
Annual Review of Food Science and Technology

Polyphenol Exposure,
Metabolism, and Analysis: A
Global Exposomics Perspective
Ian Oesterle,1,2 Dominik Braun,1 David Berry,3,4

Lukas Wisgrill,5 Annette Rompel,2 and Benedikt Warth1

1Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna,
1090 Vienna, Austria; email: ian.oesterle@univie.ac.at, dominik.braun@univie.ac.at,
benedikt.warth@univie.ac.at
2Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna,
1090 Vienna, Austria; email: annette.rompel@univie.ac.at
3Centre for Microbiology and Environmental Systems Science, Department of Microbiology
and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna,
Austria; email: david.berry@univie.ac.at
4The Joint Microbiome Facility of the Medical University of Vienna and the University of
Vienna, 1090 Vienna, Austria
5Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of
Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
email: lukas.wisgrill@meduniwien.ac.at

Annu. Rev. Food Sci. Technol. 2021. 12:461–84

First published as a Review in Advance on
December 22, 2020

The Annual Review of Food Science and Technology is
online at food.annualreviews.org

https://doi.org/10.1146/annurev-food-062220-
090807

Copyright © 2021 by Annual Reviews.
All rights reserved

Keywords

polyphenols, human biomonitoring, food metabolomics, microbiome, food
bioactives, biotransformation, exposome

Abstract

Polyphenols are generally known for their health benefits and estimating
actual exposure levels in health-related studies can be improved by hu-
man biomonitoring. Here, the application of newly available exposomic and
metabolomic technology, notably high-resolution mass spectrometry, in the
context of polyphenols and their biotransformation products, is reviewed.
Comprehensive workflows for investigating these important bioactives in bi-
ological fluids or microbiome-related experiments are scarce. Consequently,
this new era of nontargeted analysis and omic-scale exposure assessment of-
fers a unique chance for better assessing exposure to, as well as metabolism
of, polyphenols. In clinical and nutritional trials, polyphenols can be inves-
tigated simultaneously with the plethora of other chemicals to which we
are exposed, i.e., the exposome, which may interact abundantly and mod-
ulate bioactivity. This research direction aims at ultimately eluting into a
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true systems biology/toxicology evaluation of health effects associated with polyphenol exposure,
especially during early life, to unravel their potential for preventing chronic diseases.

INTRODUCTION

Polyphenols are a large class of bioactive compounds present in plant-based foods that each con-
tains at least one phenyl ring and one hydroxyl group. These molecules can be divided into two
main classes, flavonoids and nonflavonoids, with either of these two classes containing a variety of
subclasses, as shown in Figure 1, such as flavonols, anthocyanins, and isoflavones (Crozier et al.
2009, del Rio et al. 2012).

The presence of dietary polyphenols has been described in numerous plants, vegetables, and
other food sources, such as coffee or chocolate, each having a different polyphenolic profile. No-
tably, 452 food items containing a total of 502 different polyphenols can be found in the Phenol-
Explorer database, an important resource for polyphenol content in foods, metabolism, and fate
during food processing (Neveu et al. 2010). For instance, in leaves of Moringa oleifera up to 291
different polyphenols have been annotated (Rocchetti et al. 2020). The phenolic profile may vary
slightly for the same food item depending on factors such as region, climate, and soil. This was,
for example, demonstrated in theM. oleifera leaves from trees that were grown in different regions
of China (Zhu et al. 2020).

Polyphenols have been described as protective agents for neurodegenerative and other chronic
diseases, mainly via their antibacterial, anticancer, and anti-inflammatory properties (Shahidi &
Yeo 2018). The health and protective effects of polyphenols are related to not only their antioxi-
dant activity but also a variety of other modes of action, such as modulatory interaction with en-
zymes or receptors (Figueira et al. 2017). For instance, ferulic acid may induce anticancer activity
by affecting the behavior of cells in a human pancreatic cancer cell line by changing the expression
of certain apoptosis and cell cycle genes (Fahrioğlu et al. 2016). Another example is kaempferol,
which displays antioxidant activity by reducing reactive oxygen species and anti-inflammatory ac-
tivity by inhibiting proinflammatory enzymes such as cyclooxygenase-1 and -2 enzymes (Devi
et al. 2015).

