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Abstract

Adoptive immunotherapy, or the infusion of lymphocytes, is a promising ap-
proach for the treatment of cancer and certain chronic viral infections. The
application of the principles of synthetic biology to enhance T cell function
has resulted in substantial increases in clinical efficacy. The primary chal-
lenge to the field is to identify tumor-specific targets to avoid off-tumor,
on-target toxicity. Given recent advances in efficacy in numerous pilot tri-
als, the next steps in clinical development will require multicenter trials to
establish adoptive immunotherapy as a mainstream technology.
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INTRODUCTION

Adoptive immunotherapy, or cell therapies, is undergoing a period of growth and enthusiasm
following encouraging data regarding its clinical efficacy. Virus-directed cell therapies are under
investigation for the treatment of chronic viral infections such as HIV and for viruses that cause
morbidity and mortality in immunosuppressed settings such as bone marrow transplantation. In
addition, cell therapies are poised to take a prominent role in both hematologic malignancies
and solid tumors. Here we review the history and rationale of immunotherapy and advances
in understanding the principles of T cell transfer that are thought to impact clinical results.
We also discuss strategies and methods that are important in developing appropriate, effective,
reliable, and scalable culture systems. Our current understanding of methodologies for engineering
cells to redirect them to specific targets, endowing immune cells with additional functions and
safety features, and combining cells with other immune and targeted therapies is discussed in this
review (see Figure 1, below). Finally, we illustrate how immune monitoring and biomarkers can
determine the effects and fate of cell therapies in the clinical setting. We conclude with a brief
discussion of the elements required to establish a new pillar of medical treatments built around
personalized cell therapies.

HISTORY AND RATIONALE FOR ADOPTIVE IMMUNOTHERAPY

Given the abilities of T cells to recognize and kill target cells, it is not surprising that most
investigations of adoptive T cell therapy have targeted chronic viruses and cancer.

Viruses

Cell and gene therapy strategies have been proposed from the earliest days of the HIV epidemic
(1, 2). The first clinical use of chimeric antigen receptor (CAR)-modified T cells was in HIV
infection. In this setting, the CAR was composed of the receptor for the HIV envelope protein,
namely the extracellular and transmembrane portions of the CD4 protein, fused to the T cell
receptor (TCR)-ζ signaling molecule (CD4z CAR). The proposed mechanism of action was for
transduced T cells to lyse HIV envelope–expressing T cells. Between 1998 and 2005, three clinical
studies evaluated the CD4z CAR expressed in autologous CD4+ and CD8+ T cells via a retroviral
vector in subjects with active viremia (3) or in T cell–reconstituted patients with chronic HIV-1
infection (4). These studies showed that infusion of redirected T cells was feasible and safe; in
addition, T cells trafficked to reservoirs of infection (mucosa) and had modest effects on viremia.
A decade later, analysis of the data collected from these protocols in a long-term follow-up study
demonstrated the safety of retroviral modification of human T cells and the long-term persistence
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Figure 1
Adoptive transfer of autologous, genetically engineered, ex vivo–expanded T cells: the “seed,” the “soil,” and the “fertilizer.”
Autologous cells are harvested from the patient by apheresis. Following purification, cells undergo polyclonal in vitro activation and
expansion as well as genetic modification to form the seed. Engineered cell populations (seeds), along with antibodies and/or cytokines
(fertilizer), are reinfused (“planted”) into the preconditioned patient (soil). Genetic modifications can take many forms, including
introduction of transgenes or gene editing, and can be conferred to the T cells by a variety of genetic engineering platforms, such as
RNA transfection or lentiviral transduction. (Abbreviations: APC, antigen-presenting cell; CAR, chimeric antigen receptor; CRISPR,
clustered regularly interspaced short palindromic repeat; PBL, peripheral blood lymphocyte; TALEN, transcription activator–like
effector nuclease; TCM, central memory T cell; TEM, effector memory T cell; TSCM, stem-cell memory T cell; TCR, T cell receptor;
TIL, tumor-infiltrating lymphocyte; ZFN, zinc-finger nuclease.)
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of CAR-modified T cells, with an estimated half-life greater than 16 years (5). This study added
to the literature indicating that T cells were less susceptible to retrovirus-mediated insertional
mutagenesis than were hematopoietic stem cells (HSCs). In 2009, the remarkable story of the
“Berlin patient” was published (6); this was the first report of a patient being functionally cured of
HIV infection following an allogeneic HSC transplant for acute myelogenous leukemia. The donor
was homozygous for the CCR5 �32 mutation, which confers genetic resistance to HIV infection.
The findings from this report have challenged the field to develop cell therapy–based approaches
that do not require myeloablative chemotherapy or allogeneic donors. One such approach has been
to develop gene therapy strategies to reduce CCR5 expression, either through shRNA encoded
by lentiviral vectors (7) or through gene-editing strategies using zinc-finger nucleases (ZFNs) to
disrupt the CCR5 gene in T cells (8). In these cases, autologous gene-modified T cells are reinfused
with the goal of reconstituting the T cell repertoire in HIV-infected patients. Interpretation of
T cell effects on viremia and control of HIV may be affected by ongoing treatment with highly
active antiretroviral therapy (HAART), and carefully designed trials with scheduled, thoroughly
monitored treatment interruptions are under way.

Patients with hematologic malignancy undergoing allogeneic bone marrow transplantation
are also at high risk for viral illness, particularly from reactivation of chronic viruses such as
cytomegalovirus (CMV), Epstein-Barr virus (EBV), and human herpesvirus 6; primary adenovirus
infection can also cause acute and severe illness in this immunocompromised population. Although
pharmacologic treatments for these viruses are available, they often have limited efficacy, must
be administered recursively, and have significant side effects. For these reasons, several transplant
centers have focused on developing donor-derived virus-specific T cells that can be administered as
a donor lymphocyte infusion (DLI), either prophylactically or as treatment (9, 10). Because of the
limitations in approaching healthy donors and single-patient manufacturing lots of virus-specific
T cells, some centers have developed “third-party” T cell banks derived from a panel of donors
selected to span the most common HLA alleles (11–13). The Baylor group has pioneered the use
of T cell lines that are specific for three to five viruses simultaneously and has administered these
to patients either as donor-derived or as third-party-derived lymphocyte infusions (11, 14–16).
Importantly, the incidence and severity of graft-versus-host disease (GvHD) have been limited
or tolerable in all these studies. These forms of adoptive immunotherapy are the most clinically
advanced, with publication of phase II, multicenter trials (11).

Cancer

Immunotherapy for cancer has a long and somewhat checkered history; the first observations that
immune system engagement has antitumor effects are often attributed to William Coley, who
observed regression of sarcoma following severe bacterial infections in the 1890s (17). However,
the seminal finding that allogeneic immune reconstitution after bone marrow transplant had an-
tileukemic effects (18) definitively identified the anticancer effects of immune cells. Allogeneic
bone marrow transplant remains the most potent, widely available form of cellular immunother-
apy and offers curative potential for hematologic malignancies. Researchers soon noted that the
major mediators of the graft-versus-leukemia effect were T cells (19); though noted later (20),
a contribution by natural killer (NK) cells is also quite potent (21). There is a strong rationale
for combining T cell therapy with NK cell therapy because NK cells do not cause GvHD, and
they may limit resistance to T cell therapy through the emergence of tumor cells that are major
histocompatibility complex (MHC) class I deficient.

In the case of relapse after allogeneic transplantation, withdrawal of immunosuppressive ther-
apy and/or DLIs are considered standard therapies, although they have the potential to cause
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or worsen GvHD. Ex vivo activation and culture of donor lymphocytes have also been clinically
evaluated and appear to have modest benefit over standard DLI (22), particularly in hematologic
malignancies aside from chronic myeloid leukemia (CML). Although CML was formerly one
of the most common indications for transplant, it tends to be the most responsive to immune
manipulations such as DLI; in the modern era, CML is most often treated with tyrosine kinase
inhibitors such as imatinib, dasatinib, and nilotinib. The limitation of these inhibitors is that they
are expensive, and although they result in long-term remissions in most cases, they are not cu-
rative. The major opportunity for research in CML is to combine targeted agents such as kinase
inhibitors with adoptive cell transfer therapy, with the goal of developing a curative regimen.

In solid tumors, investigators have hypothesized that tumor-infiltrating lymphocytes (TILs) are
the result of a naturally occurring, yet ineffective, T cell response to the tumor. The observation of
TILs has spawned three forms of immune-based clinical interventions designed to convert TILs
into effective cells: (a) systemic administration of cytokines and immunologically active proteins
such as IL-2 and interferon, which are currently approved for melanoma; (b) systemic administra-
tion of antibody therapies aimed at modifying T cell activation and relieving checkpoint blockade,
such as ipilimumab (anti-CTLA-4), anti-PD-1 and anti-PD-L1, anti-4-1BB, and anti-CD40, to
name a few; and (c) direct isolation and ex vivo activation of the TIL. Checkpoint blockade ther-
apy has had remarkable results not only in melanoma (23), but also in tumors such as lung cancer
that had previously been considered “immunologically silent” (24, 25). Even more encouraging,
simultaneous blockade of two checkpoints (CTLA-4 and PD-1) in melanoma significantly im-
proved the response rate and time to response over either therapy alone (26). Direct isolation
and ex vivo activation of the TILs have also been tested in multiple early-phase studies and result
in durable responses in melanoma (27). In most presenting cases, however, this approach cannot
be undertaken, either because surgical material is not available or contains insufficient numbers
of TILs, or because the patient cannot tolerate the conditioning regimen or the time required
for manufacturing of their TIL product. As a result, researchers have been unable to conduct
randomized controlled studies.

