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Abstract

Over the past decade, genomic analyses of single cells—the fundamental
units of life—have become possible. Single-cell DNA sequencing has shed
light on biological questions that were previously inaccessible across di-
verse fields of research, including somatic mutagenesis, organismal develop-
ment, genome function, andmicrobiology. Single-cell DNA sequencing also
promises significant future biomedical and clinical impact, spanning oncol-
ogy, fertility, and beyond.While single-cell approaches that profile RNA and
protein have greatly expanded our understanding of cellular diversity, many
fundamental questions in biology and important biomedical applications re-
quire analysis of the DNA of single cells. Here, we review the applications
and biological questions for which single-cell DNA sequencing is uniquely
suited or required.We include a discussion of the fields that will be impacted
by single-cell DNA sequencing as the technology continues to advance.
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INTRODUCTION

Single-cell DNA sequencing (scDNA-seq) encompasses a suite of technologies and approaches
that interrogate DNA at the level of single cells. These technologies contrast with standard DNA
sequencing, also known as bulk sequencing,which homogenizes theDNA content of usually thou-
sands tomillions of cells.Much like the voice of a single individual or a small number of individuals
can be drowned out in a large crowd, genomic signals (variants, DNA modifications, or structural
properties of DNA) that are present in only one or a small number of cells in a sample may be un-
detectable without interrogating single-cell genomes. The development of scDNA-seq methods
has at every step been motivated by biological questions that seek to explore the cellular genomic
diversity that would otherwise be missed by bulk sequencing.

In this review, we focus on the major applications of scDNA-seq rather than its technological
aspects.We begin by introducing the basic concepts of scDNA-seq to provide a framework for un-
derstandingwhy certain applications depend on its unique capabilities andwhy for some important
biological and biomedical questions it is the only suitable technology. Following this, we discuss
the major biological fields that scDNA-seq has impacted and the discoveries it has enabled. These
include a wide array of fields: somatic mutation and mosaicism, organismal development, germ
cell mutation and development, fertility, cancer, epigenetic regulation of the genome, genome or-
ganization, and microbiology. This review specifically focuses on single-cell genomics methods,
i.e., those that profile single-cell DNA at larger genomic scales or genome-wide. Single-cell ge-
nomic approaches have only become feasible over the past decade; previously, it was only possible
to profile a single locus or small numbers of loci in single cells. In this review, we use the term
single-cell genomics interchangeably with scDNA-seq. While single-cell genomics is sometimes
used in the literature to refer to single-cell RNA sequencing (scRNA-seq), to avoid terminologi-
cal confusion, here, single-cell genomics and single-cell transcriptomics refer to scDNA-seq and
scRNA-seq, respectively.

A CONCEPTUAL FRAMEWORK FOR SINGLE-CELL DNA SEQUENCING

In this section, we summarize key concepts necessary for understanding the subsequent sections
that focus on the applications of scDNA-seq.These concepts not only are important to understand
as a terminological and technical reference, but also help explain the unifying characteristics of the
applications for which scDNA-seq is suitable. scDNA-seq unlocks a particular set of capabilities,
described below, that are advantageous or unique relative to other technologies; therefore, every
application of scDNA-seq is distinguished by its reliance on these capabilities. While this section
explains this unifying framework, we do not review specific scDNA-seq technologies in detail, as
these have been well reviewed previously (53, 68).

scDNA-seq is characterized by three core capabilities, which we term fidelity, co-presence,
and phenotypic association, and which together help determine the types of biological questions
and applications for which it is best suited (Figure 1a–c). As discussed below, different scDNA-
seq technologies may possess different subsets of these three capabilities, and moreover, none of
these capabilities are unique to scDNA-seq. However, scDNA-seq is distinguished from other
approaches by its potential to achieve all three capabilities on a genome-wide scale.

The fidelity capability of scDNA-seq (Figure 1a) is its ability to overcome the limits of bulk
DNA sequencing to detect features of DNA (mutations, modifications, or other properties of
DNA) that are at a low level of mosaicism, i.e., features present in only a small subset of cells
in a sample. Bulk DNA sequencing is limited by sequencing error that is a constant fraction of
the total sequencing coverage. While increasing the depth of bulk sequencing coverage initially
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Figure 1 (Figure appears on preceding page)

The three core capabilities of single-cell DNA sequencing and application requirements of throughput versus genome coverage.
(a–c) The three core capabilities of single-cell DNA sequencing. (a) Fidelity. In bulk sequencing, very-low-level mosaic mutations
cannot be distinguished from sequencing library and sequencing error artifacts. By contrast, in single-cell sequencing, the distribution
of read depths is the same for somatic mutations and germline (inherited) heterozygous mutations. This enables the detection of
somatic mutations regardless of mosaicism, although it requires the same total sequencing costs as a hypothetical bulk sequencing
method with perfect fidelity due to the need to sequence many single cells. Additionally, single-cell sequencing generally has an
increased level of artifacts due to the single-cell amplification process. (b) Co-presence. Single-cell sequencing preserves information
regarding which somatic mutations are present together in the same cells. This enables the reconstruction of lineage trees. (c)
Phenotypic association. Single-cell sequencing, when combined with simultaneous cell phenotyping (either by microscopy or by
multiomic single-cell sequencing), preserves information regarding which somatic mutations are present in which cell types. This
enables the deconvolution of cell types or species in heterogenous samples and annotation of lineage trees with cell phenotypes. (d)
Schematic of approximate application-specific requirements and current technological capabilities in terms of throughput (number of
single cells per experiment or project) versus genome coverage. Panels a–c adapted from Reference 43.

increases sensitivity for lower-level mosaic DNA features by virtue of deeper sampling, the fact
that sequencing error is a constant fraction of total coverage means that further increases in
coverage eventually reach a hard limit: Mosaic features with less than ∼0.5% mosaicism cannot
be detected because they cannot be distinguished from sequencing error (18, 150). By contrast,
scDNA-seq is not limited by sequencing error, since the sequencing error rate is much lower
than the expected 50% signal level of heterozygous DNA features or even 25% single-stranded
DNA features. Nevertheless, errors of single-cell DNA amplification can in some cases rival the
signal level of true genetic features, motivating the ongoing development of new methods for
high-fidelity single-cell genome amplification (53).

The co-presence capability of scDNA-seq (Figure 1b) refers to its ability to ascertain which
mosaic DNA features were present together in the same cells. For example, if a tissue sample con-
tains two different low-level mosaic genetic variants, then only a single-cell method can determine
whether both variants are present in the same cells or in mutually exclusive subsets of cells. Bulk
methods homogenize samples prior to sequencing, so the information about which mosaic DNA
features were present in the same cell or subsets of cells is lost. By contrast, scDNA-seq preserves
this information.While there exist bulk methods that either directly profile large DNA fragments
or preserve long-range phasing information that can technically ascertain co-presence for small
numbers of DNA features, these methods have limited phasing distance and cannot ascertain the
co-presence of DNA features on different chromosomes or the genome-wide co-presence of a
large number of DNA features. Therefore, co-presence is a key capability of scDNA-seq that
enables many of its unique applications.