However, polyphenols can also have prooxidant activity, especially when high amounts of cer-
tain polyphenols are present, e.g., when complementing a diet with concentrated polyphenols
(Granato et al. 2020, Martin 2009). The prooxidant activity of polyphenols is also shown to oc-
cur when redox-active metals are present (Sulpizio et al. 2018) and can increase the formation
of reactive oxygen species, leading to potential DNA damage (Anantharaju et al. 2016, Kyselova
2011). However, the prooxidant effect of polyphenols can in turn help activate and increase the
production of enzymes and proteins that protect against the damaging effects of reactive oxygen
species (Roos & Duthie 2015).

The traditional approach of human biomonitoring (HBM), i.e., measuring a dietary or en-
vironmental exposure in a biological fluid, is currently being extended by so-called exposomic
approaches. Here, the intention is to go beyond single biomarkers and assess chemical exposures
at the omic scale. Thus, exposomic research involves studying a vast number of biomarkers from
human matrices to assess and better understand complex exposures and their impact on health
and disease (Dennis et al. 2017). Importantly, newer definitions of the exposome, i.e., the total-
ity of lifetime exposures, include the measurable biological response to these exposures. Hence,
the metabolome (here defined as the totality of endogenous human metabolites) is a relevant part
of the exposome for studying the various chemical pathways and processes as a response that
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Figure 1

Flow chart depicting polyphenol classes and selected examples of each class.
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can help to understand bioactivity and toxicity. According to the Human Metabolome Database
(HMDB), there are more than 110,000 different metabolites found in the human body, including
those formed by the microbiota (Wishart et al. 2018). Therefore, due to the numerous poten-
tial effects of polyphenols, both beneficial and adverse, and the copious amount of at least 50,000
polyphenols present in plants, of which 8,000 were identified as dietary polyphenols (Ziaullah &
Rupasinghe 2015), research initiatives for better characterization of exposure and health impact
are warranted.

HBM typically applies targeted analytical approaches utilizing authentic reference standards
for accurate quantification,whereas in exposomics,mostly untargeted workflows, often referred to
as nontargeted analysis/screening (NTA/NTS), are developed and applied. A targeted approach
involves analyzing specific biomarkers,which are oftenmetabolites that represent exposure and/or
effect. Contrarily, the untargeted approach involves studying all measurable metabolites present
in a sample (Dennis et al. 2017). Both analytical approaches are currently applied in polyphenol
research, and clearly both come with prospects and challenges that are discussed in this article.
Moreover, a variety of analytical techniques can be utilized for both these approaches. The tech-
niques typically involve using either liquid or gas chromatography for separation, followed by
measuring the analytes by a connected detector. Diode array or ultraviolet/visible-light detectors
were previously used extensively, despite challenges in metabolite identification (Scalbert et al.
2009). However, with the advancement of mass spectrometry (MS) and nuclear magnetic reso-
nance (NMR), these detectors have become more common. Even though NMR detectors have
the advantages of being nondestructive, highly reproducible, and require almost no sample prepa-
ration, NMR is less selective and sensitive and can detect a lower number of metabolites simulta-
neously compared to MS detectors (Emwas 2015). Thus, the focus in this article is on MS-based
detectors, mainly those with liquid chromatography (LC) separation because of its high sensitiv-
ity and ability to analyze a variety of compounds (Shao et al. 2019). In addition, the application
of new analytical methods and the impact of polyphenols on the gut microbiome are reviewed.
Finally, future perspectives for polyphenol research, especially in the context of infant health and
early-life exposure, are highlighted.

BIOMONITORING OF POLYPHENOLS IN HUMAN SPECIMENS

The metabolism of polyphenols is an intricate process, as an array of dietary polyphenols are
found in various food sources, and, once ingested, they undergo a range of metabolic processes.
This is, for example, reflected in the Phenol-Explorer database, where 375 different polyphenol
metabolites found in urine and plasma from humans and animals are currently listed (Rothwell
et al. 2013). Therefore, choosing the right biomarkers, if possible representing absorption and the
effect of different polyphenols in the human body, is a critical endeavor.

