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Abstract

Clinical genetic variant classification science is a growing subspecialty of
clinical genetics and genomics. The field’s continued improvement is es-
sential for the success of precision medicine in both germline (hereditary)
and somatic (oncology) contexts. This review focuses on variant classifica-
tion for DNA next-generation sequencing tests. We first summarize cur-
rent limitations in variant discovery and definition, and then describe the
current five- and four-tier classification systems outlined in dominant stan-
dards and guideline publications for germline and somatic tests, respectively.
We then discuss measures of variant classification discordance and the field’s
bias for positive results, as well as considerations for panel size and popula-
tion screening in the context of estimates of positive predictive value that
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incorporate estimated variant classification imperfections. Finally, we share opinions on the
current state of variant classification from some of the authors of the most widely used standards
and guideline publications and from other domain experts.

1. INTRODUCTION

Clinical genetic variant classification science is hard.Compared with the vast array of other clinical
science specialties, genetic variant classification science is in its infancy.The expanding community
of variant classification scientists is progressing through inevitable growing pains while learning
from both its successes and its unfortunate failures. Although the science of clinical genetic vari-
ant classification still has years to go before developing into a mature clinical science, some major
breakthroughs and lessons learned from mentors in older clinical science specialties have yielded
initial progress. Variant classification scientists have become a significant strength for supporting
diagnoses and have already contributed to the implementation of precision medicine, particularly
preventative interventions and targeted therapies. As we learn more and remain focused on rais-
ing the bar, clinical genetic variant classification scientists expect to continue contributing to the
advancement of diagnostic, predictive, prognostic, and theragnostic medicine.

This nonexhaustive review discusses the legacy of genetic variant classification science and how
it affects today’s methodologies, primarily in the United States.Commentary from domain experts
will help to look both backward and forward,with a focus on opportunities to improve the accuracy
of the field in the coming years. Note that at the time of writing, major efforts are underway to
revise the societal variant classification guidelines for both germline and somatic methodology.
Therefore, some of the issues raised here may be in the process of being resolved when this article
is published.

2. GENETIC VARIANTS ARE DEFINED USING A REFERENCE
SEQUENCE, SOMETIMES INCORRECTLY

A high-level general workflow for clinical genetics or genomics laboratories employing next-
generation sequencing (NGS) and variant classification is illustrated in Figure 1. NGS can
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Figure 1

General workflow of clinical genetic or genomic next-generation sequencing tests that require classification of variants. Variant filtering
steps can also occur at various points in the workflow. The test characteristics reported by laboratories are almost always limited to gene
selection and analytical sensitivity and specificity, though classification sensitivity and specificity directly contribute to test accuracy as
well. Abbreviation: VCF, variant call format.
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detect variants that are germline or somatic. Germline variants originate from a reproductive
cell and are found in the DNA of every cell of the offspring; somatic variants, sometimes called
acquired variants, occur after conception and are not found in every cell of the body. Variants are
discovered by comparing sequenced DNA to a reference sequence, where any deviation from the
reference sequence is considered a variant. A process referred to as aligning or mapping occurs
to piece together the small read lengths of sequenced DNA and determine how they correspond
with the larger reference genome sequence. Variants are then called—i.e., described with a set of
coordinates and other descriptors. Data filters may be used before and after this step, and then
variant classification scientists classify each unfiltered variant within the context of the genetic or
genomic test application. In the traditional clinical setting, a medical interpretation is then pre-
pared, with oversight by board-certified PhD or MD directors, and a clinical report is generated
and signed out for return to the receiving clinician.

Inmost of theworld’s clinical genetics laboratories, the current reference sequence for germline
variants is the GRCh38 (hg38) reference genome, described by the Genome Reference Consor-
tium.Updated sub-versions are periodically released that may ormay not be updated and validated
in clinical laboratory workflows. Some clinical laboratories continue to use older Genome Refer-
ence Consortium genome builds or their own reference sequence. Approximately two-thirds of
the GRCh38 genome build (and of the older GRCh37 build) is derived from a single individual of
approximately 50% European and 50% African ancestry (30, 63). Several countries are working
to define genomic features that are unique to their populations, or to create their own reference
genomes that are better matched to their primary populations (29, 33, 37, 38, 48). An African
pangenome has been constructed and contains approximately 10% more DNA than the current
GRCh38 reference genome (70).

In the United States, solutions have not yet been broadly implemented in clinical laboratories
to account for sequence data in individual genomes that do not align or map to the current ref-
erence genome. In NGS, these sequence data are most often discarded when variant call format
(VCF) files are generated (see Figure 1). Advances are sure to be made, however, as the National
Institutes of Health (NIH)National HumanGenome Research Institute pushes forward its newer
initiative to create a pangenome, which will be a more complete reference sequence to represent
350 genomes from the human population (26). Advances in newer sequencing technologies, par-
ticularly long-read technologies, will play a significant role in this effort (46).

The identification, or calling, of both germline and somatic variants is further complicated by
persistent limitations in the sequencing and bioinformatic tools that generate VCF files (12, 35,
41). Although NGS often outperforms other methods (53), between 0.1% and 2.6% of detected
variants derived from the dominant Illumina NGS platform are incorrect (1, 17, 25, 39, 47, 49,
59, 60). Typical somatic NGS clinical proficiency testing, which evaluates clinical laboratories for
the ability to detect the simplest of variants, shows detection sensitivities ranging from 93.9%
to 100% (19, 50, 72). Even with identical sequencing reads, a 2020 study comparing common
variant calling software found only a 93.8% concordance of single-nucleotide polymorphisms
and an 83.5% concordance of insertions and deletions (77).

In addition, different calling pipelines describe some variants differently from other calling
pipelines (76). Thus, the downstream variant classification step may be confounded because the
variant classification scientist unknowingly does not match relevant data in databases and the liter-
ature due to nomenclature differences, with nomenclature being potentially cataloged incorrectly
in the reference database or literature and/or by the testing laboratory. Notably, the frequently
used Genome Aggregation Database (gnomAD) left-aligns DNA insertions and deletions, in ac-
cordance with bioinformatic norms,whereas theHumanGenomeVariation Society nomenclature
right-aligns these same variants, in accordance with clinical norms. Thus, the same insertion or
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deletion variant may be named differently using two sets of norms. Even well-known pathogenic
variants, such as the cystic fibrosis CFTR F508del pathogenic variant, might be missed by bioin-
formatic pipelines that have not correctly controlled for left- and right-alignment issues (10, 57).

