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Abstract

The initiation, progression, and relapse of cancers often result from mu-
tations occurring within somatic cells. Consequently, processes that ele-
vate mutation rates accelerate carcinogenesis and hinder the development
of long-lasting therapeutics. Recent sequencing of human cancer genomes
has identified patterns of mutations, termed mutation signatures, many of
which correspond to specific environmentally induced and endogenous mu-
tation processes. Some of the most frequently observed mutation signatures
are caused by dysregulated activity of APOBECs, which deaminate cytidines
in single-stranded DNA at specific sequence motifs causing C-to-T and
C-to-G substitutions. In humans, APOBEC-generated genetic heterogene-
ity in tumor cells contributes to carcinogenesis, metastasis, and resistance to
therapeutics. Here, we review the current understanding of APOBECs’ role
in cancer mutagenesis and impact on disease and the biological processes
that influence APOBEC mutagenic capacity.
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INTRODUCTION

Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deami-
nases are a family of proteins with various normal physiological roles in adaptive immunity, innate
immunity, and cholesterol production. Additionally, APOBEC dysregulation has been implicated
in promoting tumorigenesis. Off-target deamination by activation-induced cytidine deaminase
(AID) causes oncogenic translocations that promote B cell tumors (133). Furthermore, sequenc-
ing of human cancer genomes revealed frequent overrepresentation of C-to-T and C-to-G
substitutions occurring at TC dinucleotides. These two mutation types have been ascribed to the
deamination of genomic DNA by TC-specific APOBEC cytidine deaminases, are found in ∼15%
of all sequenced tumors, and together represent the second most abundant type of mutation
in human cancer. Due to the widespread occurrence of APOBEC-induced mutations, recent
efforts have focused upon understanding the molecular underpinnings of these mutations, factors
that modulate their abundance, whether they can serve as prognostic markers of cancer outcomes,
and if APOBECs are viable therapeutic targets.

THE APOBEC FAMILY

The APOBEC gene family is evolutionarily conserved, with APOBEC2 and AID in bony fish and
APOBEC1 and the APOBEC3 gene family evolving in mammals from gene duplication events
of AID and subsequent divergence (40). Mice and rats have a single APOBEC3 gene, while cats,
dogs, pigs, cattle, horses, and primates have 4, 3, 2, 3, 6, and 7 APOBEC3 genes (86, 156), respec-
tively. Overall, humans have 11 APOBEC cytidine deaminases encoded by the following genes:
AID, APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,
APOBEC3G, APOBEC3H, and APOBEC4 (Figure 1). These APOBEC gene subfamilies have
many distinct, normal physiological functions. AID, the evolutionarily founding family member,
deaminates cytidines in immunoglobulin loci within lymphoid cells to induce antibody isotype
switching during class switch recombination (CSR) and increases antibody–antigen affinity by so-
matic hypermutation (SHM). APOBEC1 is primarily known as the RNA editor responsible for
a C-to-U change at nucleotide 6666 in human apolipoprotein B mRNA, which creates a stop
codon and a smaller intestine-specific apoB48 protein that facilitates lipid transport to the liver,
as opposed to the apoB100 protein translated from the nonedited transcript that functions in
cholesterol transport (43). Additionally, APOBEC1 can function in restricting viral replication
in some species (71, 132). However, in vitro APOBEC1 viral restriction does not always trans-
late to reduced viral loads or infection (8), indicating that APOBEC1 may have limited viral re-
striction activity. The cellular functions of APOBEC2 and APOBEC4 are less well understood.
Both APOBEC2 and APOBEC4 have cell type–specific expression, with APOBEC2 being highly
expressed in cardiac and skeletal muscle (55), while APOBEC4 maintains nearly testes-specific
expression (137). APOBEC2 influences the proliferation and differentiation of muscle cells, pos-
sibly through promoting cytidine demethylation (25, 119). Additionally, APOBEC2 deficiency
in mice results in increased mitophagy and muscle cell damage (146). However, the mechanisms
responsible for the physiological roles of APOBEC2 or APOBEC4 are unclear because cytidine
deamination activity has not been reported for either. The APOBEC3 subfamily is best known
for roles in viral restriction (130) and was initially described as inhibitors of retroviruses due to
the ability of several APOBEC3s to inhibit HIV replication (69). Expression of APOBEC3 family
members is upregulated in response to both RNA and DNA viruses and transposons via the in-
nate immune response. APOBEC3s can act nonenzymatically and/or as deaminases to target and
inhibit replication of viruses and deleterious genetic elements (130). In addition to APOBEC3
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Figure 1

Human APOBEC genes. The CDDs of the 11 human APOBEC genes are represented as arrows and color coded by the classification
for consensus sequences. Active CDDs are indicated by C → U. Known physiological functions, deamination sequence preferences,
contributions to cancer mutagenesis, and ability to induce tumor formation in rodent model systems are indicated. Abbreviations:
APOBEC, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like; CDD, cytidine deaminase domain; CSR, class switch
recombination; SBS, single base substitution; SHM, somatic hypermutation. Information from Reference 144.

family members playing important roles in innate immunity, their dysregulation is a major source
of deleterious human genome mutations during cancer development.

ENZYMATIC ACTIVITY

APOBEC proteins consist of either one or two cytidine deaminase domains containing the con-
sensus amino acid motif His-X-Glu-X23–28-Pro-Cys-X2–4-Cys, which coordinates a required zinc
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a   APOBEC3A b   APOBEC3B c   APOBEC3G

Figure 2

APOBECs bound to ssDNA. The structures of (a) APOBEC3A (PDB ID 5KEG), (b) APOBEC3B (PDB ID 5TD5), and
(c) APOBEC3G (PDB ID 6BUX) (pale cyan) are bound to ssDNA (orange). The positions of catalytic glutamates are depicted as dark
blue spheres. Amino acids in loop 7 responsible for sequence specificity of APOBECs are represented as green sticks. Coordinated
Zn2+ is present in yellow. Images are rendered in PyMol. Abbreviations: APOBEC, apolipoprotein B mRNA-editing enzyme, catalytic
polypeptide-like; PDB ID, Protein Data Bank identification; ssDNA, single-stranded DNA.

