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Abstract

The past decade has seen a technological revolution in human genetics
that has empowered population-level investigations into genetic associa-
tions with phenotypes. Although these discoveries rely on genetic variation
across individuals, association studies have overwhelmingly been performed
in populations of European descent. In this review, we describe limitations
faced by single-population studies and provide an overview of strategies to
improve global representation in existing data sets and future human ge-
nomics research via diversity-focused, multiethnic studies.We highlight the
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successes of individual studies and meta-analysis consortia that have provided unique knowledge.
Additionally, we outline the approach taken by the Population Architecture Using Genomics and
Epidemiology (PAGE) study to develop best practices for performing genetic epidemiology in
multiethnic contexts. Finally, we discuss how limiting investigations to single populations impairs
findings in the clinical domain for both rare-variant identification and genetic risk prediction.

1. INTRODUCTION

1.1. Foundations of Large-Scale Genomic Studies

We are now entering the second decade of large-scale genome-to-phenome studies of complex
human traits and diseases. Each new genetic finding can shed light on the underlying mecha-
nisms of disease and ultimately inform targeted prevention and treatment strategies. Tremendous
progress has been made in cataloging thousands of variants associated with numerous complex
phenotypes through genome-wide association studies (GWASs). This work was enabled by large-
scale investments in the early 2000s that became the foundation for subsequent discoveries. First,
the International HapMap Project (61) created a common reference panel for mapping globally
shared common genetic variation and revealed population-specific patterns of correlated variants,
known as linkage disequilibrium (LD). These data were used to design the first set of genotyp-
ing platforms that assayed hundreds of thousands to millions of single-nucleotide polymorphisms
(SNPs), thereby enabling cost-effective measurement of common genetic variation in thousands
of participants. Strategies that leverage SNPs on genotyping arrays to infer unobserved variants
at other positions by imputing LD structures in reference sequencing panels empowered an even
broader exploration of variants with relatively cheap technology (21, 122).However, because allele
frequencies and LD patterns differ across ancestries, the accuracy of imputation depends on how
representative the genotyping markers and available reference sequencing panels are of the study
population (21, 122).

Another logistical feat was powering GWAS discoveries through the assembly of massive con-
sortia to bring together the hundreds of thousands of participants necessary for robust identifica-
tion of genetic variants of complex disease. It is now abundantly clear that most common human
diseases have highly complex genetic architectures, with hundreds or even thousands of genetic
variants contributing to risk (17, 108, 126).The polygenicity of common complex traits means that
most individual associated variants contribute a subtle effect and explain only a small proportion
of the overall phenotype heritability. Consequently, achieving the necessary statistical power to
detect the remaining variant–phenotype associations requires very large sample sizes (77). Given
that GWASs mainly evaluate common variants, it is likely that much of the missing heritability is
explained by a combination of rare variants [minor allele frequency (MAF) < 0.01], weak effects
that require massive studies to uncover, and structural variants that are often poorly tagged by
genotyping platforms. Thus, fully understanding the genetic architecture of complex diseases will
require large-scale whole-genome sequencing studies to investigate all types of genetic variation
in globally inclusive populations (detailed in Section 1.3).

1.2. European Bias in Large-Scale Genomic Research

Despite impressive achievements in identifying genetic associations, the vast majority of re-
sults have been reported in populations of European ancestry, a limitation acknowledged by
researchers a decade ago (19, 89). This Euro-centric bias has persisted, with more than 80%
of GWAS participants being of European descent (94) and the largest studies performed in
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Figure 1

Cumulative mean and median sample sizes by racial/ethnic group across all traits in published genome-wide association studies
from 2005 to 2018, as curated by the National Human Genome Research Institute–European Bioinformatics Institute GWAS Catalog.
While the mean and median sample sizes of European-descent studies have grown over the past 13 years, all other groups have remained
relatively stagnant. This is especially true for mega-scale biobanking efforts, such as the UK Biobank, which significantly raises the
mean sample size. This limits statistical power for discovery and contributes to the resulting information bias in the published literature.

Europeans (Figure 1). Over the past decade, the mean and median sample sizes of published
GWASs have skyrocketed for European-descent populations, driven mainly by cheaper technol-
ogy and large-scale biobanking efforts such as the UK Biobank. However, the sample sizes of
non-European descent studies have stagnated, resulting in limited statistical power for genomic
discovery. There are myriad historical, technical, and logistical reasons for this lack of global
diversity in genomic research. The first decade of GWASs focused predominantly on cohorts
sampled in Europe or ongoing prospective US cohorts, and in 2001 federal guidelines were im-
plemented that required the inclusion of women and minorities in clinical research, recognizing
this gap in diversity. Consequently, many of today’s ongoing cohorts comprise predominantly
European-descent participants, and even the participants of the more recent Genotype-Tissue
Expression (GTEx) project are 85.2% of European origin (49). Several factors contributing to
this bias have been detailed in other reviews and are briefly summarized here. Past mistreatment
of marginalized communities has resulted in the documented mistrust of biomedical research and
difficulty in recruiting more diverse populations (2). Other reports have cited logistical issues,
such as the difficulty of recruiting underrepresented communities (118). Importantly, there is
also a persistent lack of diversity among biomedical researchers leading, designing, and informing
genomic studies (26, 84). Other recent reviews provide more complete perspectives on various
strategies for increasing resources, improving the research culture, and modifying infrastructure
to incorporate diversity into research (16, 56, 57, 99). Here, we focus on exemplars that highlight
the scientific and clinical importance of diversifying genomic research.

