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Abstract

We are entering a new era in genomics where entire centromeric regions are
accurately represented in human reference assemblies. Access to these high-
resolution maps will enable new surveys of sequence and epigenetic varia-
tion in the population and offer new insight into satellite array genomics
and centromere function. Here, we focus on the sequence organization and
evolution of alpha satellites, which are credited as the genetic and genomic
definition of human centromeres due to their interaction with inner kineto-
chore proteins and their importance in the development of human artificial
chromosome assays. We provide an overview of alpha satellite repeat struc-
ture and array organization in the context of these high-quality reference
data sets; discuss the emergence of variation-based surveys; and provide per-
spective on the role of this new source of genetic and epigenetic variation in
the context of chromosome biology, genome instability, and human disease.
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1. INTRODUCTION

Centromeres are essential chromosomal structures that mark sites of spindle attachment and
ultimately ensure proper chromosome segregation during both mitosis and meiosis. Errors in
centromere establishment, inheritance, and maintenance through cell division can result in un-
equal partitioning of chromosomes and genome instability. Notwithstanding their important cel-
lular function, the precise sequence organization of human centromeres was excluded from initial
genome reference assemblies (39, 47, 105) and largely ignored by contemporary genetic and ge-
nomic studies over the past two decades. Centromeric regions, and associated pericentromeric
heterochromatin, are commonly marked by the enrichment of long arrays of near-identical tan-
dem repeats, or satellite DNAs (91). These highly repetitive sequences have been historically un-
derrepresented due to inherent cloning and sequencing biases: instability in Escherichia coli during
bacterial artificial chromosome (BAC)-based cloning, the regular occurrence of restriction sites
used for cloning in the tandem repeats, or the potential toxicity of the cloned DNA (16, 75). Fur-
ther, genome assembly methods failed to reliably represent centromeric regions in the past due to
the inability to confidently span unique sites in the array that are necessary to predict the linear
ordering of thousands of tandem repeats (80, 88). As a result, all human centromeric regions were
marked as large gaps, representing megabase-sized placeholders, in our original human reference
genomes (39, 47, 105).

Although missing from our initial reference maps, sequences in these regions were not un-
known. Focused experimental studies across human centromeric sequences revealed that all nor-
mal human centromeric regions are defined at the sequence level by long arrays of alpha satellite
DNA, formed by a diverse class of AT-rich tandem DNA repeats, or monomers (58, 59). Individ-
ual monomers are commonly arranged into larger,multimonomeric units, or higher-order repeats
(HORs) (113), and are organized into one or more highly homogenized arrays at every human
centromere. Focused experimental efforts to sample, clone, and directly sequence representative
HORs from each centromeric region provided important insight into chromosome-specific sub-
sets of alpha satellite (reviewed in 111), their phylogenetic classification into distinct suprachromo-
somal families (reviewed in 2), and initial expectations for long-range organization (55, 85, 109,
110). Further, focused studies of the small number of assembled satellites on the chromosome
arms adjacent to the centromere gaps of human and nonhuman primate genomes revealed dis-
crete and chronologically ordered alpha satellite layers (81, 85, 89). Emerging databases of alpha
satellite–containing reads in whole-genome sequencing data released our first assessments of the
frequency of repeat variation within chromosome-assigned arrays, along with early estimates of
array length differences between individuals in the population (48, 68, 101). Linear representation
of these observed repeat variants and their estimated copy number in the HuRef genome (51) led
to the initial release of modeled alpha satellite arrays in the human reference assembly (GRCh38)
(68, 104). Although these modeled alpha satellites were inadequate for long-range studies of array
structure, they enabled short-read mapping to predict sequence variation (68), detected off-target
mapping (66), and offered a more comprehensive study of sequences bound to inner kinetochore
proteins (19, 72, 73). Collectively, these extensive studies in the human genome led to the devel-
opment of the first conceptual representation of centromere genomic organization and sequence
evolution across complex genomes.

Advancements in long-read sequencing technologies and recent improvements in repeat as-
sembly methods can now generate complete and accurate assemblies of human centromeric HOR
arrays (15, 41, 52, 67, 74). This progress credits the availability of long reads (∼15–20 kb) with ex-
tremely high consensus base quality (QV30, 99.9%), or high-fidelity (HiFi) sequencing data from
Pacific Biosciences (108), and reads that routinely reach hundreds of kilobases in length (40), or
ultralong (UL) data from nanopore sequencing from Oxford Nanopore Technologies. In parallel,
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we have seen tremendous gains in automated satellite array assembly and quality evaluation proto-
cols (15, 69, 74), coupled with standard validation methods using pulsed-field gel electrophoresis
(PFGE) and Southern blotting (52, 67).Notably, our current centromeric reference assemblies are
derived from an effectively haploid human cell line derived from a complete hydatidiform mole
[CHM13hTERT (94)], in which cells have two nearly identical pairs of chromosomes, greatly
simplifying the challenge of repeat assembly compared with typical diploid cell lines. The recent
release of the first complete assemblies of two human chromosomes end-to-end, or telomere-to-
telomere (T2T) [T2T-ChrX (67) and T2T-Chr8 (52)], offered our first opportunity to evaluate
these new alpha satellite assemblies in light of the expectations based on previous experimental
studies (31, 55, 85) (discussed in more detail later in this review). Further, with the release of addi-
tional human centromeric regions (6), we are now met with an opportunity to blend the old with
the new: confirming expectations in our original models and highlighting new discoveries with
access to complete and accurate maps.