The phenotypic association capability of scDNA-seq (Figure 1c) is its potential to be combined
with simultaneous single-cell phenotyping to identify the cell type(s) or cell state(s) in which spe-
cific DNA features are present. This capability derives from the fact that scDNA-seq analyzes
single cells, thereby preserving the link between a cell’s DNA features and its phenotype. How-
ever, phenotypic association requires technology that combines scDNA-seq with phenotypic pro-
filing, such as single-cell DNA plus RNA profiling, single-cell DNA plus proteomic profiling,
or single-cell DNA plus microscopy/histological profiling. Alternatively, some single-cell DNA
features, such as methylation, themselves provide information about cell phenotype. The phe-
notypic association capability of scDNA-seq is technically challenging since combining genome-
wide scDNA-seq with phenotypic profiling can compromise the resolution of the scDNA-seq
component (108). However, new multiomic scDNA-seq technologies are emerging (31, 107) and
are a focus of current technology development, given their importance for many of the applica-
tions we review below.
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The co-presence and phenotypic association capabilities are together particularly important
for samples composed of genetically distinct heterogeneous cells, a common situation that is often
central to the applications of scDNA-seq. Such applications include both profiling cells within an
organism, such as distinguishing tumor cells from normal cells in a tumor sample, and profiling
mixtures of cells from distinct species, such as soil samples or the gut microbiome.

None of the above three capabilities are unique to scDNA-seq. For example, fluorescence in
situ hybridization can ascertain the co-presence of a small number of genetic variants as well as
their phenotypic association with specific cell types. Another example is single-cell cloning (180),
where a single cell is expanded in vitro to create a bulk sample deriving entirely from one cell,
thereby providing both fidelity and co-presence information for mosaic DNA variants that were
present in the original single cell.Co-presence can also be assessed using scRNA-seq for the subset
of somatic variants that are transcribed (114). The above are only a few examples of existing non-
single-cell DNA sequencing methods that can achieve one or more of the three key capabilities of
scDNA-seq. However, scDNA-seq is distinguished by the facts that it can potentially achieve all
three capabilities simultaneously, it can determine co-presence at a genome-wide scale, and it can
be applied directly to primary cells and is not limited to specific cell types. The last feature distin-
guishes it from single-cell cloning approaches that entail cloning and culture bottlenecks (which
may bias results) and are not feasible for some cell types (e.g., mature adult neurons and uncultur-
able bacteria). Every application of scDNA-seq can be traced back to one or more of these three
core capabilities, and the most advanced applications leverage all three. It is therefore a useful
exercise for any proposed scDNA-seq application or research project to critically evaluate which
of these three capabilities—fidelity, co-presence, and phenotypic association—is needed and, con-
sequently, whether scDNA-seq is required as opposed to employing an alternative technology.
Conversely, consideration of these three capabilities can help identify new biological questions
that can be uniquely addressed by scDNA-seq.

It is also worth noting that the fidelity capability of scDNA-seq is only relative to the fidelity
of current DNA sequencers. If the fidelity of DNA sequencers were to advance by approximately
four orders of magnitude, then scDNA-seq would be distinguished only by the co-presence and
phenotypic association capabilities.

A major limitation of scDNA-seq derives from another limitation of current DNA sequencers:
Only a small fraction of the DNA that is input into a sequencer is captured and sequenced. There-
fore, scDNA-seq requires amplification of DNA prior to sequencing. And because there is no per-
fect amplification method, this step can introduce errors that confound analyses (53). Currently,
there are several different single-cell DNA amplification methods, each with a different error
profile and performance characteristics, which have been reviewed previously (53, 68). The best
single-cell DNA amplification method depends on the application, and ideally, the error mode of
the amplification method will be orthogonal to the DNA feature(s) of interest.

Finally, throughput—the number of single cells that can be profiled in one experiment—is an
important parameter of different scDNA-seqmethods. For some applications, tens or hundreds of
single cells can suffice, while other applications (and most future applications) will require thou-
sands of cells. New methods utilizing droplet encapsulation (120), combinatorial indexing (177),
and nanowell devices (83) are increasing the throughput of scDNA-seq to thousands of cells and
expanding the range and depth of questions that can be addressed. However, current scDNA-seq
methods and sequencing costs impose a trade-off: Methods with higher throughput have lower
genome-wide coverage or profile fewer DNA loci per cell. The applications discussed in this re-
view differ widely in their throughput and coverage requirements (Figure 1d), motivating careful
matching between an application’s requirements and the capabilities of the chosen scDNA-seq
method.
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SOMATIC CELLS: MUTATIONAL PROCESSES AND MOSAICISM

Somatic mutations—mutations that occur postzygotically in somatic cells—are ubiquitous inmul-
ticellular organisms due to exogenous and endogenous mutagens, DNA replication errors, chro-
mosomal damage, imperfect DNA repair, and other mutagenic processes (159, 186). Indeed, it
can be safely assumed that no two cells in an organism have an identical genome sequence, par-
ticularly for organisms whose genomes are significantly larger than the inverse of their per-cell
division mutation rate.While most somatic mutations are benign, they are the cause of cancer and
many noncancer genetic diseases, and they are speculated to contribute to physiological aging (39,
112, 135, 159, 163, 186). Quantifying the rates and spectra of somatic mutations is therefore of
fundamental importance.However, within an individual organism,most somatic mutations are ei-
ther present at very low mosaicism or unique to one cell (163), placing them below the detection
limits of current DNA sequencers. The fidelity capability of scDNA-seq allows the detection of
somatic mutations regardless of mosaicism level and has provided some of the first direct, genome-
wide measurements of somatic mutation rates. Here, we review the application of scDNA-seq in
quantifying somatic mutational processes and mosaicism. scDNA-seq of germ cell mutations is
reviewed below (see the section titled Germ Cells: Meiotic Recombination and Germline Muta-
tion). For a more in-depth discussion of somatic mosaicism and single-cell sequencing, we also
recommend a review by Miller et al. (121) elsewhere in this volume.

Somatic mutation rates vary across tissues, developmental time points, cell types, and mutation
types, and scDNA-seq studies have begun to systematically quantify somatic mutations across
these dimensions. The first scDNA-seq studies quantifying genome-wide somatic mutation in
normal (noncancer) cells profiled LINE-1 (L1) retrotransposon insertions and copy number vari-
ants (CNVs) in the human brain (41, 115). Both studies were motivated by long-standing hy-
potheses that somatic variation may be prevalent and adaptive in the brain (116). These studies
successfully identified somatic L1 insertions and CNVs in human cortical neurons, but at lower
rates than prior indirect measurements had anticipated: There were less than 0.6 somatic L1 in-
sertions per neuron, less than 2% of neurons exhibited aneuploidy, and 41% of neurons harbored
a few (mostly one or two) megabase-scale CNVs (41, 115). Several subsequent scDNA-seq studies
were concordant with these findings (21, 40, 43, 79), suggesting that these types of somatic muta-
tions are largely tolerated physiologically while creating a low level of neuronal genomic diversity
and in rare cases causing neurological disease (32, 135).

In contrast to these studies of CNVs in mature cells, remarkably high rates of aneuploidy and
CNVs have been found in early preimplantation human embryos by single-cell microarray pro-
filing and in macaque embryos by scDNA-seq (29, 161). scDNA-seq of preimplantation macaque
embryos found that 74% had at least one blastomere with a whole or partial chromosome copy
number abnormality and, remarkably, detected some of the missing chromosomal material in cel-
lular fragments arising from aberrant multipolar divisions at the one- or two-cell stage (29).

