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Abstract

Inflammatory bowel disease (IBD) defines a spectrum of complex disorders.
Understanding how environmental risk factors, alterations of the intestinal
microbiota, and polygenetic and epigenetic susceptibility impact on immune
pathways is key for developing targeted therapies. Mechanistic understand-
ing of polygenic IBD is complemented by Mendelian disorders that present
with IBD, pharmacological interventions that cause colitis, autoimmunity,
and multiple animal models. Collectively, this multifactorial pathogenesis
supports a concept of immune checkpoints that control microbial-host in-
teractions in the gut by modulating innate and adaptive immunity, as well as
epithelial and mesenchymal cell responses. In addition to classical immuno-
suppressive strategies, we discuss how resetting the microbiota and restoring
innate immune responses, in particular autophagy and epithelial barrier func-
tion, might be key for maintaining remission or preventing IBD. Targeting
checkpoints in genetically stratified subgroups of patients with Mendelian
disorder–associated IBD increasingly directs treatment strategies as part of
personalized medicine.
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INFLAMMATORY BOWEL DISEASE IS A CHRONIC DISORDER
WITH MULTIFACTORIAL ORIGIN

Sufficient epithelial barrier function as well as innate and adaptive immune regulation is required
for a lifelong balanced response to dietary antigens as well as bacteria, viruses, fungi, and parasites
that colonize or infect the intestine. If those evolutionarily adapted mechanisms fail because of
changes in lifestyle and environment, because of accumulation of common genetic susceptibility
variants, or because of the occurrence of rare genetic defects with high functional impact, chronic
intestinal inflammation can arise. Inflammatory bowel disease (IBD) encompasses a group of
complex disorders with three main phenotypes—Crohn’s disease (CD), ulcerative colitis (UC),
and IBD unclassified (IBDU). These disorders have a multifactorial etiology (1–3) and are a
substantial health care problem with increasing incidence and prevalence worldwide (4). IBD is
characterized by chronic relapsing disease activity of acute flares and intervals of remission (1, 2, 5).
Sustained chronic intestinal inflammation causes tissue damage over time including fistulizing and
stricturing disease in CD and life-threatening episodes of acute severe UC. Treatments for patients
with IBD include anti-inflammatory, immunomodulatory, and immunosuppressive drugs as well as
biologic therapies that target inflammatory cytokines such as tumor necrosis factor (TNF) or that
impede immune cell homing, as recently reviewed by Neurath (6). Although many patients respond
to frontline therapies, treatments need to be escalated in a substantial proportion of patients,
and primary or secondary nonresponse is observed. Long-term effects caused by uncontrolled
inflammation include cancer, and there are side effects of current treatments such as myelotoxicity,
sepsis, or reactivation of infections. There is a need to develop targeted medications that are
based on pathogenic mechanisms, are disease subtype- and organ-specific, and are associated with
reduced side effects. To achieve this goal, it is important to understand the immunobiology of IBD,
to differentiate subgroups of patients on the basis of biomarkers, and to focus novel treatments
based on a molecular process–driven taxonomy.

In this review, we discuss cellular components of the immune system that maintain barrier func-
tion. We also discuss dysregulated molecular signaling networks that disrupt immune homeostasis
as a consequence of susceptibility mechanisms that underlie classical polygenic IBD, Mendelian
disorders in humans, adverse events, or targeted manipulation in animal models (Figure 1). De-
veloping novel medications and interventions that target key checkpoints offers the opportunity
to treat and prevent IBD. By focusing on IBD pathogenesis, we do not discuss how genetics affects
drug responses and adverse events in IBD, i.e., the emerging field of pharmacogenetics.

GENETICS OF INFLAMMATORY BOWEL DISEASE

Drug Targets Informed by Common Genetic Variation

Genome-wide association studies (GWASs) have identified more than 230 loci linked to human
IBD (7–9). Of these variants, only a minority are protein coding, and the majority are intronic and
intergenic loci (3, 10). Candidate genes within these loci suggest a role for the epithelial barrier,
innate immune responses, and adaptive immune dysregulation (1, 2). Association studies have
generated information on host-microbe interactions via the NOD2 pathway, identified autophagy
as a pathogenic mechanism in CD, and supported the role of IL-23-driven Th17 cell responses (3,
7–10). They have also highlighted similarities and differences in IBD susceptibility among ethnic-
ities (7, 8, 11) and in comparison with other inflammatory disorders such as ankylosing spondylitis,
psoriasis, and primary sclerosing cholangitis (12–15). The IBD risk variant burden of all CD- or
UC-associated loci allows statistical discrimination among CD, IBDU, and UC phenotypes (16),
placing IBDU as a subgroup between colonic CD and UC in terms of variant burden.
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Figure 1
Understanding immune mechanisms that drive intestinal inflammation in humans and mice. Epidemiological findings, genetic
associations, clinical observations, and therapeutic interventions in IBD patients inform our understanding of immunological
mechanisms in classical IBD. This is further complemented by understanding Mendelian disease–associated IBD and adverse effects of
therapeutic interventions that can induce intestinal inflammation. Animal models reflect aspects of IBD phenotypes. Increasingly
complex in vitro models help in understanding cellular or tissular aspects of the epithelial, mesenchymal, and immune phenotypes. Data
derived from diverse model systems provide information on mechanisms and preclinical drug targets. Abbreviations: DSS, dextran
sulfate sodium; IBD, inflammatory bowel disease; iPS, induced pluripotent stem cell; TNBS, 2,4,6-trinitrobenzenesulfonic acid.

Most IBD susceptibility loci contain multiple genes (7–9, 17), and further fine mapping is
required. Eighteen of the IBD-associated loci are mapped with high confidence to a single vari-
ant (17). These include protein coding variants in NOD2, IL23R, CARD9, SMAD3, and IFIH1;
intronic variants in the locus of IL2RA, LRRK2, NOD2, HNF4A, and RTEL1/TNFRSF6B; and
intergenic variants in the locus of PRDM1, IKZF1, JAK2, NKX2-3, and HNF4A (17). However, it
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is not clear to what extent the majority of GWAS loci with low-association signals can inform func-
tional signaling pathways because minute associations have been revealed by an ever-increasing
number of patients, resulting in a genome-spanning omnigenic model (18). Whereas most studies
have investigated disease susceptibility and not disease course, a recent study identified four vari-
ants associated with disease prognosis, suggesting that disease susceptibility and CD progression
are determined by different genetic mechanisms (19).

