
et al. 2010, Zhou et al. 2019

Digital twins to facilitate environmental
monitoring programs and inform corrective
actions

Analytical tool Barnett-Neefs et al. 2022,
Sullivan et al. 2021, Zoellner
et al. 2019

Monitoring and optimizing equipment cleaning
and sanitation

Analytical tool Escrig et al. 2019, 2020a,b;
Simeone et al. 2020; Úbeda
et al. 2016; Wallhäußer et al.
2011, 2013

Storage,
distribution,
and retail

Optimizing retail refrigeration temperature Analytical tool Onoufriou et al. 2019
Simulation-based food safety training using vision

technology
Computer vision Friedlander & Zoellner 2020

Predicting food hygiene compliance of food
outlets

Analytical tool Oldroyd et al. 2021

Identifying potentially unsafe food product online
from review comments

Natural language
processing

Maharana et al. 2019

and investigating associated risk factors (physiochemical, temporal, geospatial, weather, and an-
thropogenic) (Belias et al. 2021; Harrand et al. 2020; Polat et al. 2020; Stocker et al. 2022; Toro
et al. 2022; Weller et al. 2020a, 2021a,b). Hence, there are opportunities for utilizing ML to sup-
port preharvest water management. For example, one study trained and compared advantages and
disadvantages of variousML approaches, including support vectormachines (SVMs) and Bayesian,
tree-based, ensemble, instance-based, penalized regression, and rule-based learners to predict
enteric pathogen (Salmonella and pathogenicEscherichia coli) presence in agricultural water sources;
this study demonstrated that ML-based predictive models may be useful for identifying when and
where pathogens are likely to be present in agricultural water (Weller et al. 2020b).

ML has also been applied for investigating foodborne pathogens in the broader produce field
environment. For example, one study utilized tree-based modeling to identify landscape and
meteorological factors associated with the presence of pathogens (L. monocytogenes, Salmonella,
Shiga-toxin-producing E. coli) in soil, fecal, water, and drag swab samples from produce fields
(Strawn et al. 2013). Another study utilized random forest (RF) to identify and rank factors as-
sociated with L. monocytogenes isolation from soil, drag swab, and agricultural water samples from
produce fields, demonstrating that water-related factors were the most important (Harrand et al.
2020). An example of larger-scale data collection and modeling is the ongoing Western Grow-
ers Food Safety Data Sharing Project, which involves utilizing growers’ data (inspections, product
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Unsupervised
learning: learning
performed on
unlabeled data (i.e.,
only the input data are
well-defined)

and water testing, location) as well as temporal, meteorological, and landscape data to train anML
model to support food safety risk assessment (FDA 2022b). Few studies have utilized supervised
ML approaches in production environments other than produce (e.g., poultry farms) (Golden et al.
2019a,b).Unsupervised learning approaches have also been used at the production level for dimen-
sionality reduction (e.g., principal component analysis) (Ivanek et al. 2009, Park et al. 2014, Strawn
et al. 2013). Leveraging existing production-level ML applications, future work should focus on
developing tools to support food safety management by producers, including implementation and
validation of tools on the farm.

3.3. Processing and Packaging

At the processing and packaging levels, AI can be utilized for informed decision-making and task
automation, facilitating optimization of food quality and safety management, reducing risks, and
increasing quality and productivity. For example, conditional RF was used to identify and rank
facility-level qualitymanagement factors associated with postpasteurization contamination of fluid
milk (Murphy et al. 2021). There have been numerous applications of ML for anomaly or defect
detection in foods (e.g., produce) (Nturambirwe & Opara 2020). ML has also been used with
sensor-based devices (e.g., e-nose, spectroscopy, imaging) for food quality and safety assessment
(Chen & Yu 2022, Feng & Sun 2012, Ropodi et al. 2016, Zhou et al. 2019). For example, one study
developed an algorithm to detect fecal contamination on leafy greens using hyperspectral imaging
(Yang et al. 2010). As previously shown (Haiminen et al. 2019), AI based on metagenomics of food
and food ingredients can also help with food authentication, which is another relevant application
to food safety, as fraudulent food or food with fraudulent ingredients may represent a higher food
safety risk.

