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Abstract

Elucidating spatiotemporal changes in gene expression has been an essen-
tial goal in studies of health, development, and disease. In the emerging field
of spatially resolved transcriptomics, gene expression profiles are acquired
with the tissue architecture maintained, sometimes at cellular resolution.
This has allowed for the development of spatial cell atlases, studies of
cell–cell interactions, and in situ cell typing. In this review, we focus on pad-
lock probe–based in situ sequencing, which is a targeted spatially resolved
transcriptomic method. We summarize recent methodological and compu-
tational tool developments and discuss key applications. We also discuss
compatibility with other methods and integration with multiomic platforms
for future applications.
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INTRODUCTION

Organs and tissues consist of a variety of cells with specialized roles. A cell’s environment can
affect its function through gene expression regulation, often via external cues arising from local
cell-to-cell communication.Deciphering tissue cellular composition and defining gene expression
profiles in relation to function has been a continuous goal in biology. To understand physiology
and disease, it is necessary to have the means of obtaining this information.

In recent years, the emergence of single-cell RNA sequencing (scRNA-seq) has enabled
the high-throughput acquisition of cellular gene expression information (33, 59, 78, 96, 107).
scRNA-seq has allowed the compartmentalization of tissue samples into their individual cellular
components, the identification of differentially expressed genes at the cellular level, the identifi-
cation of very rare cell types, and even the development of a paradigm of classifying cells (106).
However, the technique requires tissue dissociation,which inevitably brings the loss of spatial con-
text.Moreover, the experimental procedure itself can affect gene expression and consequently the
identified transcriptional profile (82, 108). Additionally, scRNA-seq requires surviving intact cells,
which leads to underrepresentation of sensitive or damaged cells (e.g., neurons with projecting
axons outside of the excision area).

Spatially resolved transcriptomics (SRT), which Nature Methods named its Method of the Year
in 2020 (63), connects transcriptomic data with spatial position within a tissue (4, 23, 50, 92),
thus linking tissue architecture with the molecular signature of its cellular components. Cell type
identification, spatial distribution of marker patterns, exploration of cell-to-cell interactions, and
mapping of expression patterns in health, development, and disease are now possible at the re-
gional, cellular, and subcellular levels (25). SRT is available via a wide range of technologies
that are typically grouped in three main categories: (a) capture-based technologies coupled with
next-generation sequencing, (b) image-based technologies based on sequential fluorescence in situ
hybridization (FISH), and (c) image-based technologies based on signal amplification for in situ
sequencing (ISS).

The first capture-based technology to be described was spatial transcriptomics (91), which uses
slides that contain spots with barcoded oligonucleotides formRNA capture and links all transcripts
in a region with the region’s coordinates. This technology provides transcriptome-wide coverage
of the tissue content with no previous knowledge or data needed. Spatial transcriptomics was fol-
lowed by 10x Visium (28, 39) and high-definition spatial transcriptomics (100), which provided
higher definition with a smaller spot size. Similar technologies to spatial transcriptomics include
Slide-seq (81) and Slide-seqV2 (62),which useDNA-barcoded beads formRNA capture. Slide-seq
offers transcriptome-wide coverage with low sensitivity, and Slide-seqV2 improves the assay’s sen-
sitivity to reach scRNA-seq sensitivity levels. The technologies that achieve simultaneous mRNA
and protein capture are deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq)
(55), which uses a microfluidics barcode system, and spatial enhanced resolution omics sequencing
(Stereo-seq) (16, 103), which uses DNA nanoballs for mRNA capture. Laser capture microdissec-
tion (17) combines single-cell-based PCR amplification and RNA-seq; this technique focuses on
manually selected areas and offers low throughput with a resolution of 10 cells.

The challenges of capture-based techniques lie in their resolution, capture area, and capture
efficiency, and each new version aims to improve these aspects. Additionally, applying these meth-
ods requires consideration of the cost and required expertise as well as the computational needs
for data analysis.

The second category is image-based technologies based on sequential FISH. In situ hybridiza-
tion technologies offer sensitive detection of mRNA molecules with subcellular resolution and
various grades of multiplexing depending on the applied technologies. Amplified single-molecule
FISH (smFISH) (86) with the use of single-molecule hybridization chain reaction (smHCR)
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offers high sensitivity with limited throughput. Ouroboros smFISH (osmFISH) (22), which
was commercialized by Rebus Biosystems, detected 33 transcripts in mouse brain. Multiplexed
error-robust FISH (MERFISH) (18), which was commercialized by Vizgen as MERSCOPE,
achieved a throughput of approximately 150 RNA transcripts (18, 65) when combined with error
identification and correction. SeqFISH with the use of combinatorial decoding (86) increased
throughput from 32 mRNA transcripts to 10,000 when confocal microscopy was used in place
of super-resolution microscopy and pseudocoloring decoding schemes were introduced for
multiplexing (27, 57).