Centromeric satellite repeat copy number and sequence variants within each array are expected
to vary considerably (54, 68, 109) due to unequal crossover and conversion. Therefore, a single
haploid representation of each human centromeric region is inadequate to comprehensively study
the extent of sequence and epigenetic variation. Indeed, satellite repeat copy number estimates
across human diversity cohorts, such as the 1000 Genomes Collection (98), have shown that hap-
loid X (DXZ1 or S3CXH1L) and Y (DYZ3 or S4CYH1L) alpha satellite array lengths can differ by
a factor of 5–10 between individuals (48, 64, 68) and can be different in two homologous chromo-
somes from the same person (117). Previous cytogenetic studies have indicated that such variation
may contribute to predispositions to cancer, infertility, and chromosomal aneuploidies (28, 116).
In addition to centromere sequence diversity, inner kinetochore proteins that bind alpha satellite
also show signs of evolving rapidly across primates (86). Further, a scan of the human genome
for signatures of positive selection found evidence of recent selective sweeps at 8 of 17 studied
centromeres (114), motivating future studies to explore evidence of centromere strength or drive
in human population data, as previously documented in other species (10, 25, 45, 46). Ultimately,
extensive analysis of the alpha satellite array variation in humans and nonhuman primates will
offer new insights into how these regions evolve over time and how such changes influence the
localization and inheritance patterns of inner kinetochore proteins.

This is an exciting time for centromere research. Tools are now available to do in-depth anal-
yses of the intersection of genomics and epigenetics to explore variation in centromere structure
and models of evolution. Comprehensive studies of the molecular mechanisms that ensure cen-
tromere activity will likely provide new insights into human health, and they have the potential
to lead to new diagnostic tools and treatments. Additionally, a more complete understanding of
centromeres at the genomic level will likely motivate the development of a new era in synthetic
genome biology and gene therapy vectors for use in humans. Here, in light of this great progress
and promise, we discuss the structure of alpha satellite sequences and our current model of alpha
satellite evolution, and we provide a perspective on new studies aimed to improve our understand-
ing of centromere biology and human disease.

2. EVOLUTIONARY HIERARCHIES IN ALPHA SATELLITE
ARRAY STRUCTURE

2.1. Genomic Model of Human Centromeric Regions

Alpha satellite DNAs are credited as the genetic substrate of endogenous centromeres in primates,
starting with the new-world monkeys. No alpha satellites have been found in tarsiers and lemurs
(49, 89). In humans, arrays of alpha satellites are organized in discrete layers expanding out from
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a multimegabase-sized homogeneous core that is composed of chromosome-specific HORs (live
or active arrays). Additional subsets of alpha satellites (36, 65, 100) are often observed on one or
both sides of the core in a near symmetrical formation. This includes a zone of smaller homo-
geneous HOR arrays (pseudocentromeres or inactive arrays) followed by an outermost layer of
progressively more divergent and smaller (center-to-periphery gradient) HOR and monomeric
arrays (relic centromeres). Both inactive HOR arrays and divergent arrays are often in the range
of a few to hundreds of kilobases. Other distinct satellite classes, such as the classical human satel-
lites (human satellites 1–3, or HSat1–HSat3), are of variable size (up to several megabases) and
positioned in the adjacent pericentromeric regions. Segmental duplications are often observed di-
rectly flanking the satellite arrays or in centromeric transition regions extending out to the p-arm
or q-arm (greater than a megabase) or between adjacent satellite arrays. The entire centromeric
region can be defined by those sequences in linkage or sharing a common centromere-spanning
haplotype (cenhap), which is characterized by repressed meiotic recombination (48). All alpha
satellite arrays except for the active or live HOR arrays may by opposition also be called inactive
or dead centromeres or dead centromeric layers.

The general symmetrical disposition of alpha satellite layers around the homogeneous core,
which we noted above (see also Figure 1a), reflects the mode of alpha satellite evolution that
may be called expanding centromere. It suggests the periodical emergence of a new centromere
within the old one (Figure 1c). Analysis of sequence relationships between different HORs within
suprachromosomal families (SFs) (see Section 2.4.1) and between dead monomeric layers has
shown that centromere expansion likely goes in waves of interchromosomal transfer and amplifi-
cation, where the HORs (or monomeric sequences) of the newly formed novel centromere jump
from one live centromere to another and amplify in the new location to form the next generation
of live centromeres (a centromeric layer) in all chromosomes or in a group of chromosomes (2,
4, 85, 89, 112). The remnants of the old centromere are displaced sideways, shrink, diverge, and
structurally degrade (see Sections 2.2 to 2.9) (24, 84, 89).

The sequences in the alpha satellite part of a centromere can be characterized by their
monomer composition (SF-specific monomer classes; see Section 2.2), their HOR versus
monomeric construction, and an average divergence of neighboring copies of a repeat in an ar-
ray, as there is a gradient of intra-array divergence from the center to the periphery that reflects
the age of alpha satellite arrays (2, 42, 84, 85, 89). Also crucial is the functional distinction be-
tween active (or live) arrays, which host the kinetochore, and inactive (or dead) arrays, which do
not. None of these differences are absolute, and there are many exceptions and borderline cases,
but they provide a reasonable way to navigate the centromere landscape. It is also important to
note that active centromeres of primates in the human lineage pre-dating the apes were the same
in all chromosomes and did not have HORs longer than dimers (panchromosomal organization;
the centromere array on chromosome Y is often an exception). Chromosome-specific HORs (i.e.,
chromosome-specific organization) emerged in the great apes (5, 89). Gibbons are a border case,
with evidence for both panchromosomal, or genome-wide, organization and chromosome-specific
organization in different taxa (9, 18, 44). Hence, in humans, there are dead relic divergent layers
that are the remnants of ancestral primate centromeres (2, 89). Their organization is panchro-
mosomal in older monomeric layers and mostly chromosome-specific in younger divergent HOR
layers and even younger homogeneous HOR layers (104).