molecule and contains the glutamate residue necessary for catalysis (13). All but two human
APOBECs (APOBEC2 and APOBEC4) have been reported to convert cytidine to deoxyuri-
dine (dU) in polynucleic acids. However, the N-terminal domains of double deaminase domain
APOBECs [i.e., APOBEC3B (A3B), APOBEC3F (A3F), and APOBEC3G (A3G)] are inactive
(see references in 19 and 45). Catalytic activity requires that target cytidines be in single-stranded
DNA (ssDNA) (18, 24, 48) or RNA and deamination occurs in a sequence-specific manner dic-
tated by specific amino acid residues in loop 7 of the cytidine deaminase domain (78) (Figure 2).
Most APOBECs favor deaminating cytidines within TC dinucleotides, with CC dinucleotides
being deaminated less efficiently (144). However, A3G favors CC dinucleotides, and AID targets
WRC sequences (withW corresponding to A or T nucleotides) (78) (Figure 1). Additional amino
acid residues contact the −2 nucleotide from the target cytidine, increasing the sequence context
specificity of some APOBECs (152). APOBEC3A (A3A) favors YTC, while A3B prefers RTC
trinucleotide sequences, where R and Y refer to purine and pyrimidine nucleotides, respectively
(29). Modifications to the target cytidine (i.e., 5-methylcytosine) (73, 113) or neighboring bases
(47) can also impact the efficiency of APOBEC-catalyzed deamination. APOBECs can deami-
nate cytidines within very small regions of ssDNA. For example, A3A can bind dinucleotides in
vitro (108) and deaminate ssDNA gaps as small as four nucleotides long (20). However, when
the opposite DNA strand is present within a bubble-like structure, A3A activity is reduced for
ssDNA regions smaller than seven nucleotides in length (127). The ability to deaminate small
ssDNA substrates presumably allows most APOBECs to deaminate cellular ssDNAs created dur-
ing DNA replication, transcription, or DNA repair processes. On longer ssDNA substrates in
vitro, AID and other APOBECs act processively (31, 126), deaminating multiple cytidines in a
local area instead of randomly associating with independent targets. However, the processivity of
APOBEC enzymes is likely reduced by ssDNA-binding proteins like replication protein A (RPA)
(83) in vivo, making it unclear if processive activity contributes to the formation of APOBEC-
induced mutation clusters in cancer genomes.
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APOBEC-INDUCED MUTATION SIGNATURES

A role for APOBECs in causing mutations during carcinogenesis has long been suspected. The
initial determination that APOBECs were DNA-editing enzymes that were found to have broad
mRNA expression in various tissues combined with the discovery of AID activity in lymphoid tu-
mors indicated that these enzymes may contribute to cancer mutagenesis (63). Subsequent anal-
ysis comparing the sequence specificity of AID, APOBEC1, and A3G to mutations in the tumor
suppressor gene APC identified an enrichment of C mutations in TC dinucleotides, suggesting
that TC-specific APOBECs could contribute to colorectal cancer mutagenesis (11). Although it
was not attributed to APOBEC activity at the time, targeted sequencing of greater than 500 pro-
tein kinase genes among 25 breast cancer tumors showed a similar overrepresentation of muta-
tions in TC dinucleotides (160). Subsequent whole-genome sequencing of 21 breast cancer tu-
mors found frequent C-to-T and C-to-G substitutions in TC dinucleotides (114). A subset of
these mutations occurred in discrete groupings within localized regions of the genome and were
strand-coordinated with consecutive mutations in C bases on the top or bottom strand, which
indicates they were simultaneously induced. Moreover, this phenomenon, termed kataegis, often
includes switching of the strand-coordinated mutations at sites of chromosomal rearrangements,
suggesting that cytidines within ssDNA intermediates generated by rearrangement-generating
repair events were mutated. APOBECs were proposed as the cause of kataegis events due to their
similar sequence preference and ssDNA specificity. Experimental evidence for ssDNA-specific
base-damaging agents causing similar patterns of mutation clusters was provided in yeast model
systems and putative APOBEC-induced kataegis events were identified in multiple myeloma,
prostate, and head and neck cancers, indicating that these events occur in many cancer types (135).
Multiple large-scale analyses of tumor exomes, sequenced primarily by The Cancer Genome Atlas
(TCGA), found overrepresentation of TCW to TTW and TCW to TGW substitutions in many
cancer genomes (3, 23, 134). These two mutation patterns, commonly referred to as APOBEC
signature mutations, are classified by the Catalogue of Somatic Mutations in Cancer (COSMIC)
as single base substitution signature 2 (SBS2) and SBS13 and are officially attributed to off-target
APOBEC-induced cytidine deamination (2) (Figure 3).

Although SBS2/SBS13 mutation signatures are found in most cancer types (2) (Figure 1),
these APOBEC signature mutations are concentrated in six specific cancer types: lung squamous
cell carcinoma and adenocarcinoma, head and neck squamous cell carcinoma, breast invasive carci-
noma, cervical squamous cell carcinoma and endocervical adenocarcinoma, and bladder urothelial
carcinoma (3, 23, 134). Overall, SBS2/SBS13 together are the second most common type of base
substitution mutation observed in human tumors (2). Additional APOBEC-associated mutation
signatures, beyond those caused by the prominent TC-specific APOBECs, also expand the extent
of the APOBEC family’s contribution to cancer mutagenesis. SBS84 is composed of C-to-G and
C-to-T substitutions in WRC sequence contexts and occurs primarily in somatic hypermutation
loci in lymphoid tumors; therefore, it is caused by AID (40). Currently, no signatures have been
attributed to the deamination of genomic cytidine in CC dinucleotides that would be consistent
with aberrant A3G activity.