Environmental monitoring programs are implemented in food facilities to detect contamina-
tion and verify the effectiveness of control measures. Recent studies have developed agent-based
models of Listeria contamination in food facilities, allowing for the simulation of sampling
strategies and corrective actions (Barnett-Neefs et al. 2022, Sullivan et al. 2021, Zoellner et al.
2019). ML can be combined with agent-based modeling to improve model performance and
decision-support (Zhang et al. 2021b). ML approaches can be also used to design and opti-
mize environmental monitoring programs in facilities. For example, at the retail level, one study
developed ML-based (SVMs and RF) classification models of L. monocytogenes persistence in retail
delicatessen environments (Vangay et al. 2014). Building on this previous work on Listeria, fu-
ture efforts to develop model-based tools to facilitate decision-support relating to environmental
monitoring of foodborne pathogens in different types of facilities should be pursued. Additionally,
the aforementioned agent-based models of Listeria in food facilities represent a first step toward
development of digital twins (i.e., a virtual or digital representation of physical systems to simulate
the behavior of the system) (Defraeye et al. 2021, Henrichs et al. 2022, Nasirahmadi & Hensel
2022); these types of tools will provide a tremendous opportunity to support and improve food
safety management.

AI can also be employed for monitoring and optimizing cleaning and sanitation in the food in-
dustry. Previous studies have utilizedML with various sensor technologies (e.g., electrical, optical,
acoustic, and ultrasonic) to monitor fouling and cleaning of food processing equipment (Escrig
et al. 2019, 2020a,b; Simeone et al. 2020; Úbeda et al. 2016; Wallhäußer et al. 2011, 2013). For
example, one study developedNNmodels able to predict area and volume of fouling during clean-
ing using data from ultrasonic sensors (Simeone et al. 2020). Another study developed a system to
detect and diagnose anomalies in clean-in-place using historical data and ML (multiway principal
component analysis) (Yang et al. 2018).
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Deep learning:
a subfield of machine
learning that builds on
deep neural networks

Preventive and corrective maintenance are important for maintaining food safety. Predictive
maintenance is the concept of using predictive tools to determine when maintenance actions are
necessary. Although ML methods applied to predictive maintenance across industries have been
reviewed recently by Carvalho et al. (2019), to date, there have been no published AI-based ap-
plications for predictive maintenance in food processing facilities, presenting an opportunity for
research and innovation.

3.4. Storage, Distribution, and Retail

At the storage, distribution, and retail levels, there are several AI applications for optimizing
pricing and scheduling, identifying and navigating distribution, and personalizing advertising.
However, there are few existing AI applications for food safety. Two main areas of opportunity
for AI application are (a) supply chain management (especially cold chain) and (b) food safety
management at retail.

Control of environmental conditions, especially temperature, in agri-food chains is important
for food safety. Temperature control and monitoring can occur across all stages, including stor-
age, distribution (e.g., refrigerated trucks), and retail (Chaudhuri et al. 2018, Mercier et al. 2017).
Utilizing environmental data collected at various stages of supply chains, data analytics and mod-
eling tools can enable traceability, risk management, and planning optimization. For example, AI
tools can be developed to facilitate temperature control that maximizes sustainability and food
safety, such as the deep learning–based tool termed Nemesyst, which optimizes retail refrigera-
tion while ensuring temperatures stay within food safety limits (Onoufriou et al. 2019). AI can also
be utilized for cold-chain break analysis, including temperature prediction and cold-chain break
detection (Loisel et al. 2021).

Although there are few existing AI-based applications for food safety at the retail level, a re-
cent article proposed many areas of opportunities for AI in retail (Friedlander & Zoellner 2020).
For example, the authors proposed that simulation-based training modules utilizing vision tech-
nologies (such as virtual reality) should be developed to support retail food safety training (e.g.,
handwashing) (Friedlander & Zoellner 2020). ML-based approaches can also be used to support
inspection of retail settings. For example, a recent study developedMLmodels based on neighbor-
hood characteristics to predict food hygiene compliance of food outlets (including retail stores)
(Oldroyd et al. 2021). Similar tools utilizing previously collected data can be developed by food
companies with multiple locations to support their internal food safety inspections.

