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Abstract

Assigning functions to genes and learning how to control their expression
are part of the foundation of cell biology and therapeutic development. An
efficient and unbiased method to accomplish this is genetic screening, which
historically required laborious clone generation and phenotyping and is still
limited by scale today.The rapid technological progress onmodulating gene
function with CRISPR-Cas and measuring it in individual cells has now re-
laxed the major experimental constraints and enabled pooled screening with
complex readouts from single cells. Here, we review the principles and prac-
tical considerations for pooled single-cell CRISPR screening. We discuss
perturbation strategies, experimental model systems, matching the pertur-
bation to the individual cells, reading out cell phenotypes, and data analysis.
Our focus is on single-cell RNA sequencing and cell sorting–based read-
outs, including image-enabled cell sorting. We expect this transformative
approach to fuel biomedical research for the next several decades.
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1. INTRODUCTION

If the founders of molecular biology had been asked half a century ago for a dream technology for
studying cells, it is not inconceivable that they would have described precisely perturbing thou-
sands of genes in a single experiment and measuring the effects on cellular phenotypes. We have
entered an era of genetic experimentation in single cells that is accessible at scale to most labora-
tories (8). The early applications have yielded basic discoveries about gene function; its variation
across signaling states, cell types, and individuals; its role in development and disease; and its in-
terdependence on other genes or molecules. The vast uncharted space of gene function will be
the target of study for the next decade. Using these new technologies, we are beginning to assign
functions to every single nucleotide in the human genome, across cell types and states, including
the noncoding parts of the genome. This endeavor will change our approach to research as well
as how we diagnose and treat diseases.

There are two key enablers of these opportunities. First, the CRISPR-Cas systemmatured into
an effective perturbation toolbox. While various genetic perturbation methods have been avail-
able for decades, none have the simplicity of use of a target-specifying guide RNA (gRNA) and
a constant effector protein, combined with the flexibility of customization of various fusion do-
mains and compatibility with unbiased experimentation at scale. Second, single-cell methods have
grown to be highly scalable by miniaturizing and multiplexing the technology. All major omics
layers, from chromatin accessibility to messenger RNA (mRNA) and protein concentrations, can
be measured, and several have been made accessible to pooled genetic screening (8, 92). Most re-
cently, imaging modalities compatible with pooled measurements have provided a novel view on
cell phenotypes (28, 54, 85, 105, 106, 113). With costs dropping by orders of magnitude, typical
experiments now provide data on hundreds of thousands to millions of cells.

The final piece of the puzzle is to efficiently link these two powerful advances. The first con-
sideration is that of scale: Combining perturbations of many genes to observe many traits in many
cells leads to a small combinatorial explosion of readouts. While pooled single-cell methods are
more scalable than arrayed readouts, and their costs have decreased significantly, they are still the
limiting factor. The cost of the experiment is one key challenge that we address in this review.The
second issue is identifying the perturbation in the readout, a process that we refer to as pertur-
bation genotyping. We focus on scalable pooled approaches, which require a way to identify the
perturbation in the assay readout, and outline technical details and potential pitfalls.

This review focuses on recent technologies that probe complex phenotypes from pools of single
cells (Figure 1). These include single-cell RNA sequencing (scRNA-seq), which captures tran-
scriptome responses along with the perturbation genotype upon pooled perturbation screens (18,
22, 50, 110). We only touch the surface of other single-cell sequencing–based readouts, such as
Perturb-ATAC (assay for transposase-accessible chromatin)–seq, or multimodal readouts, such as
Perturb-CITE (cellular indexing of transcriptomes and epitopes)–seq (31, 47, 59, 69, 75, 81). The
second focus is cell sorting–based readouts, including fluorescence-activated cell sorting (FACS)
and image-enabled cell sorting (ICS), that enrich single cells with phenotypes of interest (17, 85).
We do not cover readouts without single-cell capture and screens of cell growth, survival, and
proliferation (reviewed previously in 8).

2. PERTURBATION TOOLBOX AND EXPERIMENTAL SYSTEMS

We first discuss important practicalities of single-cell pooled genetic screens in mammalian model
systems. The key considerations are the choice of the perturbation approach, its delivery, the cell
model used, and screen design (Figure 1).
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Figure 1

Single-cell pooled genetic screening with complex readouts from single cells; outlines of experimental model systems, pooled
perturbation technologies, and single-cell readouts. We focus on technologies discussed in this review, including single-cell
transcriptomics and cell sorting–based screens. (Below) Outlines of key considerations for such pooled genetic screens. Abbreviations:
FACS, fluorescence-activated cell sorting; ICS, image-enabled cell sorting; iPSC, induced pluripotent stem cell; RNA-seq, RNA
sequencing.

2.1. CRISPR-Cas Systems

CRISPR systems are scalable and can provide genome-integrated barcodes for perturbation
genotyping. They support different perturbation modes (e.g., cutting, nicking, and epigenetic
inactivation/activation),CRISPR components (e.g.,Cas9,Cas12a, and variants thereof ), and guide
design principles (120). We outline the key considerations for the decisions below.

2.1.1. CRISPR efficacy. Most pooled screening technologies only read out a sequence barcode
associated with the perturbation but not the perturbation state itself (e.g., the editing outcome at
the target locus). The key requirement of the perturbation system is high efficacy to ensure that
the pooled screen is sensitive in measuring genome function. A main efficacy determinant is a
high enough dose of the CRISPR reagents. An easy-to-implement strategy to ensure this is to use
Cas expression as a proxy: Cas protein and gRNA expression are correlated, as unbound gRNA
and Cas protein are unstable. By labeling the Cas component with a fluorescent tag, cells with
low or no Cas expression can be excluded before assay readout. Among the remaining cells with
mid- to high-Cas expression, we do not recommend selecting further, since we have not observed
correspondingly larger effect sizes as long as substantial amounts of Cas protein and gRNA are
present. Using the most recent Cas9 versions helps to increase on-target and decrease off-target
effects. The most relevant differences between Cas versions are on- and off-target efficacy, the
protospacer-adjacent motif (PAM) sequence, and the length of the expression cassette. Smaller
Cas versions, such as SpCas9 andmini-Cas9, are easier to transduce and can fit in a single lentiviral
vector with the gRNA (48, 111). Split-Cas9 and mini-Cas9 are compatible with adeno-associated
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virus delivery but with the compromise of decreased on-target efficacy (100, 119). Finally, we
recommend checking Cas and gRNA expression throughout the experiment. This is particularly
relevant during induced pluripotent stem cell (iPSC) differentiation, where most cells can lose
Cas expression due to transgene silencing (64).

