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Abstract

The same mutation can have different effects in different individuals. One
important reason for this is that the outcome of a mutation can depend on
the genetic context in which it occurs. This dependency is known as epista-
sis. In recent years, there has been a concerted effort to quantify the extent of
pairwise and higher-order genetic interactions between mutations through
deep mutagenesis of proteins and RNAs. This research has revealed two
major components of epistasis: nonspecific genetic interactions caused by
nonlinearities in genotype-to-phenotype maps, and specific interactions be-
tween particular mutations.Here, we provide an overview of our current un-
derstanding of the mechanisms causing epistasis at the molecular level, the
consequences of genetic interactions for evolution and genetic prediction,
and the applications of epistasis for understanding biology and determining
macromolecular structures.
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Intergenic epistasis:
interaction between
mutations in different
genes (as opposed to
intragenic epistasis,
which occurs between
mutations within the
same gene)

INTRODUCTION

A mutation will not always have the same consequences in different individuals. For instance, a
mutation that causes a disease in one individual may have no effect in another (22, 23, 65). There
are several reasons for this. One is the environment: Diet, pathogens, temperature, and other risk
factors vary among individuals and can change the effects of mutations. Another cause is stochas-
tic processes, such as fluctuations and errors in gene expression (21, 24, 37, 122). However, the
effect of a mutation may also vary across individuals because of additional genetic variation. Such
dependencies on genetic background or context can cause phenotypic diversity within individu-
als and, on evolutionary timescales, incompatibilities between different species (26, 72, 120). For
instance, some mutations that cause diseases in humans are fixed in the genomes of other species
without any apparent deleterious consequences (19, 42, 62).

This dependency of the effects of mutations on the genetic background in which they occur
is known as epistasis or genetic interaction. The concept of epistasis was introduced by Bateson
(14) in the early twentieth century to describe the effect of a genetic variant that masked the
effect of another. Fisher (39) defined epistasis as the statistical deviation from the additive com-
bination of two loci in their effects on a phenotype. Since then, the term epistasis has been used
with many related meanings (89, 114), although it is most commonly defined as the deviation
from the expected outcome when combining mutations. For fitness, the expected outcome is usu-
ally taken as the multiplicative or log-additive combination of the individual mutation effects (89,
114). Epistatic interactions can be divided into different classes (115, 156) depending on whether
the outcome is better (positive epistasis) or worse (negative epistasis) than expected, whether only
the strength of a mutation’s effect changes (magnitude epistasis) or also its direction of effect (sign
epistasis), whether the interaction involves two (pairwise epistasis) or more (higher-order epistasis)
mutations, whether the interaction is particular to a mutation combination (specific epistasis) or
completely predictable from knowledge of the phenotypic effects of the mutations without knowl-
edge of their identity (nonspecific or general epistasis), or whether the interaction is measured in a
specific genetic context (background-relative epistasis) or averaged across a set of different genetic
contexts (background-averaged epistasis) (Figure 1).

Although epistasis has been studied for decades using experimental (118, 138, 154) and compu-
tational (62, 119) approaches, in recent years there has been a concerted effort to experimentally
quantify genetic interactions in a high-throughput manner (5). This has allowed researchers to
evaluate the abundance of epistasis within and between genes and better understand the underly-
ingmolecular mechanisms.The aim of this review is to offer an overview of how new experimental
approaches to comprehensively quantify the effects of mutations have improved our understand-
ing of the prevalence, causes, implications, and applications of epistasis.

THE PREVALENCE OF EPISTASIS WITHIN AND BETWEEN GENES

Epistasis between genes has historically been exploited by geneticists and developmental biol-
ogists to disentangle the order in which genes act in linear pathways (45, 145, 148). A typical
experiment involved combining a null allele of a gene essential for the activity of a pathway (so
the null allele blocked the pathway) with a null allele of a gene that negatively affected the activity
of the pathway (so the null allele enhanced the activity of the pathway), with the reasoning that
if the essential gene was upstream of the other gene, the pathway would remain active. Genome
screening projects with libraries of single and double gene deletions, inhibitions, or hypomor-
phic alleles (Figure 2a) have revealed that intergenic epistasis is abundant in different organ-
isms, including yeast, worms, and humans (28, 38, 56, 77, 78, 81, 125). For example, the gener-
ation of 23 million double-knockout gene combinations encompassing 5,416 different genes of
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Figure 1

Classes of epistasis. (a) The log-additive model for how mutations combine. (b) Positive versus negative epistasis. Positive epistasis
occurs when the effect of a mutation in a given genetic background is better (or fitter) than expected, and negative epistasis occurs when
the effect of a mutation is worse (or less fit) than expected. The specific case of a beneficial mutation that becomes less beneficial (or a
detrimental mutation that becomes less detrimental) is referred to as diminishing-returns epistasis. (c) Magnitude versus sign epistasis.
Magnitude epistasis occurs when the magnitude but not the direction of the effect of a mutation changes in certain genetic
backgrounds. If the effect of a mutation disappears in a given genetic background, that mutation is said to undergo masking epistasis,
and if the direction of the effect changes, the mutation undergoes sign epistasis. A special case of sign epistasis, reciprocal sign epistasis,
occurs when the direction of effect of both mutations changes. (d) Specific versus nonspecific epistasis. If the interaction between two
mutations depends on the identity of the mutations involved, it is a specific interaction. If the interaction depends only on the
magnitude of the effect of both mutations, irrespective of the exact identity of the mutations involved, it is a nonspecific interaction. In
the case of a nonspecific interaction, the same mutation can interact with many other mutations. (e) Pairwise versus higher-order
epistasis. Epistatic interactions can involve two (pairwise epistasis) or more (higher-order epistasis) mutations. ( f ) Background-relative
versus background-averaged epistasis. An interaction between two mutations may differ depending on the genetic background. The
interaction quantified in each background is referred to as background-relative epistasis. Background-averaged epistasis quantifies the
average interaction between two mutations across a set of genetic backgrounds.

budding yeast identified nearly a million interactions (∼4% of tested pairs) when screening for
growth (colony size) (28). These results not only demonstrate the prevalence of pairwise genetic
interactions but also provide a resource for understanding the organization of the cell. Genes with
closely related functions tend to have similar genetic interaction profiles, allowing the identifica-
tion of genes belonging to related pathways, processes, and cellular compartments (28).
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Figure 2

Experimental approaches to studying epistasis. (a) Synthetic lethal analysis. A haploid yeast strain with a deleted gene is mated with
other haploid strains with other genes knocked out to build a double-knockout diploid strain. The colony size of the double knockout is
a measure of the fitness of the yeast when both genes are knocked out. In the case of essential genes, hypomorphic alleles that cause a
partial loss of gene function are used. (b) Deep mutational scan. A library of mutant variants of a gene necessary for cell proliferation is
transformed into cells (or, alternatively, the variants may be integrated into the genome). The cells are then subjected to a set of
conditions (selection conditions) under which they are expected to grow. Sequencing the plasmids from a sample of the cell population
before selection and from a sample after selection and comparing the relative frequencies of each mutant variant in both samples
provides an estimate of the effect of each variant on fitness. Information about epistasis can be obtained by measuring the fitness of
every variant alone and in combination with other variants. (c) Ancestral reconstruction and resurrection. A multiple sequence
alignment with the sequences of extant species allows the reconstruction of the sequence of the ancestral state, as well as that of any
intermediate states between the ancestor and the present-day sequence. These reconstructed sequences are then used to synthesize
(resurrect) the ancestral molecules, which all differ in the specific mutations harbored and which are then assayed for function and
compared with each other. (d) Experimental evolution. A population is allowed to grow in a container with a specific set of selection
conditions until it reaches a given size. A sample of this population is then taken from the first container and transferred into another
one. This process is repeated many times at regular intervals. Over time, mutations are acquired that allow the members of the
population to thrive under the experimental conditions used. The population can be sequenced at each time point or at the end of the
experiment. Information about epistasis can be obtained by measuring the fitness of individual mutations as well as their combinations.