2.2. Alpha Satellite Monomer Classification

Classification of alpha satellite monomers has been summarized in several reviews (2, 36, 63).
There are five major alpha satellite SFs. An SF is a group of HOR or monomeric arrays more
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Figure 1

Structure and evolution of alpha satellite arrays. (a) Illustration of the general genomic organization of a human centromeric region,
which includes one homogeneous core made of chromosome-specific HORs (red) and the imperfect symmetrical organization of
smaller arrays of various other homogeneous HORs [pseudocentromeres or inactive HOR arrays (light gray)], divergent HORs [recent
relic centromeres (dark gray)], and multiple distinct divergent monomeric arrays (older relic centromeres, with blocks indicating colors
describing phylogenetic assignments listed in Supplemental Table 1). These regions typically include other pericentromeric satellite
classes [e.g., HSat1–HSat3 (teal)] and SDs. The entire centromeric region is defined by those sequences in the cenhap (48), presented as
gray flanking regions extending into the p-arm and q-arm. Arrayed triangles indicate alpha satellite monomers and HORs of various
length and structures composed of several different monomers. (b) Centromere X array haplotype maps, as determined from DXZ1
(S3CXH1L) HOR clustering and divergence data, provide evidence for block organization and gradient of divergence throughout all
the layers. Classification of haplotypes is determined by phylogenetic relationships of the DXZ1 HOR repeats, revealing three distinct
larger haplotypes (gray, yellow, and light purple). The larger haplotype structure (three major branches on the phylogenetic tree of
haplotype consensus HORs) can be further characterized into 14 DXZ1-HOR subgroupings representing individual haplotypes (6, 65).
One subbranch (white) represented by one HOR is a hybrid between two other haplotypes. The numbers in parentheses indicate the
number of HORs in each clade. The dot plot for the self-aligned DXZ1 array (lighter areas have higher homogeneity) and StV map
with few variant HORs (white) are also shown. (c) Kinetochore selection model for satellite array evolution. This model (see
Section 2.9) proposes that selfish selection operates on the array through the amplification of the repeat (light blue) due to the
association with kinetochore (green) assembly, which locates itself on repeats to which it happens to have maximal affinity. Over time,
the new satellite array (light blue) replaces the original satellite array (yellow), which shrinks progressively due to the ongoing deletion
process. Centromeric arrays that are no longer associated with the kinetochore are considered dead and are arranged symmetrically,
flanking the live arrays. Dead arrays are depicted as light gray (oldest region), dark gray (medium old), and adjacent yellow (newly
inactivated dead alpha satellite array). Abbreviations: cenhap, centromere-spanning haplotype; HOR, higher-order repeat; HOR (L):
live, or HOR array associated with kinetochore assembly; HSat, classical human satellites; SD, segmental duplication; StV, structural
variant of a HOR. Figure adapted from data presented in Reference 6.
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closely related to each other than to the other groups. Each SF is built of its own set of monomeric
classes (see Supplemental Table 1; Section 2.8). The new SFs (SF1–SF3) exist only in African
apes (89). They form active (live) centromeres on all human autosomes and the X chromosome (2,
78), most pseudocentromeres (or inactive arrays), and most divergent HORs. The old SF4+ and
SF5 unite the dead monomeric layers as well as pseudocentromeres and divergent HOR arrays
derived from them by more recent amplifications. SF5 represents centromeres that have been
active at the time of the human-orangutan split (89). SF4+ is an umbrella group that unites a large
number of old and ancient SFs, such as SF4 proper, SF6, SF7, and more, which correspond to the
older primate groups (90). As a notable exception, the active centromere of chromosome Y also
belongs to SF4 proper. SF5 is the immediate ancestor of the new SFs (78, 104). It consists of the
two monomeric classes R1 and R2, which represent two progenitor types (B and A, respectively)
to which all monomeric classes of the new families belong (3, 78). Importantly, the A- and B-type
consensus monomers mostly differ from each other in a narrow 17-bp region (the AB-box), which
corresponds to the binding site of a well-studied centromeric protein,CENP-B (the B-box, type B
monomers) (60), or to the presumed binding site of a very-little-studied (30) pJα protein (the A-
box, type A monomers). The relationship of types A and B and SF-specific monomeric classes is
shown in Supplemental Table 1.

2.3. Archaic Suprachromosomal Families 01 and 02

Recently, Shepelev et al. (90) and Uralsky et al. (104) analyzed a group of the less abundant al-
pha satellite sequences detected as atypical or archaic representatives of SF1 and SF2. They were
shown to be the interim stages of evolution from ancestral SF5 to typical or modern SF1 and SF2.
We propose considering them full-fledged SFs, but for the time being, assigning them the incre-
mental numbers 01 and 02, respectively, to avoid renumbering the other SFs. Their monomer
classes should be processed in a standard way and included in the SF table (Supplemental Table
1). In the human genome, SF01 and 02 are represented by both divergent (see Section 2.8) and
homogeneous HORs, including one live centromere in chromosome 6 (D6Z1 or S01C6H1L),
the 3-monomer archaic segment in the live HOR of chromosome 3 (D3Z1 or S01/1C3H1L),
relatively large pseudocentromeric arrays in centromeres 3 (S01C3H2) and 20 [S02C20H3; was
named HOR20–2 by Shepelev et al. (90)], and also large divergent HOR arrays in chromosomes 3
and 6 [S1C3/6H1d; name changed from S1C3H4 used by Uralsky et al. (104)].Overall, archaic SF
arrays are usually found between the new SFs and SF5 arrays (90). Sequence relationships within
SF01 were studied in detail by Uralsky et al. (104).

