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Abstract

Throughout the body, T cells monitor MHC-bound ligands expressed
on the surface of essentially all cell types. MHC ligands that trigger a
T cell immune response are referred to as T cell epitopes. Identifying such
epitopes enables tracking, phenotyping, and stimulating T cells involved in
immune responses in infectious disease, allergy, autoimmunity, transplanta-
tion, and cancer. The specific T cell epitopes recognized in an individual are
determined by genetic factors such as the MHC molecules the individual
expresses, in parallel to the individual’s environmental exposure history.
The complexity and importance of T cell epitope mapping have motivated
the development of computational approaches that predict what T cell
epitopes are likely to be recognized in a given individual or in a broader
population. Such predictions guide experimental epitope mapping studies
and enable computational analysis of the immunogenic potential of a given
protein sequence region.
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INTRODUCTION

T cells scan MHC ligands presented to them on the surface of nucleated cells (expressing MHC
class I molecules) and on professional antigen-presenting cells and other cells of the lymphoid
lineage (expressing both MHC class I and II molecules). This allows T cells to detect antigens de-
rived from pathogens as well as the presence of abnormal self-antigens expressed by cancer cells
(Figure 1a). Complexes ofMHCmolecules and their ligands are generated by antigen-processing
and -presentation pathways consisting of a series of enzymatic events involving specialized or-
ganelles and processes, which are distinct for MHC class I andMHC class II. As a first approxima-
tion, class I molecules sample the interior of each cell, while class II molecules provide a window
to what proteins and peptides are present in the extracellular environment. MHC ligands that
trigger a T cell immune response are referred to as epitopes. T cells recognizing an epitope can
exert direct effector functions such as the production of inflammatory or regulatory cytokines,
cytotoxicity, and providing help to B cells regulating the development and maturation of antibody
responses. Upon recognition of an epitope, T cells proliferate to form an effector population that
can detect the same epitope on other cells and can form long-lived memory populations that en-
able the host to rapidly respond to subsequent encounters of the same epitope (1). Thus, T cell
epitope recognition is a critical step in the formation and recall of adaptive immune responses.

The identification of epitopes enables tracking, phenotyping, and stimulating T cells. Epitopes
can be used to detect the magnitude and cytokine polarization of epitope-specific T cell responses
in an input sample based on cytokine secretion assays such as ELISPOTs or ELISAs. They can be
used in flow cytometry andmass cytometry assays to detect and phenotype epitope-specific T cells
based on intracellular cytokine-staining assays, or to isolate and characterize them in single-cell
RNA-seq assays and emerging technologies such as CITE-seq. These experimental techniques
have provided an improved mechanistic understanding of T cells involved in different disease
contexts. Furthermore, detection of epitope-specific T cells has been used in diagnostic applica-
tions (2) and to deimmunize proteins used as biological drugs (3–5). Additional interest in T cell
epitopes has arisen in the context of cancer immunotherapy, where the number of potential T cell
epitopes in a tumor has been proposed as a marker of success for checkpoint blockade treatments,
and where tumor-specific epitopes are being used to induce tumor-specific T cell responses (6).
These practical applications of T cell epitopes have continued to drive efforts to improve methods
to identify them.

There are three main categories of assays that have been used to dissect the mechanistic steps
involved in T cell epitope formation and recognition (Figure 1b). The first is assays measuring
MHC binding in vitro.This directly determines which peptides have the potential to be presented
to T cells and can provide quantitative affinity data (7–9). The second is assays detecting MHC
ligands presented on cells by elution of such ligands and their detection by mass spectrometry.
This allows us to factor in the influence of antigen processing in the generation of the ligand
before and after MHC binding (10–14). Third is assays measuring T cell epitope recognition of
an epitope. This directly reads out the type and magnitude of T cell responses to epitopes in a
specific individual (15–19).