FISH-based technologies often need to be combined with tissue clearing due to tissue autoflu-
orescence. They also rely on high magnification microscopy, which increases the imaging time
and decreases the scanning area size.

Finally, in this review we focus on the third category, advances in image-based technologies
based on signal amplification with the use of padlock probes for ISS; we present applications of
this technology in order to discuss the enabling features of these applications. Many image-based
technologies are based on signal amplification for ISS. Variants include gap-filled ISS, which is
used to measure the sequence of short portions of the targeted RNA (41), and spatially resolved
transcript amplicon readout mapping (STARmap), which uses specific amplification of nucleic
acids via intramolecular ligation (SNAIL) probes (102). Untargeted ISS methods include fluores-
cence ISS (FISSEQ) (48, 49).Othermodifications include targeted expansion sequencing (ExSeq),
which uses expansion microscopy and long-read in situ RNA sequencing (2); barcoded anatomy
resolved by sequencing (BARSeq) (21); and BARSeq2 (94).

IN SITU SEQUENCING

ISS, as originally described by Ke et al. (41), identifies mRNA molecules in tissues in multiplex
fashion with the use of padlock probes (see Figure 1). Padlock probes are linear oligonucleotides
approximately 70 nt in length, consisting of a customizable backbone and two 20-nt-long arms
that are complementary to the target sequence (69). The backbone includes a target-transcript-
specific barcode sequence and a general identification sequence called the anchor sequence. Upon
fixation and permeabilization of the tissue specimen, the mRNA is reverse transcribed to cDNA
and then degraded with the use of RNaseH.The padlock probes are then hybridized to the cDNA,
and the nick between the two probe arms in juxtaposition is sealed by Thermus thermophilusDNA
ligase. This ligase catalyzes the formation of phosphodiester bonds between adjacent 3′-hydroxyl
and 5′-phosphate termini in double-stranded DNA in a NAD-dependent manner.

The ISS method’s main assets are its high thermostability, which allows for the use of strin-
gent hybridization conditions, and its highly discriminative activity toward nonperfect matches.
Thermus thermophilus DNA ligase can discriminate even single mismatches at the 3′ end of the
padlock probe, thus allowing for high specificity and the identification of single-nucleotide poly-
morphisms (30, 44, 58, 98). The created DNA circle is amplified by target-primed rolling circle
amplification with the use ofϕ29 polymerase, resulting in a single-stranded rolling circle product
(RCP) that contains hundreds of copies of the circularized padlock probe and spatially collapses
in submicron-sized blobs, sometimes referred to as DNA nanoballs or rolling circle colonies
(rolonies).

As described in Ke et al. (41), the generated RCP is subjected to sequencing by ligation,where a
fluorophore-conjugated anchor primer is hybridized to the general identification sequence copies
in the RCP, right next to the fluorophore-conjugated interrogation probes that are specific for each
unique transcript barcode. The interrogation probes consist of four libraries of 9-mers with one
fixed position (A, T, G, or C) and eight random positions (N). Upon hybridization of the anchor
primer, the interrogation probe with the best base match for the examined barcode position is
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incorporated by ligation and displays the color that corresponds to the matched base. This allows
for the specific detection of gene signals upon decoding and reduces the likelihood of off-target
probe specificity.

After the rolling circle amplification step, the anchor and barcode sequences of the padlock
probe backbone are amplified hundreds of times, allowing for multiple bindings of the anchor
primer and interrogation probes for every single target molecule. This leads to an amplified
fluorescence signal and decreased signal-to-noise ratio, enabling the use of lower magnification
objectives to resolve signals, which in turn enables the scanning of large areas and reduces imaging
time. After each imaging cycle, the anchor and interrogation probes can be stripped and washed
away. These steps are then repeated with the interrogation probe libraries of the next barcode
base. Barcode decoding is done by using further image analysis to identify the fluorescence pat-
terns across the sequencing cycles, a process that is discussed in further detail below (see the section
titled Increased Multiplexity). For a step-by-step protocol of the first-generation ISS chemistry,
we direct readers to Reference 35.