APOBECS CONTRIBUTING TO SBS2 AND SBS13

The identity of the specific APOBEC enzymes that cause SBS2/SBS13 mutations has been the
focus of intense research. Initial work has focused on TC-specific APOBECs that can access the
nucleus, which would allow for deamination of genomic DNA. As the only APOBEC solely found
in the nucleus (16), A3B was the first linked to APOBEC-induced mutations (22). Overexpression
of the C-terminal catalytic domain of A3B in human cell lines induces γH2AX and micronuclei
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Establishment of SBS2 and SBS13 signatures. TC-specific APOBECs deaminate dC-to-dU in ssDNA. DNA synthesis using the dU as
a template (left) results in C-to-T substitutions, which produce the SBS2 mutation signature. Alternatively, conversion of the dU to an
abasic [i.e., an apurinic/apyrimidinic (AP)] site by the uracil glycosylase UNG2 stalls replicative polymerases, requiring a bypass of the
abasic site by TLS. A-rule TLS (middle), where a polymerase inserts dA across the abasic site prior to polζ -mediated extension, also
produces C-to-T substitutions, which also contributes to the SBS2 mutation signature. REV1-mediated TLS involves the insertion of a
C across from the abasic site by the deoxycytidyl transferase REV1 prior to polζ -mediated extension (right), which produces the
C-to-G substitutions that comprise signature SBS13. Abbreviations: APOBEC, apolipoprotein B mRNA-editing enzyme, catalytic
polypeptide-like; polζ, polymerase ζ; SBS, single base substitution; ssDNA, single-stranded DNA; TLS, translesion synthesis. Graphs
of SBS2 and SBS13 are adapted from Reference 2 (CC BY 4.0).

formation, indicators of DNA damage, which demonstrates that A3B can damage genomic DNA
(22). Additionally, A3B mRNA transcript levels correlate with the SBS2/SBS13 mutation bur-
den in human tumors (22, 23, 41, 134), and reduction of A3B expression by short hairpin RNA
(shRNA) decreased genomic dU and mutation loads in several breast cancer cell lines (22). De-
spite these findings supporting a causative role for A3B in cancer mutagenesis, a human deletion
polymorphism that results in loss of the APOBEC3B gene increases the risk of developing lung
and breast cancers (95, 106, 170, 172). Moreover, breast cancers from carriers of this allele have
greater amounts of APOBEC signature mutations (116), indicating that at least one other TC-
specific APOBEC contributes to SBS2/SBS13 mutations.

APOBEC3H (A3H) haplotype I has been proposed to be another contributor to APOBEC-
induced cancer mutagenesis.While most haplotypes of A3H are cytoplasmic, the substitutions in
haplotype I impart a nuclear localization to the enzyme (92), allowing it to potentially deaminate
cytidines in nuclear DNA. These mutations also reportedly limit the stability of the A3H pro-
tein (118), suggesting that the A3H haplotype I may not maintain sufficient activity to damage a
nuclear genome. However, editing of viral DNA was detected in cells overexpressing A3H haplo-
type I (157), and markers of DNA damage in lung cancer cells expressing haplotype I have been
observed (65), indicating that A3H may have sufficient activity to cause APOBEC signature mu-
tations. Sequencing of breast cancers carrying deletions of both APOBEC3B alleles indicated that
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APOBEC signature mutations were absent from tumors that do not have A3H haplotype I alleles
(157). However, the number of tumors in this analysis may not have been sufficient to unequivo-
cally assign the lack of the signature to the absence of a haplotype I allele. Other polymorphisms
within A3H indicate that the protein may affect tumorigenesis. In particular, the T polymorphism
of rs139293 has been associated with a higher risk of lung cancer in Chinese populations (180).

Although A3A has pancellular localization (16) but is more abundant in the cytoplasm than
the nucleus (84), and A3A mRNA and protein levels are often much lower within tumor cells
compared to those of other APOBECs (41, 123, 131), significant evidence indicates that A3A is the
primary source of APOBEC-induced mutations in multiple tumor types. Overexpression of A3A
increases γH2AX foci (85, 112), indicating that it can damage nuclear DNA.A3AmRNA levels are
stabilized by theAPOBEC3A-APOBEC3B hybrid allele (26) that occurs in the individuals carrying
the germline APOBEC3B deletion polymorphism and is associated with increased cancer risk and
APOBEC signature mutations in tumors from carriers, suggesting that elevated A3A abundance
is responsible for these phenotypes. Analysis of sequence contexts for A3A- and A3B-induced
mutations in yeast indicated that A3A prefers the sequences YTCA, while A3B prefers RTCA
(29). Assessment of the −2-dinucleotide preference in tumors containing SBS2/SBS13 mutations
indicated that YTCA was enriched over RTCA, suggesting that A3A substantially mutates many
cancer genomes, while A3B-mediated mutation occurs at lower levels. Furthermore, A3A is most
often the dominant source of cytidine deaminase activity in APOBEC-mutated breast cancer cell
lines, including those with higher A3B expression, which is likely due to A3A’s higher enzymatic
activity and resistance to RNA inhibition (41). A3A mRNA abundance and cytidine deaminase
activity correlate strongly with the amount of APOBEC signature mutations within a panel of
breast cancer cell lines. Additionally, in multiple cancer types, A3A mRNA levels correlate more
strongly with the number of SBS2/SBS13 mutations than A3B mRNA levels do. A3A’s proclivity
to deaminate hairpin structures and edit RNA has provided additional evidence for its role in
mutating cancer genomes, as SBS2/SBS13 mutations often occur at hairpin-forming sites (21)
and tumors with these mutations often bear evidence of active A3A RNA editing (74). Recent
CRISPR-Cas9-mediated disruption of the APOBEC3A gene in several APOBEC-mutated breast
cancer and lymphoid cell lines resulted in the loss of SBS2/SBS13 (125). However, the signature
largely remained inAPOBEC3B-deleted lines, indicating that A3A is themajor source of APOBEC
signature mutations in these cancer types.

In other cancer types, APOBECs outside of the APOBEC3 subfamily may contribute to cancer
mutagenesis. In particular, APOBEC1 has been implicated in causing SBS2/SBS13 in esophageal
cancer (145). Both human and rat APOBEC1 are capable of mutating bacterial DNA, the chicken
DT40 cell line, and human cell lines, which result in SBS2/SBS13 mutations. Physiologically,
human APOBEC1 expression is highly elevated in Barrett’s esophagus, which is a precursor to
esophageal adenocarcinoma that frequently contains APOBEC signature mutations, suggesting
that APOBEC1 causes these mutations. However, a causative role for APOBEC1 has not been
demonstrated, and A3A- or A3B-induced mutagenesis could not be excluded.

