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Abstract

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM)
are common heart muscle disorders that are caused by pathogenic variants
in sarcomere protein genes. HCM is characterized by unexplained cardiac
hypertrophy (increased chamber wall thickness) that is accompanied by
enhanced cardiac contractility and impaired relaxation. DCM is defined
as increased ventricular chamber volume with contractile impairment. In
this review, we discuss recent analyses that provide new insights into the
molecular mechanisms that cause these conditions. HCM studies have un-
covered the critical importance of conformational changes that occur during
relaxation and enable energy conservation, which are frequently disturbed
by HCM mutations. DCM studies have demonstrated the considerable
prevalence of truncating variants in titin and have discerned that these
variants reduce contractile function by impairing sarcomerogenesis. These
new pathophysiologic mechanisms open exciting opportunities to identify
new pharmacological targets and develop future cardioprotective strategies.
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1. INTRODUCTION

Sarcomeres are the basic unit of contraction in cardiac muscle. Damage to the structural or func-
tional integrity of sarcomeres causes prominent myocardial disorders called cardiomyopathies.
These conditions are classically divided into two major subtypes (Figure 1): hypertrophic
cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) (25, 75). Mutations in genes that
encode sarcomere proteins are the most common genetic causes of HCM and DCM. While
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Figure 1

Key phenotypic features of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM).
(a,b) The principal mechanisms by which pathogenic variants lead to HCM and DCM. In HCM (panel a),
pathogenic variants lead to enhanced contractility and impaired relaxation. In DCM (panel b), pathogenic
variants have the opposite effects on ATPase activity and calcium sensitivity, leading to impaired
contractility. Typical changes in the force–time relationship of cardiac contractility in HCM and DCM are
shown. (c–f ) Morphologic features of HCM and DCM, which include characteristic geometrical and
functional abnormalities that are recognized by noninvasive cardiac imaging. In panel c, the red arrows point
to focal extensive fibrosis (identified by late gadolinium enhancement) in a 22-year-old HCM patient with
theMYH7 missense variant p.Arg249Gly. Panel d shows cardiac magnetic resonance imaging of a 32-year-
old DCM patient with theMYH7 missense variant p.Arg369Gln, leading to left ventricular dilatation and
impaired global systolic function. Panel e illustrates anatomic features of HCM, showing asymmetric
hypertrophy with prominent involvement of the interventricular septum, and panel f illustrates anatomic
features of DCM, showing markedly increased ventricular volumes.
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both disorders arise from deficits in the same essential core protein complex, HCM and DCM
mutations incite profoundly different ventricular morphology, histopathology, and contractile
performance (Figure 1) that result in distinct clinical presentations and outcomes (77).

HCM is diagnosed in approximately 0.2% of the adult population (24, 36) based on the recog-
nition of ventricular hypertrophy, which is usually asymmetric and occurs in the absence of ab-
normal loading conditions such as hypertension or valvular abnormalities. Cardiac hypertrophy
is clinically diagnosed by echocardiography or cardiac magnetic resonance imaging (MRI) that
demonstrates increased left ventricular wall thickness (≥1.5 cm in an adult or a z-score >2 in
children) (24). The morphologic abnormalities of HCM are accompanied by hypercontractility
(increased systolic performance) and poor relaxation (diastolic dysfunction). Restrictive cardiomy-
opathy (RCM) is an uncommon clinical diagnosis that exhibits severely impaired diastolic function
(31) but with normal or only mildly increased left ventricular wall thickness (151). Sarcomere gene
mutations are the most common cause for both HCM and RCM (31).

DCM is prevalent in the adult population (42) and a leading cause of heart failure. It is charac-
terized by left (or biventricular) ventricular chamber enlargement (dilatation, or an end-diastolic
volume or diameter more than two standard deviations above predicted values adjusted for body
surface area, age, and gender) that is accompanied by impaired systolic function. Hypokinetic,
nondilated cardiomyopathy is a newly proposed clinical description to more fully capture the
earliest clinical spectrum of DCM (96) and includes patients with impaired cardiac contractility
regardless of chamber volume. DCM that occurs in the absence of coronary artery disease, en-
docrine disorders, toxins, or infection was historically denoted as idiopathic; however, molecular
discoveries have shown that pathogenic variants in multiple genes that encode a variety of proteins
with distinct functions in cardiac biology account for substantial proportions of idiopathic DCM.
Among all genetic etiologies of DCM, variants in sarcomere protein genes occur most frequently
(78).

Sarcomere cardiomyopathies are dominant disorders that exhibit familial clustering with age-
related expression of clinical manifestations. Recognition of high familial risk of these disorders
has revised the diagnostic criteria for first-degree relatives of affected patients. Among at-risk rel-
atives, a lower ventricular wall thickness (≥1.3 cm) fulfills clinical diagnostic criteria for HCM
(24). In addition, clinical evaluations of HCM and DCM family members demonstrate that young
carriers of pathogenic sarcomere variants can exhibit subtle contractile abnormalities (48, 62) be-
fore the emergence of prototypic changes in cardiac morphology (e.g., increased ventricular wall
thickness for HCM and ventricular dilatation for DCM). These data imply that deficits in cellu-
lar contractility and/or relaxation (10, 34) are a primary effect of defective sarcomere genes that
triggers secondary remodeling of the heart (48, 62).

During the last few years, exciting studies of sarcomere physiology and biophysics have helped
to unravel mechanisms that underlie the precise functional abnormalities associated with HCM
and DCM pathogenic variants. These insights have established new concepts about sarcomere
physiology, defined the contractile apparatus as an unexpected therapeutic target, and advanced the
development of novel precision drugs for HCM and DCM. In addition to improving clinical care
for cardiomyopathy patients, genetic discoveries have deepened our understanding of fundamental
properties of sarcomere biology and muscle mechanics.