As depicted in Figure 2, ingested dietary polyphenols can undergo two main types of biotrans-
formations: phase I,which includes functionalization reactions such as hydrolysis or oxidation, and
phase II, which includes detoxifying conjugation reactions such as glucuronidation. These trans-
formations occur mainly in organs such as the liver or small intestine either before or after their
tissue absorption or are caused by the gut microbiota found in the large intestine, yielding an
assortment of microbial metabolites (Scalbert et al. 2014). For instance, ellagitannins are first par-
tially metabolized by acid hydrolysis in the stomach or proximal small intestine, forming ellagic
acid. Then, in the small intestine or colon, the gut microbiota further metabolizes the ellagitan-
nins and ellagic acid into urolithins, which are absorbed and can undergo phase II transformations
by glucuronosyltransferases and/or methyltransferases (Crozier et al. 2009).Other biotransforma-
tion reactions that may modify phenolic acids, such as cinnamic acids, are methylation in the small
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Figure 2 (Figure appears on preceding page)

Scheme of human polyphenol metabolism and biotransformation reactions, such as sulfation and methylation, that can occur,
exemplified by the deconjugation and transformation of the flavonoid quercetin (Almeida et al. 2018, Heleno et al. 2015, Marín et al.
2015).

intestine and sulfation in the liver (Heleno et al. 2015). Generally, deciphering the full degree of
polyphenol metabolism in the body is a complex task.

Targeted Analytical Approaches

There are two main ways targeted approaches have been used with polyphenols in HBM. First,
because each foodstuff has its own polyphenolic profile, the exposure to a certain food source can
be studied by looking at the biotransformation products of the polyphenols that are present in
higher concentrations in that specific food source. Second, certain biotransformation products
or unmetabolized polyphenols can be targeted to analyze how different types of exposures may
change their concentrations in the body. An example of a targeted polyphenol metabolomics ap-
proach would be to measure levels of certain phenolic acid metabolites, such as isoferulic acid, to
quantify the intake of tea or coffee (Hodgson et al. 2004). This approach can be used to better
evaluate the validity of self-reported food intake data from study participants via food frequency
questionnaires or food diaries, as these are often erroneous and do not provide quantitative data.
Typically, for targeted approaches, reference standards are used for the unambiguous identifica-
tion and quantification of either the parent molecule (typically after enzymatic deconjugation) or
the respective metabolic products (frequently glucuronide and/or sulfate conjugates). However,
because of a lack of commercially available reference standards for the conjugated forms, often
only the aglycones are measured or used as reference standards for (semi)quantification in urine,
although it is known that many compounds are fully conjugated. Also, if enzymatic deconjuga-
tion is applied, certain limitations apply. Frequently, the enzymatic conversion is incomplete, and
the efficiency of deconjugation may differ between different polyphenols or even for the same
polyphenol if it is conjugated at different positions. This can result in inaccurate quantification
(Ottaviani et al. 2018). Furthermore, because of the choice of biomarkers, certain metabolites
might not be detected by certain targeted methods, making the calculation of factors such as the
bioavailability of polyphenols more difficult (Manach et al. 2005). Estimation errors can occur
and certain metabolites can be missed because, even though polyphenols exist in a range of food
sources, they are sometimes present at low concentrations, and as a consequence, their respective
concentrations in human plasma or urine are even lower, typically below 1 nmol/L (Gleichenhagen
& Schieber 2016).

Many methods for investigating polyphenol metabolites in human matrices have been pub-
lished and are reported in Table 1 (targeted) and Table 2 (untargeted). Most of these apply a
targeted approach with 2–50 different analytes included, and only a limited number of studies
investigated more than 30 polyphenol metabolites, with the current highest number investigated
being 54 metabolites (Zhong et al. 2017). However, this method also highlights some typical lim-
itations that exist in quantification and can occur in targeted approaches. It employs neither de-
conjugation nor any reference standards for conjugated metabolites. Therefore, as mentioned
above, it is very likely to severely underestimate exposure because most polyphenol metabolites
are present in their conjugated forms following ingestion and biotransformation. Currently, the
method with the highest number of quantifiable metabolites determines 46 analytes, including
several glucuronide and sulfate conjugates; however, these metabolites were selected, as they are
potential marker molecules for orange juice consumption (Ordóñez et al. 2018).Thus, there is still
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a vast potential and need to develop broader and more comprehensive methods for the accurate
quantification of polyphenols and their human metabolites.