METHODOLOGICAL ADVANCES OF IN SITU SEQUENCING

Increased Multiplexity

ISS was first used to distinguish 39 RNAs in breast cancer slices (41). Gyllborg et al. (32) further
developed ISS by both introducing a new barcoding system and replacing the sequencing-by-
ligation reaction chemistry with hybridization-based ISS (HybISS) for detection (see Figure 1).
The first-generation ISS method uses a four-base barcode on the padlock probe backbone for
transcript identification, which is enough to decode 44 = 256 different transcripts. In HybISS,
the padlock probes have two target complementary arms at their 3′ and 5′ ends, and the probe
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Figure 1

Principal workflow of ISS, highlighting the main differences among ISS, HybISS, and direct RNA HybISS. Abbreviations: HybISS,
hybridization-based in situ sequencing; ISS, in situ sequencing; RCP, rolling circle product.
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Table 1 Comparison of ISS, HybISS, and direct RNA HybISS methodologies

Method Target Detection Readout
Original

publication
ISS Reverse-transcribed

mRNA (cDNA)
∼1% efficiency

Sequencing by ligation
Anchor and detection
probes

Up to 256 transcripts
Barcode decoding
Single-nucleotide discrimination

41

HybISS Reverse-transcribed
mRNA (cDNA)

∼1% efficiency

Sequencing by
hybridization

L-probes and detection
probes

Theoretically unlimited number of
transcripts

Potential optical crowding
Flexible decoding scheme
Increased signal intensity
Increased signal-to-noise ratio
Suitable for autofluorescent tissues
Single-nucleotide discrimination

32

Direct RNA
HybISS

mRNA
Up to 5% efficiency

Sequencing by
hybridization

L-probes and detection
probes

Theoretically unlimited number of
transcripts

Potential optical crowding
Flexible decoding scheme
Increased signal intensity
Increased signal-to-noise ratio
Suitable for autofluorescent tissues

47

Abbreviations: HybISS, hybridization-based in situ sequencing; ISS, in situ sequencing.

backbone comprises a common anchor sequence and a 20-nt ID sequence that is unique for ev-
ery target transcript. For the detection step, HybISS uses sequential hybridization of libraries of
L-probes (also known as bridge probes) and fluorescently labeled detection probes (see Table 1).
The L-probes are 40 nt long, with a 17-nt sequence that recognizes the ID sequence of each target
transcript, a 3-nt linker, and a 20-nt sequence where the fluorescently labeled detection oligonu-
cleotides will bind. The 17-nt part that recognizes the ID sequence remains constant between the
L-probe libraries that identify the same transcript among the different imaging cycles, whereas the
20-nt sequence for the detection oligonucleotide differs between the L-probe libraries of every
imaging cycle according to the given transcript barcode (32).

The HybISS design allows for increased flexibility and multiplexing, overcoming the 256-
transcript limit to allow for a theoretically unlimited number of detected transcripts. The
challenge in transcript detection here is the optical crowding of signals, which can be addressed
with adjusted imaging and decoding schemes (47). Moreover, since HybISS uses hybridization
instead of ligation for the detection of fluorescent signals, it is not limited by the efficiency of the
ligation.Consequently, a larger number of L-probes and detection oligonucleotides are hybridized
in every RCP, giving a higher signal intensity as well as an improved signal-to-noise ratio.

Increased Detection Efficiency

After the commercialization of ISS in 2018 by CARTANA (34), the method was further developed
to directly target mRNA molecules with the use of chimeric padlock probes (42). This approach
skips the reverse transcription step and the subsequent fixation of the newly synthesized cDNA,
which (along with the other enzymatic steps) contribute to the comparatively low efficiency of
the ISS method (41). By skipping the reverse transcription step and directly targeting the RNA,
the method achieves a fivefold increase in the efficiency of in situ detection of individual tran-
scripts while maintaining specificity, throughput, and multiplexing (38, 47) (Figure 1; Table 1).
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Single-cell-resolution in situ hybridization on tissues (SCRINSHOT) (89) and barcoded oligonu-
cleotides ligated on RNA amplified for multiplexed and parallel in situ analyses (BOLORAMIS)
(54) are versions of ISS with direct hybridization of padlock probes on mRNA.Table 2 compares
a variety of studies that applied padlock probe–based technology (ISS,HybISS, or SCRINSHOT).