Globally, many laboratory scientists and computer scientists are working to rectify variant de-
tection and variant calling issues that lead to false negative and false positive results. In the mean-
time, variant classification scientists most often treat variants that queue at the beginning of their
workflows as true variants and proceed with laboratory protocols to classify these variants.

3. VARIANT CLASSIFICATIONS ARE TIERED
TO REFLECT CERTAINTY

3.1. Germline Variant Classification Tiers

Variant classification has traditionally been treated as “art of medicine” rather than science, which
is why it has gone largely unregulated in the United States. Art of medicine falls under clini-
cian licensure rather than Clinical Laboratory Improvement Amendments (CLIA) or College of
American Pathologists (CAP) accreditation. To assist in the art of medicine, in 2000 the American
College of Medical Genetics and Genomics (ACMG) published an original set of variant classi-
fication standards for monogenic disorder germline variants (2), which was followed by a 2007
revision (65). While the general concepts of these standards were adopted by many laboratories,
the implementation details and classification terminology, which had not been provided, varied
greatly across laboratories.

In 2013, a workgroup consisting of members of the ACMG, CAP, and the Association for
Molecular Pathology (AMP) organized to develop standard terminology for germline variant
classifications and to make evidence requirements and classification algorithms more stringent.
The result was a five-tier classification system. These classifications could be calculated using
an additive algorithm from specified evidence categories labeled stand-alone, very strong, strong,
moderate, or supporting.The 2015 guidelines were titled “Standards andGuidelines for the Inter-
pretation of Sequence Variants: A Joint Consensus Recommendation of the American College of
Medical Genetics and Genomics and the Association forMolecular Pathology” (64). The five tiers
of germline variant classifications were pathogenic, likely pathogenic, benign, likely benign, and
(variant of ) uncertain significance (VUS or VoUS). The guidelines recommended that variants be
reported with respect to the relevant genetic disorder and inheritance pattern. It was also stressed
that professional judgment should be used when implementing and adapting the guidelines.

A survey of the germline clinical genetics community, as described in the 2015 guidelines,
determined that a 90% certainty was sufficient to describe a variant as either likely pathogenic or
likely benign (64). Reference was also made to the International Agency for Research on Cancer’s
recommendation that a 95% level of certainty be applied to variants classified as pathogenic (61).
However, sufficiently large orthogonally validated truth sets are not publicly available to actually
quantify laboratories’ certainty of variant classifications; therefore, the certainty concept remains
aspirationally qualitative.

In most clinical scenarios, both the pathogenic and likely pathogenic variant classifications
are considered positive results that may alter care, with appropriate consideration to inheritance
patterns; the benign, likely benign, and VUS classifications are generally considered results that
do not change care. Certain clinical scenarios may warrant the treatment of a VUS as a candidate
positive finding when other diagnostic opportunities have been exhausted, such as in the pediatric
setting for patients in rapid decline.

Copy number variants—i.e., large deletions and gains (such as insertions, duplications, and
triplications) at the exon and gene size scale—have long been detected by technologies other than
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sequencing technologies.However,NGS has advanced to being able to detect some of these types
of larger variants. Until 2019, copy number variants had their own classification categories. How-
ever, in the 2020 publication “Technical Standards for the Interpretation and Reporting of Con-
stitutional Copy Number Variants: A Joint Consensus Recommendation of the American Col-
lege of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)”
(66), the classification system was uncoupled from individual patients and aligned to the five-tier
classification system, matching the 2015 ACMG/AMP sequence variant classification guidelines
(64).

3.2. Somatic Variant Classification Tiers

Somatic variants, also known as acquired variants, may be used in the cancer setting for diagno-
sis, for prognosis, and/or to guide therapy selection.Detected variants in these tests are frequently
reported along with variant allele frequencies measured within each unique patient sample to esti-
mate the probability of variants being germline, and to evaluate tumor clonal diversity. Sometimes
“normal” patient matched tissue is also used as a comparison, with the aim to distinguish somatic
variants from germline variants.However, what is considered normal tissue is not straightforward,
and different laboratories may approach this challenge differently, yielding different results, while
some laboratories opt to use computational methods instead (21).

The first major somatic variant classification guidelines were published in 2017 and remain
current, though an update effort began organizing in 2020. The 2017 standards have not been
broadly adopted by laboratories (7, 71), though the general concepts are found in almost all so-
matic testing laboratories. Already established laboratories with optimized protocols have been
less likely to adopt the guidelines. The 2017 somatic classification guidelines, titled “Standards
and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint
Consensus Recommendation of the Association for Molecular Pathology, American Society of
Clinical Oncology, and College of American Pathologists” (44), recommends a four-tier system
with the following evidence requirements (as summarized in figure 2 in those guidelines):

� Tier I: variants of strong clinical significance
� Level A evidence:

� FDA-approved therapy
� Included in professional guidelines

� Level B evidence:
� Well-powered studies with consensus from experts in the field

� Tier II: variants of potential clinical significance
� Level C evidence:

� FDA-approved therapies for different tumor types of investigational therapies
� Multiple small published studies with some consensus

� Level D evidence:
� Preclinical trials or a few case reports without consensus

� Tier III: variants of unknown clinical significance
� Not observed at a significant allele frequency in the general or specific subpopulation

databases, or pan-cancer or tumor-specific variant databases
� No convincing published evidence of cancer association

� Tier IV: benign or likely benign variants
�Observed at significant allele frequency in the general or specific subpopulation databases
� No existing published evidence of cancer association
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The same four-tier system was used in the 2019 guidelines titled “Technical Laboratory Stan-
dards for Interpretation and Reporting of Acquired Copy-Number Abnormalities and Copy-
Neutral Loss of Heterozygosity in Neoplastic Disorders: A Joint Consensus Recommendation
from the American College of Medical Genetics and Genomics (ACMG) and the Cancer Ge-
nomics Consortium (CGC)” (52). Clinicians feel most confident in disclosing both tier I and tier
II results to patients to inform patient care (24).