A key challenge in identifying T cell epitopes is that their recognition varies substantially
between individuals. One factor driving this variability is that the genes encoding for MHC
molecules (called HLA in humans) are the most polymorphic in the human genome. Different
MHC molecules have distinct binding specificities, which results in them presenting different
MHC ligands to T cells. As a result, different individuals in the human population will present
different epitopes, and pathogens will find it difficult to evade recognition completely. In addition
to MHC polymorphism, what T cell epitopes are recognized is also shaped by the exposure
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Figure 1 (Figure appears on preceding page)

Overview of the biological process, experimental assessment, and computational prediction of T cell epitope recognition. (a) Overview
of the main cellular mechanisms involved in antigen processing, presentation, and recognition of T cell epitopes that have been
included in computational predictions. (Left) MHC class I–restricted T cell epitopes primarily arise from intracellular antigens that are
cleaved by the proteasome and transported into the ER by TAP, where they can bind to MHC class I molecules that get transported to
the cell surface, where they can be recognized by CD8+ T cells. Proteins and peptides are depicted as beads-on-a-string, with red circles
indicating amino acids that are C-terminal residues of peptides presented by MHC molecules. In contrast, MHC class II–restricted T
cell epitopes (right) are primarily derived from extracellular proteins taken up by professional APCs that are cleaved in lysosomal
vesicles, where they can bind to MHC class II molecules, be transported to the cell surface, and be recognized by CD4+ T cells. Dark
purple circles indicate amino acids at the C-terminal end of the core binding to MHC-II. (b) Three main categories of experimental
assays have been utilized to characterize the steps involved in antigen processing and recognition of T cell epitopes. (Left) MHC binding
assays that determine the affinity of a synthetic peptide to a specific MHC molecule. (Middle) MHC ligand elution assays that isolate
and identify peptides bound to MHC molecules on the cell’s surface as a result of natural antigen processing and presentation. (Right) T
cell epitope recognition assays, in which the ability of T cells to interact with and/or respond to a candidate epitope is determined.
(c) Approaches to the computational prediction of T cell epitopes, starting with pioneering use of MHC motifs such as SYFPEITHI
(left) (47), in which allowed amino acids at anchor positions (blue bolded) and at auxiliary anchor positions (purple) were identified based
on a heuristic analysis. This was followed by machine learning approaches that were explicitly trained on quantitative data such as
BIMAS (middle) (50), where numeric values would be assigned for each of the 20 conventional amino acids (rows) at each position in a
9-residue peptide (columns), so that they best reproduce measured binding affinities for a set of peptides that were previously tested (the
training data). Finally, current neural networks approaches have custom architectures that allow training on combined data from
multiple MHC alleles and from both MHC binding and elution data, such as the recent NetMHCpan version 4.0 (right) (127).
Abbreviations: APC, antigen-presenting cell; ER, endoplasmic reticulum; TAP, transporter associated with antigen processing; TCR, T
cell receptor.

history of an individual. Reencounter of an epitope will favor activation of memory cell responses,
rather than induce de novo responses. Overall, this means that what specific T cell epitopes are
recognized in a given individual will be impacted by both genetic and environmental factors.

Given the importance and complexity of T cell epitope mapping, there has been a continued
interest to develop computational prediction methods that aid in the identification of T cell epi-
topes.These prediction methods have evolved from the identification of amino acid motifs in pep-
tides that correspond to their MHC binding residues, to the advent of quantitative MHC binding
affinity predictions using machine learning approaches, to the current state-of-the-art predictions
that utilize custom neural network architectures that are capable of integrating information from
MHC binding and MHC ligand elution data across multiple MHC molecules (Figure 1c).

This review focuses on the development of computational methods for T cell epitope predic-
tion, how these methods have been shaped by the experimental data available, the best practices
in practical applications, and remaining challenges to the field. We restrict our scope to T cells
recognizing peptide epitopes presented by classical MHC class I and class II molecules.This is not
to diminish the importance of nonpeptidic or posttranslationally modified epitopes, but it reflects
that essentially all current T cell epitope predictions target conventional peptide epitopes.