With the rise of online grocery shopping (i.e., e-commerce), there is an increased ability to track
products and collect data, which can be leveraged for food safety AI applications. For example,
one study (Maharana et al. 2019) developed ML- and deep learning–based models to identify
potentially unsafe food products based on Amazon’s customer reviews.

4. ARTIFICIAL INTELLIGENCE SYSTEMS TO ENHANCE
PUBLIC HEALTH

AI technologies can be used to enhance public health by increasing our ability to predict (a) restau-
rants with poor hygiene practices, (b) the source of foodborne illnesses, and (c) etiological agents
of foodborne cases. These predictions can help public health agents intervene more quickly, pre-
venting the exposure of subjects to contaminated foods and preventing large outbreaks. Although
these strategies have not been fully implemented in foodborne surveillance and outbreak investi-
gations, they have shown promising preliminary results (Table 2). New implementations of these
strategies in a format (e.g., apps) that can be easily used by public health investigators are needed
before we can assess the practical usefulness of these methods in public health.
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Table 2 Potential artificial intelligence (AI) applications in food safety to enhance public health

Subfields Specific applications AI branch Reference(s)
Surveillance Real-time detection of foodborne

illness and outbreaks from
surveillance data

Analytical tool Sadilek et al. 2018, Teyhouee et al. 2017,Wang
et al. 2021

Real-time detection of foodborne
illness and outbreaks from
social media data

Natural language
processing

Du & Guo 2022, Kuehn 2014, Sadilek et al.
2017

Source tracking and
source attribution

Identifying likely sources of
foodborne illness and outbreaks

Analytical tool Barco et al. 2013, Harrison et al. 2021, Mikkelä
et al. 2019, Pires et al. 2009, Ranta et al. 2011,
Thépault et al. 2017, Tyson et al. 2016

Food hazards
prediction

Improving diagnostic accuracy Analytical tool Mei et al. 2020

4.1. Surveillance

Surveillance is a cornerstone of food safety andmay include human foodborne disease surveillance
as well as surveillance of foods for the presence of foodborne pathogens. An early example of AI
application to foodborne disease surveillance is anMLmodel for real-time detection of foodborne
illness using anonymous and aggregated web search and location data (termed FINDER) (Sadilek
et al. 2018).When applied to data collected in two cities,FINDER improved the accuracy of health
inspections with restaurants identified by FINDER being 3.1 times more likely to show critical
violations during restaurant inspections. Previous studies have also developed ML-based models
to detect foodborne illness based on customer restaurant reviews (Effland et al. 2018, Harrison
et al. 2014).

AI has also been used to assign etiology to foodborne illnesses investigated through syndromic
surveillance via an ML algorithm that can assign the most likely etiological agent based on symp-
toms, onset of disease, and geographical location (Wang et al. 2021). ML methods for outbreak
detection need to overcome the issues of under-reporting and erroneous reporting (Zhang et al.
2021a). To address these issues, an ML approach based on hidden Markov models for syndromic
surveillance monitoring and disease outbreak detection was developed and implemented using a
smartphone-based app for tracing the location of food consumption and subclinical reporting; this
approach showed promising preliminary results (Teyhouee et al. 2017). These and additional ap-
plications ofML approaches to foodborne disease outbreak detection have been reviewed recently
by Deng et al. (2021). As detailed in this review, the development and application of AI tools to use
disparate data types [from whole-genome sequencing (WGS) data to web searches and sales data]
to detect foodborne disease outbreaks seem to be a promising future direction. A framework for
AI application to foodborne disease outbreak detection could include two types of data: (a) case,
outbreak, and other surveillance data and (b) data that might influence foodborne disease analysis,
such as weather, holiday, and social media data (Du &Guo 2022, Kuehn 2014, Sadilek et al. 2017).
These data should then be integrated into a single ML approach to detect outbreaks.