4. DISCORDANCE AND POSITIVE BIAS IN GERMLINE AND SOMATIC
VARIANT CLASSIFICATION

4.1. ClinVar Allows Cross-Comparison of Classifications

In 2013, the NIH’s National Center for Biotechnology Information expanded the concept of
locus-specific variant databases (73, 74) and launched ClinVar as a public archive for clinical labo-
ratories, researchers, expert panels, and others to archive their classifications of variants across all
genes in the germline context (42) and more recently in the somatic context. Sometimes ClinVar
participants provide minimal or detailed evidence summaries with their submissions. A rating sys-
tem has developed to reflect concordance and/or confidence in classifications, and the Food and
Drug Administration (FDA) now approves certain classifications found in ClinVar that are made
by FDA-sanctioned expert committees (13). These gene- or disease-specific committees vary in
their reliance on evidence as opposed to expert opinion. ClinVar facilitates direct comparison of
discordance among laboratories that submit to the archive.

4.2. Discordance and False Positives in Germline Classifications

The 2015 ACMG/AMP germline variant classification guidelines provided additive algorithms
and criteria for classifying (likely) pathogenic variants and (likely) benign variants (64). Variants
unable to be classified with these criteria or with unresolvable evidence conflicts remain VUSs
until they are eventually clarified. Some evidence criteria carry recommendations for quantitative
or semiquantitative thresholds. More commonly, however, the evidence criteria are conceptual in
nature. This is an inescapable result of clinical variant classification science being developed in the
absence of large truth sets. In the absence of detailed and orthogonally validated truth sets, expert
opinion is used to fill knowledge gaps. Unsurprisingly, studies comparing the application of the
2015 ACMG/AMP classification guidelines across different laboratories reveal discordance.

Of particular importance is discordance that has a clinical impact, such as discrepancies be-
tween pathogenic/likely pathogenic variants and VUSs. These discordances occur in a range of
1.5% to 10.8% among clinical laboratories (5, 6, 18, 45). Examination of trends in discordance
over time shows that since the development and publication of the 2015 classification guidelines,
overall clinical discordance has decreased to around 2.8% (75). This may also be a product of
more communication between laboratories and integrated use of existing ClinVar classifications
(32). Note, however, that concordance does not guarantee accuracy. In a 2018 study, researchers
demonstrated that approximately 11.5% of genetic disorders already had enough variants cata-
loged as (likely) pathogenic in ClinVar to exceed the population prevalence of genetic disorders
(69). Considering that ClinVar is an incomplete archive of genetic variants, the study’s estimation
of impact from false positive variant classifications represents a lower bound. The study also con-
cluded that the false positive classification burden arose mostly from misclassified rare variants
rather than misclassified common variants.
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4.3. Discordance and False Positives in Somatic Classifications

In tumor genomic profiling tests, also known as somatic tests, multiple studies have shown ex-
tremely high discordance rates among different laboratories (16, 27). When comparing final test
results, it is difficult to determine which of the multiple complex laboratory steps lead to discor-
dance, though we know that current somatic variant classification technologies suffer from many
classification false positives where random acquired variants are often overinterpreted as driver
variants (43). In one of the largest comparative studies, published in 2019, three mimetic non-
small-cell lung cancer samples with six variants were sent to 101 different laboratories. Two vari-
ants had above 85% concordant classifications, while four were highly discordant. Only one-third
of the laboratories returned results correctly identifying all six expected variants (27).

5. EFFORTS TO IMPROVE VARIANT CLASSIFICATION
METHODOLOGY

5.1. Public Efforts

The Clinical Genome Resource (ClinGen) consortium has been actively working to develop pub-
licly available tools, procedures, and working groups to advance the field of genetic variant classi-
fication in both germline and somatic settings (14). Other disease specialty consortia, such as the
Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) con-
sortium (https://enigmaconsortium.org) in hereditary cancer, have similar goals, as do many
independent clinical researchers (e.g., https://cser-consortium.org). The ACMG, CAP, AMP,
and other societies are working to update their general and disease-specific variant classification
guidelines in both germline and somatic settings. These groups have varying levels of access to
quality-controlled data, resources, and statistical support. Unfortunately, in the absence of large
orthogonally validated truth sets, with data rich at the patient and sequence quality levels, and
without sufficient resources to leverage these data, even the excellent work of these consortia and
clinical scientists is often informed more by expert opinion than by sufficiently powered evidence.
In time, as more valid evidence is compiled and studied, variant methodology will improve and
classifications will become more accurate. For example, promising early results have been emerg-
ing from researchers working with data compiled within the UK Biobank (68).

5.2. Private Efforts

Several commercial clinical genetics laboratories with large, quality-controlled databases of paired
sequence data and patient phenotype and family history data actively work to improve the accu-
racy of variant classification.The internal databases of these laboratories allow internal researchers
and outside collaborators to develop advanced variant classification techniques, which these labo-
ratories often present or publish for product promotion and peer review. These classification and
reclassification methodologies will improve over time, but currently they often represent the most
advanced variant classification methodologies in clinical genetics and genomics. When carefully
considered, these commercial methodologies should inform the drafting of public guidelines.

Particularly important advances in germline variant classification have been developed and
made public by several high-volume commercial laboratories. Methodologies of note (with their
brand names in parentheses) include Myriad Genetics’ mutation co-occurrence (M-CO) anal-
ysis and its history-weighting algorithm (Pheno) for the reclassification of variants in high-
penetrance autosomal dominant disorders (20, 22, 54, 62). Invitae’s comprehensive refinement
of the ACMG/AMP variant classification criteria (Sherloc) is an exemplary iteration of the
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guidelines (58). Myriad Genetics’ (unbranded) (11) and Ambry Genetics’ (+RNAinsight) (36)
pairing of germlineDNA andmRNA sequencing to disambiguate RNA-splicing variant classifica-
tions is helping to reclassify many variants. In the oncology somatic space, Foundation Medicine’s
patient-level database of variants and variant allele frequencies (FoundationCore), in combination
with FlatironHealth’s patient-level clinical outcomes database, is accelerating discovery for cancer
medicines and biomarkers (3). Other laboratories are also making significant advances.While the
development of private commercial databases and methodologies continues to be a contentious
topic among some stakeholders, commercial laboratories committed to publishing their work are
undeniably delivering important advances to the field of variant classification.

6. KEY LESSONS FROM ESTIMATES OF POSITIVE PREDICTIVE
VALUE IN GERMLINE NEXT-GENERATION SEQUENCING TESTS

6.1. Modeling Positive Predictive Value to Include Both Analytical and Variant
Classification Test Characteristics

Sensitivity and specificity are familiar terms when describing diagnostic test characteristics.Math-
ematically combining these test characteristics with the true genetic disorder prevalence in the
population being tested provides the clinical positive predictive value (PPV) of the diagnostic test,
as defined with the standard equations shown in Figure 2a. In the modeling demonstrated here,
clinical PPV is the percentage chance that a patient’s variant, when reported by the laboratory as
positive, is truly positive. Positive variants are those classified as pathogenic or likely pathogenic.