In the following sections, we review contemporary knowledge of genetic causes of sarcomere
cardiomyopathies and strategies for gene-based diagnosis, explore the longitudinal phenotypes
associated with sarcomere cardiomyopathies, consider molecular mechanisms that inform how
pathogenic variants evoke clinical phenotypes, and discuss the emergence of new pharmaco-
logical targets developed from advances in understanding the pathophysiology of sarcomere
cardiomyopathies.
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2. THE MOLECULAR GENETICS OF SARCOMERE
CARDIOMYOPATHIES

Pathogenic variants in sarcomere genes were first discovered by statistical analyses of the coseg-
regation of genotype and phenotype in large and unrelated cardiomyopathy families (115). Since
the first description ofMYH7 as an HCM disease gene (35, 108), more than 1,000 rare pathogenic
variants have been identified in HCM and DCM families and in individual patients. Most vari-
ants are private and unique to one or a few families. The high degree of genetic heterogeneity
in HCM and DCM is thought to reflect recent de novo mutations, which cause sufficiently ad-
verse consequences to evoke negative selection. By contrast, some HCM founder mutations have
been identified (1, 22, 51, 60, 93, 110, 137, 142), and analyses of population haplotypes associated
with these variants indicate that many originated thousands of years ago. However, the absence
of population spreading of founder variants and clinical studies showing delayed disease onset is
interpreted to indicate that founder variants provide no evolutionary advantages and are likely
subjected to neutral evolutionary selection.

Contemporary genetic tests for sarcomere variants employ strategies that directly sequence
panels of cardiomyopathy genes, exomes, or genomes. These analyses detect three classes of gene
variants (103). Pathogenic variants occur in established disease genes (defined by statistically sig-
nificant segregation of genotype and phenotype in at least two independent families) that disrupt
the structure or function of the encoded proteins. Likely pathogenic variants also occur in estab-
lished disease genes, albeit with less compelling evidence with regard to familial segregation or
functional impact. Both pathogenic and likely pathogenic variants are clinically actionable. Benign
variants in sarcomere protein genes are common in the general population, whereas pathogenic
and likely pathogenic variants have a minor allele frequency of less than 0.1% (144). Rare vari-
ants with unknown significance (VUSs) are also identified in definitive cardiomyopathy genes, but
with insufficient experimental and/or segregation data for clinical use. Even with large data sets
[such as those of the Exome Aggregation Consortium (ExAC) andGenome AggregationDatabase
(gnomAD)] that inform the population prevalence of variants, VUSs in cardiomyopathy genes re-
main an unsolved and challenging clinical issue and contribute to the high rates of patients with
overt cardiomyopathy being classified as mutation negative (144).

HCM and DCM pathogenic variants in sarcomere genes are expressed as autosomal dominant
traits with high lifetime penetrance (>90%) in men and women. Clinical expression of cardiomy-
opathies is age dependent, and lifelong manifestations can vary considerably even among family
members with the same pathogenic variant. HCM variants rarely cause overt manifestations early
in childhood (77), but manifestations emerge near adolescence. The age of onset of DCM variants
is more variable. Consistent with this, gene-based diagnosis has become an essential clinical tool
in HCM to establish a definitive diagnosis and enables cascade testing of at-risk relatives. Genetic
testing can avoid unnecessary clinical follow-up of mutation-negative family members and pro-
vides significant health-care cost savings (7). Although gene-based diagnosis of DCM occurs in
most specialization centers, it is not yet standard of care at many institutions.

Pathogenic and likely pathogenic sarcomere gene variants predict two distinct mechanisms by
which these variants cause disease. Missense variants that encode a stable protein are expected
to be incorporated into the sarcomere, disrupt normal mechanical function, and evoke pathologic
signaling. Sarcomere proteins that harbor missense residues may also be misfolded and contribute
to pathogenesis by overwhelming normal cellular clearance pathways. Gene variants that result in
insertions, deletions, or premature stop codons or alter canonical splice sites are expected to en-
code unstable transcripts or loss-of-function proteins; these pathogenic variants cause cardiomy-
opathies through a haploinsufficiency mechanism (50, 76).
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Figure 2

Strategies to improve the interpretation of cardiomyopathy variants of unknown significance (VUSs). (a) Outline of a two-step protocol
to assess VUSs. This protocol employs a computation prediction tool followed by assays to determine whether the variant alters
splicing in dosage-sensitive cardiomyopathy genes. (b) Schematic representation of normal splice signals. (c) Minigene construct and
potential effects of splice-altering variants. Abbreviations: CMV, cytomegalovirus; SV40, simian virus 40. Panels b and c adapted from
Reference 50 with permission.

Contemporary bioinformatic prediction tools can classify variants that are likely to cause loss
of function with considerable accuracy, but computational predictions about the consequences of
missense and noncoding variants are far less informative. Without experimental assays to inter-
rogate biologic properties in model systems, VUS is the default classification for many missense
variants in definitive cardiomyopathy genes. A recent strategy to reclassify VUSs that reside in
sequences that flank canonical splice signals combines a computational predictive algorithm with
functional assays to assess splicing. From analyses of cardiomyopathy VUSs within exons (includ-
ing synonymous andmissense variants) and introns, this strategy identified a substantial subset that
disrupt normal splicing, either incorporating additional sequences or excluding normal residues
(50). As these events would severely alter protein structure, these VUSs would be predicted to
cause loss of protein function (Figure 2). VUSs that disrupt splicing in cardiomyopathy genes
that cause disease by haploinsufficiency (e.g., MYBPC3) could therefore be reclassified as likely
pathogenic. The development of other functional genomic approaches, such as testing of vari-
ant effects on splicing and contractile function in culture cardiomyocytes, is expected to further
improve variant classification and the utility of gene-based diagnosis.

2.1. Hypertrophic Cardiomyopathy

Pathogenic or likely pathogenic variants in sarcomere protein genes account for 30–60% of HCM
cases, a range that reflects diagnostic criteria (7, 72) and approaches to variant classification (103).
Variant detection rates are highest (>75%) among patients with clinical evidence of familial
HCM. Pathogenic and likely pathogenic HCM variants most often reside in one of eight sarcom-
ere genes, but they predominate in MYH7 and MYBPC3 [encoding β-myosin heavy chain and
cardiac myosin-binding protein C (cMyBP-C), respectively]. Pathogenic variants in MYL2 and
MYL3 (myosin essential and regulator light chains, respectively),TPM1 (α-tropomyosin),TNNT2
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(troponin T), TNNI3 (troponin I), and ACTC1 (actin) are collectively identified in approximately
10% of cases (103). Less commonly, variants are identified in genes that encode other sarcom-
ere proteins or in sarcomere-associated proteins, as well as in molecules with other functions,
including CSRP3, FHL1, PLN, ACTN2, CRYAB, FLNC,MYOZ2,MYH6, TNNC1, TRIM55, and
TRIM63 (143). Whether these variants cause HCM by mechanisms similar to or different from
sarcomere protein gene mutations is unknown.