A BRIEF HISTORY OF THE DISCOVERY OF T CELL EPITOPES
AND THEIR MHC RESTRICTION

Several Annual Review of Immunology articles have covered the topics of antigen processing
and presentation, their relationship to MHC molecules and epitope generation, and epitope
recognition by the T cell receptor (TCR) repertoire (7, 8, 10–21). Here, the history of how
the mechanisms of T cell epitope recognition were discovered is briefly recapped to introduce
the vocabulary still in use today and the different experimental methods that form the basis of
T cell epitope discovery. Two different Nobel prizes were awarded to recognize the seminal
observation that immune responsiveness is regulated by genes encoded in the MHC locus, which
are associated with high allelic polymorphism: one to Snell, Daussett, and Benacerraf in 1980 “for
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their discoveries concerning genetically determined structures on the cell surface that regulate
immunological reactions,” and one to Doherty and Zinkernagel in 1996 “for their discoveries
concerning the specificity of the cell mediated immune defense” (22, 23). In this context, it was
stated that T cell recognition is MHC restricted, as conventional T cells recognize a particular
combination of a given antigen and a specificMHC.Themolecular basis for thisMHC restriction
was much debated. Some investigators thought that this must reflect the fact that T cells carried
two receptors, one for MHC and one for antigen; others argued that it was most likely that a
single receptor recognized the combination of both (24). In the 1970s, parallel investigations by
Gell, Benaceraff, and Ishizaka compared the capacity of B cells and T cells to distinguish between
native and denatured forms of the same antigen (25). They found that antibodies derived from
animals immunized with native antigen reacted strongly against native antigen but failed to react
with denatured antigen. In contrast, T cells broadly cross-reacted with both forms, suggesting
that while antibodies are very dependent on the 3D structure of antigen for recognition, T cell
cross-reactivity is dictated solely by the primary amino acid sequence of a protein. The point was
proven by observations from Grey, Kappler, and Marrack for CD4 (26, 27) and expanded by the
Townsend group for CD8 T cells (14, 28), showing that T cells recognize a peptide fragment
derived from their antigen of specificity, the epitope. Soon after, Unanue’s and Grey’s groups
demonstrated specific binding of epitopes to purified MHC in vitro, and showed that the binding
pattern to different alleles matched their known MHC restriction (29, 30).

THE CONCEPT OF MHC MOTIFS AND THE EXPERIMENTAL
METHODS TO DETERMINE THEM

In the late 1980s several groups developed approaches to predict which peptidesmight be epitopes.
DeLisi & Berzofsky (31) proposed that T cell epitopes might be predicted on the propensity
to form amphipathic α helices, and Rothbard and colleagues proposed a short 4- to 5-residue
hydrophobic stretch as a predictor (32). While neither of these approaches held up well with
larger data sets, they opened the field for further development of new prediction approaches.
In retrospect, the missing insight was that separate predictors for different class I and class II
allelic variants are necessary, as each MHC allele is associated with a different binding specificity.
This became increasingly clear through studies showing thatMHC variants have different epitope
binding capacity, which predicted T cell responsiveness (33), and that peptide binding specificity
is determined by the presence of specific amino acid patterns (34). Systematic studies revealed
that while certain positions in the peptide could be substituted with almost any amino acid, other
positions would only tolerate limited substitutions with closely related amino acids in terms of
side chain properties. These positions were termed main anchor residues of the epitopes. It was
further shown that these anchor residues were found with similar spacing in different epitopes
restricted by the same MHC. Therefore, these residues were termed anchor positions, and the
sum of the anchor positions spacing and specificity was called the MHC ligand motif.