Expression quantitative trait loci (eQTL) studies suggest that noncoding IBD loci are enriched
within cell-specific enhancer regions that control the expression of genes in a cell-specific manner
(20, 21). In addition to cis- and trans-acting eQTL where each variant affects a single or a small
number of genes, genetic variants impacting the expression level of transcriptional regulators such
as BACH2 can affect a large number of genes (superenhancer) (22). Multiple IBD eQTL have
been described in peripheral blood, intestine, and immune cell subsets (23–25). Individual stim-
ulation conditions determine eQTL effects, and opposing transcriptional effects of one and the
same variant across different cell types have been described (20). In addition to genomic variation,
epigenetic modification affects transcription. Epigenetic marks are specific to cell types such as
epithelial cells, monocytes, or T cells, and they enrich within regulatory regions identified by
IBD GWASs (26–28). eQTL and methylation quantitative trait studies help to explain the large
noncoding variation observed, and they link the genetic association signal with directionality of
mRNA expression. In light of these tissue-specific regulatory regions and epigenetic modification,
it makes sense that transcriptional risk scores based on eQTL variants associated with IBD and
linked to RNA-sequencing gene-expression data outperformed genetic risk scores in differentiat-
ing CD from controls. These transcriptional risk scores also identified patients with subsequent
complicated disease course (29).

Several genetic associations include candidate genes in therapeutically relevant immune sig-
naling pathways. The important therapeutic role of the IL-23 pathway was initially informed by
the protective p.V362I variant in IL23R (discussed in detail below) (30). Similarly, inhibition of
immune cell homing by blocking the α4β7-integrin as a successful therapeutic concept in patients
with UC and CD (31, 32) is supported by not only mechanistic studies (33) but also genetic associa-
tion signals (9). The therapeutic value of blocking specific immune cell homing pathways is further
reiterated since blocking mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1), an
endothelial ligand that attracts mucosal homing integrin α4β7 cells, has shown efficacy in UC (34)
although not in CD (35). Those findings are in line with the emerging concept in biomedicine
that medications supported by genetic signals are more successful in the clinic. There is now a
spectrum of promising genetically informed drug target candidates that might be of therapeu-
tic relevance in IBD such as the Th17 cell–defining transcription factor RORC (9) or a recently
identified loss-of-function variant in the RNF186 gene that confers protection against UC (36).

The combination of protein coding variants, epigenetic association marks, and eQTL allows for
construction of models of cellular and molecular networks (37) associated with IBD pathogenesis.
These networks may predict therapeutic interventions that correct perturbed signaling pathways
instead of targeting the modest effects of individual variants.

Mendelian Disorder–Associated Inflammatory Bowel Disease

In addition to the classical forms of IBD, Mendelian disorders can present with IBD-like intestinal
inflammation (MD-IBD) (38, 39). Patients with MD-IBD often present with extreme phenotypes
such as infantile-onset IBD, infections due to immunodeficiencies, or a range of other extrain-
testinal manifestations. Because these disorders are typically caused by protein coding defects,
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Figure 2
Diverse mechanisms drive intestinal inflammation in polygenic IBD as well as MD-IBD with similar histological outcomes. (a) In
complex polygenic IBD, multiple genetic factors with low or moderate impact affect multiple layers of the mucosal immune response
including epithelial cells, mesenchymal cells, phagocytes, regulatory cells, T cells, and B cells. An interaction network links
environmental factors with dysbiosis of the microbiota, epithelial barrier function, and immune networks, resulting in multiple primary
(solid lines) and/or secondary (dotted lines) responses. (b) Mutations in the NADPH oxidase complex disrupt bacterial handling in
phagocytes and result in chronic granulomatous disease. The genetic background of IBD susceptibility genes contributes to the IBD
phenotype. Adaptive immune activation is a secondary consequence of the disturbed innate immune defect. (c) Loss-of-function defects
in IL-10 signaling cause infantile-onset IBD with complete penetrance. In these patients there is either loss of macrophage
responsiveness to IL-10 due to defects in the IL-10 receptor or deficiency of IL-10 production by monocytes/macrophages and
regulatory T cells. The contribution of common IBD susceptibility factors in IL-10 signaling defects is unlikely, but the presence of
intestinal microbiota may be required for development of IBD. (d) Loss of regulatory FOXP3+ T cell activity causes dysregulated
innate and adaptive immune responses in patients with IPEX syndrome. (e) Defects in the epithelial gene EPCAM causes epithelial cell
damage and tufting enteropathy. Some patients with an otherwise functional immune system develop intestinal inflammation that is
most likely caused by increased translocation of the microbiota and subsequent innate and adaptive immune activation. Abbreviations:
IBD, inflammatory bowel disease; IBDU, IBD unclassified; IPEX, immunodysregulation polyendocrinopathy enteropathy X-linked;
MD-IBD, Mendelian disorders with IBD-like intestinal inflammation.

information about them can further our understanding of functional mechanisms that affect the
layers of the intestinal immune system.

Among the 60 MD-IBD genes, IL-10 signaling defects caused by loss-of-function mutations in
IL10, IL10RA, and IL10RB genes are the strongest factors that lead to infantile IBD (40, 41). Other
defects cause dysfunctional regulatory T cell activity, disrupt T and B cell selection and activation,
reduce clearance of bacteria by neutrophil granulocytes or macrophages, cause autoinflammatory
responses, or affect epithelial barrier function (38, 39). This supports a model wherein multiple
Mendelian-type defects with high functional impact on different cellular components can inde-
pendently cause—either directly or indirectly—innate and adaptive immune activation (Figure 2).
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Figure 3 (Figure appears on preceding pages)