Pathogenic variants in several genes, most often PRKAG2 (γ2-subunit of AMP kinase), GLA
(α-galactosidase A), and LAMP2 (lysosome-associated membrane protein 2), are identified in ap-
proximately 2% of patients misdiagnosed as having HCM (103). Pathogenic variants in these
genes activate different pathogenic mechanisms to elicit hypertrophy as well as additional clinical
phenotypes that do not occur in HCM.

Most pathogenic and likely pathogenic sarcomere gene variants that cause HCM encode mis-
sense residues, with the notable exception of MYBPC3, where loss-of-function alleles predomi-
nate.MYBPC3 is also notable for harboring the vast majority of HCM founder variants. Despite
these distinctions, recent structural and functional analyses (discussed in Section 4.1.1) demon-
strate a shared mechanism by which missense variants in MYH7,MYL2, and MYL3 and loss-of-
function variants inMYBPC3 cause HCM.

2.2. Dilated Cardiomyopathy

In comparison withHCM, the genetic architecture of DCM is less well defined.DCMpathogenic
and likely pathogenic variants are reported in more than 50 genes (Figure 3) that collectively
account for approximately 30% of cases (143). As with HCM, the highest rates for pathogenic
variants (50%) occur among patients with familial DCM (82).Genes that harbor pathogenicDCM
variants encode components of the sarcomere, nuclear membrane, cytoskeleton, outer cellular
membrane, and extracellular matrix, as well as ion channels, mitochondrial proteins, and splice-
regulating proteins (Figure 3). Many of these DCM variants also cause additional phenotypes,
most often in skeletal muscles, while pathogenic variants in sarcomere genes cause isolated DCM.

Titin-truncating variants (TTNtvs) are the most common genetic cause of DCM and explain
up to 25% of familial and 15% of sporadic cases (41, 105). TTNtvs also occur in the approxi-
mately 10% of DCM cases that emerge in the context of another condition, including peripartum
cardiomyopathy (147), alcoholic cardiomyopathy (146), and cancer-therapy-induced cardiomy-
opathy (33, 66). Pathogenic variants in RBM20 (13), which encodes a regulator of cardiac-specific
pre-mRNA splicing of TTN, also cause DCM, further substantiating the critical role that titin
plays in normal heart structure and function.

Excluding TTNtvs, pathogenic variants in other sarcomere genes (MYH7,TNNT2,MYBPC3,
MYPN,TPM1, andACTC1) collectively occur in less than 5% of DCM cases. Approximately 10%
of DCM cases harbor variants in nonsarcomere genes, most commonly in LMNA (lamin A/C),
SCN5A (sodium voltage-gated channel α-subunit 5), and BAG3 (BCL2-associated athanogene 3)
(82, 144).

DCM that occurs early in childhood is a rare disorder that can rapidly progress to fulminant
heart failure (9, 92, 130). In most children, the cause is unknown, and the role of genetics re-
mains uncertain. TTNtvs are surprisingly absent in childhood-onset DCM (27), but these are
identified when DCM occurs in the context of an additional predisposition, such as treatment
for childhood cancers (33, 66). Pathogenic variants in other contractile protein genes sometimes
cause childhood-onset DCM but more commonly cause adult-onset disease (87, 101). The mech-
anisms accounting for why a pathogenic variant is expressed with a wide range of penetrance are
unknown.
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Figure 3

Genes associated with dilated cardiomyopathy (DCM), showing schematic representations and subcellular locations of the proteins
encoded by these genes. Definitive DCM genes are shown in red, while posited DCM genes are shown in gray. DCM genes that have
overlapping phenotypes with arrhythmogenic ventricular cardiomyopathy (52) are shown in blue.

3. GENETIC INSIGHTS INTO HYPERTROPHIC AND DILATED
CARDIOMYOPATHY PHENOTYPES

Patients with HCM typically exhibit increased contractility (left ventricular ejection fraction
>65%) and impaired cardiac relaxation (Figure 1a), as well as increased energy consumption.
DCM patients exhibit reduced contractility (left ventricular ejection fraction <45%) with mild
deficits in myocardial relaxation and increased energy consumption (Figure 1b). Each of these
distinct functional profiles occurs in the setting of abnormal myocardial dimensions. Hypertro-
phy reduces chamber volumes in HCM, while ventricular dilatation increases chamber volume
in DCM. Myocardial fibrosis progressively increases in both cardiomyopathies but is more of-
ten clinically detected in HCM due to focal accumulations that are identified by cardiac MRI
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with late gadolinium enhancement (Figure 1c,d). The clinical emergence of these mechanical,
morphologic, and histologic abnormalities is highly integrated, which confounds the interpre-
tation of whether functional deficits in HCM and DCM are the primary effects of sarcomere
mutations or occur secondary to ventricular remodeling processes. Insights into these relation-
ships have emerged from the detailed phenotypic evaluations of preclinical individuals who carry
a pathogenic variant but do not have hypertrophy or dilation. Preclinical individuals are often
young and identified through cascade genetic testing after a pathogenic variant is found in a fam-
ily member with overt cardiomyopathy.

Advanced imaging studies of preclinical HCM individuals with pathogenic variants inMYH7
andMYBPC3 demonstrate a significantly increased left ventricular ejection fraction and reduced
relaxation velocities despite normal cardiac dimensions (48, 91). Cardiac MRI combined with late
gadolinium enhancement is typically normal, but longitudinal relaxation time analyses (T1 map-
ping) can reveal increased extracellular volumes (43, 47). Consistent with these findings, analyses
of high signal intensity coefficients indicate abnormalities in microstructures of the heart (46).
Energetics—deficits detected by phosphorus-31 magnetic resonance spectroscopy (20)—are also
abnormal. Collectively, these observations demonstrate that functional deficits and increased en-
ergy consumption precede overt hypertrophic remodeling in HCM. Hence, hypercontractility
in HCM hearts is not solely a hemodynamic response to a diminished ventricular cavity due to
increased wall thickness, nor are the relaxation deficits due only to increases in myocardial fibro-
sis. Rather, these preclinical phenotypes imply that functional abnormalities and increased energy
demand are primary or at least proximal effects of pathogenic sarcomere gene variants.