2.1.2. CRISPR perturbation modes. CRISPR can be used for genome editing as a nuclease
(CRISPRn) or to inactivate (CRISPRi) and activate (CRISPRa) transcription (Figure 1).

■ CRISPRn is efficient and best understood. Its limitations are the semirandom editing out-
come and double-strand break–induced stress on the cells. As CRISPRn does not necessarily
result in mRNA expression changes, editing efficacy should be tested on the DNA or pro-
tein level (89). In combination with DNA-barcoded knock-in templates, CRISPRn can be
used for single-cell pooled knock-in screens (80).

■ In CRISPRa/i, catalytically inactive Cas recruits epigenetic regulators, such as KRAB, P300,
MeCP2, LSD1, VP64, or combinations thereof, to perturb the activity of gene regulatory
elements (3, 42, 53, 55, 116). The CRISPRa/i signals can spread along the linear genome,
which can lead to false-positive hits if the targeted element (e.g., an enhancer) and response
region (e.g., a promoter) are in close proximity (33, 77, 84). The ability to detect essential
genes is similar between CRISPRi (targeting promoters) and CRISPRn (targeting the trans-
lated region) (82). One advantage of CRISPRa/i over CRISPRn is that CRISPRa/i changes
gene expression, allowing a readout of the perturbation effect on top of the perturbation
genotype via scRNA-seq (77).

■ Specific sequence changes can be installed using CRISPR systems that increase the like-
lihood of homology-dependent repair, base editors with dCas9, or prime editors with
gRNA-encoded changes (5, 12, 29). This allows the functional characterization of defined
genetic variants or saturation genome editing, for example (26). Base editors can achieve
almost 100% editing rates in cultured cells and have been combined with FACS-based
screening (14, 46). Since a single base editor/gRNA combination can edit multiple nu-
cleotides, computational approaches are needed to deconvolute gRNA-level to nucleotide-
level measurements (14). Prime editors, while precise and already used in pooled screens,
remain less efficient for now (26, 57).

Additional CRISPR systems for pooled single-cell screening process their own RNA compo-
nent (crRNA) out of larger precursors, termed CRISPR arrays. These CRISPR arrays encode
multiple crRNAs as a single polymerase III transcription unit to target the same gene with multi-
ple crRNAs for increased on-target efficacy or to target different genes for combinatorial screens.
These systems includeCas13d andCas12a,which have been combined with scRNA-seq and FACS
for combinatorial screening (36, 107).

2.1.3. Guide RNA library design. The gRNA libraries should be designed using the latest
design algorithms and contain positive and negative controls. For CRISPRn/a/i of transcribed
coding and noncoding genes, gRNA design principles are mature (24, 43, 82). For CRISPRa/i
of regulatory elements other than promoters, it is generally advisable to place gRNAs in open
chromatin regions, such as DNase-seq or ATAC-seq peaks; other than that, there is no favorite
gRNA design tool that outperforms others. For enhancers, gRNAs seem to either function or not
(33, 84), and it makes sense to target these elements with more guides than usual.We recommend
validating gRNA designs using some example gRNAs in a given cell type and, as a last resort,
treating the gRNAs as technical replicates, using enough (n ≥ 3) gRNAs per target element to
allow the filtering of nonfunctional gRNAs by lack of an on-target effect. Off-target effects can
be checked by assessing changes at nearby genes of the off-target loci (74).
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Most frequently, a single gRNA is tested per cell. This minimizes stress from CRISPR-Cas
activity and prevents potential dilution effects due to limited Cas protein availability. However, it
can be advantageous to applymultiple perturbations per cell (37, 72, 76, 77, 115).First, it is cheaper.
The same cell can be used to test more than one perturbation, as the risk of overlapping effects in
the same cell is low in genome-scale screens. This approach is more advisable for CRISPRa/i, as
no double-strand break stress is generated. Second, combinatorial perturbations are generated on
purpose to detect epistatic effects or genetic redundancy. To this end, gRNA combinations can be
applied in a randomized fashion or by generating defined sets of perturbations (11, 20). Cloning
strategies to generate such multitargeting libraries have been reviewed previously (66).

2.2. CRISPR-Cas Construct Design and Delivery

While perturbation efficacy is crucial for overall screen quality, it is also central to the design
and delivery of the CRISPR constructs. Monoclonal cell lines robustly express Cas protein from
random integrationwith lentivirus at low copy and transposases at high copy or produce controlled
single-copy integration into a landing pad (6, 57). These strategies are laborious but form a clean
foundation for pooled screens. For speed, cost, and convenience, polyclonal cell lines with random
integrations in every cell can provide sufficient-quality data (103). gRNAs are most often delivered
in a viral vector into a Cas-positive cell line or into a naive one followed by transfection with a
Cas plasmid, mRNA, or protein to deliver a transient high dose of the enzyme. The latter is only
compatible with CRISPRn or a short time course on transcriptional modulation. The efficacy of
delivery is an important consideration, as cell lines vary broadly in their capacity to be infected
or transfected (112). We recommend accurately quantifying the efficacy of delivery and survival
after perturbations to ensure realistic coverage estimates and good control over the number of
viral integrations per cell.

Another important consideration is the choice of the selection method: Fluorescent reporters
allow fast selection with FACS, while antibiotics vary in selection strength. For gRNA deliv-
ery, puromycin is powerful since it allows fast and strong selection of complex gRNA libraries.
We further recommend directly selecting for Cas expression rather than using selection mark-
ers expressed from a different promoter. This ensures optimal control over the Cas dose and the
ability to exclude transgene silencing. In many systems, such as iPSCs or primary T cells, the
perturbation itself (e.g., the DNA break) is negatively selected against, reducing coverage. This is
especially true for antibiotic selections where a few cells that survived selection without stably
expressing the transgene will quickly overtake the population. We recommend thoroughly un-
derstanding the makeup of the postselection cell pool and losses at each stage of the delivery and
selection process.