As discussed below, recent advances in the use of genetically engineered T cells and an under-
standing of the principles underlying effective T cell therapy have produced encouraging results in
the use of T cell therapies for viruses, hematologic malignancies, and solid tumors. T cell therapy
is now poised to advance from phase I trials to phase II and phase III trials. Multiple biotech and
pharmaceutical companies have also begun active, clinical development of T cell therapy, with the
goal of offering a standardized, quality-controlled, regulatory-body-approved treatment for the
integration of cell therapies to benefit patients worldwide.

PRINCIPLES OF T CELL TRANSFER: THE SOIL,
THE FERTILIZER, THE SEED

T cell transfer and engraftment into the host is a complex biologic process. By thoroughly under-
standing the role of the host immune system (the “soil”), growth factors and the balance against
inhibitory cells (the “fertilizer”), and the transferred T cell product (the “seed”), investigators may
be able to optimize this process (Figure 1).

Preparation of the Soil: Host Conditioning

Evidence from bone marrow transplantation and adoptive therapy trials of TILs demonstrated
that “conditioning,” or lymphodepleting, the host enhanced engraftment of the transferred T cells.
Multiple hypotheses indicate why conditioning, or preparing the soil for the incoming T cells, is
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attractive, particularly in the setting of malignancy: For example, host conditioning may reduce
tumor burden (thus improving the effector:target ratio in vivo), reduce the population of inhibiting
regulatory T cells (28), and induce production of homeostatic cytokines to facilitate proliferation
of the transferred T cells (29). Typical regimens for host conditioning include cyclophosphamide
with or without fludarabine; some centers also use total-body irradiation. All these techniques,
particularly the most intense ones that combine chemotherapies and irradiation (30), appear to
improve the persistence of the transferred T cells as well as clinical responses involving cancer.
Notably, however, host conditioning has not been required in cases of HIV infection to enable
long-term persistence of transferred T cells (5); similarly, low numbers of virus-specific T cells can
persist and expand in post-transplant settings (31). Furthermore, recent reports of CAR-modified
T cells administered in the absence of host conditioning have shown clinical effects for both
hematologic and solid tumors (32, 33).

The Fertilizer: Cytokines and T Cell–Modulating Antibodies

Cytokines provide important growth and homeostatic signals to T cells: IL-2, IL-7, and IL-15, in
particular, have been well studied. Recombinant human IL-2 as a single agent is FDA approved
for metastatic melanoma; because of its toxicity, however, it is administered in only select centers.
Furthermore, the biologic role of IL-2 is physiologically complicated; low-dose IL-2 may maintain
regulatory T cells and has been used to control GvHD (34). Thus, it is not clear that administration
of IL-2 will help the transferred cytotoxic T cells instead of the native regulatory T cells. Strong
preclinical data support the use of IL-7 and IL-15, both of which are also being explored in clinical
trials. IL-15, in particular, may relieve the inhibition of regulatory T cells while providing support
for adoptively transferred T cells (35).

The combination of adoptive cell therapies with newer agents, including checkpoint blockade
and/or small-molecule-targeted therapies, is still in its nascent stages but is bound to generate
excitement. Many combinations are possible: Coadministration of agonistic antibodies [CD40
(36) or 4-1BB (37)] to mediate costimulation or with a checkpoint blockade (anti-PD-1 or
anti-CTLA-4) is likely both to improve the effects of the transferred T cells and to stimulate the
native T cell responses to tumors. Typically, small-molecule drugs aimed at aberrant signaling
in the tumor effect rapid, but short-lived, tumor responses, whereas immunotherapy approaches
take longer to eliminate the tumor but are potentially long-lived. Combinations of treatment
with T cell transfer coupled with small-molecule drugs targeting tumor mutations [such as BRAF
inhibitors in melanoma (38) or Bruton’s tyrosine kinase or Bcl-2 inhibitors in lymphoma] have
the exciting potential to make cancer treatment chemotherapy-free (Tables 1–3 and Figure 2).

The Seed: The Cell Product

Because of the complexity of T cell activation, differentiation, and homeostasis, several groups
have tried to determine the optimal cell population to serve as the seed for adoptive cell therapy.
T cells that have been cultured extensively, whether stimulated with autologous dendritic cells
(DCs) or artificial antigen-presenting cells (APCs) or cloned and passaged on allogeneic feeder
cells, have a terminally differentiated phenotype with a loss of in vivo engraftment and proliferative
capacity; such cells also have limited in vivo function. Reprogramming of the T cell (39, 40) may
overcome these effects, but it is associated with its own complex culture system that will be difficult
to adopt widely. Currently, culture systems that rely on repetitive antigen stimulation to generate
a T cell product are not easily scalable, efficient, or reliable enough to generate functional T cells
for immunotherapy, except perhaps as third-party donor banks, which are expensive to generate
owing to the heterogeneity of HLA types in the population.
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Table 1 Summary of current clinical trials of CD19 CAR T cellsa

Target
antigens Cancers

CAR signaling
domain

Combinatorial/
engineering strategies

(biologicals, drugs) Phase; ID Sponsor
CD19 B cell malignancies

relapsed
post-allo-HSCT,
T cells from donor

CAR:
CD28-CD3ζ

None I;
NCT01087294

National Cancer
Institute

CD19 NHL; CLL CAR: CD28-
CD137-CD3ζ

or CD28-CD3ζ

None I;
NCT01853631

Baylor College of
Medicine

CD19 Relapse/refractory
CLL, NHL, or ALL

CAR: CD3ζ None I/II;
NCT01865617

Fred Hutchinson
Cancer Research
Center

CD19 ALL; DLBCL; MCL;
NHL; CLL relapsed
post-allo-HSCT

CAR:
CD28-CD3ζ

CMV- or EBV-specific
T cells derived from
donor CD62L+ TCM

I/II;
NCT01475058

Fred Hutchinson
Cancer Research
Center

CD19 ALL; CLL; NHL CAR:
CD137-CD3ζ

None NP;
NCT01864889

Chinese PLA General
Hospital

CD19 ALL; CLL; NHL CAR:
CD28-CD3ζ

Ipilimumab I;
NCT00586391

Baylor College of
Medicine

CD19 CLL; small
lymphocytic
lymphoma; MCL

CAR:
CD28-CD3ζ

National Cancer
Institute

Follicular lymphoma;
large-cell lymphoma

IL-2 I/II;
NCT00924326

CD19 Auto-HSCT for NHL
followed by T cell
infusion

CAR:
CD28-CD3ζ

None I;
NCT01840566

Memorial
Sloan-Kettering
Cancer Center

CD19 B cell leukemia; B cell
lymphoma

CAR:
4-1BB-CD3ζ

None I;
NCT01626495

CHOP/University of
Pennsylvania

CD19 NHL; CLL CAR:
CD28-CD3ζ

CD19 CAR-transduced
PBLs and
EBV-specific CTLs

I;
NCT00709033

Baylor College of
Medicine

CD19 Pediatric relapsed B
cell ALL

CAR:
CD28-CD3ζ

None I;
NCT01860937

Memorial
Sloan-Kettering
Cancer Center

CD19 CD19+ malignancies CAR:
4-1BB-CD3ζ

None I;
NCT01029366

University of
Pennsylvania

CD19 ALL; CLL; NHL CAR:
CD28-CD3ζ

CD19 CAR-transduced
tri-virus-specific CTLs
(CMV, EBV, and
adenovirus)

I/II;
NCT00840853

Baylor College of
Medicine

CD19 Pediatric leukemia and
lymphoma

CAR:
CD28-CD3ζ

None I;
NCT01593696

National Cancer
Institute

CD19 Relapsed ALL
post-allo-HSCT

CAR:
CD28-CD3ζ

CD19 CAR-transduced
EBV-specific CTLs

I;
NCT01430390

Memorial
Sloan-Kettering
Cancer Center

(Continued )
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Table 1 (Continued )

Target
antigens Cancers

CAR signaling
domain

Combinatorial/
engineering strategies

(biologicals, drugs) Phase; ID Sponsor
CD19 Auto-HSCT for NHL

followed by T cell
infusion

CAR:
CD28-CD3ζ

TCM-enriched CD8+ T
cells

I/II;
NCT01318317

City of Hope/National
Cancer Institute

CD19 ALL CAR: CD3ζ CD19 CAR-transduced
EBV-specific CTLs

I/II;
NCT01195480

University College,
London

CD19 Leukemia CAR:
CD28-CD3ζ;
4-1BB-CD3ζ

None I/II;
NCT00466531

Memorial
Sloan-Kettering
Cancer Center/
University of
Pennsylvania

CD19/
EGFRt

Auto-HSCT for NHL
followed by T cell
infusion

CAR:
CD28-CD3ζ

TCM-enriched T cells
(cetuximab as possible
suicide system)

I;
NCT01815749

City of Hope

CD19/
EGFRt

Pediatric ALL CAR:
CD28-CD3ζ

None I;
NCT01683279

Seattle Children’s
Hospital

aAbbreviations: ALL, acute lymphoblastic leukemia; allo-HSCT, allogeneic hematopoietic stem cell transplant; CAR, chimeric antigen receptor; CLL,
chronic lymphocytic leukemia; CMV, cytomegalovirus; CTLs, cytotoxic T lymphocytes; DLBCL, diffuse large B cell lymphoma; EBV, Epstein-Barr
virus; EGFRt, epidermal growth factor receptor, truncated; MCL, mantle cell lymphoma; NHL, non-Hodgkin lymphomas; NP, information not
provided; PBL, peripheral blood lymphocyte; TCM, central memory T cells.