(a) Pathogenic mechanisms and targeted therapies. Diverse functional mechanisms drive intestinal inflammation in polygenic IBD,
MD-IBD, autoimmunity, and therapy-induced IBD (adverse events). All those diverse mechanisms result in a spectrum of similar
histological outcomes reflecting Crohn’s disease, ulcerative colitis, and IBDU. The intestinal mucosal barrier is maintained by several
cell types including epithelial cells, mesenchymal cells, neutrophils, monocytes/macrophages, and lymphocyte subsets. Major cell
subsets with a likely pathogenic role as suggested by genetic information, adverse events, and autoimmunity are shown. In polygenic
IBD, 230 established genetic loci are associated with IBD; shown in blue are those that are resolved to single a variant (17). Genetic
defects in MD-IBD are depicted in the category in which the main functional defect likely operates (red). Defects in a number of genes
affect multiple different cells within the mucosal defense system (e.g., NOD2 in epithelial cells and several innate immune cells).
(b) Therapeutic interventions target dysregulated pathogenic networks or aim to compensate factors that are deficient. Those
treatments are partially informed by (multiple) RCTs in IBD (the desired standard; red). Treatments suggested by pilot interventions in
Mendelian disorders may have strong effect size and are highly informative but in most instances require follow-up studies (green). The
potential benefit of additional targets suggested by preclinical models and/or interventions with less uniform trial outcomes in patient
groups need to be further evaluated (blue). The different interventions are shown in relation to the likely pathomechanism that they
target. Hematopoietic stem cell transplantation and gene therapy of hematopoietic stem cells replace a large array of innate and adaptive
immune cells ( parentheses). Abbreviations: IBD, inflammatory bowel disease; IBDU, IBD unclassified; MD-IBD, Mendelian disorders
with IBD-like intestinal inflammation; OSM, oncostatin M; RCT, randomized controlled trials; ROS, reactive oxygen species.

Whereas IL-10 signaling defects confer complete penetrance, most MD-IBD genes are likely
not strictly monogenic, but instead act on a background of shared genetic IBD susceptibility
and unresolved environmental factors. For example, approximately 30% of patients with chronic
granulomatous disease develop IBD. Mutations in the NADPH oxidase genes (CYBB, CYBA,
NCF1, NCF2, or NCF4) constitute the pathogenic driver for chronic granulomatous disease im-
munodeficiency, whereas variants in additional IBD-risk loci modify susceptibility to intestinal
inflammation (42).

Clinical genomics, i.e., targeted panel sequencing as well as exome and genome sequencing,
now provides a diagnostic standard of clinical care for identification of MD-IBD pathogenic
variants (43). Identifying disease-causing defects not only explains the immunopathology, but also
opens possibilities for pathway-specific therapies to correct the consequences of genetic defects,
thereby enabling personalized medicine. A summary of immune pathways informed by Mendelian
immune variants is provided in Figure 3.

Patients with Mendelian disorders are in exceptional need because many present with a com-
plicated course. Owing to the rarity of these disorders, no formal assessments of treatments such as
randomized controlled trials are available in most cases. Drugs are often used off-license without
formal approval on the basis of retrospective uncontrolled case reports or series. These studies
often represent an n of one case report and are prone to error, raise ethical considerations, and
need validation in high-quality randomized controlled trials.

Despite these limitations, there are notable successes. Beyond the value to individual patients,
proof-of-concept trials in MD-IBD provide an opportunity to generate and test hypotheses to
identify interventions with strong effects in a small group of patients. For example, targeting
IL-1 using the IL-1 receptor antagonist Anakinra or an anti-IL1b antibody has been effective
in MD-IBD patients with primary inflammasome activation. This demonstrates that blocking
the IL-1 signaling pathway in a primary autoinflammatory disorder such as Mevalonate kinase
deficiency can resolve colitis (44). Application of Abatacept, a CTLA4 fusion protein, compensated
for defective CTLA4 expression in patient cells with CTLA4 variants in vitro (45, 46) and may
be beneficial for patients with immune dysregulation (47). In patients with lipopolysaccharide-
responsive and beige-like anchor protein deficiency, which causes defective CTLA4 endosomal
vesicular trafficking within FOXP3+ regulatory T cells and activated T cells, administration of
the CTLA4 fusion protein restored immune homeostasis (48).
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It is important to note that several medications that were postulated to be potentially helpful in
MD-IBD subsets have failed in randomized controlled trials in IBD. These include the CTLA4 fu-
sion protein Abatacept in CD and UC (49). However, functional stratification of patients with clas-
sical IBD may reveal subgroups of patients who could benefit from these treatments in the future.

ANIMAL MODELS OF INTESTINAL INFLAMMATION

Animal models are important for the mechanistic understanding of systemic and mucosal immune
responses since they allow genetic manipulation, dissection of cellular compartments, and testing
of therapeutic concepts. Translation of animal models into clinical practice depends on how well
the model type reflects its associated human IBD disease type and state of chronicity. Due to the
relative similarity between humans and mice and the availability of genetic tools, mice are the
current standard for drug tests in IBD. By contrast, invertebrate (such as Caenorhabditis elegans or
Drosophila) and small vertebrate (such as zebrafish) models have limitations beyond drug screening.
In the last 25 years, hundreds of mouse models of intestinal inflammation have been studied, in-
cluding infection models (such as Salmonella spp., Citrobacter rodentium, and Helicobacter hepaticus),
chemically induced models (such as dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid,
and oxazolone), and immune activation-induced (T cell transfer) models (50). In addition, more
than 70 models use conditional mice and involve gene overexpression or deletion to target signal-
ing or effector mechanisms either in all cells or specific cell types (51). In many cases, animals with
genetic defects do not develop colitis spontaneously but reveal a functional role after infection or
chemical challenge, supporting the concept of colitogenic gene-environment interactions.

Similar to Mendelian disorders in humans, mouse models confirm that extreme defects in dif-
ferent immune checkpoints and immune layers can cause intestinal inflammation. Many animal
models with genetic manipulation mirror extreme phenotypes of patients with corresponding
MD-IBD. A commonly used mouse model such as the T cell transfer model most closely reflects
the situation found in atypical SCID (severe combined immunodeficiency) patients where a hy-
pomorphic selection defect in T cells results in oligoclonal expansion and subsequent intestinal
inflammation. Although reductionist, this T cell–driven pathology model depends on innate ef-
fector functions, and several aspects are relevant to human immunopathology (52). However, it
is still a matter of debate how well many mouse models reflect classical human IBD. As such,
ileal models with stricturing and fistulizing disease that reflect human CD features are underrep-
resented (53). Humanized mice constitute an interface between mouse and human immunology
since they enable engrafting with human CD34+ hematopoietic stem cells, allowing the study
of pathogenic immune responses as shown for IPEX (immunodysregulation polyendocrinopathy
enteropathy X-linked) immune cells (54).

In addition to providing mechanistic insights, mouse models have been instrumental in selecting
drug candidates. Before or parallel to transition into humans, animal models have informed ther-
apies that have made it into the clinic, i.e., anti-TNF, anti-IL-23p40, anti-a4-integrin, anti-a4b7
integrin, and anti-IL-23p19, (50, 51). However, multiple drug candidates that prevented colitis in
mouse models were ineffective in clinical trials, in part because most models have focused on pre-
vention, not cure, of colitis and—most importantly—owing to the difficulty of relating models to
appropriate patient subgroups, in particular differentiating between CD and UC. Mouse models
are subject to significant variation both within and between models. Thus, there is currently no
standard mouse model accepted by the US Food and Drug Administration or European Medicines
Agency.