2.4. The Hierarchies in Higher-Order Repeat Domains

Alpha satellite HORs present a complex hierarchy of sequences with different levels of identity
between different HORs (coming from different chromosomes or within one chromosome) and
different levels of intra-array divergence (2, 4, 6, 15, 36, 63, 65, 81, 90, 104, 111, 112). These
levels include SFs, sub-SFs, sister HORs, homogeneous HORs, haplotypes of the same HOR,
and divergent HORs, described in the sections that follow.

2.4.1. Suprachromosomal families. SFs are groups of relatedHORs that share the same broad
classes of monomers (Supplemental Table 1, Section 2.2) and reside on a number of chromo-
somes (Supplemental Table 2). The divergence between different HORs in one SF is ∼12–15%
and 20–50% between different SFs (2, 4, 89, 90).
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2.4.2. Subsuprachromosomal families. Sub-SFs are groups of even more closely related
HORs within an SF (2, 104). Sub-SFs are known in all new SFs (shown in Supplemental Table 2;
e.g., S1C1/5/19H1L, S1C5H2, and S1C16H1L in SF1). Divergence in such groups is ∼7–10%.

2.4.3. Sister higher-order repeats. Sister HORs (Supplemental Table 2) are distinct
chromosome-specific sequence variants (major SqVs) within the same HOR that form smaller
arrays adjacent to the live HOR [e.g., S3C17H1L (D17Z1), S3C17H1-B (D17Z1-B), and
S3C17H1-C (D17Z1-C) (81, 89)] or pseudocentromeric subdomains in the pericentromere [e.g.,
S3C1H2-A, -B, -C, and -D (104) and S2C18H2-A, -B, -D, and -E (6)]. They are formed by
monomers that differ only moderately from respective monomers of the other sister HORs (∼3–
7%) and may have the same or a somewhat different order of monomers.

2.4.4. Homogeneous higher-order repeats. HomogeneousHORs (reviewed in 2, 36, 63) usu-
ally have an overall average divergence across thewhole array of about 1–2% and are chromosome-
specific with a few notable exceptions among the live HOR arrays (double and triple domains) (see
Supplemental Table 2; Section 2.5).

2.4.5. Haplotypes of the same higher-order repeat. Haplotypes of the same HOR (slight
SqVs) occupy different regions in the live HOR arrays (6, 15, 52, 65) (see Figure 1b; Section 2.7).
A haplotypic HOR region may be formed by one haplotype or by several alternating varieties.
Divergence between HORs of different haplotypes may be ∼1–3%, and divergence within one
haplotype may be as low as 0.5% (see Figure 1b).

2.4.6. Divergent higher-order repeats. Divergent HORs represent a separate entity that
unites HORs that have passed completely or partially through the alleged hypermutability stage
and accumulated more divergence than would be possible during their documented or estimated
lifespan given the normal mutation rate (see Section 2.8). These are often partially ruined small
arrays on the edges of larger homogeneous arrays, some chromosome-specific and some residing
on two or several chromosomes. Intra-array divergence is typically over 10% (Figure 1a).

2.5. Homogeneous arrays of Higher-Order Repeats

Typical alpha satellite homogeneous HOR arrays consist of chromosome-specific HORs ∼4–40
monomers long. However, some nonhomologous pairs of chromosomes share almost identical or
very similar live HORs [the so-called paired domains 13/21 and 14/22 and triple domain 1/5/19;
reviewed by Alexandrov et al. (2)]. It is not known if these chromosomes have recently shared the
centromeres and did not have enough time to diverge or if there is a continuous homogenizing ex-
change between these chromosomes.This issue could be addressed using theT2T assembly. Some
pseudocentromeric HORs are also shared between two or more chromosomes (e.g., S5C5/19H4
is shared by chromosomes 5 and 19; see other examples in Supplemental Table 2).

The traditional naming system for alpha satellite HORs was a part of the more general human
gene mapping (HGM) system. It was not very specific or convenient, and many newly discovered
HORs did not have HGM names (see discussion in 104). We therefore propose to use the new
naming system designed especially for the alpha satellite HORs described by Uralsky et al. (104),
which covers all currently known HORs (see proposed names in Supplemental Table 2) and is
easier to operate. In this system, each HOR received a name that included its SF, chromosomal
location and index number (e.g., S1C13/21H1 for SF1, chromosomes 13 and 21, and HOR#1).
Divergent HORs are marked with the d index after the name (e.g., S1C3/6H1d). Live HORs are
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always H1 and are additionally marked with index L (e.g., S2C9H1L). This new system should be
evaluated by satellite and bioinformatic communities to be modified and/or changed as needed.
For the time being, we use the old names (whenever they are available) and new names in parallel.
Note that no SFs older than SF6 have been found in HORs so far (Supplemental Table 2), new
SF1–SF3 (01 and 02 included) are exclusively HOR, and SF5 and SF4 (proper) and SF6 have both
HOR and non-HOR arrays (90, 104).