Most studies tend to develop methods for a limited number of related subclasses of polyphe-
nols to address a specific biological question. Thus, the methods are optimized to have favorable
separation for one chemical class or similar subclasses. This narrow focus can be a necessity to
detect polyphenol metabolites where concentrations are very low. However, a method that was
optimized for a subclass of polyphenols may not be optimal for another, thus making it difficult
to study chemically diverse polyphenols simultaneously. Therefore, such a method is appropri-
ate only for looking at a few desired subclasses of polyphenols but is not ideal to gain a broader
and more complete picture, which would be required to assess the real impact of food bioac-
tives on human health in a systems-wide manner. Creating such a quantitative multiclass assay
would allow for studying exposure via a variety of food sources in-depth for more holistic cohort
studies. Moreover, having such an extensive and broad multi-analyte LC-MS/MS method could
support benchmarking and standardization initiatives for NTA. For such a method, both targeted
and untargeted LC-MS-based methods can be applied, with the untargeted approach having the
advantage of involving potential unknown molecules (Bocato et al. 2019).

Untargeted Liquid Chromatography–High-Resolution Mass
Spectrometry–Based Metabolomics

With the advent of more affordable and easier to use high-resolution mass spectrometric instru-
mentation during the past two decades, untargeted approaches have emerged as an alternative to
strictly targeted assays in many fields. This includes the screening (and, partly, quantification) of
known and unknown chemical exposures in the food and exposure sciences. An untargeted ap-
proach requires high-resolution MS (HRMS) for full scan capacities, which thus creates massive
data files that consequently require advanced bioinformatic solutions to extract relevant infor-
mation from the obtained metabolic features (Bocato et al. 2019). For polyphenol metabolites
in human matrices, relatively little research utilizing the power of untargeted methods has been
performed to date because of the complexity of this methodology. However, there is considerable
usefulness in this approach, illustrated in Figure 3, as it screens numerous polyphenol metabo-
lites, allowing the identification of as yet unknown metabolites and finding metabolites that can
act as better biomarkers in subsequent targeted approaches. For example, a study demonstrated
that following consumption of six different polyphenol-rich foods, 83 different metabolites were
annotated and used as potential dietary biomarkers (Edmands et al. 2015). Similarly, in another
experiment, out of 187 potential polyphenol metabolites, 90 were annotated, of which 33 were
identified with reference standards (Ávila-Gálvez et al. 2019). These are two of the methods with
the highest number of annotated metabolites. However, confident identification of polyphenols
and metabolites is still a major challenge. According to the Metabolomics Standards Initiative
(MSI), authentic reference standards are required for confidently identifying a certain molecule
(Sumner et al. 2007). This again underlines the importance of reference standard availability, no-
tably of the conjugated metabolites. Currently, the method with the highest number of identified
polyphenol metabolites that have a reference standard for each metabolite quantitatively assesses
46 polyphenols and metabolites (Ordóñez et al. 2018). Clearly, there is ample potential in further
expanding the untargeted toolbox,whether it involves annotating or identifyingmoremetabolites,
looking at exposure and its correlation with environmental and food factors, developing bioin-
formatic pipelines, or observing other human sample matrices. Table 2 presents an overview of
published untargeted MS-based methods for the analysis of polyphenols and their metabolites in
human samples.
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Nontargeted analysis (NTA)
Quantitative data
High confidence in chemical
identification
High sensitivity
Reduced data volume
No retrospective data analysis
Restricted to specific
known biomarkers

Targeted analysis

Exposome

Metabolome

Microbiome

Chemical space
of (un)known

molecules

Chemical space
of (un)known

molecules

Chemical space
of (un)known

molecules

No a priori selection of metabolites
Annotation of unknowns
Investigate molecular interactions
Retrospective data analysis feasible
High-throughput capacity
More cost intensive
Complex data handling and analysis

Figure 3

The exposome comprises xenobiotic exposures, including food bioactives such as polyphenols, and associated biological responses that
may be reflected in the endogenous metabolome. Contrary to the selective targeted analysis of food/environmental exposures for
biomonitoring purposes (symbolized by the laser), nontargeted analysis (symbolized by the floodlight) allows the more holistic
investigation of chemical exposure and endogenous as well as microbial metabolites.