4.2. Source Tracking and Attribution

Source tracking and source attribution are important to help (a) identify likely sources of food-
borne disease cases and outbreaks and (b) focus public health and regulatory actions on those
sources that cause the largest public health impact. Although non-AI-based tools for source track-
ing and source attribution have been described (Barco et al. 2013, Harrison et al. 2021, Mikkelä
et al. 2019, Pires et al. 2009, Ranta et al. 2011, Thépault et al. 2017, Tyson et al. 2016), new
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AI-based tools have also been reported. For example, Zhang et al. (2019) applied an ML RF clas-
sifier for source prediction of Salmonella Typhimurium using genomic surveillance data collected
in the United States. Two studies have used LogitBoost (Munck et al. 2020) and various ML
algorithms (Arning et al. 2021) to assign sources to SalmonellaTyphimurium andCampylobacter iso-
lates, respectively. Another study (Duarte et al. 2021) reported a metagenomics-based approach
to source attribution of antimicrobial resistance (AMR) determinants, which used different RF
approaches to classify resistomes into corresponding reservoir classes. Overall, published works
clearly support the rich opportunity that exists for using AI approaches to enhance foodborne
disease source attribution efforts.

4.3. Food Safety Risk Prediction

AI tools also provide a powerful approach for the prediction of times and locations at which there
is an increased risk of foodborne pathogen presence or where there is an increased risk of food
contamination with foodborne pathogens (e.g., owing to the occurrence of factors that facilitate
the transfer of pathogens from the environment or other vectors to finished product). The power
of this approach has been particularly well demonstrated by several studies that used different
predictor variables to predict the risk of pathogen contamination of agricultural water and the
risk of pathogen presence in fields used for produce production (see Section 3.2 above). Although
in the context of supply chain management, these AI tools can be useful to facilitate decision-
making with regard to harvesting and water treatment, they can also provide value to public health.
For example, model predictions can be used to enhance testing frequencies or interventions at
locations and time periods when AI tools predict an increased risk of pathogen contamination.

AI has the potential to impact other aspects of microbial food safety risk prediction. For ex-
ample, a study on qPCR (quantitative polymerase chain reaction)-based diagnosis of COVID-19
showed that AI-based tools can be used to combine PCR findings with data from completely dif-
ferent tests (in this case CT scans of patients) to improve diagnostic accuracy (Mei et al. 2020).
In a food safety context, a similar approach could be used during production or in the finished
product to analyze qPCR amplification curves, which are used for pathogen detection, along with
other data from the same sample (e.g., water turbidity, pH) to improve identification of foodborne
pathogens in raw materials.

5. ARTIFICIAL INTELLIGENCE–SUPPORTED TECHNIQUES FOR
FOODBORNE PATHOGEN DETECTION, CHARACTERIZATION,
AND IDENTIFICATION

AI applications have the potential to improve and enhance (a) detection of foodborne pathogens
and indicator organisms (e.g., coliforms, E. coli); (b) classification, identification, and differentia-
tion of bacterial isolates, including foodborne pathogens; and (c) characterization of bacteria in
terms of AMR, host specificity, and virulence, (d) modeling of microbial growth, and (e) under-
standing of population dynamics (Table 3). In general, AI applications in these areas have the
potential to reduce time, resources, and expertise required for detection and data analyses and will
help reveal unintuitive patterns that could be valuable for food safety decision-making. Notably,
there is a growing trend in applying image-based analysis to detect bacteria from environmental
samples or identify bacterial isolates. Because of the speed of image data collection and maturity
of image technology, some of these applications have features that facilitate commercialization
and expansion, including (a) hardware and software integration, (b) large databases of images that
support model training and validation, and (c) a platform for acquiring new data. Thus, some of
these AI applications have potential to be integrated into food safety testing systems.
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Table 3 Potential artificial intelligence (AI) applications in food safety to facilitate microbial data collection

Subfields Specific applications AI branch Reference(s)
Pathogen detection Image-based early detection of pathogens in agar

plates
Computer vision Wang et al. 2020

Pathogen detection using paper chromogenic array Computer vision Yang et al. 2021
Classification,
identification, and
differentiation of
bacterial isolates

Identification and classification of bacterial isolates
using Raman spectroscopy

Computer vision Ho et al. 2019, Sil et al. 2021

Identification of bacterial isolates using HMI Computer vision Kang et al. 2021
Bacterial classification from microscopic images Computer vision Zieliński et al. 2017
Enhancing species identification via MALDI-TOF