SUBSTRATES FOR APOBEC-INDUCED MUTATION
IN NUCLEAR GENOMES

APOBEC deamination of cytidine is highly favored within regions of ssDNA and is nearly un-
detectable on double-stranded DNA (dsDNA) (18, 24, 175). Regions of ssDNA occur tran-
siently in cells during transcription, DNA replication, and repair processes. Mutations in tumor
genomes resulting from the activity of AID and APOBEC3 family members tend to be enriched
within regions corresponding to different sources of ssDNA (Figure 4). AID primarily targets
transcription intermediates formed in immunoglobulin loci. Studies of AID on-target ssDNA
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Substrates for APOBEC-induced mutations. APOBEC-induced mutations can occur scattered across
genomes or in localized clusters called kataegis. Scattered mutations are associated with the deamination
(red stars) of ssDNA formed during replication, at secondary structures, and during transcription. Kataegis
is usually formed through the deamination of intermediates of the homology-directed repair of DSBs or
break-induced replication. In the case of SHM, mutation clusters are associated with transcription. Multiple
APOBECs induce mutation and DNA damage at these structures in cells, producing characteristic mutational
asymmetries. Abbreviations: AID, activation-induced cytidine deaminase; APOBEC, apolipoprotein B
mRNA-editing enzyme, catalytic polypeptide-like; A3A,APOBEC3A; A3B,APOBEC3B; A3G,APOBEC3G;
bp, base pair; DSB, double-strand break; SHM, somatic hypermutation; ssDNA, single-stranded DNA.
Images of chromosomal targets adapted with permission from References 66 (CC BY-NC-ND 4.0) and
67. The rainfall plot depicting kataegis and scattered mutations is adapted from Reference 114 (CC BY 3.0).

regions have identified roles for the formation of R-loops (174) and G-quadruplexes (128) as en-
hancers of AID activity during transcription.

By contrast, A3A- and A3B-induced mutations primarily correspond to the lagging strand
template during DNA replication in model systems (66) and in sequenced tumors (62, 110,
148), although correlation of APOBEC signature mutations with higher transcription levels and
modest bias for nontranscribed strands of genes suggest that transcription serves as a substrate
to a lesser extent (34, 62, 110). Unlike AID, less evidence exists for mechanisms that target
APOBEC3 members to chromosomal regions, and RPA binding to ssDNA inhibits APOBEC3
deamination activity rather than promotes it (20, 83). However, recent crystallographic data
indicate that A3A (82, 152) bends ssDNA into a U-conformation, which results in the preferential
deamination and mutation of small hairpin-forming sequences in vitro and in tumors, respectively
(21, 41). Despite the presence of similar structural folds (Figure 2), other APOBECs (specifically
A3B and A3H) lack the deamination preference for hairpins (21), suggesting that specific amino
acid side chains (i.e., H29 in A3A) mediate this specificity. The conversion of inverted repeat
sequences into ssDNA likely controls the formation of hairpin secondary structures, although
the presence of ssDNA-binding proteins such as RPA may enhance APOBEC specificity for par-
ticular structures by binding favorably to longer ssDNA regions and blocking APOBEC activity
(20). Overall, the availability of ssDNA during DNA replication is likely a major determinant of
APOBEC-induced genomic mutations in tumors. In some cellular contexts, DNA damage and
replication stress caused by loss of the tumor suppressor FHITmay increase APOBEC-generated
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mutations (169). Although it has not been studied, oncogene-induced replication stress–elevated
ssDNA and exhaustion of RPA (reviewed in 56) may also facilitate APOBEC-induced mutation
in tumors.

DespiteDNA replication being the predominant ssDNA source for APOBEC3-inducedmuta-
genesis, APOBEC mutations are also enriched within regions coding for transfer RNAs (tRNAs)
(141, 142) and at sites of DNA repair (32, 151). APOBEC3-induced mutations commonly occur
as kataegis within sequenced tumors (114, 135) and model systems (51, 143, 163), within long
stretches of ssDNA formed by either end resection during DNA double-strand break (DSB) re-
pair or D-loop synthesis during break-induced replication. In addition, both normal and aberrant
DNA repair pathways likely contribute to the generation of ssDNA that APOBECs can mutate.
For example, elevated expression ofNEIL2 can increase ssDNAduring base excision repair (BER),
possibly contributing to APOBEC mutagenesis in some tumors (151), and mismatch repair ac-
tivity on BER substrates increases APOBEC mutagenesis, as measured using a shuttle mutation
reporter in human cells (32).

REPAIR AND TOLERANCE OF APOBEC-INDUCED DNA DAMAGE

There are multiple outcomes of APOBEC-induced deamination of cytidine bases to dU that are
likely heavily modulated by multiple repair activities. When APOBEC-induced dU sites, which
are indistinguishable from deoxythymidines to DNA polymerases, are not removed and serve
as a template during DNA replication, it results in the insertion of deoxyadenine (dA) opposite
dU (Figure 3). During the next round of DNA replication, the opposite dA-containing strand
serves as a template, resulting in a C-to-T mutation. Removal of APOBEC-induced dUs by the
uracil DNA glycosylase UNG2 in human cells creates abasic [i.e., apurinic/apyrimidinic (AP)]
sites. When abasic sites are processed by glycosylase activity in the context of dsDNA, the lesion
is repaired error free by completion of BER. By contrast, APOBEC/UNG2-dependent abasic
sites that occur in the context of ssDNA at the replication fork are more problematic due to the
lack of an opposite strand to provide the correct base, and cleavage at the abasic site by an AP en-
donuclease would result in a DSB. When not prevented by the activity of HMCES (109), abasic
sites resulting from APOBEC activity on DNA replication–generated ssDNA can stall replicative
DNA polymerases, which can increase ssDNA associated with replication and result in activation
of the checkpoint protein ATR (75). The bypass of APOBEC-generated abasic sites in the context
of the replication fork in human cells is poorly understood. Data from yeast model systems (67,
140, 141) and our current understanding of lesion bypass suggest that two pathways are likely em-
ployed. In yeast, recombination-dependent error-free lesion bypass reduces APOBEC-induced
mutagenesis approximately five- to tenfold. Thus far, the contribution of error-free lesion bypass
to the avoidance of APOBEC-induced mutagenesis has not been studied or shown experimen-
tally in human cells. However, APOBEC mutation signature SBS13 is almost certainly driven by
error-prone bypass of APOBEC-generated AP sites by translesion synthesis, which utilizes the de-
oxycytidyl transferase REV1 and DNA polymerase ζ (polζ) (28) (Figure 3). However, synthetic
lethality between A3A overexpression and loss of HMCES, MAD2L2 (a subunit of human polζ)
(14), or factors involved in homologous recombination (HR) indicate that similar lesion bypass
pathways likely modulate APOBEC mutagenesis in human cells.