Gene deletions are, however, rare (140); variation between individuals typically consists
of point mutations, single-nucleotide insertions or deletions, gene duplications, and genomic
rearrangements, which have diverse effects on gene activity that are difficult to predict (140).
Emergent techniques such as deep mutational scans (Figure 2b), which measure the effects of
thousands of mutations on gene function with one experiment, have allowed researchers to test
for the abundance of intragenic epistasis. These experiments have quantified interactions by mu-
tating proteins (1, 6, 11, 32, 41, 49, 93, 97, 105, 111, 136, 144, 157) and RNAs (34, 46, 84,
121). Systematic mutagenesis has also been applied to regions of genes regulating transcription
(113, 127) or alternative splicing (9, 18, 63, 66). For example, a study looking at the effects of
mutations in the RNA recognition motif (RRM) domain of the yeast poly(A)-binding protein
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(PAB1) found that almost 20% of double mutants in this domain displayed some form of epistasis
(97). The proportion of interacting mutation combinations varies extensively across studies, with
differences in analysis methods and experimental designmaking direct comparisons between stud-
ies difficult. Quantitative comparison of the extent of epistasis across molecules and systems re-
mains an important challenge for the future.

MOLECULAR CAUSES OF EPISTASIS

Understanding what causes epistasis is important in order to predict phenotypic variation from
changes in genotype. Despite the progress made in quantifying genetic interactions, our knowl-
edge of their underlying molecular mechanisms remains limited (79). Large-scale data sets gen-
erated during the last few years have provided an opportunity to better understand the molecular
causes of epistasis. Here, we distinguish two general classes of interaction: nonspecific epista-
sis, which arises from the nonlinearities in genotype–phenotype maps and applies to all muta-
tion combinations, and specific epistasis, which occurs only between particular sets of mutations
(Figure 1d).

MECHANISMS OF NONSPECIFIC EPISTASIS

If the relationship between the biophysical effect of a mutation and the measured phenotype is
linear, then two mutations behaving additively at the level of their biophysical effects will also
behave additively at the phenotypic level (Figure 3a). However, they will appear to behave non-
additively if the relationship between the underlying additive trait and the measured phenotype
is not linear (Figure 3b). The unexpected outcomes of mutations driven by a nonlinearity in the
genotype-to-phenotype map are known as nonspecific interactions. They have also been referred
to as global epistasis (108), unidimensional epistasis, and the fitness potential (73).

Predicting Nonspecific Interactions Without Understanding
Causal Mechanisms

Nonspecific genetic interactions can be predicted from the effects of the individual mutations
without knowing the identity of the mutations involved. Different methods have been used to
deduce the shapes of these general nonlinearities even when the underlying causal mechanisms
are unknown. A simple approach to infer the shape of this nonlinearity is to plot the observed
effect of double mutations versus the effects of each of the two single mutations, with a running
median surface or loess regression describing the overall relationship between the single- and
double-mutation effects, and specific interactions quantified as the residuals from these best-fit
surfaces (137) (Figure 4a, left). Another method involves plotting the observed versus the
expected double-mutant effects by assuming mutations behave additively and fitting a power
function (132) (Figure 4a, right). A maximum likelihood approach has also been described
that extracts the underlying, unobserved, additive traits and fits an I-spline to the relationship
between the phenotype and this unobserved trait (108) (Figure 4a, center). Finally, a study
of the genotype-to-phenotype landscape of GFP (136) modeled the relationship between the
underlying biophysical trait and the measured phenotype (fluorescence) as a sigmoid function
that was later refined using a neural network. Although these methods all provide insight into the
general shapes of genotype-to-phenotype landscapes, they do not help researchers understand
the origins of these nonlinearities. Recent studies have attempted to elucidate some of the
causes of these general nonlinearities, which include the thermodynamics of protein folding
and molecular interactions (32, 86, 105, 150, 158), cooperativity (17, 47, 86, 93, 100), mutually
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Figure 3

How a nonlinearity can lead to nonspecific epistasis. (a) Linear landscape. The effects of mutations A and B are additive in the
underlying biophysical space and in the phenotypic space where their effects are measured. (b) Nonlinear landscape. The curvature in
the function linking the underlying biophysical space (e.g., free energy of folding), where mutations have an additive effect, with the
phenotype space, where mutation effects are measured means that mutations combine nonadditively. (c) General nonlinearities can
cause the detection of spurious specific interactions. Using a linear model to describe a nonlinear genotype-to-phenotype landscape
results in the detection of many specific interactions, including third-, fourth-, and higher-order terms, that attempt to describe this
nonlinearity. If the null model for how mutations combine considers the general nonlinearity, fewer specific terms are detected.

exclusive molecular competitions (9), enzyme kinetics (87, 146), feedback (68), and the balance
between the costs and benefits of gene expression (25, 31).

Thermodynamics of Protein Folding and Molecular Interactions

The relationship between the stability—the free energy of folding, �GF—of a protein and the
fraction of the protein in its native folded state is sigmoidal (Figure 4b). When mutations affect
�GF but the assay used to estimate their effects is a higher-level property that depends on the
amount of folded protein, then the effects of mutations will combine in a sigmoidal rather than a
linear manner (150, 158). Wild-type proteins tend to be positioned on the upper plateau of this
sigmoidal curve, meaning that mildly detrimental mutations can have little effect alone, an effect
referred to as threshold robustness (150) (Figure 4b). However, adding a second mutation of
similar small effect will have a larger impact on the fraction of folded protein because the protein’s
stability reservoir becomes exhausted and the protein no longer falls on the upper plateau of the
sigmoid (105, 107) (Figure 4b). The thermodynamics of protein folding have been proposed to
underlie much of the nonspecific epistasis detected in deep mutational scanning experiments of
protein G domain B1 (GB1), where the effects of all single-amino-acid substitutions and their
pairwise combinations were quantified (105, 107, 137).

438 Domingo • Baeza-Centurion • Lehner



GG20CH19_Lehner ARjats.cls August 8, 2019 11:3

Protein stability (–ΔG)

Fr
ac

ti
on

 o
f f

ol
de

d 
pr

ot
ei

n

Stable
protein

Marginally
stableUnstable

protein

Co
st

 (r
el

at
iv

e 
gr

ow
th

ra
te

 re
du

ct
io

n)

Be
ne

fit
 (r

el
at

iv
e 

gr
ow

th
ra

te
 d

iff
er

en
ce

)

Gene expression

Fi
tn

es
s

Initial gene
expression

levels

C

Less More
Gene expression

Less More
Gene expression

Less More Optimal

0.4

0.6

0.8

1.0

−10 −5 0 5
ΔΔG

Pr
ot

ei
n–

pr
ot

ei
n

in
te

ra
ct

io
n 

sc
or

e

15

Phenotype A

−6
−4

−2
0

Phenotype B

−6

−4
−2

0

Ph
en

ot
yp

e 
A

B

−6

−4

−2

0

−9

−6

−3

0

3

−20 −10 0

Estimated additive trait (ϕ)

Ph
en

ot
yp

e
(r

el
at

iv
e 

lo
g 

bi
nd

in
g)

1
10
100
1,000

Count

Running median surface Maximum likelihood + I-spline Power transform

−1.0

−0.5

0

0.5

1.0

1.5

−5.0 −2.5 0 2.5
Estimated additive effects

Po
w

er
 tr

an
sf

or
m

ed
ph

en
ot

yp
e

Additive effects

Ph
en

ot
yp

e

Thermodynamics of a
protein–protein interaction

Small
increase

Small
increase

Large
increase

0

25

50

75

100

−10 −5 0 5 10
Splicing efficiency parameter (a.u.)