1.3. Global Perspectives on Human Variation

Differences in disease burden across ancestrally diverse populations are a major cause of health
disparities. In the United States, African Americans experience the highest prevalence of hy-
pertension and cardiovascular conditions and suffer the highest mortality rates for cardiovas-
cular disease and renal failure (22, 25, 102). Mexican Americans in particular, but also African
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Americans, have a greater risk of developing liver disease than non-Hispanic European Amer-
icans (64, 101, 104). Non-Hispanic European American women have the highest incidence of
breast cancer, but African American women are more likely to die from the disease, as their breast
tumors are typically more aggressive and less responsive to treatments (90, 116). While lifestyle,
cultural norms, health-care access, and socioeconomic status are undeniably important contrib-
utors to the disproportionate disease burden across racial/ethnic groups, many of the health dis-
parities persist even after accounting for differences in social and environmental risk factors. This
suggests that population-specific disease susceptibility also has innate biological, and thus genetic,
causes that interact in a complex way with environmental factors.

Althoughmost genetic studies have focused on common genetic variants, population genomics
theory and empirical evidence from large, diverse sequencing efforts indicate that the vast majority
of human genetic variation is rare and is expected to be population specific (48). This was affirmed
by both the US National Heart, Lung, and Blood Institute’s Exome Sequencing Project study
of European American and African American exomes (42) and the 1000 Genomes Project (1).
As such, addressing European bias in genetic research is a major imperative, as we are currently
unable to fully discover the genetic underpinnings of disease and the proportion that contributes
to disparity.

The examples above highlight the importance of characterizing genetic variation among indi-
viduals of diverse ancestral backgrounds to gain a better understanding of differential susceptibility
to disease, or variability in therapeutic response. While the focus of this review has thus far been
on perspectives within the United States, it is important to acknowledge that global genetic varia-
tion is not well captured by populations in America. In fact, there is more genetic diversity across
the more than 2,000 ethnolinguistic groups in Africa than anywhere else in the world because of
population demographic history (e.g., population bottlenecks, short- and long-range migrations,
and admixture) and dramatic variations in climate, diet, and exposures to infectious disease (20).
However, much of what is currently known about genetic diversity and its contribution to disease
comes from only a few ethnolinguistic groups (mostly from western Africa), severely limiting our
understanding.

Resistance to malaria is a well-established example of strong selective pressure that has in-
fluenced genetic diversity in African populations. This disease is a major cause of mortality in
sub-Saharan Africa, resulting in more than 1 million deaths (primarily children) each year (73).
Genetic adaptations resulting in malaria resistance have become established in endemic regions,
frequently accompanied by consequences in the homozygous state. For instance, the HbS muta-
tion in the β-globin gene, which causes sickle cell disease in homozygous individuals, also confers
protection against malarial infection in heterozygous carriers (50, 73). Similarly, variations in the
G6PD gene are found in high frequency in African as well as Mediterranean and Asiatic popula-
tions, with patterns of variation consistent with recent positive selection. Even though deleterious
mutations in G6PD cause diseases such as chronic hemolysis, high levels of frequency for such
mutations are believed to be maintained in certain populations in response to selective pressure
caused by malaria (85). This hypothesis is consistent with observations of high correlations be-
tween low-activity G6PD alleles and a decreased prevalence of malaria (100, 103, 114).

Importantly, for the benefits of precision medicine to be realized on a global scale, genetic epi-
demiological and pharmacogenetic studies must be more inclusive.Many examples demonstrating
this necessity have already been identified. For example, human immunodeficiency virus (HIV)
infection remains a major global health burden; nearly 37 million people are living with this dis-
ease, 53% of whom are in eastern and southern Africa. Even with the remarkable advancements
in combination antiretroviral therapy, nearly a million people die every year from acquired im-
mune deficiency syndrome (AIDS)–related illnesses worldwide (117).Although central to first-line
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antiretroviral therapy, efavirenz is associated with a high frequency of side effects and adverse drug
reactions, including dizziness, insomnia, rash, hepatotoxicity, lipodystrophy, and several neuropsy-
chiatric symptoms (including suicidal thoughts). Most of the variability in drug response is due
to genetic variation in the metabolizing enzyme CYP2B6 (29). The c.516G>T and c.983T>C
variants are predictive of reduced enzyme activity and remain the most prominent predictors
of plasma concentrations (113). The CYP2B6∗6 allele is more frequent and relevant in African
populations, where it was reported at frequencies of 32.8% and 46.9% in African Americans
and a Ghanaian population, respectively. This same allele was found to be present in 25.6% of
European populations and in 15.9–18.0% of Asians (69). Importantly, many genetic variants have
also been identified in African populations that confer resistance to this devastating disease, in-
cluding those in killer immunoglobin-like receptors (KIRs) (62), interferon regulatory factor 1
(IRF-1) (8), and tripartite motif-containing protein 5α (TRIM5α) (74). Such findings can provide
important insights for the development of new drugs.