APOBEC-INDUCED CARCINOGENESIS

Early studies into the functions of APOBECs indicated that when dysregulated, these enzymes
contribute to carcinogenesis. Rat APOBEC1 expressed in mouse livers, with the goal of influenc-
ing cholesterol levels, surprisingly resulted in elevated hepatocellular carcinomas (173). Although
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mRNA editing was observed in these tumors, the possible contribution of genome editing to car-
cinogenesis was not evaluated. Expression of AID in hepatocellular carcinoma (162) and multiple
myeloma (35) mouse models also elevated tumor formation. In these cases, deleterious Trp53mu-
tations and oncogenicMYC translocations due to aberrant AID DNA editing were established as
causative mechanisms. Like APOBEC1, expression of APOBEC2 in mouse liver or lung resulted
in tumorigenesis, with mRNA-edited Eif4g2 and PTEN transcripts being the major molecular
alterations observed (120). Efforts to evaluate the tumorigenic potential of human APOBEC3
subfamily members in mice have primarily supported a role for A3A as the primary cancer pro-
moter. Expression of each human APOBEC3 in a TP53 knockdown liver cancer model found
that only A3A elevated tumor frequency above background levels (88). Similarly, A3A expression
in an APCmin colorectal cancer mouse model increased tumor formation. In both models, A3A
produced the characteristic APOBEC signature mutations, but evidence for APOBEC-generated
driver mutations was not apparent (88). It remains unclear how A3A contributed to the formation
of these tumors. Surprisingly, expression of A3A in mouse models of pancreatic ductal adenocarci-
noma appears to drive tumorigenesis primarily by increasing chromosomal instability through an
unknown mechanism independent of A3A cytidine deaminase activity (171), suggesting that non-
catalytic cellular functions of various APOBECs may be important for carcinogenesis. Additional
mammalian organisms (e.g., dog, horse, sheep, pig, rabbit, and elephant) also express catalytically
active A3A orthologs that damage nuclear DNA when overexpressed (27, 87, 93). Whether A3A
contributes to nuclear genome editing and cancer in these species remains unknown.

Despite producing many mutations across multiple human cancer types, the extent to which
APOBEC-induced mutations drive carcinogenesis has been uncertain. In respect to aberrant AID
activity, error-prone repair of AID-induced DSBs during CSR are known to lead to oncogenic
translocations of c-MYC with the IGH locus in lymphoid cancers (35, 50, 129, 133). However, at-
tempts to show that APOBECs produce driver mutations in several cancer types have been only
marginally fruitful. Early analyses of sequenced tumors found no enrichment for APOBEC mu-
tations in cancer driver genes (134), indicating that most APOBEC-induced mutations are not
drivers of carcinogenesis. Similarly, many highly recurrent APOBEC-induced mutations occur in
hairpin-forming sequences seemingly due to increased APOBEC cytidine deamination activity
on these substrates (21), not selection. However, tumors with APOBEC-induced mutations also
have higher instances of oncogenic PIK3CA mutations, which are more likely to occur at TCW
sequence motifs in the p85 binding domain instead of at non-APOBEC target sequences in the
kinase domain, strongly indicating that APOBECs induce these driver mutations (64). APOBEC-
mutated tumors also have frequent mutations at TC dinucleotides, not within hairpin-forming
sequences but in the known cancer-driver genes TP53, NFE2L2, MUC16, ARID1A, KMT2C,
ERBB2, KMT2D, and FGFR3 (∼11.0%, 2.6%, 2.3%, 2.1%, 1.9%, 1.9%, 1.8%, and 1.6% among
samples across tumor types, respectively) (21). Additional lower-frequency APOBEC mutation
hotspots exist in known cancer genes, indicating the enzymes may also contribute to some cancer-
specific drivers.

The lack of prevalent APOBEC-induced driver mutations among tumor samples may be partly
due to the time during cancer progression at which APOBECs become dysregulated. In contrast
to prostate cancers where A3B-induced mutations accumulate in a clock-like fashion beginning
early in development (58), many SBS2/SBS13 mutations in lung (44) and breast (115) cancer dis-
play low allelic fraction within the primary tumors, which is consistent with the establishment of
these signatures later during cancer development. Some of these subclonal mutations appear to be
secondary driver mutations in lung cancers (104). Moreover, sequenced breast cancer metastases
display a much higher prevalence of APOBEC signature mutations than primary tumors (5), indi-
cating that APOBEC-induced mutation increases after cancer initiation but before metastasis, to
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which the APOBECs may have contributed. In addition to creating additional driver mutations,
late-onset APOBEC-inducedmutagenesis could contribute to therapy resistance and/or tumor re-
lapse by creating genetic heterogeneity within individual tumor cells. Supporting this hypothesis,
xenograft mouse models featuring human estrogen receptor–positive breast cancer cells express-
ing an A3B-targeting shRNA are slower to regenerate tumor mass following tamoxifen treatment,
while A3B-overexpressing cells have accelerated tumor regrowth (89). Similarly, treatment of hu-
man lung cancer cells with gefitinib and osimertinib chemotherapy increases both A3A expression
and APOBEC signature mutations and enhances the establishment of drug-resistant clones in an
A3A-dependent manner (72).