The emergence of morphologic remodeling in HCM increases functional and morphologic
abnormalities. Ventricular hypertrophy that characteristically occurs in the proximal interventric-
ular septum and accumulation of interstitial and focal fibrosis (Figure 1e) distort cardiac geome-
try, which further affects systolic performance, relaxation, and energy consumption. Fibrosis can
result from microvascular abnormalities in hypertrophic regions, ischemia, and outflow obstruc-
tion (140) and activates stress signals and further morphologic remodeling. Analyses also find that
increased contractility in isolated cardiomyocytes (109) and in HCMmice begets cardiac remod-
eling (94, 125). Progression of these events can propel the development of end-stage HCM with
hypocontractility and heart failure (14). Progressive fibrosis is also prominent in RCM and con-
tributes to increased chamber stiffness; impaired relaxation; and, in late stages of disease, systolic
dysfunction (151).

Detailed evaluations of preclinical individuals withDCMpathogenic variants demonstrate nor-
mal cardiac dimensions with subtle functional defects. Carriers of pathogenic variants inMYH7,
TPM1, or TNNT2 have a normal ventricular ejection fraction and diastolic function, but tissue
Doppler and strain echocardiography demonstrate reduced systolic myocardial velocity, strain,
and strain rates (62). Although parallel studies have not yet characterized preclinical phenotypes
in DCM families harboring pathogenic TTNtvs, cardiac MRI studies of unrelated healthy vol-
unteers with TTNtvs revealed unexpected abnormalities. Healthy volunteers with versus those
without TTNtvs had larger left ventricular end-diastolic (8%) and systolic (15%) volumes, re-
sulting in a 2.8% lower ejection fraction—a subtle depression that would not fulfill criteria for
overall reduced contractile performance. Moreover, the changes in ventricular volumes reflected
mild morphologic dilation with significant outward displacement of the endocardial border in
systole and diastole (79% and 47% of ventricular surfaces, respectively) (112).

The recognition that pathogenic variants cause cardiac dysfunction before the onset of overt
morphologic features of HCM and DCM has propelled studies to define molecules and pathways
that incite concentric hypertrophy, which increases cardiomyocyte and wall thickness, and eccen-
tric remodeling, which increases cardiomyocyte length and expands chamber volume, as in DCM
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(Figure 1c–f ). Although mouse models that carry pathogenic variants in cardiomyopathy genes
have been studied to define signaling pathways, their relevance to human disease is complicated by
considerable differences in cardiac physiology.Major differences include heart rates (mouse heart
rates are 10 times faster than those of humans) and reciprocal expression of cardiac myosin iso-
forms (predominantly α-myosin heavy chain in adult mice and β-myosin heavy chain in humans).
There are also differences in the regulation of calcium cycling and the dependency on phospho-
lamban (29, 67, 68, 114, 132), which is an indispensable essential inhibitor of the sarcoplasmic
reticulum Ca2+-ATPase in humans but not in mice (111).

Calcium is a critical regulator of cardiac remodeling, through its dynamic influence onmyocar-
dial tension (19) (Figure 1a,b). Experimental data in mouse models demonstrate that the duration
and magnitude of the myocardial mechanical tension developed incites myocardial remodeling
(21).Myocardial tension is abnormal in cardiomyopathies. Pathogenic HCM variants increase the
calcium sensitivity of myofilaments (107), delaying calcium reuptake in the sarcoplasmic reticu-
lum, prolonging relaxation, and increasing tension (32, 40, 106). RCM variants have similar effects
(151). By contrast, DCM variants desensitize myofilaments to calcium (83, 100, 149), reducing
tension and promoting faster relaxation for the same amount of calcium (32, 40, 106). Enhance-
ment and prolongation of mechanical tension in cardiomyocytes activate a pathway for concentric
hypertrophy, whereas decreases in the magnitude and duration of mechanical tension activate a
pathway leading to eccentric hypertrophy (21).

Increases in cardiac mass may also reflect calcium-induced activation of calcineurin signaling,
with the directionality of cardiac growth mediated by MEK1-ERK1/2 signaling. In cardiomy-
ocytes, this pathway promotes the addition of sarcomeres in parallel,while pathway inhibition adds
sarcomeres in series, which elongates cardiomyocyte (21). Despite these mechanistic insights, the
direct relevance of calcineurin signaling in HCM is less certain. Analyses of human HCM tissues
indicate that hypertrophy is mediated by posttranslational activation of the calmodulin pathway,
independent of calcineurin (40). In addition, while calcineurin activation mediates hypertrophy
in response to pressure overload and exercise in mice (84), pharmacological suppression of cal-
cineurin exacerbates rather than attenuates cardiac hypertrophy in HCM mice (28).

4. FUNCTIONAL CONSEQUENCES OF PATHOGENIC VARIANTS

4.1. Hypertrophic Cardiomyopathy

Consideration of the biophysical consequences of HCM pathogenic variants has been extensively
informed by detailed understanding of the chemomechanical contraction cycle (121). The devel-
opment of assays that assess the sliding velocities of myosin along actin filaments (in vitro motility
assays),ATPase activity, or the force generated by single actomyosin interactions (117) has revealed
novel features of myosin molecules as the sarcomere progresses through the chemomechanical cy-
cle. Because HCM variants inMYH7 are dispersed throughout the 2,000-amino-acid polypeptide,
including in proximity to the ATP-binding pocket and actin-binding domain and within the hinge
region (85, 133), an important question emerged: How did amino-acid substitutions at these dif-
ferent locations evoke similar functional consequences of hypercontractility, poor relaxation, and
increased energy consumption? Several models address this question.

4.1.1. The myosin interacting-heads motif. Based on observations that, under in vitro ex-
perimental low-load conditions, only 5–10% of myosin heads are engaged in the chemomechan-
ical cycle (121), Spudich (122) proposed that HCM variants might cause hypercontractility by
increasing the number of myosin heads that participate in force production. This hypothesis
is supported by studies of pathogenic HCM variants in the thin-filament protein troponin T
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(encoded by TNNT2) that alter contractile function by increasing calcium sensitivity and decreas-
ing affinity for tropomyosin (32). Notably, pathogenic TNNT2 variants that cause DCM have the
opposite effect (32, 119). However, a confounding issue for this model relates to loss-of-function
variants inMYBPC3,which are a leading cause ofHCM (76, 139).As experimental systems demon-
strate that the amino terminus of cMyBP-C activates the thin filament (104), diminished levels
would be expected to reduce activation and impair rather than augment contractility, as occurs in
HCM.