The possibility of pathogenic mosaic CNVs in human pluripotent stem cells used for cellu-
lar therapies has motivated scDNA-seq studies of these cells. One scDNA-seq study found that
23% of these cells had at least one large megabase-scale CNV, one-third of which had more com-
plex karyotypes. Broader application of scDNA-seq for routine safety assessment and screening
of cellular and gene-modifying/editing therapies can be anticipated.

In addition to measuring somatic L1, CNVs, and aneuploidy rates, scDNA-seq studies have
quantified single-nucleotide variant (SNV) somaticmutation rates. scDNA-seq SNV studies face a
greater analytic challenge separating single-cell amplification artifacts frombona fide somatic vari-
ants, and have recently greatly benefited from computational methods utilizing local spatial vari-
ation and read-based phasing of candidate variants to germline variants in order to filter artifacts
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(16, 106). New amplification methods, such as primary template–directed amplification, that fur-
ther reduce amplification artifacts will also play an important role in accelerating studies of SNV
somaticmutation rates (55).The first genome-wide scDNA-seq SNV study of normal (noncancer)
cells examined human cortical neurons and found much higher rates of SNV mutation relative to
other mutation types and a mutational strand bias, suggesting that some of these mutations origi-
nate from transcription-coupled damage (98). A subsequent study refined these estimates across a
larger set of neurons and age groups to quantify 300–900 somatic SNVs per neuron at birth and
∼20 new somatic SNVs per year of life, leading to more than triple the number of SNVs (∼2,000–
3,000) by the time an individual is more than 80 years old (97). Interestingly, these aging mutation
rates were higher in hippocampal neurons and in individuals with DNA-repair syndromes (97).

Additional scDNA-seq studies have measured somatic SNV rates of ∼900 per fibroblast from
a human toddler; ∼460 per B lymphocyte in newborns, increasing to ∼3,000 in centenarians;
and ∼1,000 per hepatocyte in newborns, increasing to ∼4,000–5,000 in elderly individuals (17,
35, 185). Notably, all of the above studies have found that most SNVs are unique to one cell in
the sample and can be computationally assigned to an aging clocklike mutational process (whose
mechanism is enigmatic) previously identified in cancer sequencing studies [Catalogue of Somatic
Mutations inCancer (COSMIC) signatures 1 and 5] (3).Altogether, these studies reveal a relatively
similar burden of somatic SNVs per cell at birth across cell types and a significant increase with
age, albeit at different rates in different cell types. The possible functional impact of accumulating
somatic SNVs with age throughout the body is an important open question.

Over the long term, a full view of somatic mutation rates will necessitate scDNA-seq stud-
ies spanning numerous developmental time points, cell types, tissues, and mutation types. Most
scDNA-seq studies have also focused only on one or a few cell types among hundreds of cell types
in the body. Bulk methods for measuring somatic mutation rates have begun to fill this gap, such
as clonal expansion of primary single cells followed by bulk sequencing (5), deep sequencing of
tissues where clones remain spatially restricted (20), and RNA-seq (178), with findings that are
largely consistent with those from scDNA-seq. However, clonal expansion of primary cells is sus-
ceptible to culture bottlenecks and cannot be applied tomany cell types, deep sequencing of spatial
clones is not applicable to many tissues and cannot resolve different cell types, and bulk RNA-seq
cannot easily measure cell type–specific mutation rates. Therefore, going forward, the unique ad-
vantage of scDNA-seq relative to other methods for somatic mutation quantification will be via
multiomic scDNA-seq methods (i.e., utilizing scDNA-seq’s phenotypic association capability) to
quantify mutation burdens of specific cell types from any tissue.

ORGANISMAL DEVELOPMENT AND LINEAGE TRACING

One of the long-standing goals of biology has been to understand how a single cell (the zygote)
transforms into the billions or trillions of cells of a complex multicellular organism (1, 118). The
development of an organism can be represented by a lineage tree—a diagram of the cell divisions
from the zygote to each of its cells, ideally annotated with spatial data, cell phenotypes, and the
molecular determinants of lineage decisions (76). Lineage trees are the blueprints of development,
depicting the relationships between progenitor cells and cell types throughout development and
providing a framework for understanding stem cell and cell type hierarchies, aberrant lineages
in disease, and tissue homeostasis. Lineage tracing—the collection of methods used to determine
lineage trees—is therefore among the most fundamental tools of biology (81). In this section, we
review the application of scDNA-seq for lineage tracing with a focus on organismal development.
scDNA-seq lineage tracing of cancer is reviewed in the section titled Cancer.
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Lineage tracing methods are either prospective or retrospective, and scDNA-seq can be used
for either approach (7, 173). In prospective lineage tracing, cells are experimentally tagged by a
heritable marker (e.g., a genetically encoded barcode), and their progeny are profiled at a later
time point. Because prospective lineage tracing requires invasive manipulation of the organism, it
is only applicable to animalmodels. In retrospective lineage tracing, lineage trees are reconstructed
from somatic DNA mutations that occurred spontaneously during an organism’s lifetime, so it is
noninvasive and feasible for studying human development.Regardless of whether DNAmutations
are experimentally induced (the prospective approach) or occur spontaneously (the retrospective
approach), scDNA-seq can detect these mutations to construct a matrix showing which mutations
were present in which single cells (note that this is another way of describing scDNA-seq’s co-
presence capability). This mutation-by-cell matrix is then transformed into a lineage tree through
phylogenetic reconstruction algorithms (118).

Although scDNA-seq can be used for both prospective and retrospective lineage tracing, its
greatest long-term potential lies in retrospective lineage tracing. Recently, prospective methods
of lineage tracing have been developed in which DNAmutations are created using CRISPR/Cas9
specifically in sites that are transcribed into RNA, such as 3′ untranslated regions (2, 26, 48, 137,
151, 171). This allows DNA mutations to be detected by scRNA-seq, in conjunction with pheno-
typic profiles,without requiring scDNA-seq.Thesemethods,which have been reviewed elsewhere
(7, 76, 118, 164), have enabled high-throughput phenotypic lineage tracing for the first time and
have removed the requirement for scDNA-seq in prospective lineage tracing of animal models.
By contrast, scDNA-seq is essential for retrospective lineage tracing—the only method that can
be applied to humans. This is because most spontaneous somatic mutations, which retrospective
lineage tracing relies on, are in the large majority of the genome that is not transcribed and can-
not be captured by scRNA-seq. We therefore focus this section on the use of scDNA-seq for
retrospective lineage tracing. scRNA-seq-based prospective lineage tracing methods are also cur-
rently limited by their inability to inducemutations continuously across broad developmental time
points (118). scDNA-seq retrospective lineage tracing, however, leverages somatic mutations that
occur in every cell division that can theoretically be used to reconstruct the lineage of any tissue
and any developmental time point at the maximum possible resolution (1, 49). Once scDNA-seq
retrospective lineage tracing scales to the throughput of the above scRNA-seq prospective lineage
tracing methods and is combined with phenotypic (e.g., RNA or protein) profiling—though this
may take many years to realize—one can expect that it will become the primary lineage tracing
approach for both humans and animal models.