COMPUTATIONAL METHODS

The image-based nature of SRT technologies that use rolling circle amplification leads to nontriv-
ial processing, decoding, and analysis requirements for the data generated by these methods. The
assembly of individual fields of view into single large images of the tissues (via stitching) and the
fine alignment of the different imaging rounds generated by SRT methods (image registration)
represent the first computational challenge in the processing of SRT data. A recently developed
tool, Alignment by Simultaneous Harmonization of Layer/Adjacency Registration (ASHLAR),
allows coordinated stitching and registration, which guarantees an improved alignment of the
different rounds through the entire imaged tissue (66).

Decoding—the detection and identification of the RCP’s identity—is one of the most chal-
lenging steps in the processing of SRT datasets, mostly due to optical crowding and tissue
autofluorescence, leading to difficulty identifying gene signals. Recently developed decoding al-
gorithms, such as In Situ Transcriptomics Decoding by Deconvolution (ISTDECO) (3), Barcode
Demixing Through Non-Negative Spatial Regression (BarDensr) (19), and PoSTcode (31), have
addressed this issue by spatially deconvolving the expression of every expected gene, generating
one deconvolved image for every gene and facilitating the identification of signals on these images,
and allowing the resolution of normally difficult-to-identify signals. These algorithms reported an
improved identification of signals, especially in optically crowded areas. Graph-based approaches
(74) have also shown their potential in the decoding of optically crowded regions.

Most applications of SRT rely on the identification of cells in the tissue, which requires assign-
ing decoded RCPs to cells. Usually, a nuclear stain [e.g., 4′,6-diamidino-2-phenylindole (DAPI)]
is imaged together with the imaging cycles and used as a reference to place cell nuclei. The seg-
mentation of these nuclei, though, can be a complex task, especially in densely packed tissues
using classical watershed algorithms. Recently, deep learning models such as Cellpose (93), ilastik
(10), and StarDist (85) have been proven to outperform the gold standard segmentation meth-
ods and are starting to be widely used to segment cells in image-based SRT (46, 101). Despite
the improvements, however, nuclear segmentation is far from perfect, since it fails to segment
the entire cell bodies. As a consequence, RCPs located in cells’ cytoplasm can typically be lost or
misassigned. To overcome this problem, nuclei-free segmentation methods, such as Baysor (77)
and spot-based spatial cell type analysis by multidimensional mRNA density estimation (SSAM)
(72), rely on RCPs’ density and identity to segment individual cells. In densely packed tissues,
where density-based segmentation can be challenging, Baysor can be complemented with nuclear-
based segmentation for improved cellular segmentation.To address the same issue, spage2vec (75),
a graph-based algorithm, has proven able to recapitulate local gene expression patterns solely
relying on the subcellular context of each RCP without the need of any type of segmentation.

The main objective of segmenting individual cells is to decipher their molecular identity. A
common strategy for identifying cell populations is to use scRNA-seq analysis packages, such as
Scanpy or Seurat, to perform de novo clustering. However, this task can be challenging in some
datasets, mainly due to the reduced number of genes used in the panel and the low number of
reads per cell detected in the experiments. An alternative to de novo clustering is to identify cell
populations by matching the SRT data with scRNA-seq (1, 11), allowing the user to impute the
expression of genes not present in the panel. Some of these algorithms, such as probabilistic cell
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Table 2 Overview of studies in mouse and human that used padlock probe–based technology (ISS, HybISS, or
SCRINSHOT), with details on tissue types, cell types studied, and number of target genes

Study
Tissue type(s)

used Species
Main cell type(s)

studied
Number of
target genes Method(s) used

Application/novelty
of spatial approach

Ke et al. (41) Breast cancer Human Cancer cells and
fibroblast cells

39 ISS Development of ISS
method

Soldatov
et al. (87)

Neural crest Mouse Trunk and cranial
neural crest cells

32 ISS Investigation of
spatiotemporal
dynamics associated
with early cell fate
decisions in mouse
trunk and cranial
neural crest cells

Tiklová et al.
(97)

Midbrain Mouse Neuronal cells 49 ISS Transcriptomic
mapping of midbrain
dopamine neuron
maturation

Carow et al.
(15)

Lung Mouse Cells in tuberculosis
granuloma

34 ISS Comparison of
Mycobacterium
tuberculosis
granulomas in lungs
from mice

Asp et al. (5) Heart Human Cardiac cells 69 ISS, ST Mapping of the human
developing heart

Qian et al.
(79)

Hippocampus
and isocortex

Mouse Neuronal cells 99 ISS, pciSeq Introduction of pciSeq
and mapping of the
inhibitory neurons of
mouse hippocampal
area CA1

Chen et al.
(20)

Isocortex Mouse
and
human

Neurons, astrocytes,
oligodendrocytes,
microglia

84 ISS, ST Investigation of the
pathology of
Alzheimer’s disease at
a genome-wide scale

Sountoulidis
et al. (88)