Ex
on

 in
cl

us
io

n 
(P

SI
)

0

25

50

75

100

−10 −5 0 5 10
Splicing efficiency parameter (a.u.)

Ex
on

 in
cl

us
io

n 
(P

SI
)

–100

–50

0

50

100

0 25 50 75 100
Starting exon inclusion (ΔPSI)

Ch
an

ge
 in

 e
xo

n
in

cl
us

io
n 

(P
SI

)

Mutation effect
on additive trait

Small increase

Small
increase

Large increase

Mutation effect
on phenotype Large

increase

Mutually exclusive
splice site competition

Activity of one enzyme

M
et

ab
ol

ic
 fl

ux
Maximum metabolic flux

Fitness
effect
of A or B

A

B

C

a   Nonmechanistic methods of estimating global nonlinearities

b   Threshold robustness model c

f   Saturating curve

g   The costs and benefits of gene expression combine to form a peaked fitness landscape

+

d

e   Sigmoid generates scaling of mutation effects

(Caption appears on following page)

www.annualreviews.org • Causes and Consequences of Epistasis 439



GG20CH19_Lehner ARjats.cls August 8, 2019 11:3

DeepPCA:
a high-throughput
technique based on the
protein fragment
complementation
assay that quantifies
how mutations in two
proteins combine to
alter protein–protein
interactions

Figure 4 (Figure appears on preceding page)

Molecular mechanisms underlying nonspecific epistasis. (a) Different methods to estimate the global nonlinearity between the
underlying additive trait and the observed phenotype. (Left) A running median surface describes the relationship between the
phenotypes of the single mutants A and B and the double mutants AB. (Center) A maximum likelihood approach was developed to
estimate the underlying additive traits of the genotype-to-phenotype landscape and an I-spline fit to describe the relationship between
the observed phenotype and the underlying trait. (Right) A power transform can be used to linearize the relationship between the
additive effects of the single mutants and the phenotype of the double mutants (the method is described in Reference 108).
(b) Threshold robustness model of protein folding. The relationship between protein stability (the underlying biophysical space where
mutations could have an effect) and the fraction of natively folded protein is sigmoidal (gray line). A stable protein lies at the top of this
sigmoid, and introducing a destabilizing mutation (light blue arrow) would not significantly reduce the fraction of folded protein.
However, after acquiring this mutation, the protein becomes only marginally stable, and the introduction of a second mutation (darker
blue arrow) with a very similar effect on protein stability suddenly has a large effect on the fraction of folded protein (dotted blue line).
(c) Nonlinearity introduced by the thermodynamics of a protein interaction. The relationship between the change in free energy
introduced by a mutation (x axis) and the strength of a protein–protein interaction ( y axis) is sigmoidal. (d) Nonlinearity introduced by
mutually exclusive competition. The relationship between the efficiency of exon splicing (x axis) and the percentage of exon inclusion in
the mature mRNA ( y axis) is sigmoidal. (e) Scaling of mutation effects. The relationship between splicing efficiency (the underlying
biophysical trait where mutations have an effect) and exon inclusion (the phenotypic space where the effects of mutations are measured)
is sigmoidal, which means that mutations will have a maximum effect when introduced into an exon included at intermediate levels.
The effects of mutations decrease when they are introduced into exons with very high or very low levels of inclusion. ( f ) Nonlinear
relationship between metabolic flux and the activity of one enzyme in this pathway. The function saturates at maximum metabolic flux.
(g) The costs and benefits of gene expression leading to a peaked fitness landscape. (Left) Expressing a gene has a cost due to, for
example, energy consumption or competition for cellular resources. (Center) There are also benefits associated with the function carried
out by the gene product in the cell. (Right) The combination of costs and benefits associated with gene expression leads to a peaked
fitness landscape with an optimal gene expression level. The fitness of an organism with a gene expressed at levels above the optimum
can be increased by introducing a mutation (B or C) that decreases the expression of that gene. Because mutation B reduces the gene’s
expression levels past the optimum, introducing mutation C in the presence of B leads to reduced fitness (i.e., sign epistasis). Note that a
peaked fitness landscape means that it is impossible to know the underlying biophysical effect of a mutation from fitness measurements
alone, since two mutations (A and B in the diagram) can have exactly the same effect on fitness but drastically different effects at the
biophysical level. Abbreviation: PSI, percentage spliced in. Left and center subpanels of panel a adapted from References 137 and 132,
respectively; panel c adapted from Reference 32; panels d and e adapted from Reference 9.

A separate study used a protein fragment complementation assay in combination with deep
sequencing to study the protein–protein interaction between the proteins FOS and JUN (32).
Single-amino-acid substitutions were introduced into each of the proteins, alone or in combina-
tion with a mutation in the other protein, and the effects on the strength of the interaction were
estimated by measuring their effects on cell growth using a sequencing-based protein interaction
assay called deepPCA (32). A multiplicative model for how mutations combine accounted for
approximately 85% of the variance of the double-mutant effects, although systematic biases were
present in the model predictions. For example, two mutations that only slightly destabilize the
protein–protein interaction often lead to a weaker interaction than expected given the effect of
the individual mutations. These biases imply the presence of nonspecific epistasis, which could
be predicted using a three-parameter thermodynamic model based on the two-state equilibrium
between the unfolded peptides and complex formation. This sigmoidal relationship could predict
how pairs of mutations combine both between and within the individual proteins to alter complex
formation (explaining 90% of the variance of the double-mutant effects) (32) (Figure 4c).

Cooperativity

A secondmajor mechanism behind nonspecific epistasis is the nonlinear relationship between pro-
tein concentration and bound ligand in cooperative binding. A typical example of cooperativity in-
volves transcription factors binding to DNA (47, 99). Steroid receptors are a class of transcription
factors that form homodimers and bind to sites known as steroid response elements or estrogen re-
sponse elements. The evolution of an ancestral estrogen-response-element-binding receptor into
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Permissive mutation:
a mutation that allows
the tolerance of
another mutation that
is otherwise
deleterious

Synergistic epistasis:
epistasis in which the
effect on fitness of two
mutations is more
radical (more
beneficial or more
detrimental) than
expected

a steroid-response-element-binding receptor involved three amino acid substitutions in the DNA
recognition domain of the protein (93). However, these specificity-switching mutations were not
tolerated except in the presence of an additional 11 permissive mutations that did not increase
steroid-response-element binding specificity but instead promoted the binding of both steroid
response elements and estrogen response elements alike (93). Although these permissive substitu-
tions were originally thought to increase the thermodynamic stability of the protein, as described
in the previous section, reversible chemical denaturation experiments revealed that these muta-
tions increased cooperativity between homodimer subunits instead of increasing protein stability.
This experiment looked at cooperativity between homodimers, but synergistic epistasis arising
due to the cooperative binding of different transcription factors has also been reported (17).