To maintain the persistence and function of adoptively transferred T cells, some investiga-
tors have used T cells specific to a chronic virus such as EBV or CMV and redirected them to
tumor-associated antigens (41, 42). Others have explored using phenotypically defined popula-
tions that may proliferate and survive for longer, such as central memory T cells (43) or naive
T cells (44), to improve engraftment in preclinical studies. Recent data have identified and char-
acterized early-differentiated, stem-cell memory T cells (TSCM) (45). These cells constitute the
most undifferentiated human T cell compartment exhibiting bona fide memory functions and can
survive for extended periods even after the loss of cognate antigens. These cells may also persist
and support memory T cell functions, which would make them ideal candidates for long-term
control of cancer, and may be engaged for viral vaccine purposes (46). However, it is not clear that
the frequencies of the TSCM peripheral blood samples are consistent in large numbers of diverse
cancer patients. Validated and clinically approved systems will be required to isolate these cells to
form the basis of a cell therapy product (Figure 3).

Finally, although the efficacy of adoptive cell therapy is most often attributed to CD8+ T cells,
there are reports of pure CD4+ T cell populations mediating tumor regression (47). Furthermore,
immune effector cell types other than T cells have been used in cell-transfer protocols. For example,
NK-based trials within autologous (48) and allogeneic settings (20) have been published, and
redirection as well as engagement of NK cells are areas of active research.

STRATEGIES OF EX VIVO T CELL CULTURE

Inherent barriers to widespread clinical application include manufacturing difficulties and access
to robust and efficient methods for the expansion of input T lymphocytes. Our laboratory has
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Table 2 Summary of current clinical trials of CAR T cells for cancera

Target
antigens Cancers

CAR
signaling
domain

Combinatorial/engineering
strategies (biologicals,

drugs) Phase; ID Sponsor
CD20 ALL; CLL; NHL CAR:

4-1BB-CD3ζ

None NP;
NCT01735604

Chinese PLA
General Hospital

CD30 NHL; HL CAR:
CD28-CD3ζ

None I;
NCT01316146

Baylor College of
Medicine

CD30 NHL; HL CAR:
CD28-CD3ζ

CD30 CAR-transduced
EBV-specific CTLs

I;
NCT01192464

Baylor College of
Medicine

CD33 Relapsed adult myeloid
leukemia;
chemotherapy-
refractory adult myeloid
leukemia

CAR: CD137-
CD3ζ

None I/II;
NCT01864902

Chinese PLA
General Hospital

CD138 Relapsed and/or
chemotherapy-resistant
multiple myeloma

CAR: CD137-
CD3ζ

None I/II;
NCT01886976

Chinese PLA
General Hospital

cMet Metastatic breast cancer;
triple-negative breast
cancer

CAR:
4-1BB-CD3ζ

None I;
NCT01837602

University of
Pennsylvania

EGFRvIII Malignant glioma;
glioblastoma; brain
cancer

CAR: CD28-
4-1BB-CD3ζ

None I/II;
NCT01454596

National Cancer
Institute

ErbB Head and neck cancer CAR:
CD28-CD3ζ

ErbB CAR coexpressed with
4αβ chimeric cytokine
receptor to enable ex vivo
expansion of engineered T
cells using IL-4

I;
NCT01818323

King’s College
London

FAP Malignant pleural
mesothelioma

CAR:
CD28-CD3ζ

None I;
NCT01722149

University of
Zurich

GD-2 Neuroblastoma CAR: CD28-
OX40-CD3ζ

iCaspase9 safety
switch/AP1903 dimerizing
drug

I;
NCT01822652

Baylor College of
Medicine

HER2 HER2+ malignancies CAR:
CD28-CD3ζ

CD19 CAR-transduced
EBV-specific CTLs
expressing a dominant
negative TGF-β receptor

I;
NCT00889954

Baylor College of
Medicine

HER2 Glioblastoma multiforme CAR:
CD28-CD3ζ

CMV-specific CTLs I;
NCT01109095

Baylor College of
Medicine

Ig κ light
chain

Lymphoma; myeloma;
leukemia

CAR:
CD28-CD3ζ

None I;
NCT00881920

Baylor College of
Medicine

Mesothelin Mesothelin-expressing
cancers

CAR: CD28-
4-1BB-CD3ζ

IL-2 I/II:
NCT01583686

National Cancer
Institute

Mesothelin Metastatic pancreatic
cancer

CAR:
4-1BB-CD3ζ

None I;
NCT01897415

University of
Pennsylvania

PSMA Prostate cancer CAR:
CD28-CD3ζ

HSV thymidine kinase (used
for imaging and suicide gene)

I;
NCT01140373

Memorial
Sloan-Kettering
Cancer Center

aAbbreviations: ALL, acute lymphoblastic leukemia; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CMV, cytomegalovirus; CTLs, cytotoxic T
lymphocytes; EBV, Epstein-Barr virus; HSV, herpes simplex virus; iCaspase9, inducible caspase 9; NHL, non-Hodgkin lymphomas; NP, information not provided; TGF-β,
transforming growth factor β.
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Table 3 Summary of recent clinical trials involving genetically redirected T cellsa

Target
antigens Cancers Receptor

Combinatorial/engineering
strategies (biologicals,

drugs) Phase; ID Sponsor
WT1 AML; CLL TCR None I/II;

NCT01621724
University College, London

WT1 AML, MDS,
or CML

TCR Aldesleukin; virus-specific
CD8+ T cells

I/II;
NCT01640301

Fred Hutchinson Cancer
Research Center/
University of Washington
Cancer Consortium

NY-ESO-1 Melanoma TCR None I/II;
NCT01350401

Adaptimmune

NY-ESO-1/
LAGE-1

Multiple
myeloma

TCR None I/II;
NCT01892293

Adaptimmune

NY-ESO-1/
MAGE-A3/6

Multiple
myeloma

TCR None I/II;
NCT01352286

Adaptimmune

CEA Metastatic
cancers

IgCD28TCR None II;
NCT01723306

Roger Williams Medical
Center

MART-1 Metastatic
melanoma

TCR Administration of
MART-126·35-pulsed
dendritic cells and IL-2

II;
NCT00910650

Jonsson Comprehensive
Cancer Center

aAbbreviations: AML, acute myelogenous leukemia; CEA, carcinoembryonic antigen; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia;
MDS, myelodysplastic syndromes; TCR, T cell receptor.

developed methods for efficient activation, expansion, and gene transduction of T lymphocytes
(Figure 4). Additionally, desired properties of adoptive immunotherapies include (a) demonstrated
potency against a tumor or infectious organism, (b) efficient engraftment enabling a high effector
to target ratio, and (c) long-term persistence and memory.

T Cell Therapy and Ex Vivo Culture Methods

The clinical application of T cell–based therapeutics has gained extensive momentum within the
past 30 years as a result of a number of critical discoveries including the identification of T cell
antigens that have also been tested as cancer vaccines (49). A large number of studies suggest
that DCs, when appropriately activated and induced to present tumor-associated antigens, can
elicit tumor-specific T cell immunity. This DC therapeutic approach is currently being pursued
by several biotechnology companies (50–53), but it has limitations because the ability to generate
DCs varies from patient to patient. As a result of this variability, short-term or insufficient T cell
activation may not generate an effective immune response.

Magnetic Bead–Based Artificial Antigen-Presenting Cells

Recognizing that both a primary specificity signal via the TCR (Signal 1) and a costimula-
tory/regulatory signal via the CD28 receptor (Signal 2) are simultaneously required to generate
full T cell effector function and a long-lasting immune response (54), we have developed efficient
and reproducible methods of mimicking the signal that DCs provide to T cells, but without
delivering a negative costimulatory signal. With artificial APCs (aAPCs), T cells can be grown
rapidly ex vivo to clinical scale for therapeutic applications. Instead of indirect activation via
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Figure 2
Durable tumor regression may be achieved by combining immunotherapy with targeted therapeutic strategies. (a) Patients with
metastatic melanoma exhibit improved survival with ipilimumab treatment (23) (Kaplan-Meier survival plot). Treatments are as
follows: ipilimumab only; gp100 only; ipilimumab plus gp100. Arrow indicates how immunotherapy raises the tail of the curve,
indicating prolonged effects. (b) Kaplan-Meier survival plot showing that improved survival can be achieved in melanoma with
vemurafenib therapy (204). (Panels a and b are adapted with permission from the New England Journal of Medicine.) Patients were
treated with either dacarbazine or vemurafenib. Arrow indicates direction of change effected by targeted therapy; overall survival is
improved early, but effects are transient. (c) Hypothetically, the combination of immunotherapy with targeted treatment may increase
survival in patients with metastatic cancers. The solid lines depict typical survival curves for standard cancer therapy, immunotherapy
alone, and a targeted therapy alone. The dashed line depicts the potential enhanced survival that can be achieved using immunotherapy
combined with targeted therapy. Arrows highlight the impact of the above therapeutic regimens on the tail of the curve or the spread
between curves for different treatments. Thus, immunotherapy requires more time but increases survival; targeted therapy works
rapidly but is not durable. Combining these strategies may ultimately improve the fraction of patients with long-term survival.

vaccines, this technology enables direct T cell activation, which can be modulated by controlling
the cell dose as necessary to achieve a clinical response (55, 56).