At present, most genetic and genomic sequencing test reports that have incorporated vari-
ant classification are accompanied by technical specifications that describe the test coverage and
technical limitations of the test, including metrics of analytical sensitivity and specificity. These
analytical metrics relate to the performance of the sequencing instrument and the variant calling
pipeline (Figure 1). Test specifications rarely, if ever, include metrics of novel variant classification
sensitivity or specificity since variant classification lacks the public truth sets needed to generate
classification sensitivity and specificity metrics. Therefore, in the absence of variant classification
sensitivity and specificity estimates, the clinical PPVs of most modern genetic and genomic NGS
tests have been left unexplored until now.

Two of the authors (H.H.G. and J.M.E.) created a framework to model clinical PPV in NGS
germline sequencing tests that incorporates both the reported analytical performance of the tests
and informed estimates of variant classification sensitivity and specificity. The framework of in-
puts and outputs is diagrammed in Figure 2b. For simplification, the five-tier germline variant
classification system was converted into a binary system based on the most common clinical sce-
nario, where variants classified as pathogenic and likely pathogenic are likely to alter clinical care
(positive) and variants classified as likely benign, benign, or VUSs are not likely to alter clinical
care (negative).

In the simplified model, a germline genetic disorder is caused exclusively by autosomal domi-
nant simulated genes and is entirely detectable within a simulated 100-gene diagnostic panel. The
hypothetical gene sequencing lengths are evenly distributed between 14.5 kb and 1.1 kb, modeled
after the diagnostic sizes of the large ATM gene and the small CDKN2A gene, respectively. A hy-
pothetical gene is randomly selected to capture 30% of the genetic disorder and represents the
single-gene test scenario. The expanded 20-gene panel with additional randomly selected genes
captures 63% of the genetic disorder, and the 100-gene panel captures 100% of the disorder.

The gnomAD data for the large ATM gene (9) is used to set an average rate of variation of
0.32 variants per kilobase in the model, with each allele contributing 0.16 variants per kilobase.
While variation is not evenly distributed across the genome, this assumed constant rate of variation
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Figure 2

A framework to calculate the positive predictive value of germline autosomal dominant gene sequencing tests that include variant
classification. Panel a shows the definitions for sensitivity, specificity, and positive predictive value, where prevalence means the true
genetic disorder prevalence in the testing population. In panel b, for the analytical (detection) portion of the test, a positive variant is
any detected variant, regardless of classification. For the variant classification portion of the test, a positive variant, which may alter care,
is likely pathogenic or pathogenic; a negative variant, which is not likely to alter care, is likely benign, benign, or a variant of uncertain
significance. The model uses variant allele frequencies and genetic disorder prevalence, along with reported and estimated sensitivities
and specificities, to frame the various outcomes relevant to genetic tests. Abbreviation: gnomAD, Genome Aggregation Database.

serves as an acceptable basis for a simplified illustrative model.The simulated autosomal dominant
genetic disorder is set as having a general population prevalence of 1%.

The analytical sensitivity/specificity of the simulated 20-gene panel for high-, medium-, and
low-stringency laboratories is set to 99.99%/99.99%, 99.95%/99.95%, and 99.00%/99.00%, re-
spectively, to match laboratory-reported test characteristic ranges for real clinical laboratory se-
quencing tests of somewhat similar size (5, 15, 28, 55, 56). These analytical test characteristics are
then extrapolated to the single-gene and the 100-gene modeled tests.
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The rate of novel variant classification true positives, false positives, true negatives, and false
negatives is estimated from published counts at the patient level of initial variant classifications,
and then reclassifications in hereditary cancer from a major laboratory over a 10-year period
(51). For example, pathogenic/likely pathogenic classifications that were later downgraded to
VUS (a positive-to-negative reclassification in our model) are categorized as false positives,
while pathogenic/likely pathogenic classifications that were not reclassified during the 10-year
study are considered true positives. Although reclassification counts in this 10-year study co-
hort will increase over time, the data come from a laboratory that has consistently operated
a proactive variant reclassification program. The laboratory’s published classification and re-
classification counts therefore serve here to optimistically estimate the classification sensitivity
and specificity of a very stringent genetic test, according to the standard equations illustrated
in Figure 2a. Such an analysis of these data results in a novel variant classification sensitivity/
specificity of 98.5%/99.995%. Based on these estimates, we model the variant classification
sensitivity/specificity for high-, medium-, and low-stringency laboratories at 98.00%/99.99%,
99.00%/99.98%, and 100.00%/99.97%, respectively. Note that higher-stringency laboratories
gain specificity in part by decreasing sensitivity, which in practice typically means requiring
higher levels of evidence for variants to be classified as (likely) pathogenic instead of as VUSs, as
compared with lower-stringency laboratories.

Variant classification sensitivity and specificity, as treated here, are at a per-observation level
and not a per-unique-variant level.Each variant observation is treated independently. For example,
if there are two unique variants, variant A and variant B; variant A is a false positive, while variant
B is a true positive; and in 10 patients, variant A is observed 1 time and variant B is observed
9 times, then 1 out of 10 variant classifications is a false positive, and 9 are true positives. This
patient-centric approach is why the classification specificity estimates used here appear very high
to variant classification scientists accustomed to wrestling with the evidence of only rare variants.
The cumulative allelic frequencies of the variants that are very common and therefore very easy
to accurately classify as benign contribute a high observation count of true negative variants to the
specificity equation (Figure 2a). The cumulative allelic frequency of a few common variants often
exceeds the cumulative allelic frequency ofmany rare variants bymore than an order ofmagnitude,
as exemplified when using an arbitrary but realistic threshold in the ATM gene (Figure 3).