Multiple Nonlinearities Normally Connect Genotype to Phenotype

The examples of nonspecific epistasis described above focused on the analysis of molecular phe-
notypes one nonlinearity away from the layer where a mutation has its direct additive effect. This
means that one nonlinear function is enough to describe the relationship between the measured
and the underlying biophysical effect of a mutation. However, from transcription to RNA pro-
cessing, translation, and protein folding and all the way up to protein activity and cellular fitness,
there are many layers of biological organization where the effects of a mutation can be trans-
formed. For many genes, nonspecific epistasis reflects multiple linked nonlinear functions. To
address this concern and study how mutational effects propagate through different layers of bi-
ology, a deep mutational scan was performed on the DNA-binding domain of the phage lambda
repressor (86), a transcription repressor. In this experiment, the target regulatory region was in-
serted upstream of a GFP reporter, and the decrease in GFP fluorescence was used to measure
repressor activity. As described above, the concentration of natively folded protein is nonlinearly
related to the folding energy of the protein (32, 150). However, also as described above, cooper-
ativity in the recruitment of repressor dimers to their binding sites means that lambda repressor
activity, dependent on the bound molecules, is itself nonlinearly related to the concentration of
free lambda repressor (2). A model considering either one of these nonlinearities alone gives poor
predictions of double-mutant phenotypes from the effects of the component single mutations.
However, combining both nonlinearities gives good predictions (86). The combined model also
accounts for why epistasis changes with different gene expression levels: Although changes in ex-
pression level normally have little effect on how mutations combine to alter the fraction of folded
protein (the first nonlinearity), an increase in protein concentration alters howmutations combine
to alter repression of the transcriptional target (the second nonlinearity).

Mutually Exclusive Competition

Mutually exclusive molecular competitions, in which two molecules compete to carry out the
same function, are another potentially important contributor to nonspecific epistasis. This
mechanism was recently proposed in a study of the effects of mutations on the inclusion of an
alternative exon, FAS exon 6 (9). Exon inclusion was modeled as a competition between pairs of
splice sites, resulting in a mutually exclusive outcome for each mRNA (the exon is either included
or skipped). This model reveals a sigmoidal relationship between the efficiency of exon splicing
(the underlying additive trait) and the final exon inclusion levels (the measured phenotypic trait)
(Figure 4d). A consequence of this sigmoid is the nonmonotonic dependence of the effects
of a mutation on the initial exon inclusion levels (Figure 4e). Naively, one might expect an
inclusion-promoting mutation to have its largest effect in an exon with very low inclusion (which
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could in principle allow for large increases in inclusion) and its smallest effect in exons near
100% (inclusion cannot be above 100%). However, the largest mutation effects occurred in exons
included at intermediate levels. This is because an exon with high or low levels of inclusion is
near one of the horizontal asymptotes of the sigmoid, where the function is not steep and changes
in splicing efficiency cause small changes in exon inclusion (Figure 4e). However, an exon with
intermediate levels of inclusion is in the steep part of the sigmoid, where small changes in splicing
efficiency cause large changes in exon inclusion. A similar nonmonotonic dependence of mutation
outcome on the initial phenotype will occur for any system with a sigmoidal genotype–phenotype
function. Although this molecular competition model was originally built to describe alternative
splicing, it could be used to describe other processes involving a mutually exclusive molecular
competition, such as signaling cascades involving alternative protein interaction partners (70).
The prevalence of molecular competitions in biology suggests that mutually exclusive competition
is an underappreciated contributor to nonspecific epistasis.

Nonlinear Expression–Fitness Functions

Another source of nonspecific epistasis arises in the nonlinear relationships between gene (protein)
expression levels and fitness. Keren et al. (69) quantified the relationship between expression and
growth rate for 81 genes in budding yeast and found that most genes have nonlinear expression–
fitness functions, although the nature of this nonlinearity depends on the transcribed gene. For
example, the expression of some genes is positively correlated with fitness, whereas for others,
high levels of expression are detrimental. A third class of genes have peaked expression–fitness
functions with an optimal expression level, above and below which fitness decreases. For most
genes, the causes of these nonlinear functions are unknown, although they contribute nonspecific
interactions that can be predicted even in the absence of mechanistic models (86).

One cause of nonlinear expression–fitness functions is metabolism. The flux of a metabolic
pathway is not linearly related to the activity of an individual enzyme. Instead, it is linked by
a concave function saturating at maximum metabolic flux (64) (Figure 4f ). This is because en-
zymes do not act alone, but are kinetically linked to other enzymes through their substrates and
products. Since there are usually many enzymes acting in the same metabolic pathway, the effect
of changing the activity of any one of them often has a negligible effect on the overall flux. The
consequences of this general nonlinearity were observed in an experiment carried out to study
Escherichia coli isopropylmalate dehydrogenase (IMDH) (87). IMDH is involved in the biosyn-
thesis of leucine and uses nicotinamide adenine dinucleotide as a coenzyme for catalysis. The
authors created a genotype–phenotype landscape for coenzyme use by IMDH after introducing
six substitutions in the coenzyme-binding pocket alone or in combination. When all genotypes
were assayed for coenzyme usage, mutations behaved nonadditively at the level of bacterial fitness
despite displaying an additive effect at the level of cofactor binding. Similarly, the effects of muta-
tions reducing the affinity of β-lactamase for ampicillin have been proposed to be masked by the
robustness conferred by the nonlinear relationship between fitness and enzyme activity (146).

Peaked Fitness Landscapes

An experiment examining the costs and benefits of Lac protein expression in E. coli (31) revealed
that the cost of expressing the protein (the burden of transcribing and then translating the mRNA
molecule) and the benefit (growth induced by the activity of the protein) combine to give a peaked
expression–fitness function (Figure 4g). A peaked landscape was studied in an experiment where a
plasmid containing genes essential for growth was transformed into bacteria (25).These genes had
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benefits (they were essential) and costs (the plasmid overexpressed them), and only a model that
included the costs and benefits of protein expression could explain most (98%) of the variability
in the data. Kemble et al. (68) recently built a data set of 1,369 genotypes to study the interactions
between mutations affecting the expression of two different genes, araA and araB, acting in the l-
arabinose catabolism pathway in E. coli. Although this pathway can help E. coli grow in the presence
of l-arabinose, the accumulation of its intermediate l-ribulose-5-phosphate is toxic to the cell.
To understand how mutations combine, the authors built a mathematical model in which fitness
depends on the expression of each of the two genes as well as the balance between the benefits of
catabolic flux and the detrimental effects of intermediate toxicity. This is conceptually similar to
the previously described model that balances the costs and benefits of gene expression, explaining
why this model results in a peaked fitness landscape with optimal values for araA and araB gene
expression.

Peaked fitness landscapes provide a mechanism for sign epistasis (25, 68). Consider a gene
expressed at levels above the optimum and amutation,B, that increases fitness ( y axis inFigure 4g)
by reducing gene expression (x axis).Mutation C, which also reduces gene expression, is beneficial
in a background without mutation B but deleterious in its presence (Figure 4g). This is because
mutation C reduces the gene expression levels, bringing them closer to, but not reaching, the
optimum.However, mutation B reduces gene expression past the optimum, and further reduction
by mutation C is deleterious. This is why the presence of a peaked fitness landscape means that
mutation C switches from beneficial to detrimental in the presence of mutation B.

MOLECULAR MECHANISMS OF SPECIFIC EPISTASIS

In contrast to nonspecific epistasis, specific epistasis depends not only on the effect size of each
mutation but also on the identity of the mutations involved. Specific epistasis, also known as struc-
tural epistasis (32), arises primarily through the distinctive effects of particular combinations of
mutations—for instance, pairs of residues that contact each other in a folded protein or confer
specificity for a particular ligand. The origins of specific epistasis are more diverse than nonspe-
cific interactions and therefore are more difficult to predict. Specific and nonspecific epistasis are
not mutually exclusive, but specific epistasis and the mechanisms that generate it become more
apparent when the general nonlinear mapping between the measured phenotype and the under-
lying additive trait is taken into account (9, 32, 108, 132, 136). If not accounted for, nonspecific
epistasis will result in the detection of many specific interactions—often including higher-order
epistasis—that attempt to capture the nonlinear genotype–phenotype relationship (Figure 3c).