Single-cell pooled screens are always growth screens since some perturbations will have neg-
ative effects on cell growth, resulting in lower abundance or loss of these perturbations from the
readout population. Coverage on fitness genes can be increased with inducible expression systems
or by sampling early time points before the perturbation drops out. Alternatively, sensitivity for
these genes can be improved by overrepresenting their gRNAs in the library (77).

2.3. Cell Model Systems for Single-Cell Screening

Single-cell readouts and perturbations at scale are compatible with most cell model systems. The
major restrictions are compatibility with the selected readout, susceptibility to the perturbation
reagents, and complexity of the model.

First, the readouts of scRNA-seq and cell sorting set limitations that depend on morphological
properties of cells. For example, large cells, such as cardiomyocytes, might not be compatible with
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droplet- and nanowell-based scRNA-seq. In such cases, working with extracted nuclei or differ-
entiated but not terminally matured cell stages can increase compatibility. In addition, some cell
types show low recovery after droplet-based scRNA-seq for yet unknown reasons (83). FACS/ICS
readouts are similarly limited by the nozzle size, which is the smallest restriction in a cell sorter
that restricts assays to particles ∼100 µm in diameter at reasonable sorting speed. And cells can
be sensitive to the shearing forces and pressure changes during FACS-based sorting, which can
lower the yield of intact cells.

Second, to achieve sufficient coverage of the pooled gRNA library, often millions of cells need
to be transduced. Standard stable cell lines generally transduce and cultivate efficiently, and easily
scale with the throughput needed for pooled screening. Primary cells are more difficult to trans-
duce, especially with large Cas expression constructs. In addition, primary cells often have limited
cultivation time, and consequently no validated stable monoclonal cell lines can be established.
In these cases, polyclonal cell lines have proven useful, although with CRISPR efficacy restraints.
Much progress has been made in primary T cells, for example (83, 87, 88, 98). Another frequently
used model system is iPSC-derived cells, and pooled single-cell screening with scRNA-seq and
FACS readout has been established for multiple differentiation protocols (25, 97). For iPSCs, the
following strategies have proven useful: (a) applying Cas and gRNAs on the iPSC stage before ini-
tiating differentiation, (b) preventing transgene silencing through targeted integration of Cas into
a safe harbor locus, and (c) validating monoclonal cells for Cas expression and CRISPR efficacy
(25, 97).

Finally, in cell models where multiple cell types and states are present in variable ratios, such
as primary cell material and organoid models, sampling enough cells to recover effects across
cell states can be difficult. These multiple cell states constitute de facto subclones, each of which
has lower coverage. To this end, it is recommended to (a) increase cell coverage per gRNA,
(b) distinguish cell states via surface markers (for FACS readouts) or RNA expression (for scRNA-
seq readouts), or (c) use clonal barcoding to label individual lentiviral integration events of the
gRNA expression construct (68).

2.4. Designing and Optimizing the Screen

Given all the considerations above, how should one set out to implement a pooled single-cell
CRISPR screening campaign?

2.4.1. Start step by step. We recommend running small-scale pilots consisting of 20 to 50 pos-
itive and negative controls. These positive controls are perturbations with known effects/targets,
as well as effect sizes. These pilots aim to answer several questions: Can I detect the perturbation?
Do I achieve strong on-target effects? Can I scale mymodel system?What is the best time point to
read out perturbation effects? Howmany gRNAs, cells, and reads do I need per target element? It
is advisable to select positive controls from a range of different effect sizes (weak versus strong) and
target gene expression levels (low versus high). Weak effects of lowly expressed genes are more
difficult to detect. We recommend high cell and sequencing coverage for these pilots, allowing
downsampling analyses to determine optimal cell numbers and sequencing coverage (84).We rec-
ommend at least 100 cells per gRNA, and at least 30,000 reads per cell, and then using these pilot
data to make informed coverage decisions. As negative controls, we recommend both nontarget-
ing and targeting gRNAs. For CRISPRn,multitargeting gRNAs can estimate the impact of excess
DNA breaks on assay performance. If no positive controls are available, gene regulatory networks
or publicly available data sets [such as the Cancer Dependency Map (DepMap) (7, 101)] can help
prioritize genes. The ideal time point of the readout is not known a priori, and we recommend
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using the pilot screen, or, alternatively, an arrayed pilot, to evaluate this. A rough estimation for
CRISPRa/i effects is 4 to 5 days to reach a maximum effect (64) and 1 to 2 days for CRISPRn (94).

2.4.2. Scaling up. For large-scale screening, the controls from the high-coverage pilot should
be included across replicates and batches, allowing quality checks with known perturbation effects.
Overall, the more positive controls there are, the better. Throughout the screen, from gRNA li-
brary generation to cell growth and readout, bottlenecks should be avoided; otherwise they result
in excessive loss and unequal gRNA representation. The technical quality of the screen is de-
termined by the strongest bottlenecks. The first bottleneck occurs during library delivery, with
>200× coverage per gRNA recommended, but as low as 50× coverage per replicate is acceptable
(23). Each step, from passaging to DNA extraction and library preparation, should have ample
coverage (>500×). For guidance on estimating ideal coverage from DNA library quality, we rec-
ommend Reference 23. The second bottleneck occurs during the readout. Generally, one wants
to process only as many cells as necessary, but enough cells to achieve sensitivity. Sensitivity in
single-cell screening largely depends on the number of cells retrieved per perturbation for assay
readout but also on the complexity of the system,where, for example, the cell cycle stage can create
internal grouping of cells and result in lower coverage. In scRNA-seq screening, several hundred
thousands of cells can easily be processed in a single step, excluding cell handling as a limiting
factor. However, single-cell library preparation and sequencing are expensive, and it makes sense
to think about the necessary sensitivity of the screen, guided by a pilot experiment.We describe in
Section 3.1 how to reduce the necessary cell and sequencing coverage, for example, using targeted
readouts. The consumable costs of running cell-sorting screens are low. However, depending on
the event rate (i.e., the number of cells that can be phenotyped and isolated per second), target
population frequency (i.e., the percentage of events that are of interest), and library size, sorting
can take many hours of pure instrument run time.