The first generation of off-the-shelf aAPCs covalently linked clinical-grade antihuman CD3
and anti-CD28 monoclonal antibodies to magnetic Dynabeads R© (Life Technologies), which
serve to cross-link the endogenous CD3 and CD28 receptors on the T cell. Via this bead-based
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Figure 3
Phenotypic and functional changes in T cells during progressive differentiation driven by chronic antigen stimulation. A state of
persistent and frequent antigenic stimulation, such as that induced by tumor burden, facilitates a progressive differentiation pathway
whereby naive T cells become terminally differentiated effectors. The following changes in the phenotypic markers that characterize
progressive T cell differentiation are depicted: Superscripts indicate expressed ( plus symbol ), not expressed (subtraction symbol ),
expressed at high levels (high), expressed at low levels (low), long telomere length (L), long/intermediate telomere length (L/I),
intermediate telomere length (I), short/intermediate telomere length (S/I), and short telomere length (S). Together with the gradual
shortening of telomere length, T cells lose their proliferative and self-renewal capacities as well as their responsiveness to homeostatic
mediators, and they ultimately become exhausted. Although cytotoxic potential/effector functions increase with persistent antigen
stimulation and T cells must be fully differentiated to possess antitumor activity, experimental evidence suggests that, in the context of
adoptive cell therapy, increasing differentiation state is inversely correlated with antitumor efficacy (205).

aAPC, the most efficient growth of human polyclonal naive and memory CD4+ T cells has been
reported (56). In terms of cell function, the expanded cells retain a highly diverse TCR repertoire
and, by varying the culture conditions, can be induced to secrete cytokines characteristic of T
helper 1 (Th1) or T helper 2 (Th2) cells (57). One important advantage of this bead-based system
is that it does not cross-react with CTLA-4 and therefore provides unopposed CD28 stimulation
for more efficient expansion of T cells. Another, unanticipated discovery was that cross-linking of
CD3 and CD28 with bead-immobilized antibody renders CD4+ T lymphocytes highly resistant
to HIV infection. This is due to the downregulation of CCR5, a necessary coreceptor for the
internalization of HIV, as well as the induction of high levels of β-chemokines, the natural ligands
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Figure 4
Clinical application of gene-modified cell therapies. Cells of interest are isolated from the whole blood of a patient, followed by
enrichment, activation, and expansion. At the time of activation, the lentiviral vector is added. On the final day of culture, cells are
harvested and cryopreserved in an infusible media. The patient is infused with gene-modified cells, and endpoint assays are conducted
at designated time intervals. At the conclusion of active monitoring, in the United States, the patient is transferred according to a
destination protocol for long-term follow-up as per FDA guidelines.

for CCR5 (58–60). Thus, CD4+ T cells may be efficiently cultured from HIV-infected study sub-
jects. Ex vivo expansion may also indirectly enhance T cell activity by removing T cells from the
tumor-induced immunosuppressive milieu (61–64). In contrast to previous methods, exogenous
growth factors or feeder cells are also not needed to enable T cell stimulation and expansion.

Cell-Based Artificial Antigen-Presenting Cells

Cell-based aAPC lines have been derived from the CML line K562 (65–67). K562 cells do not
express MHC or T costimulatory ligands, but they may represent a DC precursor that retains
many other attributes that make DCs such effective APCs, such as cytokine production, adhesion
molecule expression, and macropinocytosis. These cells have been transduced with a library of
lentiviral vectors, thus allowing researchers to customize the expression of stimulatory and co-
stimulatory molecules that can be used to activate and expand different subsets of T cells and that
can be further modified to amplify antigen-specific T cells in culture. These aAPCs also express
molecules other than CD3 and CD28 on their surface. The K562 aAPCs have been transduced
with vector to express the antibody Fc-binding receptor and the costimulatory molecule 4-1BB.
Expression of CD64, the high-affinity Fc receptor, on K562 aAPCs also allows researchers to
load antibodies directed against T cell surface receptors. CD3 and CD28 antibodies are added to
the cells and are bound by the Fc receptor to yield a cell that binds to CD3, CD28, and 4-1BB.
Compared with magnetic bead–based aAPCs, K562 aAPCs are more efficient at activating and
expanding T cells, especially CD8+ and antigen-specific T cells (65–67). In addition, these cells
can efficiently stimulate CD4+ T cells.

Thus, K562 cells may represent ideal cell scaffolds to which the desired MHC molecules,
costimulatory ligands, and cytokines can be introduced to establish a DC-like aAPC. Mimicking
the advantages of natural DCs, this artificial DC platform demonstrates high levels of MHC
expression, a wide array of costimulatory ligands, and the ability to engage in cytokine cross talk
with the T cell. In addition, the DC-like aAPC does not display several recognized disadvantages,
including the need to derive natural DCs either from CD34+ cells mobilized by granulocyte
colony-stimulating factor or from monocytes, patient-specific differentiation, a limited life span,
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and limited replicative capacity. Moreover, these cells have been injected into humans as part of a
tumor vaccine (69), signifying that these cells can be used in accordance with Good Manufacturing
Practices. To date, our laboratory and our collaborators have developed either bead- or cell-based
aAPCs optimized for Th2 cells (57, 70) and for regulatory T cells (71).

Manufacturing Process

Independent of which of the above aAPC is used, the manufacturing procedure remains similar,
starting with an apheresis product. Alternatively, T cells can be derived from a blood draw, bone
marrow, ascites, or TILs. The apheresis product may be washed out of the collection buffer in
a Haemonetics Cell Saver R© 5+ or other automated cell-washing device. It could also be directly
loaded in the Terumo ElutraTM Cell Separation System to deplete the monocytes and isolate
the lymphocytes. The depletion of CD4+, CD8+, or CD25+ T cells can be accomplished using a
Miltenyi CliniMACS R©, an electromechanical device for isolating certain cell subsets via large-scale
magnetic cell selection in a closed and sterile system. Before selection, the washed cells from an
apheresis product are magnetically labeled using particles conjugated with anti-CD4, anti-CD8,
or anti-CD25 monoclonal antibody. A single-use tubing set, including separation columns, is then
attached to the CliniMACS and the cell-preparation bag containing the labeled cells. After the
selection program has begun, the system automatically applies the cell sample to the separation
column, performs a series of washing steps depending on the chosen program, and elutes the
purified target cells.

The lymphocyte fraction from the Elutra system, or enriched T cells, is cultured in a nutrient
media. Then, addition of antibody-coated magnetic beads or of irradiated and antibody-preloaded
K562 aAPCs (see descriptions above) stimulates the cells to divide and grow. Gene transduction
of anti-CD3/anti-CD28 aAPC–stimulated T cells with retroviral, lentiviral, or adenoviral vectors
is very efficient (72–74). The whole mixture of cells, growth media, vector, and aAPC is added to
a gas-permeable plastic bag or alternative culture vessel. Tubing leads on the bags and a variety
of connecting devices allow the cells to be grown in a closed system with minimal risk of contam-
ination. After gene-vector washout, if needed, on the Baxter CytoMate and during log-phase cell
growth, cultures are transferred to the WAVE Bioreactor, where cell concentrations may reach
1 × 107 cells/ml or higher. The advantage of the WAVE is that T cells can be grown at higher
densities, which saves labor on processing and during cell harvest. Cultures are maintained for
9–11 days prior to being harvested and prepared for reinfusion, or they may be cryopreserved for
later infusion. At harvest, the magnetic bead–based aAPCs are removed, and the cells are washed,
resuspended, and cryopreserved in an infusible solution. If cells are to be infused when fresh,
in-process samples are taken for microbiological testing, viability, and cell phenotyping via flow
cytometry for release. Testing is repeated on the final product, although results for some tests are
not available until after the cells are infused.