All combined, the data suggest that therapeutic efficacy in a mouse model of intestinal inflam-
mation is an important but not sufficient surrogate for efficacy in humans. In addition, mouse
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models to date do not allow good prediction of whether and in which human disease subset
medications will be successful.

PHARMACOLOGICAL ADVERSE EVENTS THAT CAUSE
INTESTINAL INFLAMMATION

Although much information has been gathered from successful targeted treatments in humans,
treatment adverse events also provide important insights. Indeed, some of the most informative
evidence comes from colitogenic adverse events. Checkpoint inhibitors have been developed to
interfere with immune tolerance mechanisms to break tolerance to tumors. Treatments targeting
PD1-PDL1, CTLA4, or PI3K signaling have successfully induced CD4 and CD8 T cell responses
in a variety of malignancies (such as malignant melanoma) but have resulted in autoimmunity and
intestinal inflammation (55, 56). The adverse event autoimmune profile observed by targeting
CTLA4 or PI3K pharmacologically has strong similarity to the profile seen in MD-IBD and
mouse models with distinct gene defects. For instance, the pathology caused by anti-CTLA4 (57)
is reminiscent of patients with genetic defects in CTLA4, which causes an immune dysregulation
syndrome with hypogammaglobulinemia, recurrent infections, and multiple organ autoimmunity
including inflammatory enteropathy and CD-like lesions (45, 46, 58). This concept has con-
siderable implications for anticipating intestinal inflammation as an adverse event since several
proposed small-molecule inhibitors with anti-inflammatory activity target gene products associ-
ated with MD-IBD (such as ADAM17, MALT1, or XIAP) (59–61). However, predicting response
and side effect profiles with expected certainty is a challenge because pharmacological inhibition
is typically temporary and not complete.

PRECLINICAL IN VITRO MODELS OF INFLAMMATORY
BOWEL DISEASE

The need to test adequate drug candidates requires robust and predictive preclinical models to
test disease pathways in human cells. Advances in culturing primary cells, organoids, and complex
tissular cultures together with advances in bacterial classification and manipulation have driven
research toward novel directions. Further complementing such approaches are induced pluripotent
stem cell technologies that allow generation of multiple cell types and opportunities arising from
genetic manipulation of primary cells using CRISPR/CAS9.

Epithelial biology has been revolutionized by organoid technologies enabling growth of dif-
ferent subsets of human patient-derived small and large bowel epithelial cells including columnar
epithelial cells, Paneth cells, and goblet cells. Organoid cell technologies replicate defects in
intestinal epithelial function in vitro, as shown by the defective polarization of epithelial cells
from patients with defects in TTC7A (62), a Mendelian disorder with increased susceptibility
to intestinal inflammation. Culturing patient-derived epithelial cells facilitates understanding of
mechanisms and screening of drug targets, as illustrated by reversal of the in vitro polarization
phenotype seen in TTC7A-defective cells using a Rho kinase inhibitor (62). One problem with
studying individual cell types is the lack of diverse cell-cell interactions since cytokine responses
induce complex activation circuits beyond the initial signal. Development of complex tissular
models such as the “gut on a chip” composed of epithelial cells, a connective tissue scaffold, and
the immune system may potentially overcome those problems (63). Finally, advanced genomic
technologies have allowed for the identification of new bacterial strains and species, and new
techniques have facilitated culturing of previously challenging-to-cultivate bacteria, particularly
anaerobic species (64).
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CHECKPOINTS OF INTESTINAL INFLAMMATION
AND THERAPEUTIC CONCEPTS

Proper intestinal functioning involves complex interactions between host and environmental fac-
tors. Central to this response is the functioning of immune cells and intestinal tissue resident cells
including epithelial and mesenchymal cells. In the following, we focus on functional cellular and
molecular checkpoints that confer susceptibility to intestinal inflammation in humans and animal
models with a particular focus on those that present therapeutic opportunities.

Epithelial Barrier Function

Intestinal epithelial cells (IECs) and mesenchymal cells are key for intestinal barrier function and
for the host response to infection and tissue damage. Iterative dialogue between the immune
system and the IEC/mesenchymal cell unit ensures an effective homeostatic and inflammatory
response including barrier maintenance and host defense. Although these interactions are host
protective, accumulating genetic and biological evidence points to their subversion in IBD and
highlights strategies that promote barrier function as therapeutic interventions.

The intestine is lined by a monolayer of columnar epithelial cells forming a barrier to microbes
and noxious agents through the formation of tight junctions between cells (65, 66). As the first point
of contact with the environment, IECs function not only as a stout barrier but also as an initiator
of the innate immune response to pathogens and tissue damage. Specialized epithelial cells termed
Paneth cells produce antimicrobial peptides within epithelial crypts, and goblet cells distributed
throughout the epithelial layer produce trefoil factors and mucins, which make up the protective
mucous layer. To perform these functions, IECs are armed with a number of sensing mecha-
nisms, including pattern recognition receptors such as Toll-like receptors, nucleotide-binding
oligomerization-domain protein-like receptors (NLRs), and cytokine and chemokine receptors
(65, 66).

The epithelial response to such a multitude of signals is governed primarily by the balance
between the NF-κB and STAT3 signaling pathways. NF-κB signaling in IECs functions as a
rheostat controlling apoptosis and proliferation and is central to barrier integrity and host defense.
Mendelian disorders suggest that defective NF-κB activation can lead to intestinal inflammation as
suggested by defects in IKBKG (NEMO), the ubiquitin ligase A20 encoded by TNFAIP3 (67), and
RELA haploinsufficiency (68). Cell type–specific deletion or bone marrow chimera experiments
confirm that defective NF-κB signaling in epithelial cells is sufficient to confer defects in barrier
integrity and subsequent inflammation (68, 69). This has direct consequences since hematopoietic
stem cell transplantation can cure susceptibility to infection in IKBKG-defective patients but does
not cure intestinal inflammation (70).