2.4.3. Scaling down. Given the scale and complexity of pooled single-cell screens, it is appealing
to reduce their size by measuring fewer perturbations or readouts and computationally imputing
the rest. This approach is supported by the structure evident in the screen results, where very
similar effects can be observed for multiple perturbations or different genes respond in synchrony
across all of them.The concept of compressing perturbations has been used frommodel organism
genetics (21) to cancer cell line characterization and relies on statistical reconstruction to balance
experiment size against the chosen objective, for example, to explain variance in all outcomes,
measure representatives in many categories, or even simply randomly choose the genes (15, 104).
Analogously, the outputs can be focused to obtain high-quality data from a key set of genes or
to measure only an informative subset that allows the rest to be predicted (84, 93). In each case,
however, measurements are substituted for statistical assumptions about the data, and the results
will suffer if these assumptions do not hold.

3. POOLED CRISPR SCREENS WITH scRNA-SEQ READOUTS

In this section, we describe pooled screening readouts using scRNA-seq. We compare scRNA-
seq platforms, outline how to link perturbations with transcriptomes, and describe computational
strategies to read out perturbation effects from scRNA-seq data (Figure 2).

3.1. Single-Cell Transcriptomic Platforms for Pooled Screening

The core protocol for pooled scRNA-seq screening is droplet-based single-cell sequencing (10,
49, 56, 62, 79, 121). The transcriptome is captured from cells or nuclei and read out from either
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Figure 2

The workflow of CRISPR-Cas9 screens with single-cell RNA-seq readouts. Cells that were perturbed in a pooled fashion with
CRISPR-Cas9 are the input material for single-cell RNA-seq technologies. Major options are the single-cell technology (cell
barcoding) and library generation strategy. Libraries are sequenced with Illumina or novel sequencing technologies that reduce
sequencing costs. Data are analyzed in several steps, including data curation, gRNA assignment, and differential gene expression testing.
Options exist for perturbation genotyping and differential gene expression testing. Abbreviations: gRNA, guide RNA; PCR,
polymerase chain reaction; RNA-seq, RNA sequencing; UMI, unique molecular identifier.

the 3′ or 5′ end. Either the full or targeted transcriptome consisting of several hundred RNAs of
interest is read out. The basic approach has been reviewed elsewhere (13, 95).

Current developments focus on improving the single-cell readout in several ways. For example,
targeted perturbation sequencing (TAP-seq) increases sensitivity and reduces cost by selectively
amplifying up to 1,000 selected transcripts per cell (84) (Figure 2). This strategy improves signals
from those genes at the expense of the rest of the transcriptome. Alternatives to this amplification-
basedmethod are oligonucleotide capture approaches (76) or hybridization-based techniques (65).
Another way to improve the signal from cells is to use gRNA unique molecular identifiers (UMIs)
that support tracing perturbation effects in many parallel cell pool subpopulations for replica-
tion. Cost is further reduced by multiplexing multiple gRNAs into each cell, assuming each to
rarely have large effects and thus compressing their effect measurements into one to assay fewer
cells without a signal. The price of single-cell library preparation is further reduced by innova-
tion in cell barcoding methods, including nanowell-based systems (e.g., BD Biosciences Rhapsody
HTXpress), combinatorial indexing (79, 90), and commercial derivations thereof (e.g., Parse Bio-
sciences (99) and Scale Biosciences). Much-awaited reinvigorated competition promises the same
for short-read sequencing (e.g., provisions by Ultima Genomics or Element Biosciences).

Another consideration for the choice of the scRNA-seq platform is the ability to prepare mul-
tiple sequencing libraries from the same cells: Several technologies capture the transcriptome on
solid beads (e.g., Drop-Seq, BD Biosciences Rhapsody), allowing multiple libraries from the same
copy DNA (cDNA) to be prepared since the original unamplified cDNA is stably attached to a
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bead and can be recycled. This is different from 10x Genomics and combinatorial indexing strate-
gies, where the user has a single shot to amplify the transcriptome for library preparation.This, for
example, allows a whole transcriptome library to be prepared to observe global gene expression
effects, followed by a targeted transcriptome library to increase sensitivity to genes of interest.

3.2. Perturbation Genotyping

Most scRNA-seq methods are selective for polyadenylated RNA and sequence the 3′ and 5′ ends
of mRNAs. However, gRNAs are expressed as polymerase III transcripts. Consequently, gRNA
transcripts do not contain a poly-A tail and cannot be captured using most scRNA-seq methods.
Three strategies have been established to solve this problem.

3.2.1. CROP-seq. CRISPR droplet sequencing (CROP-seq), a frequently used strategy for
perturbation genotyping with scRNA-seq, is based on a specific lentiviral vector design (18, 73).
The gRNA expression cassette, consisting of a polymerase III promoter, gRNA, and a terminator,
is located within the 3′ long terminal repeat (LTR) of the CROP-seq vector. A second transcrip-
tion unit initiates from a polymerase II promoter and expresses the selection marker. Since this
polymerase II transcript terminates in the 3′ LTR, the gRNA cassette becomes part of the 3′

untranslated region (UTR) of the lentiviral polymerase II transcript. Consequently, 3′ scRNA-seq
can capture the gRNA locus, and the gRNA itself serves as a barcode for perturbation genotyping.
This elegant system prevents the need for a dedicated barcode that is associated with the gRNA,
and CRISPR efficacy using an optimized CROP-seq vector is as high as with traditional gRNA
expression constructs (84). There are two disadvantages of CROP-seq: First, the length of the
polymerase III cassette that can be integrated into the 3′ LTR without affecting its function is
limited. Suboptimal 3′ LTRs result in low lentiviral titers and inefficient proviral integration.
Therefore, adding multiple gRNA expression cassettes for combinatorial editing might exceed
this limit for 3′ LTR insert length. Second, perturbation genotyping is not successful for all
cells; that is, the gRNA is detected in a subset of cells only. For K562 cells, this subset is around
30% and seems to depend on the cell type and scRNA-seq platform. Targeted amplification of
the gRNA-containing polymerase II transcript solves this issue, allowing retrieval of the gRNA
identity from over 90% of cells when using CROP-seq (1, 41, 84).