6.2. Key Takeaways from Positive Predictive Value Modeling

The autosomal dominant clinical PPV curves for the single-gene, 20-gene, and 100-gene simu-
lated test scenarios are shown in Figure 4c; the contributing effects of the analytical and classifi-
cation sensitivities and specificities are illustrated in Figure 4a and Figure 4b, respectively, and
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Cumulative allelic frequencies of common and rare variants in ATM (9).
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Figure 4

Modeled clinical positive predictive value curves for autosomal dominant next-generation sequencing panels of varying sizes using
simulated data. Key assumptions and inputs are described in the main text. In each panel, the horizontal dotted black line corresponds
to a positive predictive value of 90%, which genetics professionals have voted to be an acceptable level of confidence in the truthfulness
of a positive test result (64). (a) The impact of analytical imperfections on variant detection, where the classification sensitivity and
specificity are both set to 100%. The three colored lines are derived from the indicated analytical sensitivities/specificities in the
20-gene panel and then extrapolated to the two other tests. (b) The impact of variant classification imperfections on accurately
reporting a positive variant (likely pathogenic or pathogenic), where the analytical sensitivity and specificity are both set to 100%. As in
panel a, the three colored lines are derived from the indicated classification sensitivities/specificities in the 20-gene panel and then
extrapolated to the two other tests. (c) A realistic scenario that incorporates both analytical and variant classification imperfections, as
combined from panels a and b. The solid blue line represents a high-stringency laboratory, the dashed red line represents a
medium-stringency laboratory, and the dashed yellow line represents a low-stringency laboratory in our model.

Figure 4c shows the combined model, including estimates that represent the PPVs from high-,
medium-, and low-stringency laboratories. Three key considerations for germline NGS sequenc-
ing tests emerge.

6.2.1. Stringent variant classification is critical to minimize false positives. In comparing
Figure 4a with b, we see that the most significant contributor to false positive test results is im-
perfect variant classification specificity, as compared with analytical sensitivity and specificity or
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classification sensitivity. Therefore, the common practice of judging NGS test performance only
on analytical test characteristics and gene selection is dangerously incomplete. Minor imperfec-
tions in variant classification specificity produce drastically more false positive test reports than
typical imperfection ranges in analytical performance. (While not shown, large decreases in vari-
ant classification sensitivity increase false negative reports. However, as described above, current
variant classification methodologies bias toward positives rather than negatives.)

While this key point was made by modeling germline panels, a similar point about PPV and
variant classification specificity can be made in the somatic context. We hope that future updates
in both germline and somatic variant classification guidelines will assist in increasing test PPV.
Section 7 addresses specific items that are currently lowering the specificity of variant classification
in many laboratories.

6.2.2. Positive predictive value drops significantly when clinical tests are used to screen
the general population. Comparison of all panels in Figure 4 demonstrates that PPV decreases
rapidly when genetic tests are moved from a clinical application to a general population applica-
tion, with variant classification false positives being the primary contributor.When the prevalence
of a genetic disorder in a testing population is lower than a test’s false positive rate,more false pos-
itive than true positive results will occur. In diagnostics, this is known as the false positive paradox,
and it is often counterintuitive to clinicians who are accustomed to using genetic tests in a clinical
setting, where the testing population is significantly enriched for the expected genetic disorder.
In our model, the false positive paradox threshold is readily crossed in both the 20-gene and 100-
gene panel scenarios as the genetic disorder prevalence begins to approach themodeled population
prevalence of 1% (Figure 4c). Stakeholders must consider the inevitable drop in PPV when con-
sidering implementation of diagnostic tests as general population screening tools (31). Similarly,
policy makers who are decreasing a priori risk requirements for genetic testing candidates must
carefully weigh the consequences of the resulting decrease in testing PPV. To adapt, laboratories
can increase their variant classification specificity to account for the lower-risk population and
reevaluate previous classifications in their databases with higher stringency.

6.2.3. Larger gene panels increase risk for false positive reports. Comparing the three pan-
els in Figure 4c reveals that increasing gene panel sizes amplifies the ratio of patients receiving
false positive results to patients receiving true positive results, primarily due to imperfect variant
classification. Akin to Russian roulette being repeatedly played, the risk of a false positive test re-
sult grows with each gene added to a test panel. Celebrated increases in the diagnostic yield of
many newer supersized sequencing tests may be due in part to false positive variant classifications.
Therefore, a careful risk/benefit analysis must be considered when increasing the size of gene
panels or moving to whole-exome or whole-genome tests for patients. Test developers and test
users must determine whether the gain in test sensitivity from adding genes is worth the risk of
increasing the frequency of false positive results. The right balance and choice of genes on a panel
will depend greatly on the downstream clinical implication of false negatives and false positives
for each candidate gene. Also, consideration should be given to the availability and accuracy of
orthogonal tests that could be used to verify the findings of a gene panel.

Table 1models a clinical setting where patient phenotypes and/or personal and family history
enrich the testing population to an a priori 10% genetic disorder prevalence. The table includes
two rows that give the average number of patients tested for each true positive or false positive
result obtained, respectively. For example, clinicians deploying a single-gene test from the most
stringent laboratory will see 34 patients for each true positive test result, but if they switch to
the 100-gene panel from the same laboratory, they will then see 10 patients for each true positive
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Table 1 Frequency of patients receiving true and false positive variants from the simulated next-generation sequencing
panels in a clinic population with a true 10% genetic disorder prevalence

Single-gene test 20-gene panel 100-gene panel

High Medium Low High Medium Low High Medium Low
Number of common
variants

1.75 1.75 1.75 30.86 30.87 30.87 167.85 167.87 167.90

Number of rare variants 0.17 0.17 0.17 2.97 2.97 2.97 16.16 16.17 16.17
Total number of variants 1.91 1.91 1.91 33.84 33.84 33.85 184.01 184.04 184.07
Number of patients per
reported true positive

34 34 34 13 13 13 10 10 10

Number of patients per
reported false positive

5,285 2,399 1,554 295 134 87 54 25 16

Number of rare variants
classified per false positive

889 403 261 877 398 258 875 397 257

Number of common
variants classified per
false positive

9,227 4,189 2,715 9,103 4,134 2,679 9,087 4,126 2,674

In the column headings, high, medium, and low denote high-, medium-, and low-stringency laboratories; the test characteristics of these laboratories are
defined in Figure 4. Counts are given according to the number of variant observations in patients rather than unique variant counts.

test result. This increase in diagnostic yield seems ideal. However, when switching from using the
single-gene test to the 100-gene panel, the clinicians go from returning false positive test results
to a patient very infrequently (1 in 5,285 tested patients) to returning false positive results some-
what regularly (1 in 54 tested patients). Unfortunately, to most clinicians, the true positives are
indistinguishable from the false positives. Trade-offs must be carefully considered when choosing
between smaller and larger gene panels, even when using highly stringent laboratories.