Regardless of the contribution of APOBEC-induced mutation to cancer progression and tu-
mor relapse, the load of APOBEC signature mutations and expression of specific APOBECs in
different contexts are predictive of disease prognosis. In estrogen receptor–positive (ER+) breast
and ovarian cancers, higher A3B mRNA levels correlate with indicators of less favorable patient
prognosis (49, 155). Correspondingly, higher levels of SBS13 predicted poor patient responses
in human epidermal growth factor receptor 2-negative (HER2-), ER+ breast cancers (12), and
increased SBS2/SBS13 levels are associated with poorer prognosis in multiple myeloma, possibly
due to increased MAF/MAFB and MYC translocations (100, 167). This association of increased
APOBEC expression or mutational signatures with poor prognosis appears to be cancer type spe-
cific. In non-small cell lung cancer (168), bladder cancer (59, 106), and clear cell ovarian cancer
(149), A3B expression and/or APOBECmutation signature abundance are predictive of better dis-
ease outcomes, which may be driven by therapies specific to these tumor types. In the case of clear
cell ovarian cancer, elevated A3B activity results in increased sensitivity to platinum drugs (149),
while enhanced prognosis in lung and bladder cancers may stem from increased responsiveness
to immune blockage therapies (59, 168) as the higher mutation loads could elevate neoantigen
production. Supporting this hypothesis, APOBEC-induced kataegis events have been found to
correlate with programmed cell death ligands PD-L1 and PD-L2 expression across tumor types
(17). Based upon the prognostic value of APOBEC expression and mutagenesis as well as the
potential contribution of APOBECs to drug resistance and relapse, researchers are attempting
to target them as cancer therapeutics. Whether specific APOBEC inhibitors can be developed
and if APOBEC dysregulation is ubiquitous enough throughout a tumor to be a primary cancer
therapeutic target are unknown.

INFLUENCERS OF APOBEC-INDUCED MUTATION

APOBEC Transcriptional Regulation

The association between elevated APOBECmRNA abundance in tumors with APOBEC-induced
mutation and genetic rearrangements inmultiple cancer types indicates that transcriptional upreg-
ulation significantly contributes to APOBEC-induced mutation (23, 134). Mechanisms for tran-
scriptional control of AID are best understood in the context of activated B cells, the immune
cell type where AID is primarily, though not exclusively, expressed. The region just upstream of
the transcription start site contains transcription factor–binding sites for signal transducer and
activator of transcription 6 (STAT6), nuclear factor kappa B (NF-κB), homeobox C4 (HoxC4),
and specificity factor proteins Sp1 and Sp3. Another region within the first intron has binding
sites for B cell–specific transcription factors paired box 5 (Pax5) and E-box protein E47, which
activate transcription by overcoming silencing from c-Myb, E2F, and various inhibitor of differ-
entiation (Id) proteins.Two other regions have been shown to be critical to AID expression and are
host to transcription factor–binding sites for STAT6, NF-κB, CCAAT-enhancer-binding protein
(C/EBP), Smad3/Smad4, c-Myc, and basic leucine zipper transcription factor, ATF-like (BATF).
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These transcription factors have been shown to regulate AID transcription upon stimulation with
various activators and cytokines such as interleukin 4 (IL-4), cluster of differentiation 40 (CD40),
and transforming growth factor β (TGF-β) (reviewed in 177). In nonlymphoid cells, AID can also
become dysregulated, especially in the presence of prolonged inflammation, which lends itself to
the theory of inflammation-associated carcinogenesis (36). Increased AID transcription has been
observed in many cancer types. Pro-inflammatory cytokines, which play a critical role in inflam-
matory bowel disease, result in increased expression of AID in colorectal cancers (52). In gastric
cells enduring chronic infection with Helicobacter pylori, AID transcription was upregulated in an
NF-κB-dependent manner, leading to carcinogenesis (37, 99). The NF-κB pathway has also been
implicated in activating AID transcription in liver (53) and bile duct (79) tumors. Also, TGF-β
was shown to increase AID expression in cancer-prone hepatocytes under chronic inflammatory
conditions (81).

Studying the transcriptional regulation of the APOBEC3 genes has been more difficult, given
that the seven genes are expressed at different levels inmany tissues and cell types (80, 131).Within
immune cells, the APOBEC3s are expressed at various levels, with A3A and A3G being promi-
nent in cells of the myeloid lineage and CD4+ T lymphocytes, respectively (131). A3A and A3G
expression levels are highly dependent upon immune cell type as well as stimulation factors (42).
Themost characterized stimulators of APOBEC3 transcription are interferons (IFNs) in both im-
mune and nonimmune cell types (reviewed in 42). Through IFNs, APOBEC3s can be activated
via several external stimuli, such as foreign nucleic acids (e.g., plasmids) (4, 158), poly(I:C) (117,
164, 179), or IL-27 (61). Less is known about APOBEC3 transcriptional regulation in the context
of cancer (Figure 5). Many studies of the transcriptional regulation of APOBECs in tumors have
focused on A3B due to early evidence supporting its role in mutagenesis. Phorbol 12-myristate
was shown to regulate A3B transcription via a noncanonical NF-κB pathway involving protein
kinase C (PKC) activation in several cancer cell types and normal breast epithelial cells (91, 97).
In breast cancer, A3B transcript levels have been shown to be upregulated by B-Myb via epider-
mal growth factor receptor (EGFR) signaling (38) and estradiol (165), linking A3B expression to
normal mammary cell physiology. DNA-damaging agents have also been shown to increase A3A
and A3B transcript levels in breast cancer (75, 106), via ATR-dependent transcriptional activation
(75). Evidence shows that genotoxic stress contributes to A3A activation via a canonical NF-κB
mechanism in conjunction with typical IFN induction from viral infection (117). Thus, activated
DNA damage signaling due to inherent stress within tumors may lead to enhanced APOBEC3
expression and increased mutational burden. The DNA damage response protein p53 also reg-
ulates multiple APOBEC3 members through binding sites in the APOBEC3 gene promoters (1,
105). TP53 mutational status may therefore be particularly important for the establishment of
A3B-mediated mutation signatures (139), as p53 normally represses A3B expression through the
recruitment of the DREAM complex to the A3B promoter region (22, 124, 136). A3B expression
is also modulated by the activator protein 1 (AP-1) pathway acting on an intronic enhancer within
APOBEC3B (94).