3.2.2. Dedicated sequencing barcodes. Three other methods, Perturb-seq, CRISP-seq,
and MOSAIC-seq, make use of dedicated barcodes for perturbation genotyping (1, 50, 110).
These barcodes are short sequence stretches that are located close to the 3′ end of the lentiviral
polymerase II transcript but separate from the polymerase III gRNA locus. After the dedicated
barcode and gRNA have been cloned into lentiviral backbones, barcodes and gRNAs need to be
linked by next-generation sequencing. Since the dedicated barcode is close to the 3′ end of the
polymerase III transcript, 3′ scRNA-seq allows perturbation genotyping. There are two major
disadvantages of such dedicated barcodes: First, during gRNA library cloning, lentiviral produc-
tion, and transduction, gRNAs and barcodes can shuffle. The rate of shuffling increases with the
distance between the gRNA locus and barcode locus. This gRNA–barcode uncoupling can affect
as many as 50% of all cells, resulting in false perturbation genotyping and a decreased ability
to identify differentially expressed genes (41). Since the major source of this shuffling seems
to be the lentiviral reverse transcriptase (which often switches between templates and thereby
generates chimeric vector genomes), this effect can be diminished by using a modified lentiviral
packaging protocol with a carrier plasmid that does not contain a gRNA (2, 27). Although almost
completely abolishing gRNA–barcode shuffling, this strategy results in decreased lentiviral titers.
Second, similar to CROP-seq, Perturb-seq and related methods depend on polymerase chain
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reaction (PCR) amplification of the barcode transcript to achieve a high proportion (around
90%) of genotyped cells.

3.2.3. Dedicated RNA capture sequences. A third strategy adds the ability of capturing
nonpolyadenylated transcripts to scRNA-seq. Custom oligonucleotide sequences were added in
addition to oligo-dT sequences to capture beads of commercial scRNA-seq platforms, such as 10x
Genomics and BD Biosciences Rhapsody. These capture sequences bind polymerase III gRNA
transcripts directly, using either a modified tracrRNA that contains a sequence complementary to
the bead capture sequence (3′ capture) or a reverse transcription oligonucleotide complementary
to the constant tracrRNA sequence (5′ capture) (76). The major limitations of direct 3′ RNA cap-
ture are twofold: First, tracrRNA modifications need to be tested and optimized to achieve high
CRISPR efficacy. Second, libraries need to be generated with the modified tracrRNA sequence
and will not be compatible across single-cell platforms.

3.3. Principles of Data Analysis

Data generation at scale requires analysis methods that scale accordingly and ideally also provide
rigorous guarantees. Guidelines on the analysis of scRNA-seq experiments and pooled genetic
screens have been thoroughly reviewed elsewhere (8, 92), andwe highlight themain considerations
here (Figure 2). The primary goal is to accurately estimate differential gene expression effects
across cells with different gRNAs. For this estimate to be useful, it has to be comparable to other
cells and different experiments. Normalization and correcting for covariates (including batch)
are the steps that ensure this property, and the flexibility in available options has to be handled
judiciously. We recommend using nearly excessive plotting for comparisons at each stage of raw
data processing to ensure that no steps generate additional biases and to evaluate the quality of
the preprocessing approach by assessing the performance on preselected positive and negative
controls, as well as to make sure that technical and biological replicates are concordant in the end.

The analytical step most specific to pooled scRNA-seq screening is assigning perturbations to
individual cells. There are plenty of subtleties, however. For example, if reads that map to multiple
gRNAs are found in a cell at different copy numbers, how should we evaluate which perturbation
was active? Is a gRNA label enough to say that the perturbation happened, or do we need to test
whether the target was successfully perturbed? If we do not observe the gRNA but we do observe a
perturbation at a target consistent with the gRNA, is this enough to assign the perturbation state
to the cell as if the gRNA had been present? How should one handle partial perturbations, for
example, incomplete knockdown in CRISPRi? We offer some guidance below, but the answers
are often study specific.

After the data are cleaned and gRNAs are assigned, perturbation effects are measured. The
total average effect can be calculated by combining the phenotypes across cells with the same
gRNA and contrasting them against controls.The correctmodel for gene perturbation effectsmay
vary. We recommend checking the measurements for remaining heterogeneity due to covariates
(cell cycle, sample metadata, and technical effects), as well as on-target efficacy (Cas expression,
variable gRNA efficacy, and per-cell perturbation strength). A natural way to achieve this is in a
linear modeling framework with regularizing priors, using principles developed for differential
expression analysis as a practical guide (61). Many visualizations of each perturbation-target pair
are needed to confirm that no confounding signal remains. A general approach is to plot the
positive and negative control distributions of the target expression or other chosen effect statistic
across cells and to make one panel for each of the recorded cell covariates (e.g., batch, cell cycle
stage, and gRNA used), stratifying the cells with the perturbation by that covariate.
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3.4. Data Analysis Step by Step

The push for reproducibility and open science has encouraged the useful sharing of analysis
workflows, and entire books have been compiled that aid single-cell data analysis (40).

3.4.1. Filtering, normalization, and covariate correction. There are many options available
for common data processing tasks (4, 118). For example, one popular choice is using 10xGenomics
Cell Ranger to provide initial steps, while Seurat, Scanpy, or scvi-tools can be used for quality
control to derive a useful data matrix and for fitting linear models of effect or dimensionality-
reduction models to explore the structure in the data (34, 38, 108). As a reasonable starting point,
we recommend filtering cells based on total UMI count and mitochondrial content, normalizing
to 10,000 UMIs per cell, and correcting for cell cycle and other known experimental covariates. It
is also useful to monitor low-dimensional embeddings of the data (e.g., UMAP, t-SNE, or PCA)
with annotated quality-control metrics and covariate states to confirm that confounding sources
of signals are appropriately removed.