Leukocytes produce a number of cytokines with functional effects on the epithelium including
IL-6, IL-11, and IL-22, which stimulate STAT-3 and promote IEC activation and proliferation.
IL-6 signaling on IECs induces YAP/notch signaling that promotes differentiation of absorptive
epithelium and contributes to inflammation-driven repair pathways (71). IL-6 is elevated during
intestinal inflammation and has been implicated in the pathogenesis of mouse models primarily
through its antiapoptotic function on T cells (72). Results of clinical trials in CD with anti-IL-
6R blockade show some response (73), but the role of IL-6 in IEC repair may ultimately limit
effectiveness (74).

Type-17 lymphocytes including Th17 cells and type 3 innate lymphoid cells (ILC3s) play an
important role in host defense at barrier surfaces but are also implicated in IBD pathogenesis. A
major component of Th17 and ILC3 biology is the interaction of these cells with the intestinal
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epithelium through the production of cytokines IL-22 and IL-17. In the intestine, the IL-22R is
restricted primarily to IEC where it activates STAT3 promoting host defense and repair through
induction of cell proliferation, mucins, and antimicrobial peptides (75–77). Alongside host de-
fense, recent studies have highlighted the ability of IL-22 to act directly on intestinal stem cells
leading to increased repair following damage induced by graft-versus-host disease (GVHD) (78).
Consistent with its role in epithelial barrier function and host defense, blockade of the IL-22/IL-
22R pathway increases colitis in some mouse models (79, 80). IL-22 binding protein, which acts
as an IL-22 antagonist, is increased in IBD patients (81). Thus, therapies that increase IL-22
may be protective in IBD. However, the effects of IL-22 are context dependent since IL-22 can
mediate microbe-driven intestinal inflammation and colon cancer (82, 83). Indeed, the finding
that IL10RB mutations (encoding a component of the IL-22R) in infantile IBD are corrected by
bone marrow transplantation (84) suggests that IL-22 signaling in the epithelium is redundant for
intestinal homeostasis. Similarly, autoimmune polyendocrinopathy candidiasis ectodermal dys-
trophy patients, some of whom develop high-affinity neutralizing anti-IL-22 antibodies, do not
develop IBD (85).

The IL-17 receptor is expressed on multiple hematopoietic and nonhematopoietic cells in
the intestine (86). A number of leukocytes produce IL-17 including Th17 cells, γδ-T cells, and
ILC3s. In IEC, IL-17 signaling predominantly activates NF-κB and promotes host defense to
extracellular pathogens through induction of neutrophil attractants and antimicrobial peptides
(86). Although IL-17 is pathogenic in some models of colitis (87), it plays a protective role in most
studies (88, 89). Recently, acute production of IL-17 by γδ + T cells was shown to be required
for correct functioning of IEC tight junctions and barrier integrity (90, 91). In addition, IL-17
synergized with fibroblast growth factor to stimulate repair in an intestinal damage model of
colitis (89). These barrier- and repair-promoting functions of IL-17 in the intestine revealed in
mouse models may explain why clinical trials of an anti-IL-17A antibody failed in CD (92) despite
showing good efficacy in psoriasis (93). Inborn errors of IL-17 immunity in humans manifest
in restricted immunodeficiency presenting as mucocutaneous candidiasis (94). These patients do
not develop IBD, suggesting the host-protective functions of IL-17 in the intestine may be most
significant in the presence of inflammation.

In addition to its antimicrobial activity, defective autophagy likely contributes to disease activity
in IEC via goblet cell mucous secretion and Paneth cell activity (95). Epithelial-specific deletion of
Atg16l1 shows the impact defective autophagy has on Paneth cells, indicating a threshold model
where age-dependent accumulation of IRE1 (96), endoplasmic reticulum stress caused by XBP1
defects (97), and viral infection (98) act as additional susceptibility factors for intestinal inflamma-
tion. The context-specific effects of the common human CD-associated variant ATG16L1 T300A
are explained by a caspase cleavage site that causes depletion of ATG16L1 during inflammation
(99). Given these results, an attractive therapeutic concept is to induce autophagy in patients with
genetic defects to restore the defective secretory or antimicrobial activity (100). It needs to be
shown whether therapeutically relevant induction of selective autophagy can be achieved despite
intrinsic genetic defects in IBD patients.

IL-18 plays a key role in the IEC inflammatory response. Mouse models suggest that epithelial-
derived IL-18 regulates colitogenic Th17 cell differentiation as well as intestinal regulatory T cell
function (101, 102). Increased amounts of IL-18 were found in IBD patients (103) and in the serum
of patients with mutations of NLRC4 who develop infantile enterocolitis and autoinflammation
(104). Importantly, blockade of IL-18 as well as IL-1 receptor signaling by Anakinra led to the
resolution of otherwise therapy-resistant enterocolitis (105). As such, blockade of IL-18 may be
beneficial in subgroups of IBD patients with autoinflammatory mechanisms.
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Mesenchymal Cells

Mesenchymal cells are abundant in the intestine where together with extracellular matrix com-
ponents they constitute the connective tissue underlying the epithelium. Originally regarded as
primarily structural, there is accumulating evidence that mesenchymal cells integrate IEC and
immune responses in the intestine contributing to host defense, inflammation, and tissue repair
(106). By comparison with other cell lineages in the intestine, our understanding of mesenchy-
mal cells is primitive and primarily based on expression of markers. Three major subsets have
been identified: fibroblasts, alpha smooth muscle actin (α-SMA)-expressing myofibroblasts, and
perivascular pericytes (106). During inflammation, myofibroblasts are activated in response to
various inflammatory cytokines. To repair damaged tissue, extracellular matrix components such
as collagens are produced. Fibroblasts also act as sentinels in the intestine. Through activation of
NOD2, mesenchymal cells produce CCL2, a monocyte chemoattractant that protects against en-
teric pathogens (107). Pericryptal fibroblasts, which line the intestinal crypts, provide key growth
and differentiation factors for intestinal IEC stem cells to contribute to epithelial repair and
restitution (108).

As with epithelial barrier function, host-protective functions of mesenchymal cells are a double-
edged sword, and in IBD, the constant cycle of tissue inflammation and repair leads to overproduc-
tion of extracellular matrix and other common complications such as the development of fibrosis.
TNF is directly profibrotic on intestinal myofibroblasts (109), but anti-TNF therapy has limited
effects on fibrotic disease, suggesting alternative pathways promote fibrosis in IBD. IL-13 is an-
other cytokine with marked profibrotic properties that acts directly on fibroblasts and intestinal
macrophages to induce transforming growth factor beta (TGF-β) and the profibrotic response.
Although anti-IL-13 blockade did not induce remission in clinical trials (110, 111), its potential
antifibrogenic role has not been assessed in long-term studies.