Some successful initiatives have promoted genomic research in diverse global populations, in-
cluding the 1000 Genomes Project (1), the Human Heredity and Health in Africa (H3Africa;
http://h3africa.org) initiative (52), and the Mexico National Institute of Genomic Medicine
(INMEGEN) (86). This list is by no means exhaustive, but it does demonstrate the importance of
discovery of genetic variation across human populations to enable advances in precision medicine.

The 1000Genomes Project was developed to provide a comprehensive description of common
human genetic variation by applying whole-genome sequencing to a diverse set of individuals from
multiple populations (1). Distinguished scientists from institutes at countries around the world,
including China, Italy, Japan, Kenya, Nigeria, Peru, the United Kingdom, and the United States,
reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-
coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping.
They described a variable distribution of genetic variation across the global sample, with data
freely available to the public and research community on various platforms, including through the
project website and through Amazon Web Services, a cloud-computing system hosted by online
retailer Amazon.com.

The INMEGEN project studied genomic variation within Mexico from more than 1,000 in-
dividuals representing 20 indigenous and 11 mestizo populations and described striking genetic
variability (86). Indeed, several populations withinMexico displayedmore differentiation than was
observed between Europeans and East Asian reference populations.

The H3Africa initiative was created to address the lack of large-scale genomic studies in Africa
(52). Such work will contribute to large-scale pharmacogenomic studies in Africa that can provide
a deeper understanding of variation in drug response. Although precision medicine may be most
effective and beneficial to regions with high genetic diversity, such as Africa, many additional
challenges exist in resource-poor environments. Implementation of pharmacogenomic practices
is therefore unlikely to result in a sustainable health program in Africa without substantial new
efforts. The African Pharmacogenomics Consortium aims to coordinate and to be the main driver
in establishing pharmacogenomics guidelines in Africa.

2. MULTIETHNIC POPULATIONS MUST BE CONSIDERED AT EVERY
STAGE OF A STUDY, FROM RECRUITMENT TO DATA MANAGEMENT
AND ANALYSES

2.1. Increasing Diversity in Study Populations

For reasons outlined above, an intentional paradigm shift in genomic research is necessary to
capture and leverage all aspects of diversity in the study of common and rare diseases. So far,
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studies aimed at being more inclusive have done so via two common approaches: (a) creating a
new cohort or case–control study with recruitment in more diverse communities or geographic
locations, and (b) performing a transethnic meta-analysis that gathers results from multiethnic
participants in existing studies.We provide examples of these approaches and discuss study design
specifics for researchers interested in conducting multiethnic studies and using algorithms that
address greater genetic diversity.

Long-standing studies such as the Women’s Health Initiative (124) and the Multiethnic Co-
hort Study (72) have recruited hundreds of thousands of participants. Recruiting such large study
populations in cosmopolitan settings in racially/ethnically diverse regions of the United States
helps to ensure that many diverse groups are represented. Several smaller multiethnic studies have
employed targeted recruitment strategies to increase representation of non-European groups, in-
cluding the Multi-Ethnic Study of Atherosclerosis (15), the Atherosclerosis Risk in Communities
Study (3), and the Consortium on Asthma Among African-Ancestry Populations in the Americas
(82). Additionally, studies such as the Jackson Heart Study and the Hispanic Community Health
Study/Study of Latinos have recruited participants from specific understudied ethnic groups (105,
110). In each context, and in each community, it is important to develop trust and address concerns
to ensure that historically disadvantaged communities do not suffer incidental harm and that work
is performed collaboratively with the community and all stakeholders.

In parallel, there has been interest in moving beyond single-study discoveries to combining
numerous smaller studies in ameta-analysis framework,which combines summary statistics to gain
power. The first major multiethnic meta-analysis, with comparable sample sizes across multiple
ethnic groups, was performed by the EVE Consortium in a genetic susceptibility study of asthma
that involved 10 studies from three ethnic groups in the Americas (European Americans, African
Americans, and Latin Americans) (115). This study found both improved power at shared loci
(e.g., 17q21, with strong shared signals across groups) and new population-specific associations
(e.g., PYHIN1 in populations of African descent). There are numerous similar ongoing efforts
with type 2 diabetes within the Diabetes Genetics Replication and Meta-Analysis Consortium
(87), various psychiatric traits, and many other disease domains.