3.4.2. Perturbation genotyping. We assume that a count matrix of gRNA reads in each cell is
given, a review is performed, and these data are then used for gRNA assignment. One broad class
of approaches uses the absolute number of reads in one cell to call gRNAs by filtering them based
on thresholds for minimumUMI occurrence. This natural method is implemented by default, for
example, in Cell Ranger, and variations on this theme have been broadly used (76, 84). However,
it can be difficult to get the thresholds right: Coverages and gRNA expression efficacies vary
between experiments, and ambient gRNA transcripts can give rise to ectopic UMIs at different
rates, rendering the thresholds incompatible between cells and not transferable between studies.
Thresholding can also easily assignmany gRNAs to one cell,which can be unrealistic or undesired,
and require postprocessing, for example, using the methods described in the next section.

A general alternative approach is to use a model across many cells to identify either the two
expected modes of gRNA presence or a perturbed target state. A gRNA can be present at ambient
levels with a small number of reads with an expectation of 0 inmost cells or expressed at a high level
with a large number of reads. Fitting a two-component mixture model and assigning cells to the
components result in gRNA calls that are informed by the global expression characteristics of the
guide in the experiment (76). As an alternative, the perturbation target expression can look similar
to negative control cells, or show a perturbed state reflected by differing sequence or expression.
While using the target to identify the perturbation can improve perturbation genotyping, it has
only worked robustly for the strongest of effects.We recommend the mixture modeling of gRNA
UMI counts as a practical and useful starting point for perturbation assignment.

3.4.3. Perturbation effect estimation and downstream analyses. The final step after gRNA
assignment is perturbation effect estimation (Figure 2). This is treated as a statistical problem,
where the repeated observations of the effect in many cells are contrasted against controls to
derive the effect value, while accounting for appropriate confounders. This step is supported in
Seurat, scMAGeCK, and Scanpy, while many studies opt for the flexibility of a generic linear
mixed-modeling framework or its adjustments (31, 73, 77, 114). All standard differential signal
analyses, from simple t-tests on individual genes to gene set enrichment analyses, are sensible
options to further explore to understand the impact of the chosen perturbations. As with each
step of the analysis, dimensionality reduction methods should be used to check the impact of
confounders. At this step, they can also be useful exploratory tools to rapidly evaluate potential
causes of structure in the data, but we recommend testing the derived hypotheses directly (e.g.,
mitochondrial gene perturbations have similar effects distinct from others) rather than deriving
clusters and characterizing their properties.
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Figure 3

Workflow of FACS- and ICS-based pooled genetic screens. Perturbed cells are used for cell sorting with FACS or ICS. The phenotypic
parameter, which is either an intensity-based (FACS) or imaging-based (ICS) parameter, is binned and populations are sorted until
sufficient coverage of the gRNA library is achieved. Targeted sequencing of genome-integrated barcodes generates count matrices for
each sample for hit calling using classical growth-based CRISPR screening algorithms or specialized tools such as distribution
modeling with MAUDE. Abbreviations: FACS, fluorescence-activated cell sorting; gRNA, guide RNA; ICS, image-enabled cell sorting;
UMI, unique molecular identifier.

3.4.4. Separation of causes from correlations. Pooled perturbation screens give a window,
which is not accessible from observational data, into the causality of gene effects and its perco-
lation to the entire transcriptome. Two types of causal effects are reasonably straightforward to
measure: The impact of the perturbation on the target is the change in expression of the per-
turbed gene, while the total causal effect is the average change in the transcriptome as a result of
the perturbation. However, the direct impact of the perturbed gene on other downstream traits,
which is perhaps the most interesting effect, requires disentangling from the rest of the changes, as
the causal path could also go via multiple intermediates. Inferring the structure of the regulatory
network and the strengths of individual links remains an active area of study (35, 52, 60).

4. POOLED CRISPR SCREENS WITH CELL SORTING

We next focus on pooled CRISPR screens with cell sorting enrichment. In particular, we discuss
FACS and ICS, which measure protein levels and protein localization, respectively (17, 85, 86)
(Figure 3). While FACS-based CRISPR screens can identify genes or genetic loci that regulate
the expression level of a protein of interest, ICS-based screens identify those that regulate protein
localization.

4.1. High-Throughput Cell-Sorting Platforms

FACS extracts up to 40 parameters from each cell, including label-free quantification using
scattered light and the intensity of fluorescently labeled proteins, DNA, or RNA.The signal mea-
surements, including the signal area, height, and width, are highly quantitative across multiple
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orders of magnitude (17). For genetic screening, only a few fluorescent channels are generally
needed (see Section 4.2). The molecule of interest is made detectable by binding to a fluorescent
dye or antibody, endogenous tagging, or ectopic expression as fluorescent protein fusion. Cell
sorters are broadly available and allow sorting speeds of over 10,000 cells per second.

While traditional FACS is blind to spatial changes in protein localization, ICS expands the
parameter space of traditional FACS to spatial measurements by coupling FACS with imaging
and image quantification (85). Image reconstruction and quantification happen in real time on the
machine, allowing cell sorting according to image-derived parameters at the same speed at which
traditional FACS operates. Since ICS uses traditional FACS technology, both technologies have
the same sample requirements. In addition to ICS, pooled genetic screens with imaging readouts
were enabled by optical tagging of cells followed by FACS (39, 54, 113), in situ sequencing under
a microscope (28, 32, 106), or deconvolving surface epitope combinations (109) (reviewed in 105).

4.2. Experimental Design of Sorting-Based Screens

Key technical considerations for the sorting phase of FACS- or ICS-based screens are the sorting
speed, stability of the run, stability of the phenotype, purity/yield of sorting, and cell recovery after
sorting.

4.2.1. Establishing an optimal sorting strategy. For cell-sorting screens, a classification strat-
egy (also called gating or sorting strategy) needs to be established to isolate cells with high purity
and yield. High purity improves the sensitivity of the assay to detect perturbation effects, while
high yield decreases sorting time. Sorting time can be calculated from the event rate, gRNA library
size, and target population frequency (85). Different cells behave differently in a fluidic stream,
and large cells result in lower sorting rates since fewer cells can pass the machine at the same time.