Mesenchymal cells also contribute to the pathogenic inflammatory response in IBD. Pioneering
studies in the Kolias lab showed that mesenchymal cells are the primary target of pathogenic TNF
and sufficient for the development of Crohn’s-like ileitis in mice (112). Similarly defective NF-κB
signaling in a subset of intestinal mesenchymal cells inhibits chemical colitis and inflammation-
driven cancer in mice (113). Recent evidence in IBD has shown that intestinal fibroblasts express
an activated phenotype with enhanced responsiveness to cytokines (114). Among these, the IL-6
family cytokine Oncostatin M (OSM) and its receptor OSMR are increased in active CD and
UC (114). OSM is produced by leukocytes, whereas OSMR is expressed primarily on intestinal
mesenchymal cells. Fibroblast populations, in particular, are affected and respond by inducing
chemokines and cytokines involved in recruitment and retention of leukocytes. High OSM and
OSMR levels correlate with nonresponse to TNF-neutralizing therapy in IBD and OSM neu-
tralization attenuated anti-TNF resistant colitis in mice. These data suggest that OSM-mediated
activation of fibroblasts drives the pathogenesis of IBD through a pathway distinct from that of
TNF. OSM is thus a potential biomarker and therapeutic target for IBD with particular relevance
for anti-TNF-resistant patients.

Innate Barrier of Phagocytes: Crohn’s Disease as an Innate Immunodeficiency

Neutrophils, monocytes, and monocyte-derived macrophages are the main phagocytes in the in-
testine and, thus, constantly respond to translocated or invading bacteria. These cells accumulate
during intestinal inflammation and form the histological hallmarks of inflammation: neutrophil-
enriched crypt abscesses in UC and granulomas in CD. Traditionally seen as a primary hyperin-
flammatory disorder, CD in particular has been increasingly recognized to include an immuno-
deficiency element in its pathogenesis. This is supported by development of CD-like intestinal
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inflammation in diseases caused by several phagocyte defects and the identification of defective
antimicrobial autophagy in CD (38, 39, 95, 115).

Autophagy, a process of self-digestion, is involved in recycling of intrinsic cellular components.
As a component of a cell’s intrinsic defense system, autophagy is involved in antimicrobial activity
(xenophagy) and defects are particularly associated with CD. Thus, NOD2 signaling, the strongest
CD susceptibility factor (116, 117), links ATG16L1 signaling with defective antimicrobial au-
tophagy in dendritic cells, monocyte-derived macrophages, and neutrophils (118–120). Several
Mendelian disorders that present with CD-like granulomatous colitis (e.g., XIAP and NPC1 de-
fects) are also associated with defective NOD2–induced autophagy (119). As for autophagy defects
in epithelial cells, correcting autophagy is also a potential therapeutic intervention in phagocytes.
The mTOR inhibitor rapamycin induces autophagy and bacterial clearance in monocyte-derived
dendritic cells with genetic variants of NOD2 in vitro (118), but its potential therapeutic applica-
tion in CD is limited owing to dose-dependent toxicity (118, 121, 122). Other autophagy-inducing
drugs that trigger antibacterial activity in vitro in mouse and human phagocytes with Atg16l1 and
NPC1 genetic defects include phenothiazines (119, 123).

The hypothesis that CD in particular has an immunodeficiency component can account for
the increased inflammasome activation and production of cytokines seen in IBD patients as a
secondary consequence of increased intracellular bacteria. Phagocytes mount potent inflammatory
responses to translocating phagocytosed bacteria including TNF, IL-23, and IL-1. In addition to
the well-recognized roles of anti-TNF and anti-IL-23, secondary inflammasome activation may
be critical since mouse models (124, 125) and human studies suggest that blocking IL-1 may have a
therapeutic benefit in a setting of autoinflammation in patients with mevalonate kinase deficiency
(44), gain-of-function NLRC4 defects (126), or IL-10 receptor defects (125). In summary, genetics
and disease mechanisms clearly support the element of immunodeficiency with defective bacterial
handling in CD, but the attractive therapeutic potential of stimulated or restored xenophagy needs
to be explored and evaluated beyond preclinical studies.

Targeting the IL-23/TH17 Axis

The discovery of IL-23 and Th17 cells represented a step change in our understanding of the
immunity of barrier surfaces in health and disease and has driven development of a number
of new therapeutic targets for IBD (86, 127). IL-23 is a heterodimeric cytokine that shares
the p40 subunit with IL-12 and is produced primarily by activated monocytes, macrophages,
and dendritic cells. Its receptor is composed of IL-23R and IL-12RB1 (IL-12RB1 can also pair
with IL-12RB2) and is present on T cells and innate lymphoid cells including Th-17 cells, γδ-
T cells, invariant T cells, and ILC3s. IL-23 signaling in activated Th17 cells triggers JAK2 and
STAT3 signaling, leading to production of signature Th17 cytokines such as IL-17 and IL-22
(127). A key feature of innate and adaptive IL-23-responsive lymphocytes is their expression of
the transcription factor RORγt, which is required for IL-23R expression and IL-23-driven pro-
duction of type 17–associated cytokines (128). IL-12 and IL-23 are increased in CD and UC.
However, studies in mouse models of chronic intestinal inflammation highlight the pivotal role
of IL-23 and the IL-23R in disease development (129).

IL-23 is not required for the development of Th17 cells but functions to promote their survival
and effector function particularly during the inflammatory response (130–132). Th17 cells in the
intestine are independent of IL-23 and may contribute to intestinal homeostasis through the tonic
production of barrier-promoting cytokines such as IL-17 and IL-22 (133). By contrast, IL-23
drives more pathogenic Th17 cells that induce intestinal inflammation through production of a
mixture of cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF) and
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IFN-γ that drive myeloid cell activation (134). In addition to promoting inflammatory pathways,
IL-23 also antagonizes regulatory pathways through inhibition of the intestinal regulatory T cell
response (135, 136).

Study of IL-23-driven innate responses led to the identification of IL-23R-expressing in-
nate lymphoid cells (ILC3s) (137–139). ILC3 populations are present in the intestine, and in
mouse models, they can drive intestinal pathology and barrier-promoting host-protective re-
sponses through their production of IL-17 and IL-22, indicating context-dependent functions
(139, 140). Although ILC3s are increased in the inflamed intestine (141), their functional role in
disease pathogenesis has not been established.