MS
Analytical tool Singhal et al. 2015

Bacterial identification from digital HRM profiles
generated from digital PCR

Analytical tool Athamanolap et al. 2019

Microbial
characterization

Predicting HPI with end-to-end platform Computer vision Fisch et al. 2019, 2021
Predicting AMR Analytical tool Hyun et al. 2020, Jamal

et al. 2020
Predicting MIC Analytical tool Nguyen et al. 2019, Pataki

et al. 2020
Predicting host specificity Analytical tool Lupolova et al. 2017, 2019
Predicting virulence Analytical tool Allen et al. 2021

Modeling microbial
growth

Modeling the pathogen growth in various food
categories

Analytical tool Hiura et al. 2021

Predicting the growth status of pathogens in various
media conditions

Analytical tool Fernández-Navarro et al.
2010

Characterization of
bacterial
population

Classifying microbial taxa and communities based on
metagenomics data

Analytical tool Ghannam & Techtmann
2021, Harris et al. 2019

Predicting the microbial interaction from the
presence and absence of specific microbial
characteristics

Analytical tool DiMucci et al. 2018

Abbreviations: AMR, antimicrobial resistance; HMI, hyperspectral microscopic imaging; HPI, host–pathogen interaction; HRM, high-resolution melt;
MALDI-TOF MS, matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry; MIC, minimal inhibitory concentration; PCR,
polymerase chain reaction.

5.1. Pathogen Detection

One emerging area of AI application to food safety is improved detection of pathogens and indi-
cator organisms.One study used image-based detection methods to take advantage of the fact that
bacteria have different morphology in agar plates (Wang et al. 2020).With a combination of image
preprocessing and a deep NN algorithm for classification, this detection system was able to detect
E. coli and total coliform bacteria at the detection limit of 1 colony forming unit (CFU) in less
than 9 hours; this approach could easily be adapted to other media and microorganisms, allowing
interpretation of plating-based tests substantially before colonies are easily visible, particularly if
methods can be developed for different food matrices, media, and plates with high levels of back-
ground microflora. AI tools have also been applied to other microbial characterization methods
such as paper chromogenic arrays (PCAs), which are composed of various chromogenic dyes that
will change color after contact with volatile organic compounds produced by different bacteria.
In a proof-of-concept study (Yang et al. 2021), the visual results of PCAs were used as input fea-
tures to train a multilayer NN to detect the presence of specific pathogens on inoculated romaine
lettuce. Although the trained model was able to detect E. coli and L. monocytogenes from inoculated
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Convolutional neural
network (CNN):
a subtype of the deep
learning algorithm
specializing in
processing images and
progressively
recognizing key visual
features

romaine lettuce in the test data set, the detection limit was reported to be around 3 log CFU/g,
which is too high for real-world use.

5.2. Identification and Classification of Bacterial Isolates

AI-based methodologies have also been applied to the analysis of complex and large data sets to
facilitate improved classification, identification, and differentiation of microbial isolates (Ho et al.
2019,Kang et al. 2021, Sil et al. 2021,Weis et al. 2020). For example, several studies have described
the use of AI-based image detection methods to analyze spectral information that has been gen-
erated for the identification of bacterial isolates, for example, through Raman spectroscopy (Ho
et al. 2019, Sil et al. 2021) and hyperspectral microscopic imaging (HMI) (Kang et al. 2021). Kang
et al. (2021) showed that using the center region of interest of living cells as the input data set,
the HMI method coupled with a recurrent NN was able to classify and differentiate five common
foodborne pathogens. Ho et al. (2019) reported that Raman-based methods were able to classify
30 selected pathogen isolates and predict the antibiotic treatment using recommended empiric
treatment as the ground truth. In a different study (Sil et al. 2021), Raman spectra of bacterial
DNA samples, which provide less noise than whole cell samples, were used to classify 15 species
from Brucella and Bacillus genera. Because the context of pathogen identification is highly variable,
efforts to develop larger databases for bacterial identification are essential, which would provide
valuable input data for future AI tool development. For example, a database of 660 microscopic
images representing 33 bacteria of different genera and species supported texture recognition (e.g.,
shape, size, spatial arrangement) in microscopic images through a convolutional NN (CNN) with
subsequent identification of bacteria via ML algorithms (Zieliński et al. 2017).