Finding the ideal sorting strategy is more or less straightforward with FACS: In most cases,
single cells are first distinguished from debris and cell multiplets using light scatter parameters.
Then, cells are distinguished according to the actual phenotype of interest using the area signal
(i.e., the overall amount of fluorescence from a single cell) of the labeled protein. Optional filters
use viability stains to exclude dead cells and cell cycle stains to focus on a single cell cycle phase.

With ICS, image-derived parameters are used to enrich spatial phenotypes of interest.Depend-
ing on target protein expression variability, it can make sense to minimize confounding effects of
signal intensity by focusing on cells from a narrow window of the traditional signal area as input
for the image analysis step. Finding the ideal parameters for a phenotype of interest can be chal-
lenging with ICS owing to the many available options, especially for complex phenotypes that are
reflected across different imaging channels. In such cases, optimal parameter combinations can be
found using a simple machine learning model trained on a small (nE 100 cells per population) set
of manually classified images (85).

An important decision during pooled cell-sorting screens is how to bin the phenotype of in-
terest to maximize sensitivity to detect perturbation effects and exclude confounding factors. In
most cases, two populations are isolated corresponding to low or high parameter values. Another
strategy is to increase the number of bins on either side of the signal or to bin along the entire
parameter. Finally, different parameters (such as the signal area and an image-derived parameter)
can be combined for sorting, which is particularly useful when quantifying a protein’s localiza-
tion across cells with variable signal intensities. We recommend Reference 19 to readers trying
to decide on the ideal binning strategy for the parameter of interest, irrespective of whether it
is a traditional flow parameter or an image-derived parameter. Equally important are control
samples: The gRNA distribution of the input gRNA plasmid library, the distribution of genome-
integrated gRNA loci from cells before sorting, and the distribution of genome-integrated gRNA
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loci from cells in the parent population of the actual phenotypic sorting gate are the available op-
tions. The frequently used analytical framework MAUDE requires one input sample and at least
one sorted sample, plus the distribution of negative control gRNAs (19). The sizes of the sorting
bins (percentage of cells in the sorted bin) must be known, and they should ideally contain equal
cell numbers for statistical and practical reasons (e.g., easier sequencing sample preparation).

4.2.2. Library coverage. As is the case with all pooled genetic screens, sufficient coverage of
the library is needed to ensure the sensitivity of the experiment. The relevant coverage in sorting-
based screens is the number of cells after sorting, not the number of cells that were initially
phenotyped. The lower the target population frequency, the more cells need to be phenotyped
initially. Generally, 100× coverage after sorting is a good starting point for both FACS and ICS
screens, as determined by comparing hit-calling performance at decreasing library coverage (85),
or less systematically in many studies. Often, FACS-based screens are performed in two consec-
utive sorts with cell expansion between the two sorts (63, 71); however, such a repeated sorting
strategy is time-consuming and might not be essential for many phenotypes of interest. Impor-
tantly, the nominal coverage of a FACS- or ICS-based screen will always be higher than the actual
coverage since cell sorting is never 100% effective. Indeed, even in a perfectly calibrated cell sorter,
only around 80% of the cells that were selected for isolation will actually be isolated, and this num-
ber will be lower if the instrument has not been set up properly (in a worst-case scenario, cells will
be misclassified, causing false positives to be isolated).

4.2.3. Pilot experiments. Pilot experiments test the ability of the sorting strategy to separate
negative and positive control perturbations and can be performed in an arrayed or pooled fashion.
In addition, they help to estimate necessary coverage and determine whether the phenotype stays
stable throughout the time needed for sorting (which often can be many hours). We recommend
mixing cells from positive and negative control perturbations in different ratios, followed by sort-
ing and genotyping of the isolated fractions. This allows comparison of the enrichment of the
expected gRNA sequences over an input sample. In addition, the phenotypic purity of the isolated
populations can be quantified using FACS (for FACS-based screens) or traditional microscopy (for
ICS-based screens). Image-derived parameters are more variable compared to intensity-based pa-
rameters if recording the same cell multiple times because image-derived parameters can differ
between measurements depending on the orientation of the cell relative to the optical path of the
instrument. This is not the case for intensity-based parameters that make measurements from the
entire cell, irrespective of the cell orientation. Therefore, the necessary coverage of ICS screens
is equal to or higher than that of FACS screens, and the exact coverage needed depends on the
phenotype of interest.

4.3. Perturbation Genotyping

Cell-sorting screens enrich cells with phenotypes of interest before perturbation genotyping.
Perturbation genotyping is then done on isolated cell populations by targeted sequencing of
genome-integrated gRNAs or associated barcodes.Genomic DNA is extracted from isolated cells,
followed by PCR-based amplification of gRNA loci and sequencing. The abundance of gRNAs
before or after sorting, between sorting fractions, and between the original DNA library and sort-
ing bins can be used to identify gRNAs that were associated with the phenotype of interest (see
Section 4.4).

4.4. Data Analysis

The analysis of cell sorting–based screens follows the same principles as those of standard growth-
based fitness CRISPR screens. And ICS and FACS screens can be analyzed using the same tools
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(Figure 3). Since phenotyping of cells happens during sorting, the only additional step after cell
isolation is perturbation genotyping. Also, for ICS, no additional image analysis is required, as
images are processed and analyzed on the fly during sorting (85). If the sorted population is com-
pared against a single control, or two sorted bins are compared against each other, analysis of
screen outputs is the same as for fitness screens or differential gene expression analysis, with many
popular tools available (9, 16, 58, 61, 67). When multiple sorted populations are used, more nu-
anced methods become available. MAUDE infers a per-gRNA perturbation signal by building a
generative model of the noisy stratification of cells into bins during sorting and estimating the
most likely average fluorescence from the observed gRNA frequencies in the cell pools (19). The
framework correctly captures the data-generating process, but its assumptions (e.g., of equal signal
variance in each bin) should be updated as needed if modeling expertise is available. Regardless
of the approach used, the last step of the analysis should be manual inspection of quality-control
plots for the hits to avoid overinterpreting unexpected technical issues.

5. FUTURE TRENDS AND OUTLOOK

The technology for single-cell CRISPR screening, while still developing rapidly, is robust and
broadly applied. How will the field evolve going forward?