Functional studies combined with identification of multiple GWAS hits in the IL-23/Th17
axis have provoked intense interest in targeting this pathway in IBD. Ustekinumab, an anti-IL-
12/23p40 antibody, was effective for the treatment of CD (142), and anti-IL-23p19 antibodies
have shown similar efficacy (143, 144). Targeting IL-23, rather than IL-17, is a better op-
tion because it inhibits Th17-mediated immune pathological pathways while preserving crucial
barrier-promoting functions of the host-protective IL-17 response (90, 91). Other strategies to in-
hibit the IL-23/Th17 axis include targeting the downstream JAK2/STAT3 pathway, although the
pleiotropic functions of these pathways in distinct cell types may limit this approach (145). More
recently, RORγt antagonists have been developed (146). These show efficacy in mouse models
of colitis and inhibit Th17 responses in vitro (147). Interestingly, transient inhibition of RORγt
ameliorates colitogenic Th17 responses but spares host-protective ILC3s, suggesting differential
requirements for RORγt in Th17 and ILC3 function (147). This all illustrates that the IL23/Th17
axis is a key therapeutic target in IBD and several medications have already been used in the clinic
(148).

CD8 Cells: More Than a Biomarker?

In contrast to the clear evidence of a functional contribution of CD4+ T cells to pathogenic and
immune-regulatory networks during intestinal inflammation, the important role of CD8+ T cells
for intestinal physiology and disease is only emerging (149). Indeed, only a few animal models
suggest a pathogenic role for CD8+ T cells (150). However, CD8+ T cells are differentially
activated in patients with IBD and might serve as a biomarker since a CD8+ T cell exhaustion
transcriptional profile predicts clinical outcome (151, 152).

B Cells in Intestinal Inflammation

The pathogenic role of B cells is another matter of debate. IgA coating of bacteria is associated with
intestinal inflammation and can be used to identify colitogenic bacteria (153). The immunoglobu-
lin response might be pathogenic, protective, or a bystander activation reflecting pathogenic T cell
responses. Several MD-IBD patients present with agammaglobulinemia (for instance, those cases
caused by loss-of-function Bruton kinase variants encoded by BTK or loss-of-function PI3Kp85a
encoded by PIK3R1) and combined variable immunodeficiency (38). Immunoglobulin reconstitu-
tion in those patients reduces pulmonary infection susceptibility but not intestinal inflammation,
suggesting that IBD is unlikely to be mediated via deficiency of immunoglobulins.

In most IBD patients, the presence of serum antibodies (such as pANCA, anti–Saccharomyces
cerevisiae antibodies, anti-OmpC, and antiflagellin) is likely a bystander response, although occur-
rence of multiple antibodies might predict a more severe form of IBD and its complications (154).
An extreme example of antibody-mediated autoimmune skin and intestinal epithelial damage asso-
ciated with intestinal inflammation is epidermolysis bullosa acquisita (155). These patients present
with antibodies against type VII collagen. Antibodies toward type VII collagen are pathogenic since
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they can induce epithelial damage in animal models (156). It is interesting to note that antibodies
against GM-CSF are a marker of aggressive CD (157), and recently a frameshift loss-of-function
variant in the GM-CSF receptor (encoded by CSF2RB) was associated with increased risk for CD
(158). Thus, in subsets of IBD patients, specific autoantibodies might be not just biomarkers but
also contributors to pathogenesis.

Promoting Immunoregulatory Pathways

In addition to increased proinflammatory activity, loss of regulatory elements promotes intestinal
inflammation. As mentioned above, there is conclusive evidence that IL-10 signaling plays a key
role in maintaining intestinal homeostasis. Mouse models with targeted defects in Il10 (159) and
Il10rb (160) develop spontaneous colitis. The exceptional role of IL-10 signaling is evident from
the development of infantile-onset IBD in children with loss-of-function defects in IL10 or its
receptor (40, 41, 161). Common polymorphisms in the locus of IL10 (162) and in IL10RB have
been associated with IBD (7) but were not resolved to a single variant and gene (17).

IL-10 is produced by several cell types including regulatory T cells, B cells, monocytes, and
macrophages (163). IL-10 produced by macrophages is dispensable for gut homeostasis, but IL-
10 receptor signaling in macrophages is essential since targeted deletion of IL-10R signaling in
macrophages results in spontaneous development of colitis (164, 165). IL-10 controls the pro-
inflammatory lipopolysaccharide-driven cytokine response via STAT3 signaling (163). In addi-
tion, the immunological functions of IL-10 in macrophages are associated with adaptation in
cellular metabolism since IL-10 controls macrophage glucose uptake, glycolysis, oxidative phos-
phorylation, mammalian target of rapamycin (mTOR) signaling, and mitophagy (166).

Although IL-10 controls a potent anti-inflammatory pathway, no direct therapeutic applica-
tions to boost IL-10 in IBD patients have reached the clinic. This is partially explained by side
effects observed when IL-10 is provided systemically (167, 168). Intestinal delivery of IL-10 via
Lactococcus has been effective in a mouse model (169) and is safe in humans (170). Medications that
target IL-10 to the inflamed intestine may offer efficient delivery of IL-10 to its site of action.

TGF-β is also a negative regulator of intestinal inflammation (171). In IBD there is increased
expression of the negative regulator of TGF-β signaling SMAD 7, resulting in impaired TGF-
β-mediated control mechanisms (172). These results led to the development of an oral SMAD7
antisense oligonucleotide aiming to block SMAD7 and restore TGF receptor signaling. Although
initial clinical trials showed substantial response rates in patients with CD (173), recent interim
analysis led to the termination of ongoing trials due to lack of efficacy (174).