A second model is predicated on the myosin interacting-heads motif (IHM) and conforma-
tional changes in myosins that occur during cardiac relaxation. Each myosin molecule contains
a globular head, a flexible head-rod junction or hinge region, and an inflexible rod to the thick
filament. The amino-terminal globular head contains a nucleotide-binding pocket with ATPase
activity that drives actomyosin interactions and force production by the sarcomere.Myosin heads
also associate with myosin essential and regulatory light chains. The rod portion of myosin forms
α-helical coiled coils to allow packing of myosin rods into the cylindrical backbone of the sarcom-
ere, fromwhichmyosin heads project out laterally.Within the thick filament,myosin polypeptides
form homodimers.

During relaxation, the heads of paired myosin molecules undergo conformational changes
through residues within the IHM (3, 6), which leads to inhibition of ATPase activity (Figure 4a).
The IHM is an evolutionarily conserved motif that is found in all muscle myosins, implying its
importance in conserving energy consumption (63). Relaxed myosin exhibits two conformations
that are denoted disordered relaxation (DRX) and super relaxation (SRX; Figure 4b,c). DRX oc-
curs when one of the two paired myosin heads adopts a folded state (blocked head) along the thick
filament, causing steric hindrance of its ATP-binding pocket, while the other myosin head main-
tains ATPase activity and potential for actin interactions (free head). In the DRX state, myosin
activity is further regulated by light-chain phosphorylation (6, 26, 55) and mechanosensing pro-
cesses (30, 102). The SRX state occurs when both heads are folded back along the thick-filament
backbone and both myosin ATPase domains are inhibited (49, 79, 90) (Figure 4c). Myosins in
SRX conserve energy, as their ATP consumption is one-fifth that of myosins in the DRX confor-
mation (49, 79). Recent single-particle negatively stained electron microscopy images of purified
human β-cardiac myosin have confirmed these dynamic structural changes and associated ATPase
activities (8). In cardiac muscle, myosin blocked heads may remain in SRX in the active muscle
during contraction while free heads generate force (Figure 4f ). By modulating the proportion of
myosin heads within DRX or SRX conformations, muscles match energy consumption with func-
tional demands and have additional reserve heads that can be activated in response to increased
mechanical requirements (49, 79).

There are no atomic structures available for human β-myosins, but cryo-electron microscopy
of the tarantula striated thick filament has defined myosin residues that participate in the IHM
and in molecular interactions between myosins and the regulatory and essential light chains (3, 4).
Fitting this structure with the human β-myosin sequence enabled human interacting residues to
be defined. Analyses of pathogenic and likely pathogenicMYH7 variants identified in more than
6,000 HCM patients demonstrated that these variants are highly enriched in IHM interacting
residues (5). Approximately 78% of HCM variants in MYH7, MYL2, and MYL3 alter residues
that participate in these interactions, and most changed the charge of the encoded amino acid,
indicating that HCM variants destabilize protein–protein interactions. Variants reported in pop-
ulation databases and MYH7 variants that cause DCM are not enriched in interacting residues.
As variants more frequently alter residues that support the SRX conformation, the net effect of
HCM variants is predicted to increase the proportion of myosin heads in DRX (5, 80). A shift in
the balance of myosin heads in DRX and SRX would increase the proportion of myosins that are
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Figure 4

The interacting-heads motif paradigm and consequences for sarcomere mechanical properties and energetics. (a,b) Relaxed cardiac
muscle contains a proportion of myosin heads in a state of disordered relaxation (DRX), in which only one of the two paired heads is
sequestered in a folded-back configuration that results in inhibition of ATPase (pink stars) and actin-binding domains (pink ellipses).
(c) The remaining proportion of relaxed myosins are in a state of super relaxation (SRX), in which both heads are in a folded-back
configuration and there is dual inhibition of ATPase (pink stars) and actin-binding domains (pink ellipses). (d,e) At the beginning of
contraction, ATP hydrolysis changes the configuration of the available myosin heads (high-energy configuration) (panel d) and
promotes actomyosin interactions (panel e). ( f ) A population of cardiac myosin heads can remain in SRX in the active muscle during
contraction. Myosin-binding protein C (white molecule) may participate in stabilizing SRX.

available for actin interactions, resulting in hypercontractility, impairment of full relaxation, and
increased energy consumption, the three major pathophysiologic features of HCM (Figure 5).

The mechanism by which MYBPC3 variants cause HCM has also been linked to changes in
the proportion of myosin heads in DRX and SRX.Mice lacking cMyBP-C (81) and human HCM
hearts with MYBPC3 variants (80) have greater proportions of myosin heads in DRX than in
SRX. cMyBP-C is thought to position myosin heads to stabilize the IHM, while reduced levels or
phosphorylation of cMyBP-C attenuates IHM interactions and increases free heads (131).Consis-
tent with this, human cardiomyocytes derived from induced pluripotent stem cells carrying HCM
variants in MYBPC3 show hypercontractility and impaired relaxation, abnormalities that can be
normalized by attenuating myosin’s motor properties (discussed in Section 4.1.2). Together, these
data indicate thatMYBPC3 variants cause HCM by directly modulating myosin properties.

4.1.2. Protein phosphorylation in hypertrophic cardiomyopathy. Protein kinase A (PKA)
mediates the physiologic response to β-adrenergic stimulation in the heart, which enhances
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Schematic representation of the principal molecular mechanisms of hypertrophic cardiomyopathy (HCM). Yellow stars designate
pharmacological targets that are currently being explored.

contractility and relaxation (lusitropy) by phosphorylating key sarcomere proteins, including
cMyBP-C, troponin I, and titin. Troponin I phosphorylation reduces its affinity for troponin
C, resulting in diminished calcium sensitivity and enhanced cardiac relaxation (17). Pathogenic
HCM variants in genes encoding troponins (TNNI3 and TNNT2) and tropomyosin (TPM1)
alter residues within domains of the troponin I and troponin C interface and responses to
β-adrenergic signaling. These variants decrease PKA-mediated phosphorylation of troponin I to
increase calcium sensitivity, which enhances contractility but impairs relaxation (Figure 5).

cMyBP-C phosphorylation is a dynamic regulator of sarcomere function (12, 118, 145) that
is mediated by PKA, protein kinase C, Ca2+-calmodulin-activated kinase II, and other kinases.
cMyBP-C can limit cross-bridge interactions through the biophysical interactions of its amino and
carboxyl termini with both myosin and actin (95), while cMyBP-C phosphorylation fosters cross-
bridge formation (58), possibly by increasing the number of available myosin heads or increasing
heads in DRX (63).