Specific Epistasis Due to the Three-Dimensional Structure of Molecules

An intuitive case of specific epistasis relates to the structure of molecules. Proteins and RNAs fold
into defined structures due to physical interactions between their residues. Hydrophobic inter-
actions, salt bridges, and hydrogen bonds occur between particular residues. When mutated, the
disruption of these specific physical contacts can give rise to strong genetic interactions. An illus-
trative example is the strong positive epistasis generated by mutations at two positions that form
a salt bridge in a protein (Figure 5a, top). Most individual substitutions will break the bridge and
have a deleterious effect, especially if they introduce a repulsive electrostatic charge. However,
a few specific mutations can restore the salt bridge by compensating for the newly introduced
charge, keeping the structure intact and resulting in positive epistasis.

The idea that specific genetic interactions relate to energetic couplings and structural contacts
inmolecules is quite old, and biochemists have used double-mutant cycles to probe the folding and
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Figure 5 (Figure appears on preceding page)

Molecular mechanisms underlying specific epistasis. (a) Specific structural epistasis. (Top) A positive epistatic interaction between two
residues that restore a salt in a protein structure. (Bottom) A structural interaction in the Fos–Jun complex (Protein Data Bank entry
1FOS). Dashed yellow lines represent polar interactions. (b) Partial correlations of epistasis values between pairs of positions in a
protein to discriminate local from indirect contacts. (Left) The protein, showing three residues highlighted in different colors (two of
them close in structure and one far away). (Right) Plotted epistasis scores between the three previously highlighted positions and the
remaining positions in the protein. Positions that are close in three-dimensional space interact similarly with other positions. Partial
correlations between interaction profiles are used to discriminate direct from indirect contacts. (c) Change in ligand specificity
in the ancestral corticoid receptor driven by two interacting residues. (Left) Concentrations of the hormones aldosterone (A),
deoxycorticosterone (D), and cortisol (C) required for half-maximal activation (EC50) of the ancestral corticoid receptor (AncGR) in
the presence or absence of the two mutations, S106P and L111Q. (Right) Structural rearrangement produced by the S106P and L111Q
mutations in the ancestral receptor ligand-binding domain. The ancestral receptor is shown in green, and the ancestral receptor with
the mutations is shown in yellow. (d) Epistasis generated by transcription factors that bind different DNA sequences, showing the
three-dimensional binding-affinity landscapes of two different transcription factors for different DNA sequences. The x and y axes
represent sequence space, and the z axis represents binding affinity. The DNA sequences with the highest binding affinity (optimal) are
labeled on top of each peak. In the single-peaked landscape, mutations are additive at the level of free energy of binding, whereas in the
two-peaked landscape, mutations display a strong epistatic behavior. (e) Mechanisms that generate epistasis in alternative splicing. (Top)
Positive masking epistasis between two mutations in the exon, both of which create an overlapping and mutually exclusive
RNA-binding motif, so the combination of the two mutations results in a smaller decrease in exon inclusion than that expected for the
single-mutant combinations. (Bottom) Negative sign epistasis caused by one mutation breaking the binding site of a splicing repressor
and the second one creating a new repressor binding site. Abbreviation: PSI, percentage spliced in. Bottom subpanel of panel a adapted
from Reference 32; panel e adapted from Reference 9.

stability of proteins (57). This technique measures the change in free energy when two mutations
are introduced individually or in combination. Two residues are coupled when the change in free
energy introduced by the double mutant differs from the sum of the changes in free energy of the
single mutations alone. Although double-mutant cycles have proved useful to understanding how
interactions between residues shape the structure and folding of proteins, only a small fraction of
mutant combinations have been tested for any protein.

Recent deep mutational scans have shown that residues close in the primary sequence are en-
riched for epistasis, reflecting the structural contacts in alpha helices, beta sheets, and other sec-
ondary structure elements (97, 105). Similarly, residues close in three-dimensional space but not
in the primary sequence are also enriched for epistasis. In RNAs, the most positive interactions
occur when mutations restore base pairing (34, 46, 84, 121). In proteins, both positive epistasis
and negative epistasis are enriched between positions close in three-dimensional space (97). For
instance, a deep mutational scan of the RRM2 domain of the yeast PAB1 protein showed that
approximately 17% of all significantly positive genetic interactions happened between residues
less than 12 Å apart, and approximately 7% of all negatively interacting mutations were enriched
for residues separated by 15 Å (97). Structural genetic interactions become more apparent when
nonspecific epistasis is accounted for (32). In a systematic study of cis and trans genetic interactions
between the two proto-oncogenes FOS and JUN (32), the epistasis that remained after nonspe-
cific epistasis was accounted for was highly enriched among physically contacting and proximal
residues (Figure 5a, bottom).

Nonetheless, many genetic interactions between and within molecules involve positions that
are not in direct physical contact in the three-dimensional structure (long-range indirect interac-
tions). This has been shown both by using multiple sequence alignments to analyze covariation
between pairs of amino acids, reflecting their evolutionary dependence (48, 124), and by muta-
genizing protein domains whose residues interact in cooperative networks to preserve protein
function (94, 135). Techniques such as direct coupling analysis can discriminate direct structural
contact by measuring the relationship between two positions of a biological sequence and using
statistical models to exclude the effects from other positions (transitive correlations between pairs
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of residues) (98, 152). Although these approaches can discriminate direct from transitive three-
dimensional contacts in macromolecules, they require large numbers of homologous sequences
that are not available for many protein families and may never be for rapidly evolving or recently
evolved ones.

Two recent studies have succeeded in distinguishing direct structural contacts using a complete
double-mutant landscape generated in a deep mutational scan of protein GB1 (129, 137). In one
of these studies (137), contacts were predicted using two metrics: the enrichment of epistatic in-
teractions between pairs of residues and the partial correlations of interaction profiles between all
pairs of positions within the domain (mutations in positions that are close in space will often in-
teract similarly with the remaining protein residues, unlike mutations in protein positions that are
far away from each other; Figure 5b). This approach could also predict direct structural contacts
from sparse mutagenesis data sets—for example, the RRM2 domain of PAB1 (97) or the WW
protein domain of hYAP65 (6), as well as the interface contacts in the protein–protein interaction
between FOS and JUN (32).

Epistasis Generated by Changes in Physical Interaction Affinity and Specificity

Many macromolecules function by binding to other molecules. Specific epistasis can appear when
mutations disrupt these interactions or promote new promiscuous ones. An example of this type
of specific epistasis can be found in proteins binding to different ligands, such as hormones (20,
49, 106), peptides (94, 123), and other proteins (1, 32).

For example, a mutagenesis study of a PDZ domain (PSD95pdz3) found that epistasis between
two mutations was sufficient to switch the ligand-binding specificity of PSD95pdz3 from its canon-
ical class I ligand toward a class II ligand (94). The first mutation, a type-switching mutation,
worked directly and locally in the binding pocket to simultaneously eliminate class I ligand bind-
ing and promote class II ligand binding. The second mutation, a type-bridging mutation, worked
allosterically to open up the binding pocket, which enabled both class I and class II recognition.
The structural rearrangements caused by this second mutation allowed the type-switching muta-
tion to bind to the new ligand, creating a strong positive epistatic signal. To determine whether
other mutations in the domain could behave similarly, the authors assayed the binding affinity of
all 1,598 single-amino-acid substitutions of the PDZpdz3 domain for the binding to both class I
and class II ligands (123). Of the 44 substitutions that changed PDZpdz3 specificity for the class II
ligand, 12 of them directly contacted the site of the ligand binding (type-switchingmutations), and
the remaining 32 were all outside of the contact environment of the new ligand (type-bridging
mutations). Almost no positions carried mutations with both roles, suggesting that the distinction
between type-switching and type-bridging phenotypes was a characteristic of the position rather
than the identity of the mutation.