The resolution of retrospective lineage tracing scales with both the number of loci that are
genotyped and their somatic mutation rate (14). Microsatellites are abundant genomic elements
(>1 million loci in the human genome) consisting of repeated 1–6-base-pair motifs that have the
highest mutation rates of any type of genomic element (49). This makes them an attractive target
for retrospective lineage tracing (49, 145). In fact, it has been estimated that every cell division
may be tagged by at least one microsatellite mutation, theoretically allowing the reconstruction
of an organism’s complete lineage tree (49). Early pioneering scDNA-seq studies of microsatellite
mutations utilized only a small set of less than 100 loci but were able to confirm some basic lineage
information, such as clustering liver cells separately from other organs’ cell types (144) and closer
lineage relationships of muscle satellite cells that are physically proximal (167). Another study of
∼120 microsatellite loci found evidence for periodic replacement of all the cells in a colon crypt
with the progeny of a single stem cell, a process termed monoclonal conversion (140).

The number of microsatellite loci profiled per cell has subsequently increased to achieve
greater lineage resolution, with ∼1,000–2,000 loci per cell in two different studies (14, 170)
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and ∼12,000 loci in a third study (157). One of these studies was able to simultaneously profile
methylation in the same cells and recovered a known cultured lineage tree with 88% accuracy
(170). However, there remain significant challenges associated with artifactual microsatellite
mutations that occur during single-cell genome amplification and library preparation (14). These
will need to be overcome before the full potential of microsatellites for scDNA-seq lineage
tracing can be realized.

Several scDNA-seq studies have used other types of somatic mutations for retrospective lin-
eage tracing, such as SNVs, which are also estimated to occur in every cell division (1), and L1
retrotransposon insertions. Nearly all these studies have so far focused on the human brain. One
study traced the spatial distribution of two somatic L1 retrotransposon insertions identified by
scDNA-seq in the brain of an individual, finding both a focally restricted lineage in the frontal
lobe and a widely distributed lineage consistent with spatial mixing of progenitor cells during early
development (42). The L1 insertion of the focal lineage also harbored a poly-A microsatellite that
itself mutated somatically at a high rate tomark different subclades in each brain region, consistent
with tangential migration and intermingling of radial clones of progenitors in the cortex. A no-
table study profiled 18 somatic mutations, including 15 SNVs, to reconstruct a lineage tree of 136
single neurons with four clades and additional subclades (98). Remarkably, the four root clades in
this individual were dispersed across the cortex at low mosaicism, again indicating significant spa-
tial mixing of early brain progenitors, whereas later sublineages had more focal distributions. The
finding of widely dispersed and interspersed early embryonic clades in the human brain was con-
firmed by another study of somatic SNVs that were initially identified by deep bulk whole-genome
sequencing and then profiled in single cells (18). Another recent study performed simultaneous
scDNA-seq and RNA profiling of more than 1,000 cortical neurons and found that SNVs of
later sublineages were progressively restricted to either excitatory neurons or inhibitory neurons,
consistent with these cell types’ different developmental origins (67). Upper-layer neurons also
made up a greater fraction of later lineage branches, consistent with the inside-out formation of
cortical layers. These studies have confirmed processes of brain development previously seen only
in animal models using prospective (invasive) approaches. The theme of these studies is that as
their throughput has increased, more detailed features of brain development have emerged. Fur-
ther such studies may eventually reveal human-specific developmental processes.

Because somatic mutations accumulate in every cell division, scDNA-seq retrospective lineage
tracing can also be used to estimate for any cell or tissue its approximate number of cell divi-
sions since the zygote, also known as the lineage depth. This can help elucidate organogenesis
and tissue turnover. In mismatch-repair-deficient mice with higher microsatellite mutation rates,
one scDNA-seq study estimated a depth of 29 for oocytes; a depth of 24–40 for various types of
adult stem cells, consistent with their relative quiescence; and a linear increase in depth of ∼1 cell
division per day for B cells (168). This method could be used to investigate stem cell activity in
other organs (such as the brain) and in disease states.

An important recent advance has been scDNA-seq retrospective lineage tracing that uses
mitochondrial DNA (mtDNA) instead of nuclear DNA mutations (85, 101, 175). The small size
of the mitochondrial genome and the presence of hundreds of copies (or more) per cell enable
this approach to scale to thousands of cells via droplet-based methods (85). mtDNA is also readily
captured in standard scDNA-seq chromatin accessibility assays, such that mtDNA mutations and
cell phenotype information are captured simultaneously from the same cells (85, 101, 175). The
throughput of this approach is illustrated by one experiment that traced the lineage relationship
of more than 16,000 CD34+ hematopoietic stem cells sampled at one point and peripheral
blood mononuclear cells sampled three months later from the same individual (85). The authors
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identified more than 250 clonal groups, indicating that a large pool of hematopoietic stem cells
is active in healthy blood production, but they also observed variability in the contributions of
individual hematopoietic stem cell clones to blood cell production (85). This method has also
been used to lineage trace blood and colorectal cancers (85, 101, 175).

Overall, the main advantages of single-cell mtDNA lineage tracing are its significant through-
put in terms of cell number and the fact that it does not require a priori knowledge of subclonal
somatic mutations. This contrasts with nuclear scDNA-seq lineage tracing, where sequencing the
entire genome across thousands of cells is not feasible.However, the advantages ofmtDNA lineage
tracing are balanced by the limited number of mtDNA mutations that occur in the small mito-
chondrial genome, even accounting formtDNA’s highermutation rate (1). In the long run, this will
limit the resolution of mtDNA lineage trees relative to nuclear genome lineage trees. Additionally,
mtDNA is not a completely faithful lineage marker, because mutations in only a small subset of
a cell’s mitochondria (heteroplasmy) may not always segregate to both daughter cells. Neverthe-
less, the biological insight provided by scDNA-seq mtDNA is promising due to its relative ease
of integration into established single-cell workflows, and it provides a glimpse into the future of
what high-resolution scDNA-seq lineage tracing may achieve. By virtue of its ability to ascertain
somatic DNA mutations genome-wide, scDNA-seq—combined with cell phenotyping—has the
potential to provide the first systematic and truly general approach for high-resolution lineage
tracing.

GERM CELLS: MEIOTIC RECOMBINATION AND GERMLINE
MUTATION

Meiosis is a specialized cell division in which haploid gametes are generated from diploid cells
through one round of genome replication followed by two rounds of cell division (110). During
this process,mutation generates new alleles and recombination generates new combinations of al-
leles via exchanges of geneticmaterial between chromosomes known as crossovers (110).Together,
they create heritable genetic variation and the substrate for evolution via selection.Recombination
ismechanistically essential to success inmeiosis: It is initiated by programmedDNAdouble-strand
breaks, of which only a fraction are repaired with a crossover (71). Insufficient crossovers or their
improper localization leads to aneuploidy, which affects 20–30% of human eggs and 1–8% of hu-
man sperm, leading to miscarriage in more than 25% of pregnancies and severe developmental
defects in 0.3% of live births (22, 58, 59). Errors in recombination also lead to numerous genetic
disorders (23). In this section, we discuss the application of scDNA-seq for understanding meiotic
recombination and germ cell mutation.