7. EXPERT OPINIONS ON THE CURRENT STATE OF THE FIELD

Given that variant classification guidelines rely heavily on expert opinion, it is fair to consider
expert opinion when exploring the strengths and limitations of the guidelines.The expert opinions
shared below are informed mainly by germline testing, but many of the comments also relate to
somatic settings.

Elaine Lyon (E.L.) and Madhuri R. Hegde (M.R.H.) were among the coauthors of both the
2015 ACMG/AMP and 2007 ACMG guidelines for germline sequence variant classification (64,
65). They remain active leaders in the global clinical genetics community and continue to de-
velop protocols in their own clinical laboratories. For additional perspective on current practices,
Christine M. Stanley (C.M.S.), Iain D. Kerr (I.D.K.), and Julie M. Eggington ( J.M.E.) comment.
C.M.S. is a board-certified laboratory director, and I.D.K. is a structural biologist. C.M.S. and
I.D.K. are both leaders in high-throughput commercial variant classification, and J.M.E. has ex-
tensive experience in quality checking and consulting on germline and somatic clinical variant
classification pipelines, primarily in the high-throughput commercial laboratory space.

The commentary provided by the authors is their own; some authors may not agree with the
comments of other authors, and the comments do not necessarily reflect the opinions of the au-
thors’ employers or the organizations, societies, or committees of which they are a part. The
authors also reserve the right to change their opinions.
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7.1. The 2015 Germline Variant Classification Standards and Guidelines from
the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology

7.1.1. Historical context for the creation of guidelines. M.R.H.: A major driving force for
creating [the 2015] guidelines for variant classification was reductions in the cost of sequencing.
Subsequent to this affordability, we began to encounter a rise in population data, necessitating
rigor in how we approached variant classification. We really needed to look at all the variants in
these population data, because many of them would be benign.

E.L.: The variant classification landscape prior to the 2015 publication of the sequence variant
guidelines, truthfully, did not change toomuch.Previously,we lacked a detailed standard operating
procedure (SOP).We basically took into consideration different ideas, and some differences in the
strength of the evidence and how to apply it occurred. One of the surprising aspects of composing
the 2015 guidelines was realizing that across laboratories, we had orthogonally come to similar
conclusions. Creating the 2015 guidelines was a process, and some concepts we could not address
completely, but we could at least place those concepts in a framework where other members of the
broader variant classification community could address them.Though some confusion persists on
how to use the guidelines, I am happy with how they turned out as an important first step. In a
way, the guidelines started the science of variant classification and interpretation.

7.1.2. Major successes of the guidelines. M.R.H.: The uniform acceptability of the guide-
lines was wonderful to see because the committee spent a lot of time creating them, including
two years of debate and dedicated thoroughness. Additionally, I am excited that the community
wants to debate the guidelines. It is critical for the progress of the field that people take pieces
of the guidelines and debate them. I receive global feedback from colleagues both agreeing and
disagreeing with aspects of the guidelines. I have seen that clinical decisions can drive the inter-
pretation of a VUS, which can then engender its own debate, lack of endorsement from some for
such decisions, and rebuttal, which is essential for progress.

C.M.S.: I most appreciated the premise of bringing initial structure and standardization to the
classification of variants at a time when NGS was ramping up heavily and therefore the number
of variants for classification was exploding.Without proper guidance and established expectations
in the field, we might have set genetic testing back years, because if labs were arriving at different
conclusions, then the utility of genetic testing as a whole may have been seriously questioned.
The straightforward definitions of the lines of evidence used in variant classification coupled with
good explanations and examples served the industry well in the beginning to allow for adaptation,
rather than an overburdensome and overly complicated system,whichmay have delayed adoption.
I preferred the five-tier system rather than more complicated proposals and the option to weight
the lines of evidence up or down to prevent the under- or overclassification of variants.

7.1.3. Implementation challenges of the guidelines. E.L.: After the 2015 guidelines came out
and were implemented, we were better able to see which components elicited more debate and,
in some cases, more confusion. This indicated areas where we needed to provide improved clarity.
Since the committee that created the 2015 guidelines was so experienced in variant classification,
perhaps we did not anticipate the questions some of our less experienced colleagues had.

M.R.H.: A criticism from the overall community that we sometimes receive is that the [2015]
guidelines do not apply to one particular gene or another, even though the guidelines are intended
to be more generic. Specific diseases, genes, variants, and heterogeneity need to be considered in-
dividually. I am uncertain if creating a guideline for every gene—which is happening right now—is
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going to be useful for clinical labs. Software and artificial intelligence will be necessary to support
this, and so will the application of one’s skill set to variant interpretation. Potential future overre-
liance on software concerns me. Moving forward, clinical lab directors need to play an important
role, especially as in my experience on the CAP committee and in NIH proficiency testing, most
errors arise from labs using automated software to classify variants. The software cannot do it all.
Also, when evaluating evidence in publications, the whole paper needs to be taken into consider-
ation. Piecemealing ought not have a role in these assessments, and I would argue that it can even
be dangerous to segregate everything into a million pieces.

C.M.S.: Some of the challenges we faced with adoption was a lack of clarification of how to
find the data for the recommended lines of evidence and how to utilize some of the lines of ev-
idence; for example, co-occurrence evidence is very challenging. In practice, this led to using a
subset of the available lines of evidence. Additionally, we needed a bit more guidance on using
the scoring algorithm for cases when there was contradiction; for example, when there were two
lines of evidence for benign classification, guidelines indicate the variant as benign even when
there is conflicting evidence. Also, there was some confusion on selecting lines of evidence of the
same type, which amounts to double-dipping and overclassification.We also were challenged with
transcript selection.When reviewing variants, it was tempting to be overly cautious and select the
longest transcript or the one with the highest variant effect predictor score. This resulted in some
cases of overscoring a variant as pathogenic by using a transcript that was not one that was of
biological significance. However, overall this was a great first draft, and there was always a plan to
update this first draft after the genetics community worked with it.