Lung, kidney,
and heart

Mouse
and
human

Many different cell
types

147 SCRINSHOT Direct hybridization of
padlock probes on
mRNA and mapping
of the locations of
abundant and rare
cell types

Langseth
et al. (45)

Brain Human Neuronal and
nonneuronal cells

120 HybISS, pciSeq Creation of the first
spatial atlas of
human cortical cells

La Manno
et al. (43)

Brain Mouse Neuronal and
nonneuronal cells

119 HybISS, smFISH Creation of a
transcriptomic atlas
of the embryonic
mouse brain between
gastrulation and
birth

(Continued)
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Table 2 (Continued)

Study
Tissue type(s)

used Species
Main cell type(s)

studied
Number of
target genes Method(s) used

Application/novelty
of spatial approach

Hilscher
et al. (36)

Isocortex, corpus
callosum, and
spinal cord

Mouse Oligodendrocytes 124 ISS, pciSeq Creation of a
transcriptomic atlas
of fine
oligodendrocyte
subtypes

Van Bruggen
et al. (99)

Forebrain Human Oligodendrocytes 50 HybISS, pciSeq Mapping of the neural
diversity in the
human forebrain at
postconception
weeks 8–10

Sountoulidis
et al. (89)

Lung Human Lung cells 31 + 146 HybISS,
SCRINSHOT,
pciSeq

Creation of a
topographic atlas of
early human lung
development

Magoulo-
poulou
et al. (60)

Lung Mouse Cells in tuberculosis
granuloma

36 ISS In-depth study of
immune cells
interacting with
Mycobacterium
tuberculosis in the
infected lung tissue

Abbreviations: HybISS, hybridization-based in situ sequencing; ISS, in situ sequencing; pciSeq, probabilistic cell typing by in situ sequencing;
SCRINSHOT, single-cell-resolution in situ hybridization on tissues; smFISH, single-molecule fluorescence in situ hybridization; ST, spatial
transcriptomics.

typing by ISS (pciSeq) (79), combine cell type identification with segmentation, assigning reads
to cells depending on the identity of the cells themselves.

The main advantage of SRT approaches is their ability to generate single-cell-resolution maps
of cell types. Although visual inspection of the maps is useful to understand the structure of the
analyzed tissues, some deeper spatial statistics are necessary to further understand the data. Several
packages [Squidpy (71a), Giotto (25a), Seurat (32a, 84a), and Matisse (83a)] have been developed
for this purpose, allowing the exploration of the spatial architecture of tissues. In addition, new
tools to identify tissue domains [e.g., BANKSY (86a)], explore cell–cell communication (node-
centric expression models), or even uncover subcellular patterns within cells [Bento (60a)] are
rapidly emerging and promise to bring the analysis of SRT datasets to the next level.

EFFORTS TO GENERATE CELL ATLASES: FOCUS ON IN SITU
SEQUENCING

Due to the vast number and complexity of tissues—the central nervous system alone consists of
more than 80 billion postmitotic neurons (7, 76)—high-throughput methods are needed to screen
as many cells in as short a time as possible. scRNA-seq can investigate single-cell RNA, assess-
ing up to 20,000 individual cells simultaneously with high sensitivity (51), and comprehensive
molecular databases are currently being generated within large community efforts. Since biolog-
ical functions are performed via the concerted activities of many different cell types interacting
in a three-dimensional environment, scRNA-seq efforts can then be combined with spatial tran-
scriptomics methods to pinpoint the exact locations of the studied cells. The Human Cell Atlas
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community effort aims to create a consensus molecular taxonomy and cell atlases for all organs in
the human body (52, 80). The Brain Research Through Advancing Innovative Neurotechnolo-
gies (BRAIN) Initiative cell census effort has the goal of creating high-resolution whole-brain cell
type atlases for mice, humans, and nonhuman primates (26, 67, 68). With a cross-species consen-
sus molecular taxonomy of cell types in place, cellular organization can now be comprehensively
mapped (4, 14, 92). And even tissue compartmentalization, such as automated identifications of
brain regions or reference mappings, are possible with SRT data (12, 71, 73).