Tissues from patients with MYBPC3 mutations show profound dephosphorylation of tro-
ponin I and normalization of calcium sensitivity by PKA, suggesting that activation of thin-
filament proteins is a compensatory response (139) to offset hypercontractility and poor relaxation
in HCM.By contrast, dramatic changes in cMyBP-C phosphorylation do not occur in HCM (52),
but other posttranslational modifications may influence calcium sensitivity. Integrated analyses
by Kumar et al. (61) showed that, independent of disease, modulation of myofilament length-
dependent activation depended on the additive effect of cMyBP-C and troponin I phosphoryla-
tion. Phosphorylated cMyBP-C appears to have its most profound effect on contractility at low
calcium levels (during relaxation) and has much less effect at peak contraction,when calcium levels
are high (98).

4.1.3. The metabolic consequences of hypertrophic cardiomyopathy. Several different
mechanisms have been proposed to explain the energy deficits (Figure 5) that are recognized in
HCM patients (11). Energy consumption would be increased by a direct increase in ATPase activ-
ity (85, 133), decreased contraction efficiency with a higher ATP utilization (16, 120, 150), shifts
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in the proportion of myosin heads in SRX and DRX (5), reduced ATP synthesis due to mitochon-
drial dysfunction (71), and abnormal substrate metabolism (53, 70). A reduced phosphocreatine/
ATP ratio in the hearts of preclinical carriers of pathogenic HCM variants (128) supports the
conclusion that impaired energetics is a primary component of HCM pathophysiology. The im-
balance between energetic demands and supply can cause an energy-starved state (135), and with
the emergence of hypertrophy and associated microvascular dysfunction, these defects in cardiac
energetics can propel the HCM heart to failure (39).

In the mitochondria, enhanced ATPase activity and ATP utilization increase ADP levels, which
in turn reduce NADH and NADPH and increase oxidative stress with the accumulation of reac-
tive oxygen species. In addition, the enhanced myofilament calcium sensitivity in HCM reduces
the amount of calcium available for activating the Krebs cycle, impairingNADH regeneration (71,
135). Data from mice (69) and humans (134) support the idea that both mitochondrial disorga-
nization and dysfunction occur in HCM.While disruption of mitochondrial antioxidant defense
mechanisms is not HCM specific, this disruption may be influenced by genotype (136).

Substrate metabolism in HCM is characterized by a shift from a preferential utilization of
fatty acid oxidation as the main source of ATP to glucose metabolism. This change is initially
adaptive, because glucose metabolism produces a higher amount of ATP that is advantageous in a
situation characterized by energy depletion. However, the persistence of this metabolic shift may
be deleterious due to the accumulation of fatty acids, as well as of pyruvate and lactate resulting
from glycolysis (138). The reduction of fatty acid translocase (CD36), which is the main protein
involved in the transport of fatty acids into the cardiomyocyte (73, 124), provides evidence for
abnormal cardiac lipid metabolism in HCM. Human metabolomics studies demonstrate higher
concentrations of branched-chain amino acids, triglycerides, and ether phospholipids that cor-
relate with remodeling and dysfunction of the left ventricle (53). The activity of AMP-activated
protein kinase (AMPK), a cellular sensor of the energetic state and a regulator of metabolic pro-
cesses (44), seems to be paradoxically decreased despite an energy-deprived state in HCM (73)
and may promote cardiac fibrosis by modulating TGF signaling (44).

4.2. Dilated Cardiomyopathy and Titin-Truncating Variants

DCM is characterized by the depletion of mechanical force generation. Deficits in force produc-
tion by the sarcomere can be incited by changes in multiple events. Pathogenic variants inMYH7
(54) reduce its fundamental motor properties by impairing actin-activated ATPase activity and
sliding velocity along actin filaments (113). Pathogenic variants in thin-filament proteins decrease
the calcium sensitivity of the myofibrils, resulting in reduced tension and promoting a faster re-
laxation for the same amount of calcium (32, 40, 106). Detailed mechanisms by which pathogenic
variants in these sarcomere proteins and in nonsarcomere proteins cause DCMhave been recently
reviewed (13, 15, 78, 89, 148). Below, we review experimental and clinical findings that support the
conclusion that TTNtvs are the most common genetic cause of DCM and define the mechanisms
by which these mutations cause disease.

Titin is a massive protein composed of 35,000 amino acids that span one half of the sarcomere.
The protein comprises repeating immunoglobulin and fibronectin III modules that are inter-
spersed with nonrepetitive sequences with phosphorylation sites, PEVK motifs, and a terminal
kinase (59). The amino terminus of titin is anchored in the sarcomere Z-disk, where it participates
in myofibril assembly and maintenance (38). Titin contains an elastic I-band that restores the
resting length of sarcomeres after contraction and provides passive tension by limiting sarcomere
stretch during early relaxation (65) and an inextensible A-band that binds myosin heavy chain and
cMyBP-C, with functions in biomechanical sensing and signaling. The carboxyl M-band region
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contains a strain-sensitive kinase that may evoke transcriptional responses to altered sarcomere
mechanics (99).

The extraordinary size and complexity of the titin gene (TTN) impeded early analyses of TTN
sequence variants, but the advent of next-generation sequencing has provided considerable in-
sights. Contemporary studies focus on variants that alter gene structure, while the impact of TTN
missense variants is largely unexplored.Despite this limitation,TTNtvs are now recognized to ac-
count for 15–25% of idiopathic DCM and approximately 10% of DCM that occurs in the setting
of another condition.