7.1.4. Application of the guidelines beyond the United States. M.R.H.: We presented the
guidelines on variant classification internationally and have discovered that different countries take
very different approaches to the guidelines. For example, in India, they think these guidelines are
too stringent, perhaps becausemany clinicians practicemedicine based on their skill set and are not
reliant on software because it is not available. In this context, understanding the interpretation of
pathogenicity can mean proceeding with treatment, as there is no mechanism to provide feedback
through the guidelines. Furthermore, the practice of genetics in Europe is quite distinct from
the practice of genetics in the United States. Other than one or two companies, whole-genome
sequencing has not been adopted. The debates that arise from this global perspective are critical.
Sometimes, in the United States, we tend to narrow our focus to how we practice medicine. We
have an opportunity to evaluate these guidelines in new contexts when we are open to global
feedback.

7.2. ClinVar

7.2.1. Achievements. M.R.H.: I have been involved in ClinVar from early on and am thrilled
the submission rate now is quite high. ClinVar has come a long way with regard to how labora-
tories are now understanding what to submit. Additionally, laboratories seem to understand the
difference between ClinVar and HGMD (the Human Gene Mutation Database).

C.M.S.: ClinVar has contributed to transparency in the industry.
E.L.: ClinVar is becoming a pretty good database when multiple people are in accordance

on whether a variant is benign. When there are no contradictions across entries, ClinVar is a
particularly efficient database. In ClinVar, I really appreciate when people who have submitted
have provided references with their description, enabling me to go to the original source. This
improves transparency for the rationale, rather than assuming I will just take someone’s word for
their description.
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7.2.2. Challenges and outdated classifications. M.R.H.: ClinVar still needs significant
cleanup. For example, there are still variants that we know are benign that remain classified as
pathogenic on ClinVar. Given the global use of ClinVar, nuances persist that can be dangerous.

C.M.S.: The biggest failures in ClinVar are (a) tagging variants added to ClinVar as pathogenic
based on the variant being discussed in an OMIM review, rather than tagging them as “informa-
tive”; (b) excessively pressuring labs to deposit all or a large percentage of variants, rather than
letting labs choose the variants that they thoroughly reviewed; and (c) allowing labs to continue
to add variant classifications to ClinVar when they have had a large percentage of incorrect clas-
sifications in the past. I would also recommend an ability to provide feedback on agreement or
disagreement with another lab’s review and allow labs to contest a review or recommend redacting
a review. Inaccurate legacy classifications are a big problem for databases such as ClinVar.

J.M.E.: Some clinical labs useClinVar classifications in their reports without any quality checks,
even single observations, then submit those same classifications back into ClinVar as their own.
This results in false consensus. Mechanisms should be put in place to stop this practice since an
increasing number of labs use consensus as a trigger to pass a variant classification on to clinical
reports without review.

I.D.K.: As a community, we should have the decency to say that, given emerging evidence, we
wrongly classified a variant. At the time, the classification may have been completely reasonable.
Biology is dynamic, and dogma is often challenged (67). I consider incorrect classifications to be in
the vast minority of cases; however, we should actively reassess these variants as new data become
available.

E.L.: We need to be aware of the difference between contradicting evidence and outdated
evidence. If data from 1995 indicate pathogenicity but current data indicate no pathogenicity, the
data from 1995 can be considered outdated. This distinction, however, can be confusing.

7.2.3. Considerations for Food and Drug Administration–approved variant classifications.
E.L.: It is critical we remember that FDA-approved variant classifications in ClinVar are still ex-
pert opinions. Certainly I feel better that a group of experts in a certain disease have reviewed
the variants, especially if this comes with a publication describing their approach. My concern,
however, is that some people will take FDA approvals as the truth, which they may or may not be.

M.R.H.: It is dangerous to go in the direction of relying on expert committees for FDA-
approved classifications in ClinVar, especially for the way approvals are made with points and a
star classification. Compounding the issue, publications are occurring for one modification or for
modification of a certain criteria, the application of which is uncertain. The potential for someone
to then go through the ClinVar SOP program and rely on the star classification without applying
critical analysis could create a dangerous situation because a lot more sequencing from diverse
populations needs to occur. Though we do not need to worry about variants that are obviously
benign, we are additionally moving in the direction of very rare variant burden and polygenic risk
scores where the effects of these variants are unknown. We are narrowing our focus too much
rather than evaluating a global perspective of what it means to do clinical genetics and clinical
testing.

7.3. Improving Variant Classification Science

7.3.1. Priorities for improvement. M.R.H.: For germline, the top priority for updating the
guidelines should be to integrate both the copy number variation guidelines and the ACMG se-
quence variant guidelines. We need to integrate biochemical cytogenetics and molecular genet-
ics into the guidelines. For germline and somatic settings, a priority would be to utilize data on
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clinical responses to help establish whether a variant is pathogenic. There should be a feedback
loop on the success or failure of precision therapies for individual patients.Third,we need a proper
infrastructure for functional genomics. Additionally, in germline population-based analysis, we
need to be watchful around benign variants, rare variant burden, and the evolution of polygenic
risk scores. Also, appropriate training is a grave unmet need in clinical genetics and genomics, as
current training programs in molecular and cytogenetics that last just two years do not prepare
candidates to contribute meaningfully in the clinic.

I.D.K.: For loss-of-function genes in both germline and somatic settings, it is important to
know the last known pathogenic variant that is supported well with evidence. That helps us un-
derstand how much can be deleted at the end of a gene before a pathogenic event occurs. Also,
the use of in silico algorithms as a potentially deciding factor in classification has to stop (40).We
need, and patients deserve, meaningful functional assays that can predict loss of function and lead
to better medical management decisions. Also, about ClinGen—ClinGen is, largely, an academic
effort. The context of a high-throughput lab, in biotech, is not apparent to them. I applaud their
efforts to reach some form of standardization, but they need to reach out to a wider community
to truly effect some kind of change. Working successfully between the ClinGen committees and
biotech can be unnecessarily challenging, and wider clinical genetics/genomics engagement could
support overcoming these challenges.

C.M.S.: We need a consensus on the correct transcript. Locus Reference Genomic is meant
to be that database, but it only contains a fraction of genes. All variant curations should be based
on the level of a variant by transcript by disease. Additionally, in germline specifically, we need a
consensus on the incidence of diseases associated with genes, which would enable us to determine
whether a variant’s frequency is too high to be pathogenic.

E.L.: Understanding how reduced penetrance affects germline variant classification is impor-
tant.What do we do with variants that partially disrupt but still retain some function?We can call
those variants “reduced penetrance” variants or variants with “different expressivities.” I have used
the term “mild variants.” But reduced penetrance is one thing the 2015 guidelines did not address.
With reduced—or mild—penetrance, we need to think carefully about when such variants should
go on a report. I would not call such variant classification “inaccurate,” but rather “incomplete,”
because we simply do not know the potential effects. A lot of variants do something, but at what
point do they cause disease?