The physical basis of MHC ligand motifs was first hinted at by earlier data from McDevitt
and coworkers (35), which had shown that the MHC residues polymorphic in different allelic
variants clustered in hypervariable regions reminiscent of what was previously shown for antibody
molecules. It was hypothesized that these hypervariable regions formed epitope-binding sites in
theMHCmolecule and that the anchor positions withinMHC peptide ligands were bound to this
site. This was shown to be exactly the case whenWiley and associates solved the crystal structures
of HLA A2 first (36) and HLA DR1 shortly after (37). The MHC molecules in these structures
were found to have characteristic pockets that explained the spacing and residue specificity of the
MHC ligand motifs.
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The definition and refinement of MHCmotifs received a significant boost through the advent
of experimental techniques to isolate naturally processed and presented MHC ligands. Studies by
Nathenson, Rammensee, and Bevan had shown that the exact natural ligand recognized by T cells
could be recovered from purified MHC (38–41). Rammensee’s group took this observation one
step further, by sequencing by Edman degradation pooled class I ligands, and showing that they
were remarkably homogeneous in size and that certain main anchor positions were conserved
and associated with limited chemical diversity (42). Elution of natural class I ligands provided a
powerful method to define class I MHC ligands motifs that was simple, conceptually elegant, and
technically powerful, resulting in definition in a brief time of tens of motifs for different allelic
variants. This methodology proved effective for class I MHC, but less so for class II molecules,
which have a peptide-binding groove that is open at both sides. As a result, the anchor positions
of MHC class II–bound peptides are not in frame, rendering sequencing of pooled ligands more
difficult to interpret. To overcome the limitations of pooled ligand sequencing, eluted peptides
were separated by chromatography and individual ligands identified by mass spectrometry ap-
proaches (43, 44), resulting in the direct identification of peptide ligands presented on cells—a
technique that has continued to be improved in throughput and sensitivity to this day, providing
a true wealth of information and insight into the natural ligands of MHC molecules.

MHC BINDING PREDICTIONS BASED ON MOTIFS AND OTHER
HEURISTIC APPROACHES

The era of computational T cell epitope predictions was initiated in 1989 by Sette and colleagues
(45), who described a computer program that used MHC allele–specific motifs to identify po-
tential ligands in a protein sequence. By the mid-1990s, the motifs associated with many class I
and class II MHCs were defined at a variable level of resolution. The simplest canonical motifs
were based on the determination of the main anchor residues and their relative spacing. It became
apparent, however, that such motifs were an oversimplification, with only about a third of pep-
tides containing the canonical motif being able to bind MHC, and many ligands binding MHC
not containing the exact motif. This was reconciled by taking into account additional auxiliary
(or secondary) anchor positions that could influence binding, albeit in a less pronounced fashion
than the primary anchor positions (46). Several approaches were developed that aimed at produc-
ing a quantitative score, related to the predicted binding affinity or to the probability of binding.
Essentially these methods were based on a matrix that for each position assigned a heuristic nu-
merical value corresponding to the expected impact of the peptide carrying that specific amino
acid. The various values for each position were then combined to derive a final score for a given
peptide/MHC combination. Popular scores were the SYFPEITHI score, which was based on the
analysis of ligand elution data (47), and the average relative binding (ARB) matrices (48), which
were based on measured binding data from single substitution analogs of known ligands.

THE ADVENT OF MACHINE LEARNING TO PREDICT MHC BINDING

Driven by the success of the heuristic predictions, more advanced supervised machine learning
approaches were soon proposed.Such approaches consist of training an algorithmbased on labeled
input data, such as sets of peptides with measured binding affinities, to generate a function that
approximately reproduces the input data by learning patterns that are not defined a priori and that
are capable of predicting how new data should be labeled (49). The first such method applied to
MHC binding predictions was the BIMAS (50) model proposed by Parker et al. (50), in which
coefficients of a matrix defining the contribution of different residues in a peptide to binding to
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HLA-A∗02:01 were fitted by linear regression to experimentally measured half-lives (Figure 1c).
This matrix model implicitly assumes independent contributions of each residue in a peptide to
the overall binding affinity, and it provided robust predictions of the affinity of previously untested
peptides. A website hosted at the US National Institutes of Health (NIH) (unfortunately retired
in 2019) made predictions for HLA-A∗02:01 and several other alleles publicly available, along
with the underlying prediction matrices, which set an important positive precedent for making
computational predictions accessible and reproducible for the community at large.