ISS efforts to generate cell atlases include the profiling of hundreds of RNAs in mouse tissues,
including midbrain (97), neural crest (87), hippocampus (79), cortex (20), corpus callosum (29, 36),
spinal cord (29, 36), developing mouse brain (43), and kidney (88). Most recently, zebrafish heart
tissue samples have also been mapped (90). Regarding human tissues, studies have applied ISS
to adult brain tissue sections (45), forebrain (99), and developing lung and heart tissues (5, 89);
in these studies, pciSeq has been applied to assign detected transcripts to segmented cells and,
subsequently, cells to cell types (79). This approach allows a straightforward integration of spatial
data with a consensus molecular taxonomy, such as the Human Cell Atlas or the BRAIN Initiative
Cell Census Network.

In the following sections, we focus on some of the highlights of the ISS studies and discuss
their integration with previous knowledge in the fields of neurobiology and cancer research as
well as further applications to disease (see graphical summary in Figure 2).

NEUROBIOLOGY: INSIGHTS FROM PADLOCK
PROBE–BASED METHODS

One of the first ISS studies focused on neuronal cell types by combining scRNA-seq and ISS
to study midbrain dopamine neuron diversity (97). Unraveling the diversity of dopamine neu-
rons is necessary to gain a better understanding of why only certain subtypes degenerate in
Parkinson’s disease. Tiklová et al. (97) performed scRNA-seq of isolated neurons expressing tran-
scription factor Pitx3, a marker for dopamine neurons, which identified seven subgroups with
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Figure 2

Tissues, species, and applications of padlock probe–based ISS technologies. Abbreviation: ISS, in situ sequencing.
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this subtype-specific marker. To localize the seven identified subgroups, they used a combina-
tion of subgroup-distinguishing markers identified via classical histological methods and ISS.The
classical histological methods mapped each subgroup separately by combining 3 genes at a time,
whereas the ISS method used 49 genes and simultaneously localized all seven subgroups at the
single-cell level. ISS was also used to quantify the proportion of cells per subgroup, revealing that
specific subgroups are significantly underrepresented in the scRNA-seq data.The strategy to com-
bine scRNA-seq and ISS provided a powerful resource for studies of midbrain dopamine neurons.
Furthermore, identification of specific subtypes enabled more focused research into Parkinson’s
disease etiology and the generation of desired subtypes for regenerative medicine.

La Manno et al. (43) focused on mouse brain development between gastrulation and birth by
combining extensive droplet-based single-cell sequencing and ISS. Single-cell sequencing iden-
tified almost 800 cellular states (as defined by dimensionally reduced clusters), divided into 25
categories. The developing brain consists of spatial domains characterized by expression of spe-
cific transcription factors. To link the spatial domains and transcriptional cell state, the authors
performed ISS using 119 genes identified by single-cell sequencing. ISS mapped many clusters
but also mapped spatial variability within the clusters. Combining those two powerful techniques
provided time-, lineage-, and region-specific gene expression profiles, which are important for
advancing the understanding of brain and neurological disorder development.

ISS has also been used to characterize the spatial and temporal heterogeneity of oligodendro-
cyte subtypes in both mice and humans. Oligodendrocytes arise during embryonic development
in different waves. Their function is to support and isolate axons through the myelin production.
Hilscher et al. (36) used ISS to profile 124 marker genes that distinguish 12 previously character-
ized oligodendrocyte populations. They performed ISS analysis on three regions of the juvenile
and adult mouse central nervous system. The results extended previous findings by profiling the
detailed spatial organization of oligodendrocyte lineage populations. Using a panel for genes spe-
cific for different developmental stages uncovered the timing of oligodendrocyte differentiation
and myelination in specific areas.

In another study, van Bruggen et al. (99) focused on human oligodendrogenesis and profiled hu-
man fetal forebrain to identify the ventral sites where oligodendrogenesis occurs first.To start, they
combined single-cell transcriptomics with a single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) and found that human forebrain contains cells with chromatin
states compatible with oligodendrogenesis at the first trimester. To determine the exact location
of those cells, they selected 50 genes identified by scRNA-seq and scATAC-seq for ISS analysis.
The combination of all those methods resulted in a comprehensive study that gives a more com-
plete picture of oligodendrogenesis. There are several demyelinating disorders, such as multiple
sclerosis, where a deep understanding of oligodendrogenesis and myelin formation is crucial for
modulation of myelin repair, and this work helps advance the understanding of the fundamental
mechanisms of such disorders.