Another example of specific epistasis arising in physical interactions occurred in the evolution
of the specificity in the glucocorticoid receptor for its ligand, the steroid hormone cortisol. Using
ancestral reconstruction (Figure 2c) and receptor activation assays, Bridgham and colleagues (20,
106) found that the approximately 450-million-year-old precursor of vertebrate glucocorticoid
and mineralocorticoid receptors, originally activated by both types of hormone, required a set of
historical substitutions to gain cortisol specificity. Of all historical mutations, two substitutions
in the ligand-binding pocket (S106P and L111Q) interacted epistatically, inducing a functional
switch in the ancestral receptor. Together, both mutations increased the receptor specificity for
cortisol over other mineralocorticoids (Figure 5c, right). The change of serine 106 to proline
repositioned a helix of the ligand-binding pocket, impairing activation by any ligand. However,
this change also repositioned position 111, which allowed the creation of a new cortisol-specific
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Historical
contingency: the
idea that the paths of
evolution are
constrained by
historical events (i.e.,
previous mutations)

hydrogen bond when mutation L111Q was acquired (106) (Figure 5c, left), resulting in an
unexpected higher affinity for cortisol (positive epistasis). Nevertheless, the complete switch to
cortisol specificity required five additional mutations: three mutations that completed the loss of
mineralocorticoid sensitivity but had a destabilizing effect, and two mutations that compensated
for the destabilizing effect of the other mutations (106). A later study found that the historical con-
tingency created by these two permissive mutations was highly specific (49). In a library of more
than 3,000 variants of the ancestral receptor containing the five corticoid-switch-like mutations,
no other permissive mutations could be found apart from the ones introduced by evolution, since
the few mutations that rescued the destabilizing effect caused promiscuous activation with other
steroids.

Although these previous examples of genetic interactions are highly specific, epistasis involved
in the change of affinity for a ligand can often be nonspecific (147). A substitution may have an
extremely specific effect on the affinity for a ligand and at the same time alter protein stability.
Therefore, an additional mutation is required to compensate for this detrimental effect (15, 16,
151). This principle is illustrated by the gain of resistance of N1 influenza virus to oseltamivir.
Mutation H274Y of the viral enzyme neuraminidase confers oseltamivir resistance but compro-
mises the fitness of the virus (130) by decreasing the amount of neuraminidase protein reaching
the cell surface. However, viral fitness could be restored when multiple mutations nonspecifi-
cally increased the amount of protein that reached the cell surface without interacting specifically
with the resistance mutation (15). Similarly, trimethoprim resistance in E. coli can be achieved
by mutations in dihydrofolate reductase that impair drug binding. Using experimental evolution
(Figure 2d), a study showed that such mutations required the prior acquisition of a promoter
mutation that increased dihydrofolate reductase expression (151). These cases illustrate that spe-
cific and nonspecific epistasis concur, and both play important roles in the specificity for ligand
binding.

Interactions Between Proteins and DNA or RNA

Many processes in the cell involve the interaction of proteins with DNA or RNA. For instance,
transcription factors change the expression of downstream genes by specifically binding to DNA
motifs. Interaction between proteins and DNA-binding motifs can cause specific epistasis when
two mutations do not behave additively at the level of free energy of binding (�GB) (4). By con-
trast, nonspecific interactions occur because of cooperativity between transcription factors (93, 99)
or the nonlinear relationship between binding affinity and downstream transcriptional activation
(142).

Measuring the binding affinity of transcription factors and DNA-binding sites using high-
throughput technologies such as systematic evolution of ligands by exponential enrichment
(SELEX) (61) or protein-binding microarrays (102) has revealed abundant epistasis between
mutations in DNA-binding motifs (3, 61), which was also shown by deep mutational scans
of mutations in protein DNA-binding domains (4, 144). Still, few studies have elucidated the
mechanistic causes of such specific interactions (4, 100).

Althoughmost transcription factors bind a single DNAmotif, some can bind to different DNA
sequences with comparable affinities (61, 161). In the first case, mutations in the transcription-
factor-binding motif additively affect the free energy of binding, whereas in the second situation,
the effects of DNA substitutions are not independent and instead display a strong epistatic behav-
ior (nonadditive at the level of �GB; Figure 5d). One study disentangled the molecular mech-
anisms by which the transcription factors HOXB13 and CDX2 could bind two different DNA
motifs with very similar affinities (100).The crystal structures of the transcription factors bound to
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the two distinct high-affinity sequences revealed no protein structural changes. Thermodynamic
analyses showed that the�GB of both complexes was the same in both states; however, the relative
contributions of entropy and enthalpy to the free energy of the complexes were dramatically dif-
ferent. In one case, the protein–DNA interaction was assisted by rigid water-mediated hydrogen
bonds, increasing enthalpy. By contrast, the alternative DNA–protein complex had much higher
entropy because binding involved direct DNA–protein contacts and water moved freely.

Epistasis can also appear when mutations create or destroy RNA-binding motifs and con-
sequently affect RNA localization, degradation, or processing. After accounting for nonspecific
epistasis in a deep mutational scan of the alternative exon 6 of FAS, Baeza-Centurion et al. (9)
found that few specific interactions remained, all occurring between mutations separated by fewer
than six nucleotides, within the range of the RNA-binding motifs [four to seven nucleotides (29)],
suggestive of epistasis arising due to the binding of proteins.The authors proposed several mecha-
nisms behind these specific epistatic interactions. For instance, positive diminishing-returns epis-
tasis (Figure 1) occurs when twomutations independently create two overlapping RNAmotifs for
the same splicing factor (Figure 5e, top). Because the two binding sites overlap, the motifs cannot
be bound at the same time, and the double mutation results in a smaller effect than the sum of
the individual mutation effects. Alternatively, sign epistasis can emerge when one mutation alone
destroys a silencer-binding site (increasing exon inclusion) and the second mutation alone has no
effect because it occurs outside of the binding region. Yet when the two mutations combine, they
create a new binding site for the same or a new repressor, further decreasing exon inclusion levels
(Figure 5e, bottom).

HIGHER-ORDER EPISTASIS

Pairwise epistasis can contribute substantially to phenotypic variation between individuals (40).
However, interactions between two mutations provide only a limited view of the vast combinato-
rial size of genotype space (119). Genetic interactions are moderately or poorly conserved among
species (33, 128, 149), andmutations with different consequences in different yeast strains are often
a consequence of complex interactions involving multiple other loci rather than being explained
by pairwise interactions (35, 103). These observations point toward the importance of higher-
order epistasis, which happens when the interaction between two or more mutations changes in
the presence or absence of an additional mutation. For instance, a third-order interaction implies
that the pairwise interaction of two mutations is dependent on the presence of a third mutation
(Figure 6a).