The most high-resolution approaches to date for studying recombination have been mapping
of crossovers in pedigrees (10, 57, 80, 91) or admixed populations (60, 169) and inference of histor-
ical recombination via breakdown of linkage disequilibrium (so-called LD-based maps) (38, 47).
However, these approaches have significant limitations:

1. Individual- versus population-level maps: Because recombination is a germline process with
a strong impact on fitness, it is important to measure it at the level of gametes or in in-
dividuals who are unable to reproduce, because pedigree-based and LD-based methods
only probe viable offspring. Separately, the fine-scale landscape of recombination in hu-
mans and many vertebrates is determined predominantly by the protein PRDM9, whose
DNA-binding properties may vary across individuals in the population (124, 130). Inter-
pretation of recombination maps aggregated across individuals is therefore complicated by
PRDM9 allelic diversity in the population.

180 Evrony • Hinch • Luo



2. Sample availability: Identification of crossovers at high resolution in pedigrees requires
dense genotyping or whole-genome sequencing in large numbers of related individuals
(57, 80, 94, 146). Such resources are challenging and expensive to accumulate in hu-
mans and model organisms, and this approach is not typically feasible for species in the
wild.

3. Gender differences: Recombination-related phenotypes show strong sexual dimorphism in
humans andmany other species (19, 80, 104).However, understanding of female recombina-
tion has lagged behind understanding of male recombination, in part due to the challenges
of working with limited amounts of tissue that are difficult to obtain. As discussed below,
scDNA-seq of germ cells and gametes has overcome many of these limitations.

scDNA-seq studies of sperm demonstrate that human sperm have high rates of genome in-
stability and aneuploidy (12, 100, 165), in striking contrast to mouse sperm (61). Analysis of tens
of thousands of single sperm from multiple human males revealed significant interindividual dif-
ferences in aneuploidy rates, which ranged from 1% to 5%, with an apparent excess of whole-
chromosome losses over gains (12). These data revealed that whole-chromosome gains may result
from improper segregation at either of the two meiotic divisions, with a twofold-higher error rate
in the second meiotic division for the autosomes. The number and localization of crossovers co-
vary significantly among cells (12), and a larger number of crossovers within a cell appears to be
protective against chromosomemis-segregation (12, 100).Further insight intomalemeiotic segre-
gation was provided by scDNA-seq of spermatocytes (precursors of sperm), which showed an un-
expected class of meiotic segregation error in an azoospermic mouse (177). Single-sperm sequenc-
ing in mouse has also provided novel insights into the dynamic processes underlying the pairing
of homologous chromosomes and the determination of which DNA breaks become crossovers:
A high-resolution map of crossovers in mouse sperm showed that DNA breaks that repair more
quickly are also more likely to become crossovers (61). scDNA-seq may also enable individualized
quantification of spermmutation rates and the risk of transmitting de novo mutations to offspring
(165); however, further technological improvements in throughput, coverage, and accuracy will
be required.

Acquisition of oocytes involves a surgical procedure, and only small numbers of oocytes (<10)
are typically harvested per individual in humans and other mammals (63, 131). Limited tissue
availability, together with the fact that all the products of a singlemeiosis can be harvested together
(oocyte and polar bodies), makes scDNA-seq of oocytes a powerful avenue for studying female
meiosis. Single-cell data have confirmed that crossovers exhibit interference (they are farther away
from each other than expected by chance) in human oocytes (63, 131), which they also do in sperm
(100, 165). Human oocytes have very high aneuploidy rates (18–70%) (63, 131), and in contrast
to spermatocytes, they have significantly higher error rates in the first meiotic division. Genome
comparisons of the oocyte with the first and second polar bodies led to the identification of a
new mode of reverse segregation of chromatids, which was observed to be the dominant signature
of aneuploidy (131). This study also showed that crossing over is protective against aneuploidy,
with further meiotic drive against nonrecombinant chromatids. Understanding the mechanisms
of aneuploidy further will require phasing of missegregated chromosomes (131), which remains
a challenge with the relatively low genome coverage obtained per cell. A major focus of recent
single-cell research has been to maximize throughput and aggregate small amounts of information
per cell across large numbers of cells (12, 177). Generating insights into female recombination,
however, will require a parallel emphasis on maximizing the amount of information obtained per
cell, e.g., by increasing the genome coverage per cell (61) and performing long-range haplotyping
of individual molecules (154).
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FERTILITY

A major emerging clinical application of scDNA-seq is in prenatal screening and genetic testing
in natural conceptions and in vitro fertilization. During assisted reproduction, multiple embryos
are typically created by in vitro fertilization and screened for aneuploidy and highly deleterious
mutations, followed by implantation of selected embryos. Single-cell genomic approaches have
improved on conventional methods of analyzing embryo biopsies by enabling simultaneous de-
tection of aneuploidy and mutations genome-wide (82, 160, 172). Sequencing of polar bodies
can also be used to detect maternally inherited aberrations in oocytes (63). These approaches are
adding insight into the nature of aneuploidy and mosaicism in embryos, which may be mitotic or
meiotic in origin (117, 149). In natural conceptions, invasive testing carries the risk of procedure-
induced miscarriage, and noninvasive sequencing of cell-free fetal DNA in maternal plasma has
been rapidly adopted in clinical practice (73, 162). However, the reliability of this method is vari-
able, and recent developments in the extraction of genetic information from fetal cells circulating
in maternal blood may lead to future single-cell genomic tools for this application (66, 147). The
remaining challenges are reliable isolation of rare fetal cells frommaternal blood and concern that
the predominant and more readily isolated fetal trophoblast cells are not always representative of
the genome of the fetus (25).

CANCER

Cancer is a disease of the genome in which an aberrant lineage of cells accumulates somatic mu-
tations along an evolutionary trajectory of uncontrolled growth. scDNA-seq has revolutionized
our ability to study the dynamic evolutionary processes by which tumor lineages evolve and inter-
act with selective pressures during oncogenesis, tumor growth, and treatment (8, 127, 141). This
section reviews the most important applications of scDNA-seq in cancer research: intratumoral
heterogeneity (ITH), clonal evolution, invasion and metastasis, circulating tumor cells (CTCs),
and therapeutic response. We also highlight emerging approaches and clinical applications.

Tumors evolve genetically heterogenous lineages over time, and the resulting ITH plays a sig-
nificant role in tumor growth, metastasis, and treatment response (28). A tumor’s ITH, defined by
the subclonal structure of its lineages and driver mutations, is its dramatis personae and of prime
importance for understanding its biology. The first study to examine ITH with genome-wide
scDNA-seq utilized copy number aberrations (CNAs) to distinguish subclonal lineages within
breast tumors (128). Since then, numerous scDNA-seq studies of CNAs and point mutations have
cataloged ITH across diverse hematological (6, 52, 65, 69), breast (9, 51, 166), ovarian (119), col-
orectal (13, 88, 96), renal (176), bladder (92), lung (44), liver (64), and brain (46) cancers. These
studies have found that most tumors contain more than one major subclonal lineage, in addition
to many tumors that harbor a larger number of lower-frequency sublineages. In some cases, the
number of major subclonal lineages (subclonal diversity) identified by scDNA-seq is associated
with the tumor subtype. For example, there is greater subclonal diversity in estrogen receptor–
negative than in estrogen receptor–positive breast cancers (9) and greater subclonal diversity in
acute myeloid leukemias (AML) harboring FLT3 mutations than in non-FLT3 AMLs (120). In
one study, higher subclonal diversity (four or more subclones) correlated with a worse prognosis
(122), suggesting that subclonal diversity may be a useful prognostic biomarker.