The central role of FOXP3+ regulatory T cells in controlling autoimmunity and intestinal
inflammation is illustrated by the development of IPEX syndrome in humans (175) and mice with
Foxp3 defects (176). Regulatory T cells control inflammation in mouse models via a number of
mechanisms that include secretion of IL-10 and TGF-β, cell-cell interactions via Ctla4, PI3K-
Akt-mTOR-Foxo signaling, and other pathways that affect immune metabolism (177, 178). Mouse
models suggest that thymic-imprinted and induced regulatory T cells control innate and adaptive
immune responses (179). Given that regulatory T cells require IL-2 for their normal functioning,
it is interesting that an intronic IBD susceptibility polymorphism in the IL2RA locus (17) changes
the balance between regulatory T cells and Th17 cells (180), supporting an immune dysregulation
element in classical IBD. It needs to be shown whether stimulation of endogenous regulatory
T cells via low-dose IL-2 in UC (NCT02200445) or cellular therapy of autologous in vitro–
expanded regulatory T cells will be beneficial in classical IBD (181). Restoration of regulatory
T cell homeostasis via low-dose IL-2 can prevent intestinal GVHD (182, 183) and shows the
feasibility and potential of this approach to control tissue inflammation (184).
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MANIPULATION OF INTESTINAL DYSBIOSIS

IBD in humans as well as model systems is associated with reduced diversity of gastrointestinal
bacterial communities, termed dysbiosis. The presence of (likely pathogenic) species such as ad-
herent invasive E. coli strains and a reduction of (likely beneficial) bacterial community members
such as Faecalibacterium prausnitzii suggest a shift in the balance between colitogenic and protec-
tive bacteria (185, 186). Most mouse models suggest that development of intestinal inflammation
depends on the presence of the microbiota. This is not unselective since—depending on host
susceptibility—only some bacteria, such as segmented filamentous bacteria or Helicobacter hepati-
cus, drive colitis via induction of Th17 cell responses (187–190). Similar to bacterial dysbiosis in
IBD (191), alterations in the fungal microbiota may either be a bystander response or play an
as-yet underappreciated role (192). Associated with the reduced diversity of bacterial microbiota,
the human virome in IBD patients is substantially altered, in particular, via increased diversity of
bacteriophages (193). Further studies are required to determine the functional significance of this
finding.

Manipulation of microbiota composition, diversity, and functionality via probiotics, fecal trans-
plantation, prebiotics, or antibiotics may provide an opportunity to target dysbiosis and restore
eubiosis. Use of bacterial products such as butyrate or polysaccharides may further modulate
immune homeostasis via natural mechanisms. Evidence to support this concept comes from in-
duction or maintenance of remission in UC by probiotic bacteria such as VSL#3 (a mixture of
several bacteria that includes Bifidobacteria, Lactobacilli, and a Streptococcus thermophilus strain) or the
probiotic strain E. coli Nissle 1917 (194). An unresolved question in understanding IBD regards
the differences in responses to probiotics between CD and UC.

There is some evidence that recolonization of the gastrointestinal tract via fecal transplantation
has a potentially therapeutic role in UC (195). Whereas antibiotics are a risk factor for development
of intestinal inflammation—presumably by reducing the intestinal diversity with lasting effects
(196)—their role as therapeutics is limited.

In addition to supplementation of bacteria, there is also interest in postbiotics, i.e., bacterial
products that exploit evolved pathways that are beneficial to the immune system (186). In mouse
models, postbiotics such as polysaccharide A (197) or the histone-deacetylase inhibitor butyrate
can stimulate intestinal regulatory T cells (198). In summary, mouse models and human data
suggest that intestinal microbiota are a key driver of intestinal inflammation. Multiple bacteria
cause pathogenicity depending on metatranscriptomic similarities, the degree of invasiveness, and
individual host susceptibility.

Stem Cell Transplantation: Restarting the Immune System

One extreme conceptual approach to treat IBD is replacement of entire cellular compartments
via hematopoietic, mesenchymal, or bowel transplantation. Mendelian disorders with immuno-
deficiency and IBD confirm that this approach can be highly effective. In several monogenic
immunodeficiencies such as IL-10 signaling defects, allogenic HSCT is the current standard of
care (84). Patient selection is key for this procedure since MD-IBD patients with epithelial defects,
such as those caused by mutated EPCAM (199, 200) or TTC7A (201, 202), are unlikely to benefit
from an HSCT approach.

Due to procedure-related adverse effects, there is no direct translation to polygenic IBD.
In patients with refractory CD who received autologous HSCT, no significant improvement as
indicated by sustained disease remission at 1 year was observed, although there was significant
toxicity (203). It is currently not clear whether lack of HSCT efficacy is due to the autologous
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approach, i.e., replenishment of patient-derived hematopoietic cells (in particular with remaining
innate immune defects), or due to a substantial epithelial component in CD patients that cannot
be corrected. An alternative approach might be mesenchymal stem cell transplantation to modify
the stromal microenvironment (204, 205).

Gene Therapy: Correcting the Causative Defect

Despite the significant advances in therapeutic concepts reviewed here, many current and future
treatments do not reverse the cause of the disease. In MD-IBD where single-gene defects cause
intestinal immunopathology, gene therapy offers the possibility of correcting the gene defect in
patient-derived cells. The feasibility of gene therapy for improving and curing immunodeficiency
and colitis has been shown in Wiskott-Aldrich syndrome (206, 207). Genotoxicity was observed
in the early-generation vectors (207), but novel vectors or CRISPR/Cas9-mediated gene transfer
and base editing may offer potentially safer approaches in the future.

PREVENTION OF INFLAMMATORY BOWEL DISEASE

The rising incidence and prevalence of IBD in the last half-century in Europe and Western
America and the increasing numbers of patients in developing countries suggest that environmen-
tal factors play a major role in IBD pathogenesis. Multiple factors that affect IBD susceptibility,
including breastfeeding, antibiotic exposure in infancy, smoking, major life stressors, and diet,
have been identified (196). Many of these environmental factors reduce the diversity of intestinal
microbiota and may have long-term effects via priming and imprinting of the immune system
at an early age. To stop or even revert the rise in IBD incidence, mechanistic understanding of
those risk factors is needed to inform population-based preventive interventions. In light of the
extreme numbers needed to treat and the decades of follow-up required to see robust effects,
prospective controlled interventional studies are difficult to perform. However, it will be infor-
mative to see whether changes in lifestyle such as the substantial reduction in the prevalence of
smoking in many countries in the last 30 years (208) will reduce the incidence and prevalence of
IBD and affect the ratio between CD and UC. Ultimately, prevention of IBD might become a
rational complementary strategy to therapeutic interventions.

SUMMARY

Emerging evidence suggests that a state of metagenome instability, immune dysregulation, and
defective mucosal barrier function is the underlying cause of MD-IBD as well as classical polygenic
IBD. In subtypes of Mendelian disorders, correcting the underlying functional pathway using
targeted therapies is feasible, and genomics can inform personalized medicine. In classical IBD
with multifactorial pathogenesis, multiple functional perturbations of intestinal checkpoints lead
to similar histological endpoints. As a consequence, restoring barrier function and antimicrobial
autophagy may be a complementary strategy to inhibition of inflammatory cytokines and targeting
of immune cell subsets.
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