UNDERSTANDING CANCER USING IN SITU SEQUENCING

With the advent of scRNA-seq as a ubiquitous tool in profiling the cells that make up cancer
comes the need to determine how the same cells organize themselves in their native context.
By selecting biomarkers defined by literature, bulk RNA studies, or scRNA-seq studies, one can
create customized probe panels and validate the expression of those biomarkers in patient tissue to
identify disease mechanisms associated with tumor microenvironments, phenotypes, and disease
mechanisms.Most importantly, SRT can be used to profile not only the organization of cells in the
tumor microenvironment but also the inherent complexity of the disease. Cancers are assemblies
of heterogeneous populations of various distinct cell types, genetic compositions, and phenotypes,
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and their variability can complicate our ability to assign definite identities to cells. To disentangle
the complex network of interactions in cancer is an ongoing struggle, one that can be successfully
done with the right tools.

To give an example, Liu et al. (53) profiled the structure of diffuse midline gliomas, a class of
glioma defined by the K27Mmutation in histone H3.To chart scRNA-seq/single-nucleus ATAC-
seq–derived tumor cell subpopulations within the intact tissue architecture of H3 K27M diffuse
midline gliomas, the authors used the SRT approach of HybISS (32).Using combinatorial marker
genes specific for individual malignant and nonmalignant cell types from tumor scRNA-seq and
published normal brain scRNA-seq datasets, they generated padlock probes to create a panel of
130 curated marker genes. They then used probabilistic cell typing via pciSeq (79), complemented
by immunofluorescence staining against the K27M mutation within the same tissue sections, to
confidently identify both malignant and nonmalignant cell types, as well as individual tumor cell
populations, thereby resolving the single-cell spatial architectures of 16 primary patient H3K27M
diffuse midline gliomas spanning different age groups and locations.

In another case, Ruiz-Moreno et al. (83) investigated the spatial architecture of two
glioblastoma tissues using generated padlock probes against 194 genes specific for malignant
(oligodendrocyte precursor cell–like, astrocyte cell–like, neural precursor cell–like, and mes-
enchymal cell–like) and nonmalignant cells (microglia,macrophages, oligodendrocytes, astrocytes,
neurons, endothelial cells, T cells, dendritic cells, and mural cells), as well as signaling markers of
interest. The cell types that compose the glioblastoma tumor microenvironment were mapped
and assigned transcripts to cells through pciSeq (79). Notably, the glioblastoma malignant cells
showed a layered distribution around the endothelial and mural cells. These results indicate that
not only were all malignant phenotypes present in sections and engaged in specific activities by
type, but they were each localized in a preferred nonmalignant niche.

The spatial transcriptomic portions of both the glioblastoma study (83) and the diffuse midline
glioma study (53) established not only that there is significant diversity in cell composition between
tumors, but also that HybISS (a) identifies true cell state proportions, in contrast to scRNA-seq,
and (b) identifies cell states not seen in scRNA-seq datasets, by including genes for cell states that
were expected but not present in the scRNA-seq dataset (neurons, pericytes, etc.). Furthermore,
these studies found that cancer cell phenotypes and nonmalignant phenotypes exhibit specific
spatial distribution patterns, shedding light on local cellular relationships and niches between
individual malignant populations as well as between malignant and nonmalignant populations.

An additional area of application of SRT that is of importance in cancer research is plotting
cancer evolution. Cancer cells evolve through rounds of mutation and selection and become more
evolutionarily fit and resistant to treatment (13, 64, 70). As a result of the repeated process of
mutation and selection, cancers are patchworks of genetically related but distinct groups of cells,
termed subclones (24). This is not a trend confined to individual types of cancer; as seen by the
Tracking Cancer Evolution Through Therapy (TRACERx) project, even the smallest cancers are
miniature patchwork blankets stitched together from even smaller clones of genetically different
cells (8). More importantly, mapping clonal evolution has particular relevance to patient cancer
progression and the development of treatment; further studies have found that the same patterns
of genetically distinct subclones contribute to the progression, growth, and recurrence of breast
cancer (104, 105), esophageal adenocarcinoma (61), and non-small-cell lung cancer (37).

To generate molecular maps of breast cancer, Svedlund et al. (95) used a panel of 91 ISS padlock
probes, consisting of breast cancer prognostic and predictivemarkers and cellular pathway–related
genes, to create ISS-basedOncoMaps that linked tumor histology andmolecular signatures.These
OncoMaps revealed intratumoral subtypes based on marker expressions such as Ki-67 or estrogen
receptor, highlighting the prognostic importance of intratumoral heterogeneity. Building off of
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this work, Lomakin et al. (56) developed base-specific ISS (BaSISS), an extension of the ISS pro-
tocol that incorporates multiplexed detection of clone-specific mutations in breast cancer patient
biopsy sections, to map the distribution of mutant gene transcripts that denote specific subclones
in these sections. BaSISS can be used to assess how patterns of spatial genetic heterogeneity can
be influenced by resident tissue structures, how coexistent genetic clones can have distinct char-
acteristics, and which local tumor microenvironments play host to specific subclones. Recently,
stage II colon cancer patient samples have also been examined by ISS, and the neoplastic and
non-neoplastic compartments could be successfully distinguished based on the spatial expression
patterns obtained (84).