2.5.1. Sequences for CENP-B and pJα binding sites in alpha satellite. The new SF1–SF3
form all of the live centromeres except for the Y and form most of the pseudocentromeric and
relic inactive, or dead, HOR arrays (Supplemental Table 2). In SF1 and SF2 HORs, the J1 and
J2 or D1 and D2 class monomers appear as internal J1J2 or D1D2 dimers, respectively, with
perfect (SF1) or near-perfect (SF2) AB periodicity across arrays (Supplemental Table 1) (35, 78,
79, 90). In SF3 and SF5, the monomer classes (W1–W5 and R1R2, respectively) alternate in a
more complex manner, and the AB pattern also does not have that simple regularity.Note that the
presence of the A- or B-box in amonomer does notmean the presence of the actual pJα- orCENP-
B-binding site. Boxes are just alternative configurations of the AB region that are permissive to
respective sites [35–51 bp of the monomer in our cyclic shift (see 78)]. For this review, we have
examined the distribution of the actual sites in the T2T assembly (Figure 2). The actual pJα sites
first appear in the Na (green) monomers of the dimeric OaNa (olive-green) dead layer, but not
in the Oa (olive) ones (Supplemental Table 1). All of the later successive layers have originated
from the green monomer layer only (6, 89), and the sites persist there. In SF5 (R1R2), the B-boxes
and actual CENP-B sites first appear, and live centromeres start being formed by the AB satellite
(Supplemental Table 1). All new SFs have both the A- and the B-type monomers, but in the
human genome, only in SF2 do the pJα sites appear in significant numbers, while CENP-B sites
are frequent and regular in all three SFs. Moreover, in SF2, the actual pJα sites are frequent only
in some live HORs [e.g., S2C2H1L (D2Z1) and S2C8H1L (D8Z2)], and are virtually absent in
many others [e.g., S2C9H1L (D9Z4), S2C14/22H1L, and S2C18H1L (D18Z1)]. Thus, there is
possibly an evolutionary trend toward loss of the pJα sites, which may have been in effect since
the appearance of the CENP-B sites. If true, it would suggest that both proteins have the same or
overlapping functions in centromeres.

2.5.2. Structural variants of a higher-order repeat. All HORs have structural variants (StVs)
that usually can be explained as in/dels of the whole monomers in the primary HOR. Monomer-
by-monomer annotation of SF1 reference models in hg38 by Uralsky et al. (104) visualized StVs
in HuRef HOR reference models and collected related statistics. Such annotation can now be
performed in the T2T CHM13 assembly to collect actual genomic data. Also, the abundant pres-
ence of hybrid monomers where a part of one monomer of an HOR was fused to a part of the
other was revealed in hg38. The approximate monomer length of ∼171 bp is usually conserved
in such hybrids. The presence of a hybrid in an StV is a variable feature that depends on a cyclic
shift (a monomer start site) used for analysis (15, 21, 22, 104). Therefore, we advocate the use
of one universal monomer start site and propose the use of the traditional first nucleotide in the
BamHI site of the chromosome X–specific live HOR, which was the first completely sequenced
human HOR (106). This cyclic shift was used in about half of the alpha satellite papers over the
years and in recently published annotation tools like PERCON, HumAS-HMMER HOR, and
CentromereArchitect (22, 90, 104) and is also being used by the T2T consortium for centromere
annotation.

Data from Uralsky et al. (104) obtained in hg38 alpha satellite reference models and studies
of the first two assembled large centromeres (52, 67) suggest that different live centromeres vary
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Figure 2

Epigenetic characterization of three complete centromeric arrays from T2T assemblies of chr1, chrX, and chr8. Access to complete and
accurate assemblies of human centromeric regions provides a new opportunity to characterize all live alpha satellite HOR arrays
[shown for D1Z7, chr1-SF1 (pink); DXZ1, chrX-SF3 (blue); and D8Z2, chr8-SF2 (purple)] and adjunct dead arrays. Further, these maps
offer a high-resolution study of CENP-B-binding motifs (dark green represents repeats where the motif is in forward orientation and
light green represents those with a motif in reverse orientation), and pJα-binding site sequences (light purple). Note that the regions
enriched in reverse motifs indicate an inversion in centromere 1, the single unique event in all of the live centromeres. With the
exception of centromere 8 (where CENP-B boxes and pJα are intermixed in the live array), live arrays within centromeric regions on
chromosomes 1 and X contain CENP-B boxes, and flanking divergent monomeric regions contain pJα. The map of CpG methylation
in ultralong Nanopore data obtained using long-read mapping protocols (previously described in 67) reveals dips in methylation that
are coincident with sites of kinetochore assembly [illustrated with enrichment of CENP-A in native ChIP-seq data (52)]. Abbreviations:
CENP-A, centromere protein A; CENP-B, centromere protein B; ChIP-seq, chromatin immunoprecipitation sequencing; chr,
chromosome; HOR, higher-order repeat; SF, suprachromosomal family; T2T, telomere-to-telomere.
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greatly with respect to the abundance of StVs. Some chromosomes, such as X and 11, have non-
polymorphic centromeres mainly composed of full-length HOR copies and have only dozens of
copies of StVs per 1500–2000 HORs in a centromere. Other centromeres, like 8 and 10, are very
polymorphic and have some very high-copy StVs that may exceed the full-length HOR in fre-
quency. It is known that different individual chromosomes (and different persons) may also differ
in content and distribution of StVs (1).