Polyphenol Metabolites in Human Matrices

As stated above, polyphenols tend to bemetabolized by biotransformation, and variousmetabolites
can be determined in different biological samples.As reported inTables 1 and 2, themainmatrices
investigated for HBM purposes were plasma and urine. Plasma is often available in HBM and
clinical studies and has an advantage in that it interacts with all living cells in the body; thus, a
broad range of metabolites may be present (Wallace et al. 2016). Urine is frequently used in HBM
studies, as the majority of absorbed metabolites are excreted via the kidneys, it is noninvasive,
and large volumes can be collected. Moreover, it can easily be used in routine sample collection,
and longitudinal experimental designs are easier to perform than with other matrices (Smolders
et al. 2009). However, polyphenol metabolites can also be present in other sample types, e.g.,
39 different metabolites were found in breast tissue (Ávila-Gálvez et al. 2019). Studying rather
uncommon sample matrices holds special potential for novel insights. For instance, few studies use
saliva as a matrix, even though various metabolites have been detected. One study, for example,
examined the intake of red wine by studying associated metabolites found in saliva, although it
only measured the levels of melatonin and 11 phenylpropanoids (Varoni et al. 2013).
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Even less research has been performed on polyphenol metabolism in matrices other than
biofluids or stool. An interesting optionmight be the investigation of biomarkers in bones, as it has
recently been shown that various polyphenols, such as urolithins, from pigs fed with plant-based
diets were detectable in their bones. This may be applied to humans’ postmortem for assessing
life-long exposure (Alldritt et al. 2019). Another possible matrix could involve teeth, as one study
has found that it is possible to measure a variety of compounds, from metals to organic molecules
such as pollutants like bisphenol A, in primary teeth, indicating prenatal exposure (Andra et al.
2015). The advantage of such an approach for exposure assessment is derived from the fact that
organic compounds are likely more stable in the inorganic tooth matrix than in organic matrices,
thus allowing better storage and cumulative exposure over a period of time. Hair is another po-
tentially interesting matrix for the analysis of polyphenol metabolomics, as it is readily available,
can be sampled noninvasively, and has the potential to deliver longitudinal exposure monitoring.

MICROBIAL POLYPHENOL METABOLITES AND MICROBIOME
STUDIES

The microbiome is a vital, yet still incompletely understood, component of the human body. The
composition and the metabolic activities of the microbiome can be modified by diverse factors
including diet, drug treatment, and lifestyle (Moco et al. 2012). Each person harbors a unique
microbiota, and the variation in microbiota composition can have dramatic effects on the extent
of polyphenol metabolism. For example, soy isoflavones can be transformed into equol, an estro-
gen receptor agonist, by a restricted number of low-abundance intestinal bacteria, most notably
Adlercreutzia species (Clavel et al. 2014). As not everyone has Adlercreutzia in their gut microbiota,
there is dramatic interindividual variability in the production of equol (Setchell & Clerici 2010). It
is likely that variation in the microbiota is a key underlying determinant in the observed variabil-
ity between individuals in the metabolism of many polyphenols. Because of the high complexity
of the microbiome, most studies exploring microbial polyphenol metabolism and its impact are
performed either in vivo in mice, by in vitro models in which stool samples or derived fecal water
is fermented, or in single-species bacterial culture.