5.1. More Biology with Complex Model Systems

While most pooled screening campaigns have been undertaken in cell lines, biological questions
are best answered in the most meaningful cell types and model systems. Cells function in space,
time, and local microenvironment, which cannot be modeled with simple in vitro models of
isolated cell types. Recent in vivo screens with scRNA-seq readout in utero in mice (51), in
allograft mouse models (44), and in brain organoids (30) demonstrated the compatibility of
complex models with single-cell pooled screening and provided important insights into technical
considerations for future studies. Similarly, cocultivation systems will allow the characterization
of gene and cell function in defined contexts. Screens in stem cell–derived models, such as
iPSC-derived cell lines, will resolve the temporal activity of the genome, from stem cell state to
immature and fully mature cells.

5.2. Expanding the Perturbation Toolbox

Model organism studies have demonstrated how complex perturbations are a rich vein of novel
insights. The complexity can take the shape of combinatorial perturbations of multiple genes in
the same cell to identify epistatic interactions between genes and redundancy in gene regulation or
drug–gene interactions to understand the mode of action and map modifiers of effect (Figure 4).
In addition, precision editing and saturation editing will make it possible to test the functionality
of each single nucleotide in a genome by installing defined genetic variants that saturate the geno-
typic space (Figure 4). Homology-directed repair CRISPR methods are still inefficient, resulting
in only a small fraction of cells receiving an edit. To become compatible with single-cell pooled
screening, these methods need to achieve much higher editing rates, for example, using specialized
cell lines, such as repair-deficient cells or those expressing the CRISPR components at very high
levels (30). Alternatively, methods need to be established that read out the gRNA, perturbation
genotype at the edited locus, and the perturbation effect. These methods will allow more accurate
perturbation genotyping and the exclusion of cells without successful edits.

In this review, we did not cover other perturbation systems beyond CRISPR, which are
equally compatible with pooled single-cell screening. These include massively parallel reporter
assays (MPRAs), deep mutational scanning assays (DMSAs), and ectopic gene expression systems.
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Differently scaled functional genomic screens illustrate the need for an additional two to three log scales in screening throughput.
Planet diameters (in logarithmic scale) illustrate the complexity of different research questions in the functional genomic space. We set
the explorable space (yellow mark in scale bar) to genome-wide screens targeting all protein-coding genes. Above this scale, we need new
technological advancements with reduced experimental costs and intelligent experimental designs to prioritize gene sets for screens of
the noncoding genome and combinatorial screens. As more and more data are collected, algorithms will become more accurate in
predicting the effects of unseen perturbations across cell states. Saturation editing screens refer to the saturation of the amino acid (aa)
coding space of an average-length human protein (472 aa protein × 20 aa), and saturation genome editing assumes that each nucleotide
in the human genome is replaced once. Combinatorial perturbations are represented as all combinations of either two genes (G × G,
20,000 × 20,000 coding genes) or two enhancers (E × E, 1 million × 1 million enhancers). All transcription factors are mentioned as an
example of a screen targeting all genes of a particular functional class.

MPRAs test thousands of regulatory elements on reporter gene expression by combining synthe-
sized regulatory elements and reporter genes on a single expression construct. DMSAs generate
variant libraries bymeans of gene synthesis followed by ectopic expression of those libraries within
cells. Alternatively,DMSAs with precision genome or base editing allow the installation of genetic
variants in an endogenous context. Finally, ectopic expression systems allow the overexpression
of cDNA libraries or equivalent expression libraries. Altogether, these systems are compatible
with pooled single-cell readouts by using genome-integrated barcodes that are linked to the ex-
pressed variant (102). Combinations of these systems, for example, overexpressing some genes
while perturbing others, will be a near-inexhaustible hypothesis space to explore (70).

5.3. More Sophisticated Readouts

Single-cell technology is evolving to ultimately read out every omics layer from the same cell.
Until this holy grail in the single-cell field is available, we will read out selected omics layers
from single cells to uncover perturbation effects across these layers. For example, scRNA-seq
with targeted readouts of the protein expression level has been applied for pooled CRISPR
screening (31, 47, 69). High-throughput single-cell methods can also provide information about
chromatin accessibility and genotypes at hundreds of loci, in addition to RNA-seq that captures
transcriptional effects (45, 69, 78, 91). In particular, single-cell genotyping tools that sequence
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transcriptomes and identify the effect of a CRISPR perturbation on DNA will be powerful in
combination with precision genome editing tools (117). Finally, combined readouts of single-cell
imaging and scRNA-seq will provide insights into the mode of action and phenotypic conse-
quence of a perturbation from the same cell (86). The combination of pooled CRISPR screens
in vivo with spatial transcriptomics readouts is another largely unexplored field that promises to
identify the effects of genetic perturbations on tissue function and organization.

5.4. More Sophisticated Analysis Tools

Pooled single-cell screening analysis tool development is arguably outpacing the assays, yet much
remains to be done. Many software options exist for all primary data analysis tasks, so alongside
updating these two newest types of data modalities, we expect the focus in the near future to shift
to data integration methodology and resources. There is an implementation tension between a
precise but fragile model of the data generation process and a blunt but robust average change
calculation that makes embedding many studies in a single aligned coordinate system tricky to
optimize. Like the Human Cell Atlases, however, the integrated resources are very valuable to the
community, so with multiple databases already emerging, we hope some will grow through the
early problems to obtain long-term support and serve the needs of the field (73, 96).

5.5. Outlook

Five decades ago, major mechanisms of gene expression were still being figured out, and the
first evidence of sequence-specific cutting emerged. A decade ago, single-cell experiments usu-
ally involved frog eggs and multiwell plates, while CRISPR had only just been proven to work in
mammalian cells. Progress and cost reductions move fast, so we expect that perturbation effects
of all single genes in static snapshots of homogenous cells will be gathered for most of the in-
teresting cell types in the coming years. The combinatorial space of contexts and perturbations,
as well as the function of regulatory elements in the noncoding genome, however, will proba-
bly never be densely measured due to the sheer number of hypotheses to be tested (Figure 4).
Most fruitful outcomes will stem from the judicious choice to add to studies the dimension of
time through differentiation and development, multiple perturbations to elucidate causal links
and uncover pathway structures, and controlled cell type compositions to systematically measure
the impact of neighboring environments.
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