GENETIC ENGINEERING PLATFORMS

T lymphocytes can be modified by gene-transfer methods to permanently or transiently express
therapeutic genes to enhance and expand the therapies. Importantly, genetic engineering can
also be used to endow lymphocytes with several other features, including increased proliferative
potential (75), prolonged in vivo persistence (76), improved capacity to migrate to tumor tissues
(77), or the ability to recognize an entirely new antigen. Redirection of antigen specificity is
usually based on either a TCR of known specificity (78) or a synthetic receptor such as CAR,
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Figure 5
Vector systems for T cell adoptive therapy. (a) Within adoptive immunotherapy in the clinic,
gammaretroviral vectors are one of the most commonly used vector systems for permanent gene expression
in T cells. Stable packaging cell lines can be used to generate clinical-grade vector produced using Good
Manufacturing Practices. (b) Within adoptive immunotherapy clinical trials, the use of lentiviral vectors for
permanent gene expression in T cells is increasing. Compared with gammaretroviral vectors, lentiviral
vectors have several advantages: They can transduce nondividing cells, have high transduction efficiency, and
may have a safer integrating profile. (c) Nonviral transposase-mediated gene transfer, in which gene
integration is achieved by providing a transposase enzyme, can mediate permanent gene expression in T
cells. (d ) Via electroporation, DNA can be directly transfected into T cells and then integrated; genetically
modified T cells can be cloned and expanded. (e) Via electroporation, T cells can also be directly transfected
with in vitro–transcribed mRNA without being integrating. This is a transient transgene system, and the
transgene can be expressed in T cells for up to 1 week. Repeated infusions of the mRNA-transfected T cells
are required. All vectors are depicted as linear DNA. (Abbreviations: IR, internal repeat; LTR, long-terminal
repeat; ψ, packaging signal; UTR, untranslated region; PolyA, polyA tail.)

which recognizes antigens through antibody-derived complementarity-determining regions and
signals through TCR-associated molecules (79).

Current clinical trials of permanently modified T cells employ viral- and nonviral-based ap-
proaches. Retroviral (gammaretroviral and lentiviral) vectors can be used to transduce cells without
producing any immunogenic viral proteins, with the transgene becoming a permanent part of the
host-cell genome. Retrovirus-based gene delivery is an extremely useful tool in gene therapy
research and is commonly used in trials of T cell therapies. Nonviral DNA transfection or trans-
posons are also used for permanent gene expression in gene-modified T cell–based therapies.
Gene delivery via adenoviral vector or RNA transfection enables expression of the transgene for
up to 1 week; these approaches may be useful in scenarios where transient transgene expression is
desirable (Figure 5).

Gammaretroviral Vectors

Currently, most retroviral vectors are derived from murine or avian retroviruses. The Moloney
murine leukemia retrovirus (gammaretrovirus) has been extensively studied as a vector and can

www.annualreviews.org • Adoptive Immunotherapy for Cancer or Viruses 203



IY32CH07-June ARI 13 February 2014 8:3

package up to 8 kb of genetic material. Vectors that are derived from gammaretrovirus have been
most useful for long-term gene expression because they can integrate into the host genome, which
results in permanent expression of the transgene with low intrinsic immunogenicity (80). The first
human trial of immunotherapy with gene-modified T cells was reported in 1990 for patients with
advanced melanoma. In this case, TILs were modified via retroviral gene transduction (81); the
retrovirus was then used to encode neomycin resistance and tracked only the fate of the infused
T cells. Also in 1990, two girls suffering from adenosine deaminase severe combined immuno-
deficiency (ADA-SCID) were treated with T lymphocytes transduced with a gammaretrovirus
expressing the ADA gene; incorporation of those gene-corrected T cells led to the reconstitution
of the patients’ immune systems (82). Since then, retroviral vectors have been the major tool for
permanent transgene expression and have been widely used for gene therapy as a vehicle to deliver
genes into different cell types, including T lymphocytes (83, 84).

HSCs, which have the potential to self-renew and differentiate into all blood lineages, were
initially thought to be the most desirable targets for retroviral gene modification to treat genetic
disorders and other diseases (85–91). Although initial results were encouraging, adverse events
were observed in trials for SCID-X1 and X-chromosome-linked chronic granulomatous disease
(X-CGD) as a result of vector integrations in the vicinity of well-characterized proto-oncogenes
(87, 92, 93). Because the target cells most vulnerable to insertional-mediated transformation may
be primitive progenitor cells, more mature cells may be less prone to this event (94–97).

By contrast, T lymphocytes remain major targets for retroviral-based gene modification. Not
only can they be used to deliver therapeutic genes, but they can also be redirected for specific
tumor-associated antigens (3, 78, 98–100). Unlike HSCs, T lymphocytes are less susceptible to
transformation (101). Rarely, insertional mutagenesis can contribute to transformation, but this
is a rare event and appears to be the result of a synergistic effect between the activation of a
proto-oncogene, such as LMO2, and robust signaling through T cell homeostatic cytokines, such
as IL-2 or IL-15 (102, 103). Whether a stimulating signal generated via a transduced TCR or
CAR can synergize with activation of a proto-oncogene (i.e., as a result of retroviral insertional
mutagenesis) to cause transformation of transduced T cells remains to be elucidated. Malignant
transformation has not been observed thus far in clinical trials of retroviral-based gene transfer
into mature T cells (3, 5, 72, 104).

Lentiviral Vectors

Lentiviral gene transfer is a relatively new process and has many features found in the retroviral
system. Lentiviruses are distinct members of the retrovirus family. Lentiviral vectors have been
constructed from several types of lentiviruses, but the most commonly used is HIV because its
molecular biology has been extensively studied (83, 105).

Similar to gammaretroviral vectors, lentiviral vectors stably integrate into the target cell’s
genome, resulting in persistent expression of the gene of interest. They can also accommodate up
to 10 kb of transgene material, and the immunogenicity of the vector is low. However, in contrast
to gammaretroviral vectors, lentiviral vectors transduce nondividing cells (106), have broader
tissue tropisms, and have a potentially safer integration site profile (107, 108). Furthermore,
lentiviral vectors are less susceptible to gene silencing by host restriction factors (109). These
distinctive features broaden the possible applications of lentiviral vectors, especially in settings
where gammaretroviral vectors are not suitable. Lentiviral vectors have been safely used in human
clinical trials to engineer HSCs and T lymphocytes, and no oncogenic events have been observed
(73, 89, 90, 110, 111). However, clonal expansion and dominance of hematopoietic progenitors
were reported in a clinical trial in which HSCs were genetically modified with a lentiviral vector
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that expressed the beta-globin gene for the treatment of thalassemia (90). Therefore, genotoxicity
of insertional mutagenesis is still a potential safety concern when working with lentiviral vectors.

From a manufacturing perspective, stable packaging cell lines are easily established for gam-
maretroviral vectors, whereas doing so for lentiviral vectors is still challenging owing to the tox-
icity of envelope proteins; this limitation forces researchers to generate vectors from inefficient,
transient multiplasmid transfections. In addition to the risk of insertional mutagenesis, another
potential safety issue applicable to both gammaretroviral and lentiviral vectors is the possibility of
generating replication-competent retroviruses (RCR). Although new generations of vectors have
been designed to reduce the production of RCR, these additional steps have resulted in decreased
efficiency of vector production.

Adenovirus Vectors

Adenovirus vectors transduce both dividing and quiescent cells; they can accommodate relatively
large transgenes, production of high-titer vector stocks is relatively easy, and the vectors are
nononcogenic owing to their lack of integration into the host genome. Adenovirus vectors are
widely used in clinical trials, especially for cancer-targeted gene therapies. Application of adeno-
virus vectors in T cell–based therapy is limited by transient transgene expression and the immuno-
genicity of the vector. Chimeric adenoviral vectors Ad5/F35 mediate gene transfer in up to 10% of
resting T cells and 30–45% of T cells after activation with phytohaemagglutinin (112). Ad5/F35
vectors could result in gene transfer in more than 90% of T cells after activation by CD3- and
CD28-specific antibodies (8, 74). Adenovirus vectors may be used as vehicles to deliver genes to
T cells in clinical situations where duration of transgene expression of less than a week is required
and there is no foreseeable need for repeated cell infusions. Examples of such situations can be en-
visioned for gene-editing strategies such as ZFNs or transcription activator-like effector nucleases
(TALENs) or for clustered regularly interspaced short palindromic repeat (CRISPR)-mediated
specific gene silencing (8).

DNA Transfection and Transposon-Based Gene Delivery

Nonviral-based DNA transfection methods remain popular as vectors for gene therapy owing to
their low immunogenicity and low risk of insertional mutagenesis. The first clinical trial testing the
adoptive transfer of T cells engineered using electroporation was recently reported (113). Although
this approach was safe, the cells were short-lived after transfer, probably owing to the long-term
culture of the cells that was required to select sufficient numbers of permanently integrated T cell
clones for treatment.