J.M.E.: Laboratories decrease their variant classification specificity when they use insufficient
and/or low-quality data inputs for variant classification (69), and/or use overly permissive variant
classification algorithms. Germline variant classification used to rely heavily on limited and un-
replicated research databases, publications, and/or case reports. In time, these data sources proved
to be unreliable (34). Many of these lines of evidence were demoted in the 2015 ACMG/AMP
germline variant guidelines, and are likely to be further demoted in future iterations. Therefore
the practice in germline of adding up weak lines of evidence to mimic a stronger line of evidence is
inadvisable. In a concerning repeat of history, the 2017 AMP/ASCO [American Society of Clinical
Oncology]/CAP somatic variant classification guidelines adopted weak lines of evidence within its
tier II category, likely in an effort to increase sensitivity, yet at the expense of increasing false pos-
itives. Clinicians use tier II results to treat patients. However, the toll on patients of unnecessary
treatment and the increasing costs of targeted oncology therapies provide strong incentives for
decreasing false positives. Also, many laboratories overinterpret functional assay data in the liter-
ature, which leads to false positives. The decrease in activity or performance of a mutated protein
or pre-mRNA splice site as measured by a research laboratory assay does not readily translate to
human phenotype or drug response. Few assays are actually clinically validated for use in vari-
ant classification, and replication studies are rarely pursued. ClinGen’s recommended approach to
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assessing functional assays is a great start (8), though I suspect we will ultimately need even stricter
approaches. I believe, however, that it will be the continued development of large databases of
quality-controlled sequencing with matched deep phenotyping of populations and drug response
data that will be required for next-level variant classification science.

7.3.2. Relationship between research genetic testing and clinical genetic testing. M.R.H.:
Variants in genes are being identified all the time, though many do not have enough evidence for
disease or disorder causality. It is unfortunate that laboratories are beginning to report variants as
causative of a disease/disorder when causality is not apparent and is not supported by (sufficient)
evidence. We need clinical research that accompanies basic research. What we are trying to do
is understand the functionality of our basic biological systems, and we need basic researchers to
have robust collaborations with the clinical community, with research funding mechanisms that
encourage these collaborations.

E.L.: Submissions from ClinVar coming from both research and clinical labs is a double-edged
sword. If I encounter a discrepancy in ClinVar, then I need to go in and look at it. Inmy experience,
often that discrepancy is coming from a research lab. To be clear, I want to know if a research
lab identified a variant and if they have evidence of pathogenicity. However, I would appreciate
improved transparency around whether a submission is research or clinically based in origin.

7.4. Pressures on the Variant Classification Industry

7.4.1. Budget cuts and limitations on variant classification science. M.R.H.: Patient care is
the most important casualty of limited budgets and resources, because reports are not going to be
high quality in these situations. This directly compromises the quality of care the patient receives
and the quality of the report itself.

C.M.S.: When health insurance payers do not reimburse or reimburse poorly, labs are forced
to process more cases with fewer resources, increasing the probability for error. Automation can-
not replace highly qualified variant interpretation staff who do a thorough evaluation of patient
reports. Also, publication paywalls can impact classification by preventing access to the evidence,
in which case either the evidence is not used in classification or the classification is based on the
abstract alone, with no critical review of the evidence.

J.M.E.: The process of variant classification is not regulated in any meaningful way by CLIA or
CAP, and “FDA-approved” NGS tests often have major portions of the test that are not actually
regulated in a way that would safeguard against misclassified variants (23). Clinicians and health
insurance payers have little to no insight into the variant classification quality of laboratories be-
yond what they hear in sales pitches. Decreasing the quality of variant classifications provides
massive savings to laboratories with no consequence, so many labs cut corners. Patients, however,
unknowingly pay with their lives due to misdiagnosis.

7.4.2. The pressure to upgrade variants of uncertain significance in the name of compas-
sion. M.R.H.: If we consider a recessive germline case in which one pathogenic variant has been
identified, the other variant is a VUS, and the phenotype matches the gene—indicating you are
probably in the correct gene—then abstaining from delivering a therapeutic regimen is not right.
Keep the classification of the variant as VUS—i.e., do not upgrade the variant to pathogenic just
to deliver therapy—but do the compassionate action and deliver treatment. In cases such as this,
we need a mechanism to track whether the patient responded to treatment and to give that infor-
mation to the variant classification community. I suggest a clinical response category for ClinVar.
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I.D.K.: If the data do not support a certain classification, then that is what we should commu-
nicate to the patient.

C.M.S.: I think compassion plays into variant classification in the sense that we are driven by
the patients and a desire to help find them an answer. It’s what keeps us up late at night reviewing
publications in search of the cause of the patient’s clinical symptoms.

7.4.3. The pressure to increase diagnostic yield. C.M.S.: The expectation of a higher di-
agnostic yield should actually add pressure to select the right patients for the test and not to
overclassify variants as pathogenic for the sake of an appearance of a high diagnostic yield. High
diagnostic yields are the result of a combination of selecting the correct patients for genetic test-
ing and having a genetic test that can accurately detect the broadest spectrum of variant types
(e.g., single-nucleotide variants, deletions and insertions, short tandem repeats, and copy number
variants).

M.R.H.: It is nothing short of dangerous to tie health insurance reimbursement to positive
test results, as has been piloted by some payers. Policies such as these are not a good idea and
will negatively impact the practice of laboratory medicine. One consequence will be an increase
in false positive rates.

8. CONCLUSIONS

The precision medicine era has been launched primarily due to the early successes of clinical ge-
netics and genomics. On the analytical side of NGS testing, reducing false negatives is a major
focus of improvement. The reduction in variant classification false positives should also be a ma-
jor focus of improvement in the industry. Thankfully, some members of the clinical genetics and
genomics community are working to improve variant classification methodologies. A new wave
of powerful technologies and methods have been implemented by leading commercial companies
and by public consortia. Incentives and funding to build the infrastructures needed to develop
data-rich, evidence-based, quality-controlled, and orthogonally validated truth sets will provide
the framework needed to truly move variant classification forward in both germline and somatic
testing. As the field improves, clinical genetic variant classification science will become more ac-
curate and will significantly expand its contribution to precision medicine.
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