Control of APOBEC Stability and Activity via Posttranslational Modification

Posttranslational modifications of APOBECs that modify their protein abundance or enzymatic
activity may also modulate the occurrence of APOBEC-induced mutations in tumors. The
best-characterized posttranslational modification of the APOBEC family is the ubiquitination
and proteolytic destruction of APOBEC3 enzymes during HIV-1 infection. The HIV-encoded
accessory protein, viral infectivity factor (Vif ), binds the cytoplasmic APOBEC3 proteins A3D,
A3F, A3G, and A3H, then complexes with an E3 ubiquitin ligase CRL5 complex, resulting in
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Potential modifiers of APOBEC3A and APOBEC3B activity and cancer mutagenesis. Transcriptional
upregulation of APOBEC3A and APOBEC3B likely contributes to increased APOBEC-induced mutations
in cancer, while identified posttranslational modifications and protein–protein interactions tend to inhibit
APOBEC3A or APOBEC3B activity. Similarly, base excision repair of dU in double-stranded DNA (i.e.,
induced during transcription where DNA strands would be reannealed following deamination) or error-free
template switching at abasic sites derived from APOBEC-induced dU during replication can prevent
APOBEC signature mutations in model systems.Whether currently identified protein interactors of
APOBEC3A and APOBEC3B or error-free template switching influences APOBEC-induced mutation
during cancer development is currently unknown. Abbreviations: APOBEC, apolipoprotein B
mRNA-editing enzyme, catalytic polypeptide-like; AP-1 activator protein 1; APE1, apurinic/apyrimidinic
endonuclease 1; ARIH1, ariadne RBR E3 ubiquitin protein ligase 1; CCT, chaperonin containing TCP-1;
CDK4, cyclin-dependent kinase 4; DREAM, dimerization partner, RB-like, E2F and multi-vulval class B;
dU, deoxyuridine; hnRNP, heterogeneous ribonucleoprotein; ILF, interleukin enhancer-binding factor;
NF-κB, nuclear factor κ B; PKA, protein kinase A; polβ, polymerase β; pVHL, von Hippel–Lindau tumor
suppressor; STAT2, signal transducer and activator of transcription 2; TRIB, tribbles pseudokinase 3; Ub,
ubiquitin. Images of replication forks and mutated genomes shown as a circos plot adapted with permission
from References 66 (CC BY-NC-ND 4.0) and 67.
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polyubiquitination and degradation by the 26S proteasome (reviewed in 54). The presence of
ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2) and ubiquitin-conjugating enzyme E2 L3
(UBE2L3) increases the polyubiquitination of APOBECs in the CRL5-Vif degradation pathway,
and knocking out ARIH2 decreases HIV infectivity (70), indicating that Vif-mediated APOBEC
destruction requires monoubiquitination by ARIH2 and UBE2L3 followed by polyubiquitination
by CRL5.

Recent characterization of A3A activity in hepatocytes indicates that UBE2L3 may also con-
trol APOBEC levels through proteasomal degradation in the absence of Vif (178) (Figure 5).
A UBE2L3 promoter polymorphism (rs59391722) results in higher expression of UBE2L3 and
increases susceptibility to hepatitis B infection. Overexpression of UBE2L3 in hepatitis B virus–
infected human liver carcinoma cells decreased the half-life of A3A protein and increased A3A
ubiquitination in vitro, suggesting that proteasomal destruction of A3A mediated the enhanced
viral infection. Furthermore, A3A protein levels increased in cells following proteasome inhibitor
MG132 treatment, indicating that UBE2L3-mediated A3A degradation requires proteasomal in-
volvement.The vonHippel–Lindau tumor suppressor (pVHL) functions in coordination with the
UBE2L3-ARIH1 complex for monoubiquitination and with the CRL Cullin-RING E3 ubiqui-
tin ligase for polyubiquitination of target proteins. Overexpression of pVHL in HEK293T cells
decreased protein levels of all overexpressed APOBEC3 proteins, suggesting that this pathway
is conserved among APOBEC3s regardless of cellular localization (147). Currently, it is thought
that pVHL acts as a substrate receptor protein by binding an APOBEC3 protein and interacting
directly with the CRL complex, which polyubiquitinates the APOBEC3 and targets it for pro-
teasomal degradation. However, whether these degradation pathways are modulated in ways that
result in increased APOBEC-induced DNA damage or mutation during cancer development is
unknown.