2.6. Pseudocentromeres and Centromeric Epialleles

Live HOR arrays organize the kinetochore in most individuals, and they are usually the largest
HOR arrays in a given chromosome. However, in some individual chromosomes, a smaller, tech-
nically pseudocentromeric HOR array may assume the role of kinetochore organizer instead of
the main array and form a centromeric epiallele (1, 57; reviewed in 63).We propose that such oc-
casionally functional HORs may be called half-alive or epi arrays, as opposed to the dead ones
that are never functional. Then there are two slightly different theoretical possibilities (104):
(a) half-alive centromeres that had once been live but have surrendered themain centromere status
to a more efficient competitor and retained only occasional activity; and (b) half-alive pseudocen-
tromeres, which are theHORs that have never been live centromeres but are recent amplifications
of some dead alpha satellite sequences that occasionally assume centromeric activity.

2.7. Higher-Order Repeat Haplotypes

It has been known for a long time (e.g., 20) that the vast homogeneous core of a centromere formed
by nearly identical HORs has some domains made by arrays of even more identical HORs, which
share a number of characteristic mutations (a haplotype). Mutations in this case were defined as
differences from the overall consensus HOR. Such haplotypes should be considered slight SqVs of
aHOR (as opposed tomajor SqVs,which are sister HORs).Often, they differ not only in sequence
but in structure as well, and in those cases they are also StVs. One example of these SqtVs that has
been much studied recently is a 13-mer D17Z1 (S3C17H1L) HOR, which is a deleted variant of
the complete 16-mer HOR and also differs from it by a number of characteristic mutations (1). In
this work, the abundance of this variant HOR in the live arrays of some individual chromosomes
17 apparently prompted the kinetochore to choose an alternative location in the D17Z1-B sister
array (1). However, before the complete assemblies of the whole centromeres became available,
the data on haplotype patterns within the live arrays were limited. The first two large centromeres
assembled by the T2T consortium revealed a considerable heterogeneity of HORs within the live
arrays (15, 52, 65). Careful analysis of this heterogeneity (Figure 1b) reveals a phylogenetic tree
of haplotypes, a semisymmetric pattern of layers, and a gradient of homogeneity reminiscent of
the pattern of pericentromeric dead layers around the live centromere (84, 89). This suggests that
the forces and mechanisms operating to create both patterns may partially be the same.

2.8. Divergent Alpha Satellite Arrays

Besides live homogeneous centromeres and pseudocentromeres, alpha satellites are found in two
kinds of dead (inactive) divergent arrays (HOR and non-HOR), which may be called dead relic
centromeres because they represent the actual remains of formerly active centromeres, once
large and homogeneous but now small, divergent, and disorderly. These are dead monomeric
layers (the remnants of panchromosomal organization of SF4+ and SF5 centromeres) and
divergent HOR arrays (the remnants of chromosome-specific SF1–SF3 and SF5 centromeres and
pseudocentromeres). SF5 is present in both divisions because it has both HOR and non-HOR
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components, and some HORs are divergent. In SF4 proper and SF6, both HOR and non-HOR
arrays are observed as well, but all HORs found there so far are homogeneous (90). Both divergent
compartments share the signatures of a hypermutability phenomenon that has been proposed
as a theoretical explanation of their divergence patterns. It has been demonstrated that the
intra-array divergence in dead monomeric layers (89) and in divergent HORs (104) far exceeds
what could have been accumulated during their lifespan with the normal mutation rate. For
instance, in dead monomeric layers of centromere X from Ga [yellow (Figure 2; Supplemental
Table 1)] to Aa [gray (Figure 2; Supplemental Table 1)], the divergence goes from 16% to
30%. Shepelev et al. (89) have speculated that hypermutability in freshly dead arrays is caused by
replication problems like fork stalling, which induces error-prone DNA polymerases. The above
hypermutability hypothesis is based on the assumption that these arrays were once homogeneous
with a divergence not exceeding 1–2%, but a burst of mutations occurred to yield a divergence
of >10%. Indeed, there is typically a large gap in intra-array identity between homogeneous
(divergence 1–2%) and divergent (>10%) compartments. This could be explained in a traditional
way by a special recombination process called homogenization, which is supposed to maintain
the large size and high identity in the live arrays. The presumed mechanisms of homogenization
are gene conversion (83) and mitotic unequal crossover (92), as meiotic crossover is repressed at
centromeres (48, 93). It is obvious, however, that when a new centromere appears in the middle
of the old one, as stipulated by the expanding centromere scenario, homogenization stops in
the now freshly dead domains, which are displaced to the flanks, and they gradually progress to
typical dead centromeres, shrunken, divergent, and disorderly (89). If all of this is true, the time
since the centromere has died and homogenization has stopped is the interval in which the array
has to accumulate its current intra-array divergence (in excess of ∼2% or less, which it had as a
live array). However, it is known that the long-dead arrays accumulate mutations at a normal rate
(81, 89). It follows that the accumulation is nonlinear, and the freshly dead arrays must get many
more mutations than normal. Shepelev et al. (89) calculated that the excessive divergence gained
by freshly dead arrays during the hypermutability period is about 10%, after which the mutation
rate subsides. Note that the age of the arrays could be graded by two alpha satellite–dependent
(phylogeny of monomers and divergence) and by two alpha satellite–independent ways (89). One
of the latter is the presence of the orthologs or paralogs of a given array in extant primate taxa,
the age of which is known (34); another is the age of L1 repeats [also known (43)], which often
insert into the dead arrays and are very rarely found in the live ones (42).