Transposon-based systems can integrate transgenes much more efficiently than can plasmids
that do not contain an integrating element (114, 115). Sleeping Beauty (SB), for example, provides
efficient and stable gene transfer as well as sustained transgene expression in primary cell types,
including human hematopoietic progenitors, mesenchymal stem cells, muscle stem/progenitor
cells (myoblasts), pluripotent stem cells, and T cells (116). Various transposon-based systems are
now entering clinical trials to test the safety and feasibility of this approach to engineer T cells (117).
Nonviral vectors have several advantages over viral vectors as a modality for engineering cells,
including lower costs and perceived safety benefits. However, the safety profile of these approaches
is still uncertain, given that the relative genotoxicity of transposons is unknown. Approaches to
achieve site-specific integration and DNA editing are under development, and if these prove to be
efficient, they should allay concerns regarding the use of non-site-specific integration approaches
within lymphocyte engineering.
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RNA Transfection

Thus far, we have discussed viral transduction or plasmid DNA transfection of T cells, which
can result in stable genomic integration, allowing for constitutive, permanent expression of the
transgenes. Safety concerns, such as genotoxicity, potential generation of RCR, and the difficulty
of predicting off-tumor toxicities, may limit the widespread use of gene-modified T cells, partic-
ularly as a first approach in the clinical setting. Moreover, for some clinical situations, multiple
infusions of engineered T cells may be required (i.e., to overcome the lack of persistence or the
immunosuppressive influence of the tumor microenvironment), making the manufacture of a clin-
ical dose of T cell product difficult and expensive. When transient expression of the transgene is
desired, such as to identify potential off-tumor toxicities, or when recursive infusions are planned,
RNA transfection of T cells is an attractive approach because it is relatively inexpensive and fast
and the transfection efficiencies can easily approach 100%. RNA-based electroporation of human
T lymphocytes using in vitro–transcribed mRNA mediates transient expression of proteins for
approximately 1 week. The self-limiting transgene expression can provide a safety check for off-
tumor, on-target, or off-target toxicities as well as for other unwanted side effects, as the engineered
T cells are essentially a “biodegradable” product. Furthermore, there is no genotoxicity concern
because the introduced mRNA does not integrate into the host genome. RNA electroporation has
been used to deliver messages for TCR or CAR, chemokine receptors, or cytokines (118–121).
In one study, T cells modified by CAR RNA were evaluated in a side-by-side comparison with
retrovirus-modified T cells: RNA engineering was at least as efficient as retroviral gene trans-
fer (122). Alternatively, for transposon-based gene delivery systems, transposase enzymes can be
delivered as mRNA, thereby avoiding the possibility of genomic integration (123). Gene-editing
strategies based on ZFN, TALENs, or CRISPR can be also delivered by RNA transfections. In
preclinical animal studies, multiple injections of CAR RNA–modified T cells mediated regression
of disseminated tumors (124–126). Clinical trials in which solid tumors are treated with RNA-
electroporated CAR T cells have been initiated by several groups (33), and the safety and efficacy
results will provide valuable information for future cancer treatments using genetically modified
T cells.

T CELLS REDIRECTED WITH SPECIFIC T CELL RECEPTORS

Transduction of T cells with a specific TCR has the advantage of redirecting the T cell to an
intracellular antigen. Given that most oncogenic proteins are intracellular, development of a
panel of TCRs specific to oncogenic driver proteins has great appeal. However, a library of
MHC-restricted antigen-specific TCR reagents needs to be characterized and available to treat
patients who have diverse HLA alleles. Furthermore, the low affinity of most tumor-directed
TCRs is thought to impact their efficacy significantly. As such, most peptide-cancer vaccines
alone or in combination with adjuvants or professional APCs have produced underwhelming
clinical responses, despite in vitro evidence of tumor-directed T cell responses (127–129).

Several groups have explored retroviral transduction of native TCRs with the goal of
redirecting polyclonal T cells to an intracellular antigen. Potentially significant obstacles were
hypothesized because four potential TCRs can be expressed at the cell surface when a T cell
transcribes the chains for two different TCRs: native α/β, transduced α/β, and native/transduced
“mispaired” heterodimers. This is problematic for two crucial reasons: (a) The native/transduced
heterodimers have unknown specificity and potential autoimmune consequences, which have
been found in some mouse models (130); and (b) there is dilution of the signal transduction
apparatus, because the availability of CD3 complex molecules is limiting. Early studies of
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HIV-directed TCRs encountered low levels of expression of the transduced TCR as well as
mispairing; this combination resulted in decreased efficacy in vitro and heterogeneous populations
of T cells (131). Several groups have described methods to favor pairing of the transduced TCRs
by engineering the transduced TCR chains, including (a) partial murinization of the constant
regions (132–134), (b) the addition of disulfide bonds (130, 135–138), (c) altering the knob-in-hole
directional interaction of the endogenous TCR constant regions (139), and (d ) adding signaling
domains to the intracellular portions of the transduced TCR (140). Another interesting approach
is to knock down the endogenous TCR with gene editing or shRNA (141); a third-party bank of
T cells that also have endogenous HLA knocked down provides yet another possible approach,
which has the further advantage of bypassing full HLA matching (142). Most of these modified
TCR designs are still in preclinical development (Figure 6).

Nevertheless, trials of native TCR-transduced T cells have been reported, and though some
have resulted in significant antitumor responses (99), others have noted significant on- (78, 143)
and off-target toxicity (144), particularly when the TCR has relatively high affinity for its cog-
nate antigen. In one clinical study of a high-affinity transduced TCR to the MART-1 melanocyte
antigen, investigators observed off-tumor toxicity in the form of significant uveitis and otitis, re-
sulting from the destruction of pigmented cells in the eye and inner ear, respectively (78). In a
second example of off-tumor on-target toxicity, a TCR specific for the MAGE-A3 cancer testis
antigen cross-reacted with an epitope derived from the related antigen MAGE-A12. In clinical
trials, investigators observed neurologic toxicity caused by previously unrecognized expression of
MAGE-A12 in the brain (143). The dose-limiting toxicity of TCRs directed to carcinoembryonic
antigen was colitis (145). Although testing for on-target toxicity can be relatively straightforward,
for example, by reverse-transcription polymerase chain reaction (PCR) from archived normal tis-
sues, testing for potential off-target toxicities of TCRs is significantly more challenging. Typically,
the starting point for identifying off-target toxicity requires that the new TCR be tested against
a panel of live cultured cells that are representative of human tissues to serve as targets. In one
case, despite extensive preclinical testing on panels of cell lines, cardiac toxicity of a MAGE-A3-
directed TCR could not be replicated in vitro until beating cardiac myocytes derived from induced
pluripotent cells were used as targets (144, 146); the cause of “off-target” toxicity was the result
of TCR cross-reactivity to an unrelated peptide derived from titin (144, 146). Interestingly, the
effects of TCR-transduced T cells that have been encountered clinically have not been a result
of the predicted effects of mispairing and poor signaling; rather, the toxicities have been related
to TCR affinity and specificity, and they demonstrate the high potency of TCR-transduced T
cell products. In hematologic malignancies and solid tumors, clinical trials with native-TCR- and
engineered-TCR-transduced T cells directed to a number of HLA-restricted antigens are under
way (Table 3), with results showing early promise (147).

T CELLS REDIRECTED WITH CHIMERIC ANTIGEN RECEPTORS

The first generation of CARs were engineered receptors comprising a single-chain variable frag-
ment (where the variable portions of the light and heavy chains of a high-affinity antibody are
connected by a linker sequence), a transmembrane domain, and the signaling domain of CD3ζ

(79, 148). Second-generation CARs have included the costimulatory domains derived from CD28,
4-1BB, or OX40 to optimize T cell activation, and these have improved function in vivo partic-
ularly against more aggressive tumors that do not express costimulatory molecules (149). Third-
generation CARs also include the signaling domains of a third molecule such as TNF-receptor
family members including 4-1BB or OX40; these have less potent cytotoxic activity but persist
longer in vivo (150–152). Because CARs are antibody based, however, high-affinity single-chain
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Figure 6
Strategies to improve the function of transgenic TCRs. Expression of a transgenic TCR may be improved by
preventing the formation of mixed dimers between endogenous and engineered TCR chains. These
strategies include the alteration of amino acid interactions, the creation of TCR-CD3ζ fusions, scTCRs, and
TCR chimeras (“murinization”) as well as the introduction of additional disulfide bonds or glycosylation.
Mutating amino acids in the CDR3 and knocking down/out endogenous TCR expression may also increase
transgenic TCR activity. Abbreviations: CDR3, complementarity-determining region 3; CRISPR, clustered
regularly interspaced short palindromic repeat; sc, single chain; TALEN, transcription activator-like effector
nuclease; TCR, T cell receptor.

variable fragments derived from antibody sequences typically have been directed to native surface
antigens, and this restricts suitable targets to proteins or epitopes displayed on the surface of the
target cell (Figure 7).

The exact mechanisms of how CARs function are still unknown (153), but CARs appear to
homodimerize independently of the TCR and become part of the CD3 complex only if the
transmembrane domain selected is that of CD3ζ (154). This is not entirely surprising given that
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T cells can be redirected to possess specificity for tumors. (a) Endogenous T cells express a single TCR.
(b) Alternatively, these genes can be engineered to express CARs that target surface antigens in an MHC-
independent manner. CARs are fusion proteins composed of an extracellular portion that is usually derived
from an antibody and intracellular signaling modules derived from T cell signaling proteins.
First-generation CARs contain CD3ζ, whereas second-generation CARs possess a costimulatory
endodomain (e.g., CD28 or 4-1BB) fused to CD3ζ. Third-generation CARs consist of two costimulatory
endodomains linked to CD3ζ. (Abbreviations: CAR, chimeric antigen receptor; MHC, major
histocompatibility complex; scFv, single-chain variable fragment; TCR, T cell receptor.)

the transmembrane or intracellular signaling domains typically dimerize (CD8α, CD28), although
some of them (4-1BB) may form trimers in their native conformation. Some evidence also suggests
that the spacing and conformation of binding to the epitope between the target and the CAR T
cell are important in optimizing CAR-induced signaling (155), whereas affinity appears to play a
smaller role in CAR T cells (particularly compared with TCR-redirected T cells).