4.2.1. The position-dependent consequences of titin-truncating variants. Integrated anal-
yses of sequencing and transcriptional data from large human cohorts have shown that the effect
of a TTNtv depends on its position in the protein (105). TTN undergoes extensive alterative
splicing of 364 exons to yield multiple isoforms that are expressed in cardiac and skeletal muscle.
This process is facilitated by its gene structure, including considerable (85%) exon symmetry (i.e.,
multiples of three base pairs), so that exon exclusion can occur while maintaining the translational
frame (105). The inclusion of each TTN exon in the human left ventricle has been measured by
RNA sequencing and quantified as the proportion of transcripts that incorporate that particular
exon [the proportion spliced in (PSI)] (105). Clinical data demonstrate that TTNtvs within ex-
ons with very low expression (PSI < 15%) are not associated with DCM (112), whereas TTNtvs
located in constitutive exons (PSI > 90%) cause DCM (105).

The majority of DCM patients carry TTNtvs within the A-band (2, 41, 105, 112). While ini-
tially the evidence that supports the pathogenicity of some TTNtvs in the I-band, Z-disk, or
M-band was more difficult to establish, a meta-analysis of 2,495 DCM cases and 61,834 controls
demonstrated that, regardless of the affected domain, TTNtvs in constitutive exons (PSI > 90%)
are significantly associated with DCM (112).

Approximately 1% of subjects from the general population carry a TTNtv, and approximately
half of these variants are located in high-PSI exons (64, 105, 112). These estimates suggest that,
worldwide, approximately 35 million people carry a TTNtv in a high-PSI exon (112). As detailed
above, high-resolution cardiacMRI of healthy individuals with such TTNtvs demonstrates signif-
icantly larger left ventricular volumes and subtle depression of contractility (112).While not all of
these individuals are expected to develop DCM, the penetrance (or fraction of mutation-carrying
individuals with disease) is significant. Within families, approximately 50% of men over age 50
and women over age 65 with a TTNtv exhibit DCM, and among participants in the Framingham
Heart Study, individuals with TTNtvs compared to those without had higher rates of heart fail-
ure (relative risk = 16, p= 0.008) (74). How the background genotype and environment affect the
expression of TTNtvs remains an area of active research.

4.2.2. Titin-truncating variants and susceptibility to mechanical stress and cardiotoxicity.
Genetic analyses of DCM that occurs concurrently with another condition led to the hypothesis
that the cardiac effects of TTNtvs can be unmasked by increased mechanical stress and cardiotox-
icities. Three observations support this conclusion. Pregnancy, a paradigm for physiologic hemo-
dynamic overload, can incite peripartum cardiomyopathy, a devastating disorder associated with
high rates of cardiac transplantation and death (23). TTNtvs were identified in 10% of women
with peripartum cardiomyopathy (p = 1 × 10−7 versus the general population) (147). Analyses
of patients with alcoholic cardiomyopathy identified TTNtvs in a similar proportion of affected
patients (10%) and demonstrated that, among DCM patients with TTNtvs, those with excessive
alcohol consumption had an 8% lower ejection fraction (146). TTNtvs also contribute to the
pathogenesis of cancer-therapy-induced cardiomyopathy (33, 66), which occurs in approximately
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10% of these patients. These findings imply that environmental factors and exposures interact
with the TTNtv genotype to influence the development of DCM. Importantly, these observa-
tions also indicate that recognition of at-risk genetics may help to stratify individuals who would
benefit from cardioprotective strategies.

4.2.3. Mechanisms by which titin-truncating variants cause dilated cardiomyopathy. Al-
though initial studies suggested that TTNtvs cause DCM via a dominant negative mechanism
(105), the cumulative evidence from analyses in rodents, human induced pluripotent stem cell–
derived cardiomyocytes, and human cardiac tissue (proteomics and transcriptomics) supports a
mechanism of haploinsufficiency (45, 112). Presumably, premature truncations in TTN transcripts
trigger nonsense-mediated decay and rapid turnover of the mutant protein (112). Consistent with
this mechanism, truncated titin peptides are absent from DCM hearts that harbor TTNtvs (105).
Whether depletion of titin alters the stoichiometry of other sarcomere proteins is unknown (105,
112, 141).

Experimental data demonstrate that TTNtvs result in quantitative and qualitative impairment
of sarcomerogenesis (45). During development, titin serves as a scaffold for sarcomere formation
(88), but recent studies have demonstrated that titin also functions in sarcomere maintenance.
Analyses of human induced pluripotent stem cell–derived cardiomyocytes using live microscopy
showed that the re-formation of sarcomeres after stress requires titin molecules to transmit dias-
tolic tension (18). Sarcomere formation initiates at protocostameres, and through protein linkages
with α-actinin-2, titin, and myosins, these mechanical forces are centripetally transmitted to di-
rect fiber assembly and sarcomere formation. A corollary to these observations is that insufficient
levels of titin reduce tension and diminish sarcomere formation. Based on human genetic data
that TTNtvs are associated with stress-induced DCM (e.g., peripartum or alcohol cardiomyopa-
thy and cancer-therapy-induced cardiotoxicity), this model predicts that sufficient levels of titin
are required to maintain and restore damaged sarcomeres.

Rodent models carrying TTNtvs show abnormal cardiac metabolism (112). These models
demonstrate shifts in substrate usage from fatty acids toward glycolysis, similar to the metabolic
abnormalities observed in other forms of heart failure. In contrast to HCM, these metabolic
changes are not accompanied by energy deprivation (112). Enhanced glucose metabolismmay ini-
tially be an adaptive mechanism to maintain the heart in a compensated state, but this metabolic
shift may also reduce cardiac reserves in response to stress.