AI has also been used to support pathogen characterization and identification by other analyt-
ical and diagnostic tools.Weis et al. (2020) summarized various studies that use ML algorithms to
analyze the spectral features from matrix-assisted laser desorption/ionization and time-of-flight
mass spectrometry (MALDI-TOFMS) (Singhal et al. 2015) to improve species identification.ML
has also been used to assist bacterial identification by associating digital high-resolution melt pro-
files generated from digital PCR with specific bacterial species (Athamanolap et al. 2019). Similar
to spectroscopy-based methods, these AI-powered analytical methods need a broader database
covering common food pathogens to enhance their applicability to food safety. Currently, the
studies reported (Barreiro et al. 2010, Böhme et al. 2010, Hazen et al. 2009) only focused on a few
pathogens and products.

5.3. Microbial Characterization

When applied as an analytical tool to existing data (e.g., image data and genomic data), AI can
also enhance our understanding of pathogen characteristics, including AMR, and host–pathogen
interaction (HPI). Although AMR characterization can help inform treatment and control strate-
gies, for example, for animal-associated pathogens (e.g., Salmonella), HPI characterization can
inform pathogenicity, which may have implications for dose response. Hence, characterization
of foodborne pathogens has indirect but relevant implications for food safety. One promising and
advanced application in this area is the elucidation of HPI using computer vision. Although ML
models (Sen et al. 2016) have been used to study the dynamics of bacterial infection, these mod-
els usually need rule-based features that are generated from manual labeling and identification of
key phenotypic features from the image. Automated feature extraction in combination with image
analysis based on CNN has been shown to reduce bias and improve performance and efficiency
(Fisch et al. 2019, 2021). Apart from the prediction accuracy (e.g., in terms of predicting protein
recruitment), this system exemplifies a mature AI technology in that it is automated, user-friendly,
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and applicable to other pathogens with an open platform to facilitate the data collection from
users. It is important to note that the CNN algorithm used in this system is not novel, as it ben-
efits from transfer learning that allows pretrained NN to be customizable to other applications.
With this in mind, we believe that a similar research approach can be applied to other domains of
pathogen characterization.

Although state-of-the-art deep learning algorithms revolutionized our analysis of image and
spectral data, ML algorithms are still most commonly used to identify attributes of foodborne
pathogens from genetic data (e.g.,WGS data). Applications that leverage genetic data include pre-
diction of AMR (Hyun et al. 2020, Jamal et al. 2020), minimal inhibitory concentration (Nguyen
et al. 2019, Pataki et al. 2020), host specificity (Lupolova et al. 2017, 2019), and virulence (Allen
et al. 2021). Tree-based methods, including XGBoost, AdaBoost, and RF, perform better with
strong predictors and therefore are commonly selected algorithms because the input data (e.g.,
k-mer representation of genome and expression of specific genes) are categorical. Findings from
these studies enhanced our understanding of associations between genotypic and phenotypic fea-
tures, which can be used to characterize new foodborne pathogen isolates solely based on WGS
data. Future development of automated systems integrating gene and genomic databases and
ML algorithms will make this type of WGS-based pathogen characterization more accessible,
including to individuals without coding knowledge.

5.4. Modeling Microbial Growth

Challenges with modeling of pathogen growth, as well as survival and die-off, are numerous
and related to the fact that it is important to predict growth, survival, and die-off for several
different pathogens (including possibly different pathogen subtypes) in a variety of different
foods and under a variety of different environmental conditions (e.g., temperatures). ComBase
(https://www.combase.cc/index.php/en/) is a database that collects fundamental research re-
sults about bacterial growth patterns under different food matrix and environmental conditions.
UtilizingComBase as a data source,Hiura et al. (2021) reported thatMLmodels achieved accurate
prediction of L. monocytogenes levels within 1 log CFU regardless of the food category, suggesting
that more extensive usage of such models with other pathogens and food products is possible with
the support of big data. AI can also be used to predict whether pathogens can grow under certain
conditions (growth/no growth modeling), which is important for many food safety applications.
Using a multiclassification model, a study was able to classify microorganisms in media under var-
ious growth conditions into growth, growth transition, and no growth (Fernández-Navarro et al.
2010). Overall, these examples illustrate how AI can be used to support decision-making with re-
gard to pathogen control strategies, including through “food safety by design” approaches, where
AI tools would be used to support development of formulations that minimize pathogen growth.