While ITHcan be inferred frombulkDNA sequencing data (182), scDNA-seq provides amore
comprehensive and higher-resolution view of ITH and clonal evolution (8). Subclonal structures
derived from bulk DNA and scDNA-seq are largely concordant, but the latter often reveals sub-
clones not found in bulk data (9, 69, 166). scDNA-seq can also profile ITH when sample size is
limiting, such as in fine needle aspiration biopsies (83) or when tumor cells are infrequent in the
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sample (i.e., low tumor purity). Nevertheless, both bulk and single-cell methods are usually im-
plemented in integrated analyses due to the lower cost and currently higher genome-wide quality
of bulk sequencing, especially for broader multiregion and multi-time-point profiling.

Phylogenetic analyses of ITH profiles obtained by scDNA-seq reveal the order in which spe-
cific driver mutations and types of mutations occur, which in turn provides important informa-
tion about the earliest events and mutational processes that initiate cancer. For example, several
scDNA-seq studies have shown that in some breast cancers, colorectal cancers, and acute lym-
phoblastic leukemias, large numbers of structural variants (CNAs and aneuploidies) occur over
short time periods early during tumor evolution but infrequently later (termed punctuated clonal
evolution), while point mutations accumulate continuously along with a small number of later-
occurring focal CNAs involving specific driver genes (51, 52, 96, 128, 141, 166). This suggests
that genome-wide, high-impact mutational events underlie the origins of some cases of these can-
cer types rather than a gradual accumulation of mutations. Indeed, the mechanism of one such
mutational process, chromothripsis, has been studied in vitro using scDNA-seq (181). In a large
scDNA-seq study of AML, mutations in the epigenetic modifier genes DNMT3A and IDH1/2
were identified as the most common initiating events, while mutations in signaling genes tended
to occur later (120). scDNA-seq has also quantified a statistically significant co-occurrence of
driver mutations at the single-cell level [e.g.,NPM1 and FLT3mutations in AML (122)] as well as
marked copy number heterogeneity of focal amplifications within individual tumors: Cells within
one brain tumor varied from less than 20 to more than 100 copies of EGFR (46).

Interestingly, some of the above studies identified within the tumor sample near-normal cells
that were unrelated to the tumor lineage but nevertheless contained a small number of CNAs or
only one driver mutation (e.g., APC-only mutant cells) (9, 51, 88). This likely reflects baseline
CNAs and driver gene abnormalities at low levels in normal cells (9, 51, 88). The relationship
of such cells to the origins of cancer is presently unknown and is an important topic for further
research. scDNA-seq may eventually allow the identification of the cells of origin of individual
tumors and help resolve long-standing debates regarding the existence and role of stem cell hi-
erarchies in tumors (8, 127). Other mechanisms of tumor evolution may be revealed in tumor
types that have not yet been studied using scDNA-seq. Systematic application of scDNA-seq to
all cancer types—a single-cell DNACancer Genome Atlas—in addition to other single-cell omics
programs (143) will be needed to achieve a full understanding of cancer evolution.

Much of the mortality of cancer is due to metastatic spread beyond the primary tumor site.
scDNA-seq has been used to study the lineage relationships between metastases and the primary
tumor in the hopes of finding ways to intercept this lethal process. One scDNA-seq study of
ovarian cancer found that most intraperitoneal sites of tumor spread are either monoclonal or
derive from a single tumor clade (119). This indicates that once an intraperitoneal metastatic site
is established, it is usually not reseeded by new cancer cells. The authors also found one patient
with two subclones that were present together in multiple intraperitoneal sites with correlated
frequencies, possibly due to co-migration of the two subclones to multiple locations. The mostly
monoclonal spread seen in the prior study contrasts with an scDNA-seq study of invasive ductal
breast carcinoma that found that most tumor subclones evolve within the breast duct, followed by
multiclonal invasion into the surrounding tissue (24). In a study of colorectal cancer, one patient
had monoclonal metastatic seeding of the liver, while another patient had polyclonal seeding (88).
These divergent findings in different tumor types make clear that the mechanisms and bottlenecks
of clonal spread delineated by scDNA-seq vary across tumor types and anatomic environments.

scDNA-seq of CTCs is a promising approach to noninvasively sample tumors (8). CTCs are
especially appealing in relation to more widely used cell-free DNA approaches, because they
allow examination of complete tumor cell genomes. CTCs have been successfully isolated and
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sequenced from diverse cancers, including prostate cancer, where they captured early clonal mu-
tations shared by primary and metastatic sites (99), and lung cancer, where mutations were iden-
tified in CTCs that could inform treatment (129). CTCs have also been used to noninvasively
monitor treatment response (27). However, CTCs are very rare in blood and require both specific
tumor cell surface markers, which are not currently available for most tumor types, and a sensitive
and specific isolation procedure. In a study of 51 blood samples from 36 prostate cancer patients,
27% of samples had no detectable CTCs, and the remaining samples had a median of only seven
CTCs (99). This poses a challenge for CTC profiling to capture the full clonal heterogeneity of a
tumor to reliably inform clinical decision-making. Progress will depend on newmethods to purify
CTCs from large blood volumes and validation of new markers for CTC isolation. These invest-
ments will be worthwhile, as they may enable presymptomatic detection of tumors, noninvasive
treatment monitoring, and early detection of recurrence.

scDNA-seq studies have examined how ITHchanges during clinical treatment and how tumors
evolve treatment resistance. One study showed that treatment-resistant clones in breast cancer
were detectable prior to treatment (77). Another used multiomic scDNA-seq plus immune pro-
filing to observe the phenotypic changes that mutant blast cells underwent following treatment
with a drug that induces differentiation to a mostly erythroid phenotype (31). This study high-
lights the potential of scDNA-seq to elucidate how specific lineages with different genotypes can
respond differently to the same treatment. If applied broadly, this approach will provide a critical
reference for translating subclonal genotypes to predictions of treatment response. However, two
limitations of scDNA-seq for treatment monitoring are noteworthy. First, tumor sampling during
treatment is usually only possible in discrete, infrequent time points (though CTC profiling may
mitigate this). Second, genetics is not the sole driver of ITH or treatment resistance; epigenetic
heterogeneity also plays an important role in tumor cell biology (77, 126) (see the section titled
DNA Modifications).

While scDNA-seq studies of cancer have already been impactful, new scDNA-seq technologies
are emerging with multiomic, spatial, and high-throughput capabilities that will transform cancer
research. Multiomic scDNA-seq can build genotype–phenotype correlations to understand how
specific subclonal genotypes associate with cellular phenotypes, invasiveness, treatment response,
and more. One such method, scTrio-seq, which simultaneously profiles CNAs, methylation, and
transcriptomes, found that subclonal lineages defined by CNAs and methylation are concordant,
and it further correlated methylation patterns with gene expression (13). Another recent method
combined scDNA-seq with oligonucleotide-tagged antibodies to simultaneously profile surface
protein expression in order to correlate genotypic and phenotypic ITH in AML (31, 120). Mi-
tochondrial mutations have also been combined with assay for transposase-accessible chromatin
using sequencing (ATAC-seq) for phenotypic lineage tracing of leukemia and colorectal cancer
(85).Many new multiomic methods continue to be developed (126). scDNA-seq is not only being
combined with other molecular modalities but also being applied in ways that preserve spatial
information. One study combined laser microdissection with scDNA-seq to show how ITH
varies between preinvasive and invasive regions in breast cancer (24). In situ/spatial genotyping
or sequencing of large numbers of somatic mutations directly in tissue sections (i.e., without
microdissection) would revolutionize cancer research; however, although small numbers of
mitochondrial and expressed variants can be readily genotyped because they are present in
multiple copies per cell, in situ detection of single-copy variants, especially SNVs, while feasible,
is significantly more challenging and cannot currently be scaled to large numbers of variants
(183). Finally, the throughput of scDNA-seq is rapidly increasing, an essential step toward
achieving high-resolution views of ITH and tumor evolution and for cost-effective profiling of
large cohorts. Nanowell- and droplet-based methods have scaled scDNA-seq to thousands of
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cells per sample, with a concomitant increase in ITH resolution (83, 120). This scale finally brings
scDNA-seq to the throughput regime of scRNA-seq and shifts the bottleneck to sequencing
costs, which currently limit these methods to low genome coverage or targeted loci sequencing.