APOBEC function is also commonly regulated by posttranslational phosphorylation. cAMP-
dependent protein kinase A (PKA) phosphorylates AID within an RXXS/T consensus site at
residue serine 38 (S38) (reviewed in 177), which serves to mediate AID–RPA interactions, promot-
ing efficient CSR and possibly increasing oncogenic MYC/IGH translocations (111). AID S38A
can deaminate DNA within Ig S-regions in vitro and associate with Ig S-regions in stimulated B
cells while failing to recruit RPA to these regions (166). This suggests that either RPA’s role in
CSR occurs postdeamination, potentially in the recruitment of repair factors, or RPA enhances
CSR. Interestingly, AID S38 phosphorylation has also been observed in unstimulated 3T3 fibro-
blasts and HEK293T cells (101), suggesting that PKA may regulate AID in contexts beyond CSR
and SHM in B cells. AID S38G has been reported to maintain CSR function in B cells (7), call-
ing into question the exact role of S38 phosphorylation in this process. Serine 3 (S3), threonine
27 (T27), threonine 140 (T140), and tyrosine 184 (Y184) have been identified as additional AID
phosphorylation sites in splenic B cells. Isolated studies have shown that S3 phosphorylation sup-
presses CSR and Myc/IgH translocations in stimulated B cells, suppresses hypermutation in 3T3
fibroblasts (57), and promotes nuclear stability of AID (90). Phosphorylation of T27 augments
AID interactions with RPA in HEK293T cells and CSR activity in knock-in mice, although this
may be due to the interdependence of T27 and S38 phosphorylation (9). AID T27A S38A double
mutants reportedly lack the ability to initiate CSR in stimulated B cells (121). T140 phosphoryla-
tion appears to be catalyzed by PKC, suggesting an alternative pathway for AID regulation rather
than via S38 and T27 phosphorylation. AID T140A knock-in mice have impaired CSR and SHM,
suggesting that T140 plays an important additional role in AID regulation (102). The identifica-
tion of T140 phosphorylation in 3T3 fibroblasts suggests that, similar to S38 phosphorylation,
T140 phosphorylation is not unique to B cells and may have effects beyond CSR and SHM.
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PKA also phosphorylates A3G at threonine 32 (T32) (154) and threonine 218 (T218) (46) as
well as A3B at threonine 214 (T214) (98) (Figure 5).A3GT32 phosphorylation desensitizes A3G
to HIV-1 Vif (77, 176), resulting in decreased proteasome-mediated degradation (96, 150, 161)
and higher cellular and virion A3G abundance. However, phosphomimetic A3G T32E maintains
wild-type deaminase activity in vitro and normal cellular localization (46). By contrast, phosphor-
ylation of A3G T218 and A3B T214 occurs in the C-terminal catalytic domains and decreases
deaminase activity (46, 98). A3B T214D (and T214E) mutants also lack cellular foreign DNA-
editing activity while preserving nuclear localization. This is consistent with the proposed role
for T214 in stabilizing the position of cytosine favorable for deamination (152, 153). Molecular
dynamics simulations further support this role and predict that T214 phosphorylation impairs the
binding of substrate by excluding the target cytosine from A3B’s active site via electrostatic repul-
sion. Interestingly, A3B phosphomimetic mutants still retain antiretroviral activity and LINE-1
retrotransposon restriction (98), which reportedly does not depend on the catalytic activity of A3B
(159) and A3A (15). Characterizing the regulation of A3B and other APOBEC3 family mem-
bers by PKA in the context of tumors and additional pathways for posttranslational APOBEC
regulation is needed to better understand the importance of APOBEC modifications in cancer
mutagenesis.

Other APOBEC-Interacting Proteins

Beyond proteins that chemically modify APOBECs, other protein–protein interactions modu-
late the activity of these enzymes. In SHM, AID-mediated recruitment of RPA stabilizes ssDNA
formed on the nontemplate strand during transcription of Ig variable (V) regions, allowing AID
to more efficiently deaminate these regions (30, 101). Additional interactions with RNA pol II,
associated Spt5 and Spt6, and 14-3-3 proteins further promote nontranscribed strand deamina-
tion (177). AID deamination of the template strand also occurs and is dependent on recruitment
by AID of the RNA exosome complex to S regions of Ig loci (10). AID off-target mutations in
hematological cancers are enriched in transcribed genes and may similarly be targeted by non-
coding RNAs and the exosome (122). However, whether similar factors control the access of
AID to transcription-associated ssDNA in gastric tumors (99) and other tumor types (138) is
unknown. During CSR, inhibiting AID interactions with RPA impairs both recombination and
recruitment of RPA to these regions in vivo. AID interaction with the spliceosome-associated fac-
tor CTNNBL1 has also been identified as important for SHM and gene conversions (39).While
the mechanism by which this interaction affects AID activity has not been fully elucidated, stud-
ies suggest that CTNNBL1 is involved in regulating AID nuclear translocation and subnuclear
localization (68).

More recently, interacting proteins for A3B and A3A have been identified (Figure 5). A3B
interacts specifically with cyclin-dependent kinase 4 (CDK4), which impairs normal CDK4-
dependent nuclear import of cyclin D1, likely by nuclear sequestering of A3B-bound CDK4 or
competitive binding of CDK4 (103). This interaction disrupts cell proliferation and may promote
both A3B antiviral activity and cancer mutagenesis by stalling cells in G1/S phase. The DExD/H-
box helicase 9 (DHX9) suppresses A3B antihepatitis B (HBV) activity by impairing the binding
of A3B to HBV pregenomic DNA (pgDNA) (33). A3B has also been shown to interact in cells
with multiple heterogeneous ribonucleoproteins (hnRNPs) (76, 107) and interleukin enhancer-
binding factor 2 (ILF2) and ILF3 (76). Interactions with hnRNP A1 or ILF2 result in attenuation
of in vitro A3B deaminase activity (76), suggesting a possible regulatory role in cells. A3A directly
binds to the chaperonin-containing TCP-1 (CCT) complex (60), and depletion of this complex
increases APOBEC-induced DNA damage, suggesting that the CCT complex limits A3A access
to genomic DNA. A3A has also been shown to interact with the nuclear protein TRIB3, which
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reduces steady-state A3A levels in a proteasome-independent manner, thus decreasing APOBEC-
induced mutations and DSBs (6).

CONCLUSIONS

Although there has been much progress in characterizing both the molecular underpinnings and
the consequences of APOBEC-induced mutagenesis in cancer, many mysteries remain, especially
for tumors mutated by APOBEC3 family members. For solid tumors unassociated with viral in-
fections, events that trigger APOBEC expression are unclear. Although elevation of A3A, A3B,
or A3H-haplotype I transcription in tumor cells versus normal somatic cells is likely required
for APOBEC-driven mutagenesis, it does not always appear to be sufficient in every tumor, as
there are many tumors with high A3B and A3A expression without increased SBS2/SBS13 mu-
tations. Almost certainly, posttranslational modifications, protein–protein interactions, targeted
degradation, cellular localization, DNA repair processes, and ssDNA availability affect the extent
of APOBEC-induced mutagenesis differentially in distinct cancer types and tumors and among
individual cells. In addition, the recent finding that A3A is likely the primary driver of APOBEC
mutagenesis in many tumors has created new interest in the mechanisms responsible for elevated
A3A activity in tumor cells. Finally, several studies have shown that targeting repair activities that
respond to APOBEC activity may be a promising therapeutic option. However, the practical ap-
plication of these pursuits will likely rely on how homogeneous and consistent APOBEC activity
is within the tumor cell population.
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