A new opportunity has been presented by the recent growth of biobanks linked with electronic
health records. Covering the breadth of the patient base in multiple health systems provides a
way to recruit relatively quickly and increase communication with communities that may be less
likely to volunteer for a traditional cohort study. Similarly, as recruitment can be less labor inten-
sive in this approach than in traditional epidemiological contexts, it is possible to develop sizable
studies relatively quickly, as can be seen in the large repositories of national-level initiatives (such
as the UK Biobank and Million Veteran Program) as well as the large and diverse patient bases
at cosmopolitan academic medical centers [such as the Icahn School of Medicine at Mount Sinai
(BioMe); the University of California, Los Angeles; the University of Colorado; and Vanderbilt
University (BioVU)], which have genotyped tens to hundreds of thousands of patients. The UK
Biobank includes more than 500,000 UK participants, and more than 35,000 individuals are of
nonwhite British descent, providing a reasonably large sample size for transethnic analyses. De-
spite access to a diverse study population, UK Biobank studies to date have continued to focus
primarily on individuals with mostly European ancestry, so there remain many opportunities for
discovery.

2.2. Genotyping Ascertainment

Combining results across ethnic groups can be challenging given genetic, environmental, socio-
cultural, and study-based heterogeneity. Therefore, the field must develop and test new tools
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specifically designed for these contexts. The Population Architecture Using Genomics and Epi-
demiology (PAGE; http://pagestudy.org) study was formed with the goal of developing best
practices for transethnic studies. This study has been continuously funded by the National In-
stitutes of Health since 2008 to study genomic variation in order to advance our understanding
of the population architecture of genetic traits and disease in the presence of ancestral diversity.
The first phase of the study, which ran from 2008 to 2013 and was funded by the National Hu-
man Genome Research Institute and the National Institute of Mental Health, examined putative
causal genetic variants across approximately 100,000 African Americans, Asian Americans, Native
Americans, Hispanics/Latinos, and Native Hawaiians from four centers representing nine large
United States–based cohorts. Two genotyping approaches were employed: targeted genotyping
of selected SNPs identified in GWASs of common disease, and a large-scale array-based effort
using the Metabochip to facilitate transethnic fine mapping of several diseases of public health
importance. The Metabochip array is a custom genotyping array designed for replication and fine
mapping of cardiometabolic traits (121). Early PAGEwork demonstrated that, while most risk loci
identified from GWASs and populations of primarily European ancestry are shared across one or
more ethnic groups, the underlying causal variants and their effects vary across populations (21).

The second phase of PAGE, from 2013 to 2019, was funded by the National Human Genome
Research Institute and the National Institute on Minority Health and Health Disparities and
focused on how ancestry-specific differences in allele frequencies and LD could explain differ-
ences in risks of common traits and conditions. However, in 2013 there was only limited avail-
ability of genotyping arrays that could comprehensively capture variation across multiple genetic
ancestries simultaneously. The majority of arrays for diverse populations were developed for a
single group at a time, not a multiethnic sample. To address this issue, PAGE investigators part-
nered with the Consortium on Asthma Among African-Ancestry Populations in the Americas,
Illumina, and other academic centers to develop the Multi-Ethnic Genotyping Array (MEGA).
This platform utilized data from phase 3 of the 1000 Genomes Project with equal representation
of non-European ancestries and was designed to have comparable imputation accuracy across all
major populations, regardless of a given population’s level of admixture (14, 63, 122). To aug-
ment the capture of low-frequency variants, enhanced exome content was selected from available
non-European exome sequencing studies (specifically, studies of Hispanic/Latino and African-
American populations). MEGA is now commercially available for the wider research community
(https://www.pagestudy.org/mega).

The current generation of genotyping arrays encompasses both population-specific and mul-
tiethnic products. To address a growing interest in biobank study design, especially with a diverse
catchment area, an assortment of arrays have been developed to capture variation across multi-
ple populations at once, including Illumina’s MEGA, Genome Screening Array, and upcoming
Global Diversity Array as well as Affymetrix’s Precision Medicine Research Array. For homoge-
neous study designs, population-specific arrays have also been developed over the past several years
to cover both continental and country-level populations, such as Illumina’s H3Africa Consortium
Array (60) and Infinium OmniZhongHua arrays, as well as Affymetrix’s Biobank Genotyping and
Axiom World arrays. It should be noted that, despite this progress, the development of these ar-
rays is dependent upon available reference panels, and therefore many regions of the world are
underrepresented. For example, the African variation present on MEGA is largely representative
of western Africa and therefore does not offer equal coverage in eastern African populations.

2.3. Imputation

Imputation of genotyped samples to improve resolution and capture variation is now standard
practice for many genomic studies, facilitated by the availability of large-scale, publicly available
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reference data and the development of faster, improved imputation methods (33). However, the
accuracy of imputation is highly dependent on the selection and availability of reference data rep-
resentative of the study population of interest (119). After the International HapMap Project, the
1000 Genomes Project aimed to provide a comprehensive description of common human genetic
variation by applying whole-genome sequencing to 2,504 individuals from 26 populations. These
efforts revealed that, in order to study rarer genetic variants, international efforts would be neces-
sary to aggregate and harmonize whole-exome and whole-genome sequencing data. Indeed, these
efforts have already begun with the Haplotype Reference Consortium (HRC) and Genome Ag-
gregation Database (gnomAD) projects. Following the 1000 Genomes Project, the HRC created
a large reference imputation panel by combining sequences from multiple cohorts with the aim
of improving genotype imputation in other GWAS cohorts. In comparison with past panels, this
resource improves imputation accuracy—particularly for low-frequency variants—and has led to
several new discoveries.