Translation of scDNA-seq to the clinic is a prime goal for delivering on the promise of can-
cer genomics to improve patient outcomes (8, 127). Three important steps will help make this a
reality. First, clinical trials will need to rigorously measure the potential benefits of scDNA-seq
profiles of ITH and clonal evolution for assigning patients to personalized or targeted treatment
regimens and for assessing treatment response. Second, the current costs and technical challenges
associated with scDNA-seq will need to be reduced and simplified to deliver high-throughput
and user-friendly workflows that can be implemented reproducibly in a clinical laboratory. Third,
while scDNA-seq CNA profiling of formalin-fixed paraffin-embedded (FFPE) samples has been
achieved (111), methods for profiling single-cell genomes at high resolution from these samples
are needed, as FFPE is the main way that clinical samples are processed. These and additional
challenges remain, but the potentially life-saving benefits of scDNA-seq for cancer patients make
these worthy goals.

DNA MODIFICATIONS

A sizable fraction of the human genome contains regulatory information that dictates the spa-
tial and temporal expression of genes (37). DNA modifications provide an additional means to
precisely control gene expression by modulating the biochemical interaction between genomic
DNA and transcriptional machinery (102). The most common mammalian DNA modifications
are 5′-methylcytosine (5mC) and its oxidized forms 5′-hydroxymethylcytosine, 5′-formylcytosine,
and 5′-carboxylcytosine. Although earlier literature focused on studying 5mC dynamics in CpG
dinucleotide islands (gene-regulatory regions with an increased density of 5mC-marked CpG nu-
cleotides), the development of whole-genome bisulfite sequencing and its application to diverse
human tissues has revealed pervasive 5mCdynamics in genomic regions outside CpGdinucleotide
islands (148, 189). For example, local 5mC depletion is a reliable signature for enhancers and other
types of regulatory elements, and whole-genome bisulfite sequencing has uncovered other types
of 5mC features, such as partially methylated domains, DNA methylation valleys and canyons,
and abundant 5mC in non-CpG contexts (56, 102).

Cell type–specific patterns of 5mC have historically been achieved by isolating bulk popula-
tions of specific cell types using fluorescence-activated sorting. However, this approach is limited
by the availability of genetically encoded cell type reporters or antibodies used for purification in
animal models and human tissues, respectively. These challenges motivated the development of
techniques for single-cell profiling of DNA modifications. Currently, there are diverse single-cell
cytosine methylome methods that have been well reviewed previously (75). A series of multiomic
approaches have also been developed that combine single-cell transcriptome, chromatin accessi-
bility, or chromatin conformation with 5mC profiling (187).

Most single-cell methylome methods produce sparse data that randomly cover 5–40% of the
haploid genome. Notably, an important feature of methylome profiling is that coverage dropout
can be unequivocally determined and is independent of the methylation state. The analysis of
single-cell methylomes typically takes advantage of the local correlation of methylation patterns:
The methylation levels of CpG sites within a CpG dinucleotide island region, or in non-CpG
contexts in different parts of a gene body, are often correlated. This allows extraction of cell type–
specific and dynamic methylation information from sparse genome-wide 5mCmeasurements and
enables unbiased classification of cell types or transient cell populations. Typically, the quantifica-
tion of 5mC in single cells over discrete features, such as enhancers, requires the reconstruction
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of pseudo-bulk profiles derived from pooling the data from a larger number of single cells of
each type. Several computational approaches have also been developed to impute missing values
in single-cell methylomes and to perform clustering analysis to identify cell populations (30).

Several fields in which single-cell methylome profiling has been applied include embryonic de-
velopment, brain development, hematopoiesis (70), and cancer—processes involving major 5mC
dynamics. A series of studies have investigated the single-cell methylation dynamics of germ cell
development (90), pre- and postimplantation embryos of mouse and human (188), and mouse
gastrulation (4). The advantage of single-cell methods was demonstrated by the classification of
single cells into distinct lineages, enabling the quantification of 5mC and chromatin accessibility
at lineage specific enhancers (4).

The human brain contains a large diversity of functional regions and cell types that are es-
tablished during brain development. Single-cell methylome profiling has provided a means to
simultaneously categorize brain cell types and to identify cell type–specific regulatory elements
(103). Two methods, single-nucleus methylcytosine sequencing (snmC-seq) and single-cell com-
binatorial indexing for methylation analysis (sci-MET), have been applied to mammalian brains
(103, 105, 123). As part of the Brain Research Through Advancing Innovative Neurotechnolo-
gies (BRAIN) Initiative Cell Type Census Network (BICCN), single-cell methylomes are being
systematically generated across the entire mouse brain, and the first report analyzed 100,000 cells
from 45 regions of the anterior mouse brain (95). These and other studies of the human brain
have demonstrated similar resolution of cell type classification using single-cell methylomes as
achieved using single-cell transcriptomes (105). Interestingly, a single-cell methylome data set
generated from finely dissected mouse brain revealed nuanced 5mC dynamics within cell types
that correlates with the spatial organization of the brain (95).

Many cancer types are associated with genomic alterations and aberrant 5mC patterns (72,
126), providing an exciting opportunity to associate epigenomic heterogeneity with tumor lin-
eages. In addition, the possibility of reconstructing a history of epigenetic alterations (or epimu-
tations) has motivated single-cell methylome studies comparing primary and metastatic tumors
(13) and CTCs (54). Single-cell methylome profiling of colorectal cancer has found consistent
5mC patterns in both primary and metastatic tumors within each tumor sublineage but different
5mC profiles across lineages (13). Combined single-cell methylation and transcriptome profil-
ing of chronic lymphocytic leukemia cells found a consistently increased rate of 5mC alteration
(epimutations) compared with normal B cells, and the tumor cell lineage reconstructed using 5mC
changes accurately represented somatic mutation patterns (50). Note that in this section we have
focused on single-cell profiling of DNA modifications; applications of single-cell chromatin ac-
cessibility have been well reviewed previously (75, 78).