Similarly to TCRs, CAR-directed T cells seem to maintain an exquisite sensitivity to low levels
of the cognate antigen. This may be surprising because the signaling domains of CARs are not
expected to amplify signal to the same degree as TCR triggering of the entire CD3 receptor com-
plex. Indeed, in vitro data suggest that CAR T cells have a threshold for signaling at approximately
50 molecules per target, whereas native T cells need to engage only 1–10 molecules for TCR
triggering (156, 157). Recent results suggest that the TCR has multiple modes of downstream sig-
naling that regulate discrete functional events and that the number of ITAMs (immune-receptor
tyrosine-based activation motifs) recruited to the synapse regulate these distinct signaling path-
ways (158). Clinical investigations of CAR T cells have confirmed this low threshold for activation:
In trials of CAR T cells directed to the tumor antigen Her2/neu or carbonic anhydrase IX, subjects
have experienced severe toxicity based on low-level expression of the target antigen in the lung or
the biliary tract, respectively (159, 160).

Currently, most preclinical investigations of new forms of CAR T cells involve xenogeneic
immunodeficient models, where a human tumor is implanted either subcutaneously or orthotopi-
cally, and human T cells are injected either into the tumor or intravenously, either simultaneously
or after tumor engraftment. However, these models are limited: The tumor microenvironment is
not replicated in the animal, the remaining arms of the immune system are absent or debilitated,

www.annualreviews.org • Adoptive Immunotherapy for Cancer or Viruses 209



IY32CH07-June ARI 13 February 2014 8:3

and there is generally no possibility of evaluating off-tumor expression of the target. For CD19,
for example, preclinical models did not predict that CAR T cells would cause the degree of cy-
tokine release or macrophage activation that has been observed clinically (32). Although syngeneic
models (161, 162) may overcome some of the limitations of the xenogeneic models, the active cell
under evaluation is the engineered human T cell. In addition, mouse and human T cells exhibit
significant mechanistic differences that affect the evaluation of the engineered CAR molecule; for
example, mouse T cells are much more dependent on CD28 signaling, and 4-1BB signaling has
modest effects at most (163, 164).

A number of clinical trials of CAR T cells directed to a variety of antigens are under way
(Tables 1 and 2) (165). Several centers have focused some effort to studies of CD19-directed
CAR T cells (Table 1) and to other B cell markers such as immunoglobulin light chains and
CD20 (Table 2), in part because hematopoietic cells have been extensively characterized and the
expression of their surface molecules is often lineage-dependent. Multiple reviews of the CD19
CAR T cell trials are available elsewhere (166–169) and are discussed only in aggregate here. One
issue that has complicated the interpretation of the CD19 CAR T cell trials is that each center has
developed its own CAR, with different single-chain variable fragments to effect antigen binding,
different signaling domains, different modes of introduction of the CAR gene into T cells, different
conditioning regimens, and different interventions post–CAR T cell infusion. However, some B
cell malignancies are more consistently clinically responsive to CD19 CAR T cells; for example,
trials in chronic lymphocytic leukemia (CLL) have yielded very mixed clinical results (111, 170–
173), whereas trials in acute lymphoblastic leukemia (ALL) have yielded impressive responses
in multiple centers (32, 100, 174). In one case of pediatric ALL, a patient relapsed with CD19-
negative disease, indicating that the CD19 CAR T cells effected very strong selective pressure on
cells expressing the CD19 target (32). In contrast, tumor cells from all the nonresponding patients
with CLL appear to retain CD19 expression. The fate and length of persistence of the CAR T
cells seems to have a significant impact on the clinical responses, but the determinants of these
variables are still unclear. It is likely that factors such as the input cell population and the tumor
microenvironment play prominent roles in determining CAR T cell persistence and, therefore,
in clinical efficacy, even when other variables (type of CAR T cell and manufacturing process) are
controlled.

There is also great interest in developing CAR T cells against other hematologic malignancies.
The carbohydrate antigen Lewis Y is being tested as a potential target in AML, myelodysplas-
tic syndromes, and multiple myeloma patients (http://www.clinicaltrials.gov, NCT01716364).
Specific targets for AML (175) and multiple myeloma (176) are in preclinical development.

Developing CARs for solid tumors has been challenging, in part because of the lack of extensive
literature on specific surface markers expressed on malignant epithelial cells. Furthermore, it is
not clear that many surface markers are exclusively expressed on tumor cells, and more often,
targets with merely higher levels of expression on tumor than on normal tissue have been selected
as CAR targets. Although this approach has safety concerns (160, 177), a therapeutic window may
be found. For example, despite the death that rapidly ensued after administration of 1010 dose of
Her2/neu CAR T cells in a patient aggressively conditioned, new trials directed against the same
antigen but starting with lower doses are under way (NCT00902044, NCT01109095).

T cell products that employ a safety-check mechanism, whether based on transient expression
of the CAR [such as RNA electroporation (125)] or a suicide gene encoded into the transduced
cells, are considered attractive methods to initiate clinical testing. This may be necessary, for
example, for FAP-directed CAR T cells (178, 179), GD2-directed CAR T cells (180), or PSMA-
directed CAR T cells (NCT01140373), where preclinical testing or antibody-based testing in the
clinic indicates some concerning potential tissue-directed toxicities. The choice of safety-check

210 Maus et al.

http://www.clinicaltrials.gov


IY32CH07-June ARI 13 February 2014 8:3

mechanism may also affect the function of the CAR T cells: Transient expression of the CAR may
sensitize the patient to the CAR (33); incorporating transient viral vectors or viral proteins may also
be immunogenic. The humanized caspase 9 suicide system is very attractive and has been clinically
tested in the setting of DLIs after bone marrow transplant (181), but should the necessity arise,
it is unclear whether all the transduced T cells can be completely eliminated. Alternatively, some
lessons learned from nature may be applied to the synthetic biology of CAR T cells: For example,
one way to increase specificity of the CAR T cells is to separate T cell signal 1 (antigen) from
signal 2 (costimulation). This strategy has been successfully implemented in vitro and in mouse
models, where the primary antigen-receptor had low affinity and delivered a weak signal (akin
to a TCR signal), but a second engineered receptor (the chimeric costimulatory receptor) that
engaged a separate antigen delivered the costimulatory signals (182). However, only engagement
of both engineered receptors generated a sustained T cell response.

The field of T cell engineering is now entering adolescence, and creative solutions to many
of the current limitations are sure to emerge (Figure 8). For example, one group of investigators
hypothesized that, in GvHD following allogeneic bone marrow transplant, T cells could cause
damage to the tissues only if they trafficked to those tissues: When tissue trafficking was reduced
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Strategies for engineering effective genetically modified T cells. Various strategies can be undertaken to genetically modify T cells for
adoptive therapy in an endeavor to enhance function and survival, proliferation, trafficking to tumor sites, and safety. Through genetic
modification, these cells may also be armed to be efficacious in the immunosuppressive tumor microenvironment. Combination therapy
can be used to improve the therapeutic efficacy of engineered T cells. (Abbreviations: CAR, chimeric antigen receptor; HSV, herpes
simplex virus; TCR, T cell receptor; TGF, transforming growth factor; Treg, regulatory T cell; VEGFR, vascular endothelial growth
factor receptor.)
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via administration of a drug blocking CCR5 (maraviroc), GvHD was ameliorated in early studies
(183), and confirmatory studies are under way. The incorporation of chemokine receptors to alter
tumor-specific T cell migration is also under investigation (77), as are mechanisms to improve
T cell resistance to inhibitory signals and perhaps to avoid conditioning chemotherapy regimens
(162).

The future of CAR therapies looks bright, in part because early studies have shown that CAR
T cells are quite potent. Strategies to expedite the discovery of suitable surface antigens may
make CAR T cells more widely applicable. The generation of single-chain variable fragments to
perform rapid throughput testing on tumors and on normal tissues to identify potential off-tumor
reactivity may also increase the applicability of CAR therapies.

BIOMARKERS FOR T CELL THERAPIES

The field of biomarkers has undergone a dramatic revolution over the past few years: Researchers
have increasingly realized not only that relevant and meaningful measures of biological activity
are unlikely to be generated simply on the basis of hypothesis testing but also that endeavors to
interrogate for biological activity need to be supplemented by broader and hypothesis-generating
studies (184). Such understanding is particularly relevant for strategies that seek to manipulate
the immune system through therapies that affect immune modulation or immune activation,
where the inherent multidimensional and integrated complexity of the immune system inevitably
confounds scientific reductionism. A parallel concept is the need to implement uniform data-
reporting guidelines to support more transparent and systematic analyses of data from T cell
therapy trials (185).

In a general sense, biomarkers provide information about the bioactivity of the tested therapy.
Beyond this point, in early-stage trials, the principal objectives of biomarker studies are to identify
parameters that reveal specific information about the mechanism of action of the treatment and to
provide proof that the tested principle is operative. In more advanced trials, the focused principal
objective of biomarker studies is to identify and, eventually, to validate biomarkers that correlate
with treatment efficacy and can potentially be pursued as surrogate endpoints for the treatment.

Unlike traditional strategies, where the treatment modality is an inert chemical compound,
cell therapies are characterized by the fact that the “drug” is a biologically viable, dividing, and
evolving entity that interacts with and responds to the myriad complexities of the host biology.
As a result, biomarker strategies for cell therapies must focus on studying not only the impact of
the infused cells on patient biology but also the infused cells (186). A fundamental starting point
for these studies is a thorough understanding of the properties of the manufactured cell product,
obtained through product release, potency, and characterization assays.