2.9. Conclusions and Evolutionary Models

Sequence mapping shows symmetrical layers of distinct alpha satellite families around and
within a homogeneous core, centered at the youngest haplotype(s) in the live array, with the
age of layers increasing from the center to periphery (2, 15, 52, 65, 84, 85, 89). Divergence data
(Figure 1b; see Sections 2.7 and 2.8) suggest the discontinuous gradient of divergence throughout
all the layers, with a minimum at the same youngest haplotype(s) and a steep increase at the
transition from homogeneous to divergent compartments (Figure 1a), which can be explained
by hypermutability in the freshly dead arrays, presumably caused by induction of error-prone
DNA synthesis. Additionally, the degree of structural disorder (a number of deletions, inversions,
transposable element (TE) insertions, and HSat expansions) is minimal in homogeneous arrays
and much higher in divergent arrays. All of this makes up the signature pattern of an expanding
centromere. This pattern suggests a stochastic generation of a new centromeric array inside
an existing centromere and lateral displacement of the dead remnants of the old centromere.
Through interchromosomal exchange (meant as singular one-way events here), the new repeat
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spreads to all (or a group of ) chromosomes within a short period of time. Such waves of change
occur in a regular manner throughout phylogenetic history and create a multilayer centromere,
which records its own and its species’ history, similar to archeological layers under a city
(89).

Twomodelsmay be used to interpret this layout.The neutral homogenizationmodel that dom-
inates so far features stochastic homogenization of neutral mutations, some of which may achieve
fixation in all repeats of an array and thus provide for the evolution of an array or the concerted
evolution of a number of arrays given sufficient exchange (meant as a continuous two-way process
here) between them (92, 95, 96). The next-generation model, which we here term kinetochore
selection (Figure 1c), would provide for much faster evolution. This model proposes that (a) the
evolution of centromeric repeats is not entirely neutral, and they are selected by the affinity to
a kinetochore, which is free to move and chooses the most favorable place to reside within the
live array; (b) this selection operates through the ability of a kinetochore to amplify and possibly
homogenize the repeats on which it resides (2, 89); and (c) the old centromere abandoned by the ki-
netochore degrades (deletions, inversions, TE insertions, HSat expansions, and hypermutability).
It implies that intense amplification/homogenization is not an intrinsic property of any large array
of homogeneous tandem repeats but is dependent on the presence of special machinery, which, in
the case of centromeric repeats, is associated with a kinetochore. Hence, the term kinetochore-
associated recombination machine or KARM was previously proposed (89). The models are not
mutually exclusive, as a mutation or a haplotype favored by a kinetochore probably needs to rise to
a certain copy number to compete as a centromere, which may be achieved in a stochastic manner.
It also seems that kinetochore selection is entirely compatible with the centromere drive model
(56), as both assign a major role to some kind of selfish selection (kinetochore selection or meiotic
drive). Presumably, the kinds of selfish selection may be more than one and may be combined eas-
ily to better explain the coevolution of centromeric DNA repeats and proteins (56). A somewhat
different model for selfish selection in the centromeres was recently proposed by Rice (77). We
conclude that the whole process of homogenization has to be rethought as not entirely neutral
but as a combination of neutral and selective forces.

3. SURVEYS OF GENETIC AND EPIGENETIC VARIATION
AT HUMAN CENTROMERES

Centromeric alpha satellite arrays are rich in genetic and epigenetic diversity and present a new
and uncharted genomic landscape to catalog structural variation in the human population. Vari-
ation in array structure could broaden studies aimed at understanding missing heritability and
provide new insight into the genetic basis of complex and rare disorders. Although genome-wide
association studies omit centromeric satellite sequences, studies of variants directly adjacent to
human centromere arrays, or within centromere-spanning haplotypes, have been observed in a
broad number of clinical studies (reviewed in 64), with notable examples in studies of mosaic
chromosomal alterations in clonal hematopoiesis (53) and increased risk of multiple sclerosis (76).
Efforts to expand our variant maps in centromeric regions are challenging, even with the release
of high-quality reference maps, and will require new method development to confidently identify,
describe, and test candidate disease causal variants predicted in satellite DNAs. Further, our un-
derstanding of disease-associated variants will need to be evaluated in the context of background
sampling estimates across the population.We currently do not understand how quickly these sites
evolve in the human population, across multigenerational pedigree data, or across a population of
single cells. Such fundamental baselines of satellite variation in healthy populations will be critical
to confidently identify genetic features associated with disease.
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Efforts to measure and report centromere sequencing variation will need to monitor more
than the nonamplified mutations that are present in just one copy or few copies. Much of the
variation within satellite arrays will be represented as copy number variations, or expansions and
contractions of repeat variants, which can give rise to a haplotype (large-scale amplification) or
subhaplotype (small-scale amplification). The emergence of more complete T2T genomes will
present a new opportunity for method development to predict comprehensive satellite sequence
variation by mapping short- and long-read data sets. Previous analyses have demonstrated the
use of array assignment of short-read data sets to monitor repeat expansions and contractions
through k-mer-assigned frequencies of select satellites (7, 26, 68, 107). These evaluations often
report repeat variant information from pooled diploid chromosomes, in which it is not possible
to determine copy number variation of the same k-mer present in unequal copies across the two
homologous chromosomes without the use of pedigree information or orthogonal phased data
sets. High-quality long-read data have been useful in predicting variation in repeat structure (e.g.,
HOR rearrangements, inversions, transposition, and single-nucleotide variants ) as well as in copy
number estimates (21, 67, 87). The use of long-read data in satellite DNA variant prediction and
discovery is often challenged by inherent biases in sequencing coverage and, in extreme cases,
sequencing of only one strand (17, 27), which can influence downstream variant prediction and
interpretation.