TheMichigan Imputation Server and Sanger Imputation Server have further advanced the fea-
sibility of using imputation to increase coverage, providing user-friendly computational servers
for imputation using a wide range of reference panels. These servers now include panels from
International HapMap Project phase 2 (N = 60), 1000 Genomes Project phase 1 (N = 1,092)
and phase 3 (N = 2,504), the Consortium on Asthma Among African-Ancestry Populations in
the Americas (N = 883), and the HRC (N = 32,470) (61, 83). Despite these achievements, the
reference panels remain biased toward European populations, with the majority of the largest
panel (HRC) being of European descent. Therefore, studies of populations of non-European de-
scent must rely on much smaller reference panels, which hinders the imputation of low-frequency
and rare variation. The development of large-scale multiethnic panels is vital to addressing this
source of ascertainment bias. The African Genome Variation Project (50) demonstrates the need
for representative reference panels to not only capture population-specific variation but also re-
flect the shorter LD blocks found in African genomes compared with non-African groups. Future
releases of sequence data as reference panels from such multicenter efforts as the Trans-Omics
for Precision Medicine (TOPMed) program of the National Heart, Lung, and Blood Institute;
H3Africa; Genome Asia 100K (http://www.genomeasia100k.com); the Singapore Sequencing
Malay Project (http://phg.nus.edu.sg/StatGen/public_html/SSMP/SSMP_index.html); and
the Genome Sequencing Program of the National Human Genome Research Institute will help
address this issue by increasing multiethnic representation.

2.4. Association Methods

In studies of associations between genetic variants and a trait of interest, nonhomogeneous pop-
ulations are a classic source of concern for false-positive associations. More specifically, because
allelic variation differs across ancestral population groups, even slight differences in ancestral com-
position between cases and controls can result in a false-positive association between a variant and
disease. Identification of this source of confounding, known as population stratification, resulted
in a focus on populations that were presumed to be more ancestrally homogeneous, and statistical
methods were modeled under this assumption (97). However, methods have since been developed
to explicitly account for population substructure, allowing for the pooling of multiethnic sam-
ples. The most commonly used method is principal component analysis, as estimated in Plink or
EIGENSTRAT (96). Including all of the samples in the analysis enables the resulting eigenvectors
to estimate broad population structure as orthogonal linear variables, which can then be included
in regression models to address possible confounding.More recent methods, as detailed below, di-
rectly estimate the genetic relationship between samples, allowing the model to assess phenotypic
differences between genotypes beyond what may be expected from correlated genomes.
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The PAGE studies were characterized by varying levels of known and cryptic relatedness and
used distinct strategies of participant recruitment. Specifically, theWomen’s Health Initiative, the
Multiethnic Cohort Study, and BioMe used population- or clinic-based recruitment, and the His-
panic Community Health Study/Study of Latinos used a household sampling study design. These
differences may have led to heterogeneity in covariate and phenotype associations with variants.
PAGE evaluated potential heterogeneity in association analyses using the Genetic Estimation and
Inference in Structured Samples (GENESIS) package (30–32), which uses a linear mixed model
and accounts for the correlation among genetically similar samples through a kinship matrix that
estimates the known and cryptic relatedness in the presence of population structure, admixture,
and population-associated heterogeneity. This approach was compared with SUGEN (76), which
uses a modified version of generalized estimating equations, creates extended families by connect-
ing the households who share first-degree relatives, and allows for heterogeneity in both phe-
notypes and covariates across racial/ethnic and study groups. Both methods were able to appro-
priately account for population stratification and relatedness while ensuring adequate statistical
power for the detection of novel association.

Beyond the standard SNP-level associations, looking at haplotype associations can be informa-
tive, including examination of identity-by-descent or local ancestry segments. Instead of examin-
ing a cross section across two chromosomes on a base-pair level, these methods examine segments
of shared haplotypes along the chromosome to identify tracts with a common origin that result
in a shared phenotype. Identity-by-descent methods are best applied in founder populations with
a more recent common ancestor, such as the characterization of Steel syndrome in Puerto Rico
(12). Admixture mapping relies on recent ancestry from two or more distinct populations, such
as African American or Hispanic/Latino populations (18, 54). Methods such as RFMix (79) and
Local Ancestry in Admixed Populations Using Linkage Disequilibrium (LAMP-LD) (9) estimate
local ancestry, assigning haplotypes along the genome to their ancestral populations. Once local
ancestry is estimated, admixture mapping tests the enrichment of a particular ancestral haplotype
in cases versus controls (107). A cases-only study approach can also be used in which enrichment is
tested against the overall genome-wide average for that ancestry. These methods have been suc-
cessful at identifying regions associated with asthma (46), blood pressure (109), end-stage renal
disease (65), and obesity (27), among others. Admixture and identity-by-descent mapping offer
an alternative to a traditional GWAS framework, explicitly leveraging the unique haplotypes of
admixed or founder populations.