5.5. Studying Bacterial Population Dynamics

There are many examples of AI application to support modeling and characterization of micro-
bial populations and population dynamics, even though most examples are from fields other than
food safety.Not surprisingly, there are several publications that detail AI-based approaches to clas-
sify microbial taxa and communities based on metagenomics data (Ghannam & Techtmann 2021,
Harris et al. 2019). Although 16S metagenomics tools, which until recently were the predominant
metagenomics approaches used in foodmicrobiology, are considered to have limited value for food
safety (as they typically cannot reliably differentiate foodborne pathogens from closely related
nonpathogens), increasing application of shotgun metagenomics, including AI-based analyses of
the resulting data, is likely to broaden food safety relevant metagenomics applications. Another
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research direction to study population dynamics is to predict the interaction between microor-
ganisms in a community from various traits. Using three microbial communities as experimental
examples, DiMucci et al. (2018) predicted the microbial interactions of the microorganisms in
each community from the presence and absence of specific genes or metabolic functions observed
in the communities. This ML-assisted approach was suggested to have potential for discovering
therapeutic interventions. In the context of food safety, this application might be useful to predict
the effect of biopreservatives used as control strategies for foodborne pathogens.

6. CHALLENGES AND FUTURE DIRECTIONS FOR ARTIFICIAL
INTELLIGENCE TO HELP IMPROVE FOOD SAFETY

Although in previous sections, we explored different opportunities AI technologies present for
the improvement of food safety, application of AI tools in food safety still appears to lag behind
compared to other food-related areas (e.g.,marketing, agricultural production).The relatively low
penetration of AI in food safety appears to be due to multiple factors. One key reason seems to be
the limited availability of data that are needed to develop and implement AI tools for food safety
applications with key limitations being (a) the low speed and high cost of microbial data collec-
tion and (b) limited sharing of microbial data, owing to industry concerns about data privacy and
the business and reputational risk that may be associated with data sharing. In some cases, there
may be a reluctance from food industry stakeholders to develop and adopt food safety AI tech-
nologies because of a fear that these tools might negatively impact their business interests. This
concern is not just limited to the data sharing that may be required but may also extend to con-
cerns that AI tools, if available to others, could be used to predict whether a specific company (e.g.,
the company that provided the data for the tool development) has an increased food safety risk.
The lack of a clear legal and regulatory framework regarding AI applications and protection of
sensitive data that are needed to feed these applications may compound these concerns. Even if
food safety data can be shared, data from different sources often represent distinct formats and
structures, which makes standardization and data use difficult. Also, data details, such as the test
methods used and the sample size tested (e.g., 1 g, 25 g), are often either inconsistent or not avail-
able. Negative test results (i.e., results that do not detect a pathogen) may never be available at all
or may show even less metadata.

Another challenge to more widespread AI application is the lack of systematic efforts to assem-
ble different AI tools. Given that many food safety AI tools are developed by research labs, they
tend to fall short of delivering practical products that industry can adopt or that at least can be
quickly developed into usable tools. Furthermore, the problems addressed by “research” AI tools
are typically specific to a type of product, microorganism, or environmental condition; hence, the
generalizability is limited and thus those AI tools need to be combined for holistic benefit.

To address the challenges mentioned above, we propose that key directions for future AI
development in the field of food safety include (a) improving data sharing among different stake-
holders through novel privacy preservation technologies, data standardization, and regulations,
(b) encouraging multidisciplinary collaboration to encourage more commercial deliverables, and
(c) implementing education in data science, software development, and design thinking among
food safety professionals

Innovations in privacy protection methods have the potential to improve the utility and scala-
bility of various AI tools by facilitating more widespread data sharing, as accessibility to big data
is the key to AI applications. Two of the most promising approaches are differential privacy and
federated learning. Differential privacy allows data providers or data processors to intentionally
manipulate data by adding noise, which grants the data provider plausible deniability. Different
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levels of privacy can be customized depending on the sensitivity of the data and the trust level of
data providers. Relevant to the area of food safety, differential privacy has been applied to protect
personal health data to facilitate COVID-19 surveillance (Dyda et al. 2021). At the same time,
federated learning is presented as the emerging tool in medical diagnostics (Rieke et al. 2020),
which shares similar challenges regarding data sharing as the food safety field. Federated learning
allows data providers to share local updates to the model on the cloud without sharing the data.
Thus, the model applications can be trained without the need to store data at a central location.
With the ability to utilize but not compromise patient data, federated learning is a promising
approach that can aid in the transition of research models to practical tools in clinics. Future re-
search and development efforts should apply these novel privacy-preservation methods to food
safety data; these efforts could provide use cases for industry partners and insights into the sample
size needed (i.e., a total of collectively shared data) to ensure acceptable utility of AI applications.