Consumption of certain polyphenols has been shown to act as a prebiotic and promote the
growth of specific microorganisms and thereby modulate the gut microbiome (Han&Xiao 2020),
resulting in several reported effects. For example, in mice consuming a diet supplemented with
bioactive dietary polyphenols, the gutmicrobiota was changed in a way that led to an improvement
in sleep-deprived induced cognitive impairment (Frolinger et al. 2019). Conversely, polyphenols
may be inhibitory to some microorganisms and reduce their activity or abundance and thereby
produce a positive health effect. For example, an increase in consumption of procyanidins has been
shown to reduce the amount of Lachnospiraceae species and thereby elicit an antiobesity effect
(Gowd et al. 2019). Moreover, the effects of polyphenols, whether inhibiting or promoting, on
different species in the gut microbiota depends on the polyphenols’ backbone and its conjugation.
For instance, the flavanol (+)-catechin promoted the growth of Eubacterium rectale (Etxeberria
et al. 2013). For flavonols and flavanone aglycones to inhibit the activity of gut microbiota, they
require a 4-carbonyl group attached to the C-ring in their backbone; this activity transpires only
with aglycones and is not present in the glycosides (Duda-Chodak et al. 2015).

Examples of potential metabolic pathways for the biotransformation of polyphenols are out-
lined in Table 3. Some main mechanisms for polyphenol metabolism by the microbiota involve
cleavage of various bonds in their heterocyclic carbon ring mediated by dioxygenases, hydro-
genations of alkene moieties, or dehydroxylation (Stevens & Maier 2016). As an example, proan-
thocyanidins are cleaved into smaller phenolic acids such as 2-(p-hydroxyphenyl)-propionic acid
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(Déprez et al. 2000). Quercetin, as another example, was shown to be transformed into homop-
rocatechuic acid or 4-hydroxybenzoic acid by species such as Bifidiobacterium B-9 and Streptococcus
S-2 (Santangelo et al. 2019).

Because of the extreme chemical diversity of polyphenol metabolites formed by the gut micro-
biota, untargeted HRMS techniques offer a unique chance for the discovery of microbial metabo-
lites in a similar manner as described above for human metabolic products. However, distinguish-
ing metabolites derived from human or microbial transformation activity is not straightforward.
Dissecting the origin of a specific microbial metabolite to a bacterial species is even more chal-
lenging. However, it is expected that novel technologies based on stable isotopes will, in the near
future, provide new avenues for approaching this topic (Flasch et al. 2020).

As mentioned above, the common technique to better understand the processes of polyphe-
nol metabolism by the gut microbiota is to mimic the large intestine in vitro. A specific method
was developed to analyze 19 different metabolites from the biotransformation of grape polyphe-
nols by the gut microbiota (Zhao et al. 2018). Another study used an untargeted approach to
annotate 75 polyphenol metabolites during fecal fermentation (Rocchetti et al. 2019). However,
certain biotransformation reactions that occur in other organs or during digestion can be missed
when using this in vitro model. A polyphenol could be absorbed and transformed in the liver and
then released back to the small intestine with the bile and finally reach the gut microbes for fur-
ther transformation. To date, a limited number of studies have used untargeted LC-HRMS for
polyphenol metabolomics in gut microbiome research. This results in knowledge gaps that could
be highly relevant when systematically investigating the impact of polyphenol exposure on health
parameters in clinical trials.

EARLY-LIFE EXPOSURE AND IMPACT ON HUMAN HEALTH

Following the developmental origin of health and disease hypothesis (Wadhwa et al. 2009), study-
ing early-life exposure is vital, and studying polyphenols more holistically by untargeted LC-
HRMS workflows would certainly be of high interest because of their reported bioactive proper-
ties. Exposure to environmental factors, including bioactives, contaminants, and toxins, especially
during gestation and the first 1,000 days of life, is believed to often result in chronic health is-
sues later in life. However, because of limitations in measuring the thousands of (low-dose) expo-
sures and the complexity of toxicological interactions, hard evidence is currently lacking for many
pathologies. In the case of undernourished human fetuses, changes in metabolism and decreased
growth rates were demonstrated to ultimately lead to health issues such as hypertension or heart
disease (Osmond & Barker 2000). In addition, during embryonic and fetal development there
are critical windows of susceptibility during which exposure is particularly detrimental (Selevan
et al. 2000); for example, pregnant mothers that were exposed to air pollution during the second
trimester gave birth to children who later in life had a higher risk of developing asthma (Hsu et al.
2015). Because polyphenols are able to reduce certain toxic effects, there is a clear rationale to
coinvestigate them in future exposomic-scale environmental health studies.