2.5. Fine Mapping After a Genome-Wide Association Study

Finemapping generally refers to a suite of tools to narrow associated regions and identify potential
causal variants using summary statistics from GWAS or sequencing data. While many complex-
trait loci replicate consistently across European-ancestry populations, tag SNPs from genotyping
arrays are not expected to be causal, and loci containing multiple independent signals can be dif-
ficult to distinguish within homogeneous study populations (59, 120). Ancestrally diverse study
populations are much more conducive to narrowing association signals and identifying multiple
independent associations within genomic regions, primarily because geographic isolation over the
course of human evolution has led to different LD structures by continental ancestry (6, 7, 55).
Populations with ancestral admixture exhibit widely differing stretches of ancestry-specific LD
that, evaluated in combination, can be extremely beneficial for limiting the number of potential
functional LD proxies tagged by a GWAS index variant.

Tools have been developed to incorporate combined GWAS summary statistics, LD, and
functional annotations to identify the most likely causal variants within a genetic locus. Methods
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developed to specifically leverage the benefits of transethnic study populations have demonstrated
success compared with meta-analysis and fine-mapping attempts in European-ancestry study
populations. For example, Fast Probabilistic Annotation Integrator (fastPAINTOR) incorporates
bioinformatics and epigenomic data with GWAS summary statistics from multiple traits to select
the most likely causal variant(s) within an association signal (68). Simulation studies demonstrated
an improvement in credible-set reduction with the incorporation of functional annotations such
as DNA accessibility. However, as discussed below, these resources are sorely lacking in data for
non-European-ancestry populations, meaning their true benefits cannot currently be assessed in
diverse study populations.

2.6. Examples from PAGE

Type 2 diabetes is a highly polygenic disorder for which transethnic association studies have
been particularly meaningful. Early efforts by PAGE investigators found that causal variants at
well-established risk loci identified in Europeans were likely shared across populations (53). A
2014 transethnic meta-analysis of four GWASs of ancestry-specific type 2 diabetes identified
multiple associations unreported in European-only analyses, thereby highlighting opportunities
for new discovery in diverse groups (34). Fine mapping of glycemic traits in PAGE African
American and Hispanic/Latino participants utilized the Metabochip to narrow known associ-
ations and further demonstrated the importance of transethnic analyses via identification of an
African-ancestry-specific independent association at theG6PC2 locus (13). These efforts in type 2
diabetes demonstrate that the most successful application of these resources will require not only
multiethnic study populations but also bioinformatics resources built on globally representative
reference populations.

In a recent flagship paper,Wojcik et al. (123) implemented single-variant genome-wide associ-
ation testing for 26 clinical and behavioral phenotypes in SUGEN using phenotype-specific mod-
els.This work found 27 novel loci at the genome-wide significant threshold (Pcond < 5× 10−8) after
conditioning on all previously identified variants, due partly to both the diversity of the study pop-
ulation and the enrichment for population-specific variants on the MEGA array. As an example,
the newly discovered CREB3L2/7q33 locus, associated with total cholesterol levels (rs73729087;
P = 1.52 × 10−8,N = 33,185, MAF = 0.05), may not have been discovered in European-ancestry
populations given its rare frequency in those groups (MAF= 0.005).This variant is more common
in PAGE racial/ethnic groups, including African Americans (P= 1.77× 10−6,N= 10,137,MAF=
0.11) and Hispanics/Latinos (P= 2.58 × 10−3,N= 17,802,MAF = 0.02). Additionally, this study
mapped independent signals (secondary variants) within known loci, further enriching our under-
standing of the genetic architecture of traits. To test for secondary signals, the study screened for
statistical associations that remained genome-wide significant (Pcond < 5 × 10−8) after adjusting
for all known tag SNPs (the adjusted model), identifying 38 new associations located within 1 Mb
of a previously known variant. These results indicate that even in regions of known significance,
novel ancestry-specific signals can be discovered in diverse, multiethnic study populations.

3. DOWNSTREAM ANALYSES RELY ON BIASED RESOURCES

3.1. Availability of Multiomic Resources

Despite continued success in cataloging variants associated with complex phenotypes, translation
of GWAS findings into new biological insights has been complicated, in part because the most
significantly associated variant is typically not the variant with the biological effect, but instead
is in high LD with the causal variant. Additionally, most associations identify a large number of
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correlated variants in noncoding regions of the genome (91). As such, it is hypothesized that most
GWAS associations affect gene regulation and are fundamentally more difficult to interpret be-
cause gene expression is tissue specific and modulated by other contextual factors (98). Targeted
allele-specific assays are necessary, but these approaches are expensive and labor intensive. Func-
tional follow-up to identify causal variants, relevant genes, and the underlying biological mecha-
nism can be aided by bioinformatic investigation using other sequencing-based omics data sets in
reference samples.