GENOME ORGANIZATION AND CHROMATIN CONFORMATION

The folding of the 2-m-long human diploid genome into a nucleus measuring less than 10 µm in
diameter is a complex, hierarchical process. The resulting three-dimensional organization of the
genome, also known as chromatin conformation, plays an important role in genome function. In
the interphase nuclei of eukaryotes, chromosomes occupy distinct spatial domains called chromo-
some territories. The development of proximity ligation–based chromatin conformation capture
(3C) and the derived Hi-C methods can associate chromatin structures with DNA sequences to
obtain a view of genome organization (93). These methods perform restriction digestion of cross-
linked nuclei followed by ligation to capture DNA ends that are proximal in three-dimensional
space (139). Hi-C methods have revealed a series of hierarchical chromatin domains such as topo-
logically associating domains (TADs), which are hundreds of kilobases to megabases in length
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and generally conserved among cell types (34). TADs often contain finer-scale structures such as
sub-TADs, domains, or individual loops, which, in contrast to the relative invariance of TADs, can
significantly differ among cell types and across development, suggesting that chromatin confor-
mation dynamics is a critical component of gene regulation in normal and diseased tissues (33).

Single-cell profiling of chromatin conformation has generated novel insights into the process
of chromatin organization (153, 156). Single-cell studies of chromatin conformation dynamics
during the cell cycle and the oocyte-to-zygote transition have revealed that TADs are highly het-
erogeneous among individual cells and that TADs previously observed in bulk samples arise via
chromatin contacts that are constrained but nevertheless stochastic at the single-cell level (45,
125). Another exciting application of single-cell chromatin conformation profiling is to connect
distal enhancers to their regulatory target genes in specific cell types. Genome-wide association
studies (GWASs) have found a strong enrichment of disease-associated genetic variants in en-
hancer elements (113). Cell type–specific chromatin loop information therefore provides a valu-
able resource to mechanistically dissect disease risk loci by connecting noncoding variants to dis-
ease risk genes. Single-cell 3C profiling of mouse and human brain cells has demonstrated robust
cell type identification using chromatin conformation (87, 155), supporting the feasibility of re-
constructing high-resolution chromatin interaction maps for constituent cell types of mammalian
tissues that contain heterogeneous cell populations. Single-cell chromatin conformation profiling
will become a powerful approach for fine mapping and functional studies of disease-associated
variants in the post-GWAS era.

Different strategies for single-cell chromatin conformation profiling continue to be refined
and developed.While single-cell Hi-C methods, which use biotin pulldown of contact junctions,
enrich for sequencing reads informative of long-range interactions (125, 153), 3C-based methods
that perform ligation immediately after restriction digestion (hence avoiding biotin pulldown)
provide greater sensitivity and detect substantially more chromatin contacts in individual cells
(45, 156). The trade-off is that 3C-based libraries contain a lower fraction of reads containing a
ligation junction and thus increase the assay cost. The throughput of single-cell chromatin con-
formation studies may also be further increased using a combinatorial indexing approach (138).
Furthermore, multiomic methods have recently been developed for joint chromatin conforma-
tion and methylome profiling of single nuclei (87, 89). The genomic architecture of single cells
can also be reconstructed using in situ methods, such as genome architecture mapping (GAM),
which slices nuclei into submicrometer-thin sections followed by sequencing of each section (11).
Another in situ genome sequencing method has also been recently developed that can spatially
localize thousands of genomic regions in individual nuclei (133).

MICROBIOLOGY

The diversity of microorganisms (bacteria, archaea, and unicellular eukaryotes) is vast but re-
mains largely unknown because most (>99%) have not been successfully cultured (152). Bulk
DNA metagenomics and ribosomal DNA sequence surveys have advanced taxonomies of micro-
bial diversity, but their reliance on small genomic fragments limits their ability to identify many
organisms and to associate genetic pathways with specific microbes (152, 174). scDNA-seq, how-
ever, is a culture-independent approach to resolve microbial diversity even in complex microbial
communities. The most important applications of scDNA-seq to microbiology have been to ex-
pand the census of microorganisms (especially those that are rare and cannot be cultivated), resolve
uncertainties in microbial phylogenies, study the physical associations between microorganisms,
associate specific genetic pathways to taxa, and discover genetic pathways that may be biomedically
useful (15, 86, 152, 174).
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scDNA-seq was used initially to sequence small numbers of culturable bacteria as a proof of
principle (136, 184), followed by uncultivated microbes from oral and soil samples (109, 134). It
has since been used to discover numerous new bacterial clades and even superphyla by profil-
ing diverse environmental samples, such as tropical oceans around the world, hydrothermal sites,
freshwater bodies, and underground mines (74, 132, 142). In a large scDNA-seq study, more than
12,000 cells from tropical and subtropical oceans revealed many that could not be assigned to
known taxonomies (1.2%, 2.3%, and 11% had no known class, order, and family, respectively)
(132). One study identified the first example of lateral gene transfer between eukaryotes and ar-
chaea (142), a discovery that could not have been made with bulk metagenomics. scDNA-seq of
uncultured protists has even been able to identify genetic sequences of bacteria and viruses that
infected the cells (179). The remarkable diversity of microorganisms in almost every environ-
mental sample (174) motivated the creation of a droplet-based method capable of profiling more
than 50,000 cells, which was then used to characterize the taxonomic distribution of antibiotic
resistance genes within a complex seawater sample (84).While challenges remain, such as varying
lysis efficiency and uneven genome amplification of some microbes (15), the continued applica-
tion and development of high-throughput scDNA-seq methods promises to greatly advance our
knowledge of microbial diversity.

CONCLUSIONS AND FUTURE APPLICATIONS

The applications of scDNA-seq reviewed here are only early forays heralding a rapid growth of
future applications that will provide deep biological insights and impactful biomedical uses. The
continued advancement of single-cell genome coverage, throughput, and multiomic approaches
will provide opportunities not only to enhance the resolution of developmental lineage trees, germ
cell mutation patterns, cancer evolution, genome function, and microbial communities, but also
to explore entirely new questions. While unexpected applications will certainly emerge, here, we
briefly speculate regarding future and emerging applications of scDNA-seq that were not ad-
dressed in prior sections.

Forensic analysis of low-input DNA samples can be complicated by incomplete genotypes and
mixtures of DNA from different individuals. Recent work has shown that scDNA-seq may be
useful for separating contributing DNA from mixed semen swab samples (158), and we anticipate
increasing use of scDNA-seq in forensics. Outside the setting of forensics, scDNA-seq poses ge-
nomic privacy concerns, since near-complete or complete genomes of individuals may feasibly be
recovered from even the smallest numbers of cells constantly shed into the environment.

Future environmental uses of scDNA-seq include surveillance of pathogens, ecological
changes, and antibiotic resistance of microbial species (e.g., in sewage and diverse ecosystems).
In plant biology, scDNA-seq of plant gametes has enabled the generation of crossover maps with-
out an extensive breeding program (36), which may enable more rapid methods of plant breeding.
Immunology will benefit from the application of scDNA-seq to characterize immunological lin-
eage expansions and selection in the context of infection and autoimmunity. And further studies
of basic genome function, such as the recently developed single-cell genome replication timing
(62), are emerging.

The full potential of scDNA-seq for biomedical research is still constrained by the technical
limitations of current methods. Many of the technical challenges of scDNA-seq derive from the
fact that it is not only a single-cell method but also a single-molecule method: With the excep-
tion of mtDNA, each genomic allele is present in one copy per cell. We predict that the field of
scDNA-seq will continue to focus heavily on technology development, but that technologies that
are robust and scalable will soon be commercialized and adopted by the wider research community,
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as has occurred for single-cell transcriptomics. With a larger user base, including clinical adop-
tion, we anticipate that the applications of scDNA-seq will broaden and will continue to expose
new dimensions of biology at its most basic unit of life.
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