Evidence for higher-order interactions is found in studies ranging from viral to mammalian
proteins (132, 155). Although higher-order interactions made small but detectable contributions
to these small-scale genotype-to-phenotype maps, more systematic studies were required to de-
cipher their overall importance for evolution and genetic prediction. Sign epistasis between two
loci constrains adaptation by limiting the number of selectively accessible paths (154). Do high-
order interactions also alter evolutionary outcomes? Are they necessary to predict phenotypes
from changes in genotype? Emergent technologies havemade it possible to answer these questions
by creating all possible combinations of mutations within a limited set of positions in a molecule.
For instance, a fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants,
found that direct paths for adaptation blocked by pairwise reciprocal sign epistasis can be circum-
vented by indirect paths involving the gain and subsequent loss of mutations (157) (Figure 6b).
Similar findings have been reported in fitness landscapes of antibiotic resistance, where higher-
order interactions increase the accessibility to the fittest genotype (111). A recent study generated
all mutant combinations of 14 naturally occurring substitutions in a yeast tRNA, showing that all
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Figure 6

Higher-order genetic interactions. (a) The basis of a third-order genetic interaction. The effect of mutation A (left) or the pairwise
interactions between mutations A and B (right) changes depending on the background.When mutation C is absent (denoted here as
“c”), mutation A changes sign with B in the background (positive sign epistasis). However, when mutation C is present (denoted here as
“C”), the mutation effect of A increases in magnitude only when it is present together with B (positive magnitude epistasis). The
third-order interaction term between mutations A, B, and C corresponds to the difference between the pairwise interaction of
mutations A and B when C is present or absent in the genetic background. (b) Higher-order epistasis shaping evolutionary trajectories.
Due to the third-order interaction of mutations A, B, and C, direct paths from the wild-type state (abc) to the fittest genotype (ABc) are
not accessible, and additional mutational steps are required.

pairs of mutations switched from interacting positively to interacting negatively when found in
different genetic backgrounds due to abundant higher-order interactions (34). Although higher-
order interactions have been detected within (13, 111, 116, 117) and between (75) genes, most
studies have not disentangled their specific and nonspecific components, and a deep understand-
ing of their underlying mechanisms is lacking.

THE ENVIRONMENTAL DEPENDENCE OF EPISTASIS

The fact that mutations can have different effects when the environment changes (12, 51–53,
146) or fluctuates (134) suggests that epistatic interactions can also be environment dependent.
Evidence for the dependence of epistasis on the environment has been observed by simulating
intracellular growth of phages (159) and modeling metabolic networks in yeast (50). Additionally,
gene–gene–environment interactions have been detected in small-scale experiments in viruses
(76), bacteria (126), yeast (10, 44), and flies (160). However, these represent a limited view of
the possible genotype–environment space. How often do gene–gene–environment interactions
occur? Can we predict how genetic interactions vary with the environment? To answer these
questions, we need to exhaustively and systematically study epistasis under the influence of
variable environments. Nearly all systematic studies of genetic interactions and their implications
at the evolutionary level have been performed in a single static environment, and only recently
have mutant libraries been subjected to selection in different environments (85). To what extent
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the dependence of interactions on the environment is predictable or generalizable across different
types of genes is still unknown.

IMPLICATIONS AND APPLICATIONS OF EPISTASIS

Genetic Prediction

A long-standing goal of genetics has been to predict changes in phenotype from genotype changes
(80, 83). The definition of epistasis implies that it is difficult to know beforehand what will happen
when a mutation occurs. But does epistasis hinder the prediction of phenotypes from genotypes?
To what extent are pairwise and higher-order interactions necessary to make accurate predictions?
Will prediction be easier if we consider the mechanisms giving rise to epistasis?

In the absence of a mechanistic model, researchers have attempted to fit models allowing
for every possible pairwise interaction between mutations (54, 109). However, such models are
often overfitted, leading to poor or biased predictions (36, 110). Being aware of nonspecific
epistasis and adapting the null model for how mutations combine accordingly (9, 32) reduces the
number of interaction terms needed to make accurate genetic predictions. Indeed, in a recent
study of an alternative exon (9), the phenotypes (exon inclusion levels) of genotypes containing as
many as 10 mutations were predicted using a model that included a minimal number of pairwise
interactions. Accounting for the global shape of the genotype–phenotype map does not solve all
the problems associated with genetic prediction. Even when global trends are taken into account,
many significant pairwise and higher-order interactions may remain, hindering the prediction of
phenotypes from genotypes (116, 132, 133). Additionally, taking the average effect of mutations
across all genotypes in a data set (Figure 1f ) can often lead to accurate predictions even when
using a model with few interaction terms (34, 116). To make matters more complicated, the
presence of a peaked fitness landscape makes it impossible to estimate the additive biophysical
traits of the landscape from phenotype measurements alone, since the same phenotype can
be linked to different underlying biophysical states (25, 68, 86) (compare mutations A and B
in Figure 4g), and a simple environmental change can alter the topology of the local fitness
landscape (68).

Molecular Evolution and Infectious Diseases

Because epistasis makes genetic prediction difficult, it also hinders the prediction of evolution-
ary outcomes, since this prediction relies on knowing which changes in genotype are beneficial or
detrimental (13, 30). The contingency of newmutations on previous mutations acquired through-
out the course of evolution limits which mutations can be acquired by a population (139, 143) and
which evolutionary paths become accessible (157). If two isolated populations of the same species
progressively acquire different mutations, the new evolutionary paths available to each population
will become progressively more and more different, up to the point where mutations tolerated in
one population are deleterious in the other, ultimately leading to speciation (72, 120). Additionally,
the sigmoidal relationship between an underlying additive trait and the phenotype seen by natu-
ral selection can confer mutational robustness, so that multiple mutations are needed to achieve a
phenotypic change if the current gene is at or near the asymptote of the sigmoid (Figure 4b). For
example, a very stable protein will require multiple destabilizing mutations to reduce its fraction
folded (94, 146).

Since epistasis has such profound implications for molecular evolution, it will also have impor-
tant consequences for health care, because many pathogens are constantly and rapidly evolving
to overcome the immune system and current treatments. One of the main treatments against

450 Domingo • Baeza-Centurion • Lehner



GG20CH19_Lehner ARjats.cls August 8, 2019 11:3

Synthetic lethality:
a simultaneous
perturbation of two
genes that results in
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death

Human leukocyte
antigen (HLA) locus:
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genome with genes
encoding cell-surface
proteins that display
antigenic peptides to
effector immune cells
to regulate
self-tolerance and
downstream immune
responses

influenza is the antiviral oseltamivir (101), which blocks the active site of an enzyme essential for
viral replication. Influenza strains that carried mutation H274Y and were resistant to oseltamivir
were detected during clinical trials, but since H274Y led to attenuated viruses, researchers
concluded that this mutation was not clinically relevant (60). Eight years after oseltamivir was
introduced into the drug market, antiviral-resistant strains appeared containing mutation H274Y,
which spread to most viruses within a year (101). Importantly, this mutation was not deleterious
in the newly evolved strains because, before the virus acquired the drug-resistance-conferring
mutation, it evolved additional mutations that allowed it to tolerate the originally deleterious
mutation (15). Indeed, epistasis has played an important role in shaping the molecular evolution
of influenza (74) and HIV (67), as well as in the emergence of antibiotic resistance (111, 130, 154).
Understanding how mutations in pathogens interact should make it possible to better predict the
course of pathogen evolution and improve the development of vaccines.

Cancer and Autoimmune Diseases

Beyond pathogen evolution, epistasis is also important in cancer. Cancer-causing mutations often
interact strongly, with many driver mutations having little effect alone but lethal consequences
when combined [sometimes referred to as oncogene cooperation (7)]. Relatively little is under-
stood about why particular driver mutations interact and why this changes across cell types (112).
Moreover, exploiting epistasis is now a major strategy for cancer drug development, with large-
scale efforts under way to identify gene inhibitions and drug treatments that are synthetic lethal
with cancer drivermutations (104). For example, poly (ADP-ribose) polymerase (PARP) inhibitors
cause synthetic lethality in tumors carrying mutations in BRCA2 or in other genes involved in ho-
mologous recombination (7). The goal of identifying new synthetic lethal combinations is one
of the major motivations for systematically mapping genetic interactions between human genes
(95).