To aid in the characterization of candidate functional variants, integrative multiomic resources
are now emerging, accompanied by the development of new analytical methods (10, 91, 98). For
instance, GTEx, an ongoing effort to build a resource of tissue-specific gene expression and regu-
lation, has collected 1,641 postmortem samples covering 54 body sites from 175 individuals (49).
Approaches that leverage reference data to develop transcriptome imputation models of geneti-
cally regulated expression have been developed to utilize bioinformatics data, including a variety
of machine-learning approaches to estimate combined-variant effects on gene expression. These
trained models are then used to impute genetically regulated gene expression in GWAS data sets
with genotypes and phenotypes (43, 51, 112). Because transcriptome measurement with RNA
sequencing remains prohibitively expensive for GWAS-scale sample sizes, these innovative ap-
proaches have opened the door for better characterization of GWAS associations and have even
led to novel discoveries. However, while GTEx is the most comprehensive transcriptome data set
to date, the tissue donors were predominantly white (85.2%), and evidence suggests that this is
likely to significantly hinder the performance of models developed in other ethnic groups (66).
Diverse resources such as TOPMed may begin to address this issue, but models will be restricted
to transcriptomemeasurements in blood, leaving the majority of publicly available expression data
not globally representative.

3.2. Clinical Databases and Frequencies

In clinical-annotation pipelines, allele frequency estimates offer the most powerful filter available,
by removing or down-prioritizing variants with a nonnegligible population frequency. The value
of these data has been improved significantly by efforts driven by the scientific community to
make these allele frequency resources publicly available, from the 1000 Genomes Project (N =
2,535) to the Exome Sequencing Project (N = 6,503) and now to the larger Bravo (N = 62,784),
Exome Aggregation Consortium (N = 60,706), and gnomAD (N = 123,136) data sets. As clini-
cal sequencing becomes routine, medical professionals face a new challenge in that patients with
non-European ancestry have a significantly longer list of candidate variants for a suspected genetic
disorder. Determining the pathogenicity of a rare variant is compounded by clinical laboratories
labeling putatively deleterious nonsynonymous calls as variants of unknown significance, which
occurs at higher rates for individuals of non-European descent (24). Accordingly, a review of ge-
netic variants reported as pathogenic and causal for hypertrophic cardiomyopathy showed that
these variants were overrepresented in African Americans, and further examination determined
that many of them were benign (78). Such misclassification could be avoided with the inclusion of
even a small number of individuals of African descent. Therefore, it is imperative that geneticists
sequence and investigate a much broader ensemble of populations that are representative of the
rich diversity of patients both in the United States and globally. If we do not, a biased picture will
emerge of which variants are important, widening existing disparities and diminishing the benefits
of genomic medicine for underserved populations.

To address misclassification, MEGA includes a curation of clinically relevant variants from
numerous publicly available databases, such as ClinVar (http://www.ncbi.nlm.nih.gov/clinvar),

www.annualreviews.org • Toward Global Inclusivity in Genomics 191

http://www.ncbi.nlm.nih.gov/clinvar


GG20CH08_North ARjats.cls July 31, 2019 16:47

Online Mendelian Inheritance in Man (OMIM; https://omim.org), and PharmGKB (14). Gig-
noux and colleagues (45, 88) estimated the allele frequencies of these variants in 11 region-level
and 99 population-level groups, and these data are now available as a public resource through the
University of Chicago’s Geography of Genetic Variants browser (80; https://popgen.uchicago.
edu/ggv).

Variable allele frequencies across populations can strongly influence the discovery of clini-
cally relevant variants. One example is the association of population-specific APOL1 variants with
chronic kidney disease. Specifically, these variants are present only in populations of African ances-
try, members of which are also twice as likely as European Americans to develop end-stage renal
disease (41, 44).Discovery in an African American cohort was enabled by higher allele frequencies
in that population, thus yielding adequate statistical power to detect the association. Risk variants
for chronic kidney disease in APOL1 likely rose in frequency as an adaptation against trypanoso-
miasis (sleeping disease) in sub-Saharan Africa (70). These variants were later found to associate
with higher rates and faster progression of kidney disease in other groups with African ancestry,
including Hispanics/Latinos (41, 44, 70, 88, 93). However, Hispanic/Latino populations exhibit
highly diverse genetic ancestry, and therefore APOL1 associations replicated in some groups (e.g.,
Dominicans, who have a substantial proportion of African ancestry) but not others (e.g.,Mexicans,
who do not). Thus, even ancestry-specific findings can have broad implications for populations
who are outside of the discovery group but have shared ancestry (88). These results highlight the
importance of moving beyond self-identified racial/ethnic categorizations and the need to model
fine-scale genetic ancestry to carry out the next generation of complex- and Mendelian-disease
studies (11).