Arguably, the field of biomarker studies for T cell therapy trials was ushered in by the seminal
reports from researchers at the National Cancer Institute that demonstrated cancer regression in
melanoma patients following adoptive transfer of bulk TIL-derived cells (187) and, subsequently,
of gene-engineered MART-1-specific T cells (98). These studies were among the first to examine
persistence of infused cells, characterize their surface phenotype, and indirectly demonstrate in
vivo functionality through cancer regression and autoimmunity. Perhaps predictably, persistence
of infused cells correlates with cancer regression and durability of remission (188). Indeed, a major
limitation for maximal efficacy of T cell therapy–based approaches may be the lack of robust long-
term persistence of transferred cells, a limitation that now appears to have been overcome in at least
some settings (32, 111). More controversy exists with regard to the phenotype and functional status
of T cells needed for optimal antitumor immunity. Earlier work suggested that TIL cells cultured
minimally were less differentiated, were more diverse phenotypically, and had superior efficacy
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following transfer (189). Other work from the surgery branch of the National Cancer Institute
has indicated that naive rather than memory cells are superior for adoptive transfer, as these cells
demonstrated better transduction, more robust expansion, enhanced proliferative potential, and
telomere length and were less susceptible to terminal differentiation (190). The same group has
also shown that adoptive T cell treatment efficacy may be related to the persistence of T cells that
either are or can convert in vivo to memory cells (191). More recently, work principally in primate
models has suggested that central memory cells may be more effective in adoptive T cell transfer
strategies (43). Even more recent and provocative work has suggested that there is a phenotypic
plasticity within at least some naive and memory T cell subsets (192). Together, these disparate
results highlight the potential folly of interrogating differentiation phenotypes of persisting cells as
an essential element of biomarker studies. Direct assessment of the in vivo functionality of infused
cells has been difficult to accomplish, at least in part owing to the aforementioned relatively poor
persistence of infused cells, although recent studies have demonstrated directly ex vivo the ability
of long-term persisting cells to recognize antigen-positive targets (111). Less direct measures of
T cell bioactivity have included the measurement of systemic cytokine levels in patients post–
T cell infusion. Initial efforts in this area have focused on specific cytokines directly associated
with T cell effector functions; more recent and hypothesis-agnostic efforts considering potent
clinical efficacy have revealed a broader profile of immune activation that may be important for
the ultimate efficacy of T cell–based immunotherapy strategies (32, 100, 111, 173).

The principal mechanisms by which T cells effect antitumor activity are (a) direct engagement
and cytolysis of target cells and (b) production and secretion of soluble cytokines and chemokines
that directly impact tumor cells and orchestrate a more integrated antitumor inflammatory re-
sponse. Accordingly, biomarker studies to interrogate T cell mechanisms of action focus on de-
tecting the presence and effector functionality of infused T cells. Although accomplishing this
objective is relatively straightforward in cases where cancers are predominant in peripheral blood
or bone marrow, it is a considerably more difficult challenge for cancers where disease is not
readily accessible. Indeed, recent clinical data have provided compelling evidence to support the
need to evaluate the T cell function at the site of disease (193, 194). Data accumulated principally
in the context of adverse events demonstrate that infused T cells do, in fact, traffic throughout
the body and home to sites where target antigen is expressed (144, 146), thus highlighting how
critical it is to develop innovative and sensitive approaches to enable the interrogation of tissues
for T cell presence and functionality.

In most adoptive T cell immunotherapy studies, the total number of infused cells corresponds
to a small fraction of total T cells, although lymphodepleting conditioning can skew this ratio at
early time points post-infusion. Homeostatic and antigen-driven expansion drives high frequencies
of infused T cells in patients at late times post-infusion (32, 98, 111). Both molecular- and flow-
cytometry-based approaches have been developed to evaluate persistence and homing of infused
T cells.

Quantitative PCR–based approaches have been developed in a number of cases to detect and
quantify the persistence of infused T cells. Such approaches are feasible if the infused T cells have
been genetically engineered prior to infusion. They also typically enable the detection of infused
cells at frequencies as low as 0.01% of total cells, thus providing important information about
persistence, trafficking, and homing of infused T cells in patients. Such approaches are being
increasingly applied in clinical studies to monitor T cell persistence (see, for example, 32, 100,
111, 173) as well as to interrogate and demonstrate the contribution of infused cells to serious
adverse events (144). Recent technological advances in high-throughput deep sequencing of CDR3
domains for TCR loci to detect and quantify individual TCR clonotypes in samples (195) expand
the potential of obtaining molecular signatures for individual clonotypes that persist in patients and
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of correlating this signature to the original infusion product. A considerable limitation of molecular
approaches is that they generate data from bulk cell populations. The robust development of
single-cell multiplexed digital PCR-based approaches (196) opens further exciting possibilities:
Infused cells in samples may be detected with greater sensitivity, and the functionality of infused
engineered cells may be interrogated at the single-cell level.

Flow-cytometry-based approaches depend on the availability of antibody reagents to detect
gene-engineered and infused cells. Such reagents have included MHC class I multimers (dex-
tramers, tetramers, pentamers) that have been employed in a large number of clinical trials. More
recently, in CAR trials, idiotype-specific antibodies that recognize CAR-engineered cells have
been employed to detect infused cells with high specificity (32, 100, 111). This approach typically
requires that the frequency of antigen-specific cells be at least 0.2% of the total CD3 popula-
tion. Reports of considerably more sensitive detection have been published (197), as have assays
with higher-throughput combinatorial strategies that increase sensitivity and reduce sample usage
(198). One advantage of flow-cytometry-based approaches is that they can be readily combined
with stains for surface-phenotypic or functional markers, thus allowing for the generation of more
integrated data sets.

Technical advancements in polychromatic flow cytometry combined with an increased un-
derstanding of T cell biology have precipitated a number of flow-cytometry-based approaches
that interrogate T cell function (for a summary of specific markers and strategies, see 186). The
continued development of mass-cytometry-based platforms and algorithm-driven hierarchical
clustering approaches that enable simultaneous interrogation of very large numbers of T cell
molecules including surface and intracellular proteins, phosphoproteins, and RNA species (199,
200) may render obsolete the traditional flow-cytometry-based approaches that interrogate T cell
functionality as a stand-alone platform.

As discussed above, the integrated complexity of the immune system mandates that part of the
evaluation of T cell therapy focus on the impact that treatment has on the broader immune system.
Although this relatively new concept has not yet been broadly implemented in clinical trials, one
approach that has been implemented with some success has been to evaluate systemic cytokine
levels in patients during treatment. In studies targeting leukemias using CAR-engineered T cells,
this strategy has revealed that engineered T cell activation and antitumor activity result in broad
and potent cytokine-driven effects, including cytokine-release syndrome (32, 111), macrophage-
activation syndrome, and hemophagocytic lymphohistiocytosis. Notably, the hypothesis-agnostic
interrogation of cytokines in these trials unexpectedly identified IL-6 as a major cytokine in-
duced by CAR therapy: As a result of this observation, the anti-IL-6 receptor antagonist antibody
tocilizumab was successfully deployed to mitigate the observed cytokine-induced toxicity (32), a
treatment now being applied more systematically to counteract cytokine-release syndrome (201).

BUILDING T CELL THERAPIES INTO A PILLAR OF MEDICINE

Now that adoptive T cell therapy is showing such dramatic effects, the question becomes, How
can we move past offering this as boutique medicine in major medical centers and offer it in
communities all over the world? There are several logistical issues that need to be addressed:
shipping and tracking of autologous blood products, large-scale manufacturing of vectors and
T cell products, and validation of processes and immunologic assays necessary for quality control.
Resolving these issues is likely to require adaptation by a variety of fields outside the scope of most
physicians and immunologists, ranging from blood banking, a field that has learned to manage
cell collection and processing techniques in standardized ways at the international level, to robotic
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manufacturing techniques used in high-throughput laboratories and systems such as automobile
manufacturing (202).

Understandably, some scientists have raised concerns about the complexity of this type of
therapy; even performing multicenter studies with T cell products has been challenging at the
academic level. Also, most regulatory health agencies are set up to handle drug testing where
drugs are manufactured centrally, the active ingredient is measured and controlled, and one lot
treats many patients. In contrast, the active “ingredient” of a T cell product is challenging to
define because it reflects a heterogeneous population of T cells: Typical, phase I dose-escalation
trial design may not be the most appropriate method to test the safety of T cell products, given
that the “dose” is neither static nor maximal immediately after infusion. Furthermore, each “lot”
produced can be used for only one patient, and thus far, T cell products have been manufactured
locally. As these therapies move to phase II or III studies to obtain an indication for use, it is not
yet clear whether it will be possible to perform double-blind randomized controlled trials that are
considered the gold standard in establishing a standard of care therapy.

Although these issues pose significant challenges, they are not necessarily insurmountable
barriers; organ and bone marrow transplants are now considered fairly routine (203). As the
manufacturing of cell products becomes more automated, and as scientists better define the key
components of what makes the most bioactive, optimal T cell product, it will become an absolute
necessity to develop large-scale, centralized processes that can generate standardized, quality-
controlled T cell products. This endeavor will require scientists, physicians, and industry to work
together to build the necessary infrastructure and adapt the current regulatory standards to reflect
an entirely new pillar of medicine, one composed of personalized cell therapies (202).
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