Epistatic interactions have also been detected in additional human disease—for example, in au-
toimmune diseases involving mutations in the human leukocyte antigen (HLA) locus (92). Genes
in this region are highly polymorphic, which has enabled studies of how genetic variants com-
bine to influence predisposition to many autoimmune diseases. One such disease is ankylosing
spondylitis, an inflammatory arthritis that targets the spine and pelvis of affected individuals. Pop-
ulation studies have revealed that, although more than 90% of ankylosing spondylitis patients
carry a specific variant of the HLA-B gene (HLA-B27), only 5% of HLA-B27-positive individuals
ever develop the disease (141). This suggests that, in addition to theHLA-B27 gene, other genetic
components may be important for developing the disease. Indeed, the loss of function of ERAP1, a
non-HLA gene, reduces the risk of ankylosing spondylitis in individuals with theHLA-B27 variant
(27).This interaction is highly informative about the potential mechanism underlying this disease,
since the main function of the ERAP1 enzyme is to trim peptides in the endoplasmic reticulum to
optimal length such that they can be presented by the HLA-B molecule (8). Similar interactions
between ERAP1 and HLA genes have been found in other human diseases, such as psoriasis (43)
and Behçet’s disease (71).

Interactions among HLA genes are also common and are often caused by amino acid variation
in the antigen-presenting groove of HLAmolecules.Mutations in this domain alter the repertoire
of peptides presented and increase the risk of autoimmunity, as has been observed in celiac disease
(82). The DQ2.5 haplotype, made up of two variants in the antigen-presenting groove of HLA-
DQ (HLA-DQA1∗05:01 andHLA-DQB1∗02:01), is one of themain contributors to celiac disease
susceptibility (96), whereas the DQ7 haplotype (made up of alleles also located in the HLA-DQ
gene) has not been shown to increase disease risk except in a DQ2.5-positive background (82).
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Since all the mutations involved are located in the antigen-presenting pocket, these results suggest
a mechanism involving the abnormal presentation of gluten by HLAmolecules to T cells. Similar
interactions among HLA genes have been found in type I diabetes (58).

In other diseases,where the causal antigen is not known, establishing themechanisms of genetic
interactions is more challenging. One example is multiple sclerosis, where the HLA-DRB1∗15:01
variant has been strongly associated with the disease.When this variant was found in combination
with HLA-DQA1∗01:01 (not previously linked to this disease), it conferred a strong protective
effect against the disease (59). In this study, however, it was difficult to establish a mechanism
underlying the interaction because HLA-DQA1∗01:01 is in strong linkage disequilibrium with
other genetic variants that might be responsible for the interaction. Unfortunately, this problem
is not restricted to this one study: The contribution of epistasis to human disease predisposition
is still an open question for most rare and common diseases, and methods to detect interactions
suffer from a lack of statistical power (88, 131).

Using Epistasis to Solve Protein Structures and Engineer Proteins

The close relationship between structure and function means that determining the three-
dimensional structure of macromolecules is a major goal in biology. Although the past few decades
have brought tremendous progress in the experimental determination of three-dimensional pro-
tein structures, this process is still cumbersome and costly, driving the search for alternative meth-
ods to predict protein structure (91). Since genomic sequences contain evolutionary information
about the functional constraints of proteins, recent techniques have taken advantage of the enor-
mous amount of sequence information available. One of these techniques is direct coupling anal-
ysis (98, 152), which assumes that coevolving amino acids interact structurally or functionally.
Direct coupling analysis has been used to infer residue contacts in known and unknown pro-
tein (90, 91) and RNA (153) structures, as well as structural changes due to complex forma-
tion or conformational plasticity (55). However, as explained above, this technique may not be
feasible for the analysis of fast-evolving, recently evolved, and de novo designed proteins and
RNAs.

Since amino acids making direct structural contacts within a protein can be discriminated by
their patterns of genetic interactions (see the section titled Specific Epistasis Due to the Three-
Dimensional Structure of Molecules), deep mutational scans can provide sufficient information
to determine the three-dimensional folds of macromolecules (129, 137). This suggests a new ex-
perimental approach to solve macromolecular structures, which requires a selection assay for the
activity of the protein or RNA of interest; thus, the adoption or development of generic assays
that read out the folding of different molecules is an important challenge. This approach could be
particularly useful for studying structures that are difficult to determine using physical techniques,
such as disordered and membrane proteins. Moreover, through the use of in vivo selection assays,
deep mutational scans have the potential to reveal the in vivo conformations of molecules as they
are performing particular functions. A generic approach for in vivo structural biology could have
many exciting possibilities for cell biology.

The use of epistatic patterns to predict a particular unknown biophysical trait could be extended
to other fields in biology. Since epistasis can reveal how proteins are structured and physically in-
teracting, epistasis analysis may help in protein design. For instance, the unknown structures of
de novo designed proteins could be assayed using deep mutational scans to quickly assess whether
they are correctly folded. Epistasis analysis can also be used to understand the energetic coupling
in allosteric proteins (135). Thus, systematically studying epistasis and its underlying mechanisms
not only is important for better understanding genotype–phenotype maps and improving genetic
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prediction, but also may have an important impact on fields as diverse as structural biology, syn-
thetic biology, and medicine.

SUMMARY POINTS

1. Epistasis is prevalent within and between genes across many different organisms.

2. Two major types of epistasis are defined depending on whether the interaction depends
only on the effect size of the mutations involved (nonspecific epistasis) or also on their
identities (specific epistasis).

3. Nonspecific epistasis emerges from a nonlinear relationship between the measured phe-
notype and the underlying biophysical traits on which mutations have an effect.

4. Mechanisms giving rise to nonspecific epistasis include protein-folding thermodynam-
ics, cooperativity, mutually exclusive molecular competition, and nonlinear expression–
fitness functions.

5. Specific epistasis occurs when mutations do not act additively at the level of the under-
lying biophysical traits.

6. Mechanisms giving rise to specific epistasis include mutations being in close proximity
within the three-dimensional structure of a macromolecule, creating new specificities for
ligands or partners, and changing the affinity for DNA- or RNA-binding motifs, among
others.

7. Pairwise interactions can change in the presence of additional mutations in the genetic
background (higher-order epistasis) or due to changes in the environment, with evolu-
tionary implications.

8. Knowledge about epistasis has broad implications for health care and personalized
medicine, since it can help to predict how pathogens or a patient will respond to treat-
ments, as well as potential biotechnological applications—for example, to determine the
three-dimensional structures of macromolecules.

FUTURE ISSUES

1. Additional mechanisms underlying epistasis need to be investigated to arrive at a more
complete understanding of mutation effects.

2. A framework is needed to compare analyses of epistasis across laboratories and data sets.

3. Methods to assess intergenic and intragenic epistasis in the same assay will need to be
developed to better understand their relative importance and how a mutation’s effects
propagate across different layers of biological organization.

4. The role of the environment in altering epistatic interactions is currently unclear, and
this will need to be addressed systematically in future studies.

5. Systematic analysis of epistasis between disease-causing mutations (e.g., cancer driver
mutations) will be necessary to provide us with a better understanding of the molecular
bases of disease and their possible treatments.

6. Deep mutagenesis of diverse macromolecules is required to better understand how best
to use genetic interactions to predict three-dimensional structures.
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