5. FROM MOLECULAR MECHANISMS TO PHARMACOLOGICAL
TARGETS: NEW DRUGS FOR HYPERTROPHIC AND DILATED
CARDIOMYOPATHY

Genetic analyses and mechanistic studies position the sarcomere as a central mediator of cardiac
pathophysiology. Pathogenic variants that cause HCM increase sarcomere power, impair relax-
ation, and promote energy depletion, which can activate remodeling pathways and increase fibro-
sis. Pathogenic variants that cause DCM impair sarcomere force generation without major effects
on relaxation but incite remodeling pathways tomaintain circulatory demands (the Frank–Starling
mechanism), with associated increased energy consumption.Given these pathogenic mechanisms,
specific therapies for both cardiomyopathies would be molecules that either enhance (DCM) or
reduce (HCM) sarcomere function. High-throughput screens have successfully identified small
allosteric molecules that modulate the sarcomere, and two are currently in human clinical trials:
CK-1827452 (omecamtiv mecarbil), which selectively activates cardiac myosin ATPase (74, 86),
and MYK-461 (mavacamten), which selectively reduces cardiac myosin ATPase activity (37).
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Omecamtiv mecarbil binds the myosin catalytic domain, resulting in reversible conformational
changes that increase ATP hydrolysis (74, 86). Recent functional studies indicate that the action
of omecamtiv results from its binding and stabilization of the myosin pre-power-stroke confor-
mation (97), as well as from modulation of the IHM so as to increase the availability of myosin
heads for contraction (56). Initial preclinical models showed that omecamtiv increased cardiac
contractility (67) without modifying myocardial oxygen consumption (116). Human clinical trials
(phase I and phase II) have demonstrated safety, tolerability, and appropriate pharmacokinetics and
pharmacodynamics of omecamtiv mecarbil, including an adverse event profile that was compara-
ble to placebo. However, intravenous administration of this drug to approximately 600 patients
with acute heart failure [in the Acute Treatment with Omecamtiv Mecarbil to Increase Contrac-
tility in Acute Heart Failure (ATOMIC-AHF) study] did not meet the primary endpoint of dysp-
nea improvement, although decreased left ventricular end-systolic volumes and increased systolic
ejection times were observed (127). In patients with chronic stable heart failure, a phase II clini-
cal trial that assessed a pharmacokinetic-based dose-titration strategy [the Chronic Oral Study of
Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF) study] also showed
improved cardiac function and reduced ventricular diameters compared with placebo (126). An
ongoing phase III clinical trial involving 8,000 patients will evaluate whether omecamtiv reduces
the risk of cardiovascular death or heart failure in patients with a reduced ejection fraction receiv-
ing standard of care for chronic heart failure [the Global Approach to Lowering Adverse Cardiac
Outcomes Through Improving Contractility in Heart Failure (GALACTIC-HF) study, Clinical-
Trials.gov identifier NCT02929329].

Mavacamten decreases contractility by inducing allosteric inhibition of cardiac myosin
ATPase (37). Experimental studies show that mavacamten decreases steady-state ATPase activ-
ity by inhibiting the rate of phosphate release of the myosin motor domain and increases the
proportion of myosin heads in the SRX state, thereby decreasing the proportion of myosin heads
that are available for actin thin-filament interactions (57, 129) (Figure 4). These effects are pre-
dicted to conserve energy. Analyses of mavacamten-treated human HCM heart tissues showed
normalization of the proportions of myosins in SRX and DRX (80, 81, 129).

Preclinical studies in wild-type and HCMmice treated with mavacamten reduced cardiac con-
tractility in a dose-dependent manner without significant impairment of skeletal muscle function
(37). Early and chronic oral administration of mavacamten in young mice harboring pathogenic
mutations in MYH7 prevented the development of left ventricular hypertrophy, significantly re-
duced fibrosis, and normalized the expression of mitochondrial proteins (37). In HCMmice with
overt disease, mavacamten treatment promoted partial regression of hypertrophy and improved
profibrotic gene expression but had little impact on focal fibrosis. These data suggest that the link
between increased sarcomere power output and fibrotic response inHCM is an early phenomenon
that may be best targeted in prehypertrophic stages.

In a feline model for HCMwith left ventricular outflow tract obstruction, acute administration
of intravenous mavacamten reduced contractility, eliminated systolic anterior motion of the mitral
valve, and relieved left ventricular outflow tract pressure gradients (123).Early reports of a phase II
clinical trial with mavacamten in obstructive HCM [A Phase 2 Open-Label Pilot Study Evaluat-
ing MYK-461 in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricu-
lar Outflow Tract Obstruction (PIONEER-HCM), ClinicalTrials.gov identifier NCT02842242]
showed significantly reduced diastolic filling pressures, increased ventricular volumes, and im-
proved biomarkers.

While myosin ATPase activators and inhibitors are first-generation drugs for the treatment of
cardiomyopathy, the cardiomyopathy community expects that additional multiple targets within
sarcomere domains will be identified that can be effectively modulated by small molecules. Not
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only would these benefit cardiomyopathy patients, but these small molecules also provide exquisite
probes for studying sarcomere physiology in health and disease.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Technical and conceptual progress in molecular and cellular biology, genetic engineering, bio-
physics, and human genetics has led to great advances in the discovery of novel mechanisms by
which sarcomere mutations cause cardiomyopathies. In HCM, understanding the mechanisms
that promote myocardial hypercontractility and impaired relaxation has propelled new pharma-
cological targets that may revolutionize strategies to limit disease progression and adverse out-
comes. Similarly, establishing haploinsufficiency and sarcomere insufficiency as the mechanisms
that underlie impaired contractility inmany cases of DCMprovided new opportunities to improve
contractile performance and limit patient symptoms.

Despite this progress, many important questions remain to be answered. First, the causes of
HCM and DCM in many patients remain unknown, and efforts to identify new genetic or envi-
ronmental causes should be reinforced. Clinical collaborative research networks together with
next-generation sequencing platforms will advance this purpose. Second, translation of well-
characterized cellular phenotypes and myocardial functional properties (i.e., contractility, relax-
ation, and passive stiffness) to the clinical setting is not always straightforward, especially in the
early stages of disease expression or in incompletely penetrant cardiomyopathy variants. Inte-
grating advanced cardiac imaging and, in particular subgroups, analysis of intracardiac pressure–
volume data has the potential to provide valuable information on the consequences of pathogenic
variants at the organ level in the intact circulation. Third, efforts must continue to understand the
molecular mechanisms of well-established pathogenic sarcomere mutations. Truncating variants
inMYPBC3 and TTN are particularly interesting, because mechanistic advances may promote fu-
ture gene therapy strategies to correct ormodulate haploinsufficiency andmay limit or prevent the
development of HCM or DCM. Finally, while the primary causes of inherited cardiomyopathies
are now being recognized, these discoveries have so far done little to indicate how changes in the
sarcomere cause myocytes to change size and shape or to induce fibrosis in neighboring cells.
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