Ideally, as we reach larger cohorts of completely assembled and properly phased T2T diploid
genomes, direct array-to-array comparisons will be possible, allowing direct comparisons of the
total length of the array, shared haplotype and subhaplotype repeat expansions, and rare repeat
sequences that are not shared between individuals. Such assembly-based comparisons rely on the
use of highly accurate sequences to ensure that conclusions are not influenced by introduced as-
sembly error. Ultimately, it is likely that efforts to characterize satellite array variation will need
to make a comprehensive assessment of variants to test if features within each array structure (no-
tably, this is a broader definition of a locus, rather than one single-nucleotide polymorphism) are
associated with disease.

4. NEW PERSPECTIVE ON CENTROMERE GENOMIC STRUCTURE
AND FUNCTION

Access to highly accurate referencemaps will offer new insight into the range of genomic structure
compatible with centromere function. These tools are useful to ensure that confident and precise
mapping of short- and long-read functional data sets will promote studies of the positioning of
inner centromere proteins and, ultimately, of how variation at the epigenetic level influences chro-
mosome stability during cell division. These emerging mechanistic studies will require a broad,
multidimensional view of epigenetics, replication, transcription, and recombination across human
centromeric regions.

Althoughmeiotic recombination is suppressed in centromeric regions (12, 55, 62), aligned with
the observation of large cenhaps (48), other types of recombination are prolific, leading to repeat
amplification, deletions, and inversions. This introduced genetic variation within and between al-
pha satellite arrays has been shown to influence centromere activity (11, 32).Notably, this has been
demonstrated in studies of centromeric epialleles on chromosome 17 (D17Z1 or S3C17H1L;
D17Z1B or S3C17H1-B), where HOR size and sequence variants were important features in es-
tablishing whether HOR arrays are competent for centromere formation (1, 57). Further, studies
of chromosome-specific aneuploidies provide evidence that array composition or particular HOR
sequence features [such as the frequency and abundance of CENP-B motifs (61)], rather than the
overall array length, influence chromosome segregation fidelity during cell division (19). Studies
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of the assembled centromeric regions of chromosomes X [DXZ1 or S3CXH1L (65, 67)] and 8
[D8Z2 or S2C8H1L (52)] revealed distinct haplotype blocks where a set of shared HOR variants
are localized within the array (52, 67). Careful annotation of entire assembled arrays reveals an
uneven distribution of CENP-B motifs across a given array and perhaps indicates collections of
repeat units within the array that are less competent for the maintenance of human centromeres
(37, 65).Notably, these T2T studies present a snapshot of the precise linear arrangement of HORs
within a single individual, and additional studies are critically needed to ensure that we have amore
comprehensive understanding of centromere array haplotype blocks within the human population.
These datamay provide a better genomic context for future centromere genomic studies than gen-
eral estimates of total array size. That is, the expansion and contraction of variants within specific
haplotype arrays provide new insight into segregation fidelity and centromere sequence compe-
tency. Indeed, we may find that epialleles exist within a single multimegabase-sized HOR array,
and that perhaps the distance between these CENP-A-bound sequences, as shown for other di-
centric chromosomemodels (97, 99),may contribute to our understanding of centromere strength
(46).

Focusing exclusively on the enrichment patterns of inner kinetochore proteins with the under-
lying alpha satellite DNAs may provide an incomplete picture of the epigenetic determinants of
centromere identity and function.Kinetochore assembly is observed over a small proportion of the
array, with flanking regions enriched in pericentric heterochromatin and CpG methylation (29,
82). The dynamics between centrochromatin domains (13) and pericentromeric heterochromatin
may have broad influence, from spatial localization in the interphase nucleus (8), the formation of
three-dimensional structure during mitosis (13), and low transcription and increase in chromo-
somal passenger complex occupancy (71). Therefore, the use of the new alpha satellite assemblies
will provide a unique opportunity for the comprehensive analysis of centromere biology and cel-
lular function throughout different stages of cell division and in early development, where the sites
and size of the kinetochore are first established (18, 65, 66). Variation at the sequence level could
influence the rates and fidelity of alpha satellite replication (23). Further, epigenetic variation in
centromere protein deposition could influence array stability (33) and improve our understanding
of inner kinetochore protein inheritance and maintenance over time (73). Alpha satellite RNA
transcripts have been associated with centromere function (20, 59, 60), proximity of the nucleolus
(14), and genome instability (102, 118).We now have the ability to precisely map these transcripts
to the genome and study the association of nearby transcription factors and bound polymerases
(38). The structure and function of these highly repetitive regions of our genome present a large,
unexplored genomic and epigenomic landscape. We are now faced with the challenge of closing
the gaps in not only our genetic maps but also our epigenetic maps of these regions. Doing so
will rely on new innovations in a number of long-read technologies to ensure the comprehensive
assessment of methylation (67), replication (70), open chromatin (50), spatial maps (103), and
long-read transcriptional data (115) from human centromeric satellite arrays. Future studies of
epigenetic regulation of alpha satellites in early development, aging, and disease are expected
to lead to a new era of discovery in centromere biology and function. Ultimately, access to
alpha satellite assemblies will drive new high-resolution studies of basic cellular processes and
regulation at human centromeres and has the potential to improve our understanding of human
disease.
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