CHARACTERIZING DISEASE USING IN SITU SEQUENCING

To break down tissues into their localized molecular components and understand normal func-
tion and disease, efforts have been made to connect transcriptomic data to the morphological
characteristics of the examined tissues.

Carow et al. (15) performed histopathology-driven analysis ofMycobacterium tuberculosis (Mtb)–
infected mouse lungs based on hematoxylin and eosin staining and ISS data in order to directly
compare uninfected and Mtb-infected lung areas. Additionally, compartmentalization of histo-
logical features of organized and non-organized granulomas (a tuberculosis disease hallmark) by
manual area selection revealed distinct transcriptional signatures of immune markers. Since in tu-
berculosis the bacterial presence is leading the immune response and the subsequent histological
changes, the expression of immune markers in relation to Mtb localization has been examined
in relation to the localization of single bacteria (15, 60) and bacterial clusters (60). For this pur-
pose, after the ISS protocol, the same tissues were stained for Mtb with auramine–rhodamine
T staining, and the coordinates of the fluorescent signals were associated with ISS data coordi-
nates (15, 60) in relation to their distance from the identified bacteria or clusters. The analysis
showed differences in the composition of the immune microenvironment in each lesion type. In
C57BL/6 mouse lungs, markers associated with macrophages and macrophage activation were
enriched in subcellular distances to bacteria over time.However, no distinct spatial distribution of
T cell responses was observed. In C3HeB/FeJ mouse lungs, small bacterial clusters were enriched
for transcripts such as Cd68 and Inos, whereas organized granulomas showed enrichment for Cd8a,
Tcrb, and Foxp3. Since all the experimental procedures (ISS, auramine–rhodamine T staining, and
hematoxylin and eosin staining) were conducted on the same tissue specimen, it was possible to
acquire the exact tissue coordinates for every method. The same analysis can be performed to link
ISS data to immunohistochemical signals of marker expression as long as the same slide is used
for both experiments in order to acquire the exact coordinates.

SRT also provides a novel approach to untangle the cellular network in the vicinity of cells
affected by diseases like Alzheimer’s disease. A fundamental question in Alzheimer’s disease is the
relationship between amyloid plaques and the surrounding cells, as well as their role as a trigger of
the neurodegeneration process (40). ISS enables the characterization of the transcriptomic profile
of both diseased and healthy cells in their native context. Chen et al. (20) used two spatial methods,
ISS and spatial transcriptomics, to demonstrate that amyloid plaques have a clear effect on all cell
types in the amyloid plaque niche. Spatial transcriptomics revealed transcriptional changes early
in Alzheimer’s disease development in a coexpression network enriched for myelin and oligoden-
drocytes and in late-stage Alzheimer’s disease development in a coexpression network enriched
for plaque-inducing genes. These results were confirmed by ISS as well as by single-cell-level
gene expression analysis and by the investigation of gene expression around the formed plaques in
100-µm rings (20). Overlay of immunostaining, DAPI, selections of cells, and plaque images was
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facilitated with image analysis tools such as QuPath (9). Those analyses provide a unique approach
to characterize the regions with pathogenic hallmarks and how the spread of the pathology affects
the neighboring cells in a non-cell-autonomous way.

CHALLENGES, LIMITATIONS, AND FUTURE DIRECTIONS

Work in this field has until now been done using in-house-developed reagents, imaging, and im-
age analysis solutions, which has led to challenges for laboratories in applying these methods and
in how to share and compare data. The coming years will see generations of fully automated
commercial SRT systems facilitating standardization and broader implementation of this set of
technologies. It is unlikely that there will be one dominating SRT system, as was the case for Illu-
mina’s next-generation sequencing instrumentation, so global efforts toward the standardization
of the processing pipelines available for image-based SRT, such as the starfish initiative (6), are still
very much needed. Given that this technology is still at an early stage of maturity, it is also quite
likely that there will still be room for homemade solutions that test and provide analytical capabili-
ties not yet implemented in the commercial systems.We can expect to see innovations that provide
higher throughput at a lower cost, generate multiomic data, and produce three-dimensional data
for creating multimodal atlases and beyond.
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