Current research in early-life exposomics is usually done in animal models, as it is challenging
to assess fetal exposure to xenobiotics because various biomarkers in plasma and urine have a short
half-life.Numerous studies in animal models have shown the benefits of polyphenols in protecting
against chronic diseases. Silva et al. (2019) showed that consuming resveratrol from gestation until
postnatal day 21 helped reduce hypertension development in rats; however, as a side effect, post-
natal growth was restricted (Care et al. 2016, Silva et al. 2019). Studies investigating the impact of
polyphenol exposure in human early-life models are rare, and those that have been done tend to
look at short-term effects (Silva et al. 2019). Furthermore, some studies have also shown negative
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effects of consuming polyphenols during pregnancy, e.g., consumption of polyphenol-rich foods
during the third trimester could have a negative impact on the fetus by causing ductal constric-
tion, which can increase the risk of neonatal pulmonary hypertension (Zielinsky et al. 2010, 2013).
However, in this work, polyphenol exposure was estimated based on food frequency question-
naires rather than biomonitoring. Polyphenols can also be used as chemosensors for various ions
that can have negative or positive impacts on health, such as using curcumin as the complexing
agent against ions like Hg2+ or F− (Khorasani et al. 2019). Similarly, polyphenol oxidases can be
used as chemosensors to detect polyphenols in, for example, urine; however, issues have arisen
because of their lack of specificity (Gul et al. 2017). Clearly, investigating polyphenol exposure
and metabolism during early life using novel high-end technology offers unique opportunities for
attaining a better picture of the combinatory impact of diverse environmental exposures.

Importantly, the composition of the early-life gut microbiome is thought to be of relevance for
chronic disease development, especially with regard to inflammatory and autoimmune disorders
(Kelly et al. 2007, Stiemsma &Michels 2018). Because polyphenols have been shown to influence
the gut microbiome, it would be beneficial to study the associated effect in larger and more sys-
tematic multi-omic studies during early life. Research in Asian women consuming a high soy diet
indicated a reduced risk of breast cancer (Wu et al. 2008). These protective properties are believed
to follow exposure to soy-related isoflavones and their effect on the gut microbiome occurs during
early life (Warri et al. 2008). The protective effects of genistein could be due to a change in the
composition of the gut microbiota (Paul et al. 2017) or the microbial metabolites formed (Hullar
et al. 2014).

CONCLUSION AND OUTLOOK

The field of polyphenol research and analysis is clearly of high relevance in the context of novel
omic-scale exposure assessment and systems toxicology approaches. Recent advances in analytical
instrumentation, namely HRMS, bioinformatic capacities, and tailored structural and biological
databases allow for a more holistic and in-depth investigation of polyphenols and their abundant
human and microbial metabolites.

Future research efforts should include the development of a very broad (targeted) reference
method to analyze >100 polyphenols and key metabolites simultaneously to get a more com-
plete understanding of the various food bioactives present. Investigating only a limited number
of subclasses is not sufficient, as mixture effects are likely to occur. Developing methods to ana-
lyze polyphenols in matrices other than blood, urine, or feces, and continuing the development
of untargeted methods along with tailored bioinformatic solutions for the resulting big data will
pave the way for identifying potential new biomarkers of exposure and effect. In addition, possibly
new correlations between metabolites from the consumption of specific polyphenol-rich foods or
different influential factors may be derived.

Other research areas of interest may include the investigation of polyphenol-related enzymes,
e.g., the polyphenol oxidases from various sources such as apples (Kampatsikas et al. 2019),walnuts
(Panis et al. 2020), and mushrooms (Pretzler et al. 2017). These enzymes can exhibit bioactivity,
as quinones can be derived via polyphenol transformation by these enzymes (Queiroz et al. 2008)
or lignans such as nordihydroguaiaretic acid, which is a powerful antioxidant, can show antiviral
properties, and is derived from larreatricin with the help of polyphenol oxidases (Martin et al.
2018). The bioactivity of these enzymes may also aid the development of polyphenol chemosen-
sors with higher specificity. Finally, we encourage better investigation of polyphenol exposure
during different stages of development from early to late life and the potential correlations with
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the etiology and/or prevention of chronic disease in the perspective of the expanding exposome
paradigm.
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