To address the industry concerns about the misuse of AI applications, laws and regulations
need to keep up with the advancement of technology to reflect and avoid potential misuse. For
example, templates of mutual agreements should be developed to better delineate the boundary
for interpreting results from AI applications. A food company might be more inclined to adopt AI
technology if the contamination predicted from the model is used for internal decision-making
only and cannot be used by government and supply chain partners against the company’s benefits.
Digital solution providers for food safety should help food companies establish protocols and
evaluate enterprise risks in the case of a data leak or model misuse. These strategies can help food
companies choose the type of AI technologies they want to use, depending on the level of risk
they are willing to accept.

Importantly, however, data standardization still needs to be developed and implemented across
the industry to facilitate data sharing by limiting the time and effort to unify the data. This pro-
cess could be facilitated with the help of a third-party organization, for example,Global Language
of Business (https://www.gs1.org/), which is an organization that creates a common language
for different systems, or through collaboration between different stakeholders, as exemplified by
Coordinated InnovationNetwork fromDairy Brain (Ferris et al. 2020).Currently,many organiza-
tions, including the FDA, have already directed efforts toward standardizing metadata associated
with WGS data (Balkey et al. 2021, Pettengill et al. 2021).

To address the lack of deliverable AI tools in food safety, researchers need to establish inter-
disciplinary collaboration with computer scientists, software developers, and IT professionals to
develop user-centered application programming interfaces and data management systems to sup-
port commercialization or implementation of food safety AI analytical tools. Improved education
and literacy in data, computer science, and design thinking are also needed to help food safety
professionals better communicate across disciplines and express the specific industry needs.With
an extensive library of ML models currently developed in academia, it is not difficult to envision
the integration of these tools into commercial AI applications for food safety. For example, with
a connection to a public geographical database and implementation of water sensors in irrigation
water and rapid detection equipment for indicator microorganisms, an AI system can be pow-
ered by the Internet of Things to provide early warnings for increased risk of pathogen presence
in agricultural water, fields, and products, informing different practices such as testing, irriga-
tion source water selection, harvest timing, and harvest equipment sanitation frequency. Further
governmental support is also needed to facilitate the development and implementation of AI tech-
nologies in food safety. Similar to the FDA’s regulation of AI-based medical devices (Benjamens
et al. 2020), clearer regulations with regard to clearance levels will help the commercialization of
current existing food safety AI.
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7. CONCLUSIONS

Although it is tempting to conclude that AI shows promise for application in food safety, so far
there are only a few convincing examples that would support this statement.Most data and exam-
ples that provide strong evidence for successful application of AI to food safety are in the areas of
public health surveillance, prediction of preharvest food safety risk factors, and, to a lesser extent,
detection, identification, and characterization of foodborne pathogens. Key obstacles to wider
commercialization and implementation of AI tools for food safety applications include limited
availability of digitized food safety data (food safety data are still often collected and stored in hard
copy), privacy concerns (most food companies hesitate to store food safety data on the cloud), a
workforce that often has limited data literacy, and a limited food safety innovation ecosystem
that could stimulate the collaborations needed to foster food systems’ wide implementation of
digital food safety tools. Overcoming these challenges will require considerable efforts, includ-
ing an improved digital food safety infrastructure, implementation of innovative data sharing and
privacy protection approaches, and improved digital training of food safety professionals. Impor-
tantly, industry as well as AI researchers and service providers will also need to be careful to not
present AI as a panacea but to focus on those applications where AI will address specific needs and
questions, using other more appropriate tools (including simulations, classical statistics, etc.) as
needed. Finally, despite its alluring name, in the medium term, AI tools are likely to help provide
decision-support tools, and final decisions will still be made by humans.
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