3.3. Genetic Risk Scores

Another frequent translation use for GWASs of complex traits is the development of risk scores
that can be utilized in both clinical prognosis and treatment plans. Genetic variation is incorpo-
rated into traditional risk score calculations or used to calculate a genetic risk score (GRS) that
does not incorporate environmental or demographic risk factors, often with potential clinical ben-
efits (67). Below, we briefly explore two issues at the forefront of GRS research: which variants to
include, and the portability of a GRS from the discovery population (nearly always of European
ancestry) to nationally or globally representative populations.

Developing a successful GRS depends on the proportion of variance for a particular phenotype
that is explained by identified genetic variants. In research, it has become accepted practice to in-
corporate all measured variants (regardless of correlation structure) to calculate the proportion of
variance explained, as this technique tends to improve prediction accuracy in complex traits (67,
126). Across many disease domains, this technique is becoming an accepted downstream appli-
cation of GWASs; with large studies, the effect sizes become precise enough for accurate assess-
ment of risk. Given sufficiently large study samples, European-ancestry GWAS tag SNPs can be
used for GRS construction for global populations. However, this does not guarantee equally good
performance across populations. Within a relevant association signal, a European tag SNP will
differentially capture other SNPs (any of which could be the true causal variant) when compared
with other ancestral populations. Biased SNP selection can lead to a model that provides different
risk estimates based on ancestry, which can in turn exacerbate health inequities by impairing risk
prediction for populations already underserved in the American health-care system.

However, the problem is far more pernicious than just hampered prediction accuracy. Martin
et al. (81) recently demonstrated that—simply due to the effects of genetic drift on allele fre-
quencies and LD patterns across populations—a GRS ascertained using standard methods in one
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population can yield unpredictable biases in the distributions of scores in other groups, and the
distributions can therefore fluctuate dramatically across traits. In a research context, such biases
can be accounted for by standard normalization or ranking of GRS scores by population when
recruitment has been performed in a genetically clustered fashion. However, in a medical context,
there is no guarantee that the ancestry of the patient will perfectly match the study used for GRS
generation, and bias can easily result in either misclassification or a GRS that benefits only specific
individuals. The only acceptable method for developing a clinically applicable GRS is to ensure
that scores can be calculated accurately for everyone,meaning that the genomic data used must be
globally representative, and any genetically informed personalized medicine approach that fails to
take this issue into account is at risk of major misinterpretation of the underlying data.

4. CLOSING REMARKS

As demonstrated by the work of the PAGE study and other investigators, the inclusion of ances-
trally diverse study populations in all aspects of genomic research andmethods development is not
only a scientific imperative but also essential for the equitable application of results (95).With sup-
port from theNationalHumanGenomeResearch Institute and theNational Institute onMinority
Health and Health Disparities, PAGE has focused specifically on addressing the well-documented
underrepresentation of USminority populations in genomic research by fostering productive col-
laboration with existing cohorts (56).The studies have attempted to address some of the noted his-
torical biases throughout the research pipeline, includingmeasurement and analysis of population-
level genetic data. To address historical bias in genotyping platforms toward European variation,
PAGE investigators and collaborators (the Consortium on Asthma Among African-Ancestry Pop-
ulations in the Americas, Illumina, and other academic centers) designed a new array with com-
parable efficiencies in detecting genetic variation across all major continental populations, a tool
that is now available to the scientific community (https://www.pagestudy.org/mega). The appli-
cation of this platform to ancestrally diverse PAGE study participants has aided in the discovery
of ancestry-specific disease-associated variation and improved understanding of the underlying
biology of known genomic regions associated with risk. To date, PAGE has more than 80 pub-
lished papers, many of which describe novel discoveries and fine mapping, generalization, and
replication of previous findings for complex traits—for example, for lipids (35, 127), type 2 dia-
betes (53), adiposity (36, 38, 47), kidney function (40), coronary heart disease (125), blood pres-
sure (39), electrocardiogram traits (4, 5), several cancers (28, 75, 92, 106), glucose and insulin
levels (13, 37), inflammation (58, 71), and menopause/menarche (23, 111). PAGE has demon-
strated the importance of multiethnic genomic studies in conjunction with careful consideration
of recruitment, genotyping, and statistical methods development, leading to the discovery and
refinement of disease-related loci and a better understanding of these complex traits in diverse
populations.

Study population inclusivity will also help to ensure that, when included in clinical practice, the
instruments developed using genetic findings will be more informative for the entire population,
both within the United States and globally. Since the majority of human genome variation is rare
and population specific, and an appreciable fraction of this rare variation is likely to have functional
consequences, a consensus has emerged that properly powered multifactorial disease studies will
require genetic analysis of individual-level genome-wide data from hundreds of thousands to mil-
lions of individuals across diverse ethnic groups. Consideration is needed of multiethnic groups
throughout the research process, from recruitment to translation of findings. The current use of
genetics to inform prevention and therapeutic strategies without these considerations will likely
further exacerbate health disparities. At this pivotal time in medical history, PAGE advocates for
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increased representation of underrepresented populations and the continued development of tools
to maximize the accurate measurement of global genetic variation.
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