More complex prediction models for MHC class I peptide binding that allowed for nonlin-
ear interactions were also proposed, including artificial neural networks (ANN) (51–54), hidden
Markov models (HMM) (55, 56), and QSAR (quantitative structure-affinity relationship)-based
regressionmodels (57).While these early models demonstrated reasonable success in reproducing
the data used for their development, their usefulness for epitope discovery was often limited due
to their low allelic coverage (most methods were trained and evaluated on data covering one or
twoMHCmolecules) and the low number of data points available for model construction. Specif-
ically, the low number of data points was a critical problem for complex prediction methods that
require determining many parameters, which makes them prone to overfitting and overestimation
of model performance on a small data set. In contrast, the performance of the simple model under-
lying the BIMAS predictions held up remarkably well given the limited input data available used
to generate them. The originally unexpected finding that simple linear methods outperformed
more complex nonlinear predictions was further dissected in the development of the stabilized
matrix method (SMM) (58), which explicitly separated linear contributions of each residue in a
peptide to binding, and nonlinear pair-interaction terms quantifying the impact of two specific
residues at different positions, and which used regularization to avoid overfitting. This approach
showed that some pair-interactions are reproducibly found in data sets that are large enough, but
that their strength is at least an order of magnitude lower than the direct contributions to binding
of individual peptide residues.

There is a physical explanation for why simple linear models of peptide–MHC interactions
can provide accurate predictions of measured binding affinities: Peptides conventionally bind to
MHC molecules in an extended conformation, where every residue in an MHC-bound peptide
has a defined position in theMHCbinding groove.Thus, as a first approximation, each amino acid
in a peptide contributes independently to the overall peptide binding affinity. This largely fixed
structural configuration of peptide binding also explains why computational approaches that ex-
plicitly model the 3D structure ofMHC–ligand complexes and their physicochemical interactions
have not provided prediction performances superior to those of sequence-based machine learning
approaches for MHC binding (59), in contrast to the success (or even requirement) of 3D model-
ing for other ligand interactions, such as those inducing conformational changes in ligand-binding
proteins (60).

EPITOPE DATABASES AS A SOURCE OF DATA TO TRAIN MACHINE
LEARNING ALGORITHMS

The performance of machine learning algorithms increases with the amount of data available
to train them, which makes data set assembly an essential step in tool development. Epitope
databases that compile records from publications and other data sources in a consistent format
make this task much easier. Several pioneering databases were initiated starting in the 1990s.
Among those still available today are the HIVmolecular immunology database, led by the Korber
lab, which catalogs T cell and B cell epitopes in HIV viruses (61); and the SYFPEITHI database,
led by the Rammensee lab, which catalogs eluted MHC ligands, pool sequencing motifs, and
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T cell epitopes from any source (47); and the MHCBN database, led by the Raghava lab, which
in addition to MHC binding and T cell epitope data also contains transporter associated with
antigen processing (TAP) binding data (62). In 2003, the Immune Epitope Database (IEDB) (63)
was initiated as a repository for epitope-related data curated from the literature as well as for data
generated by large-scale T cell and B cell epitope discovery contracts funded by the NIH. As of
today, the IEDB is led by the Sette and Peters labs, contains over 2,000,000 experiments curated
from over 20,000 references (64), and is accompanied by a companion site providing access to
epitope prediction and analysis tools (65), many of which were developed in the Nielsen lab. The
most recent major addition to epitope-related databases is SysteMHC (66), which captures MHC
ligand elution data identified by mass spectrometry and provides access to both raw data from
multiple labs and (re)analyzed data run through a consistent pipeline (67). All of these database
efforts compile data from different sources in a consistent format, which enables the training and
evaluation of machine learning predictions.

THE VALUE OF BENCHMARKING TO UNRAVEL DIFFERENCES IN
PREDICTION METHOD PERFORMANCES FOR MHC BINDING
TO GUIDE TOOL DEVELOPERS AND USERS

With a proliferation of different predictionmethods, the field was challenged by a lack of objective
metrics allowing comparisons of their performance. A systematic attempt to address this issue was
a benchmark of publicly available prediction methods conducted by us using data assembled in the
course of the initial construction of the IEDB. This benchmark utilized a data set of quantitative
peptide binding to a panel of mouse, human, macaque, and chimpanzee MHCmolecules, most of
which were previously unpublished (68). For three prediction methods, the underlying algorithms
were directly available to us, so cross validated performances of the algorithms could be obtained.
These algorithms were ARB, SMM, and NetMHC, the latter being referred to as ANN (artificial
neural network) in the paper, as it was a neural network designed based on theNetMHC algorithm
(69) but retrained on benchmark data. Twomain conclusions were drawn from this study: First, all
threemethods when retrained on the large benchmark data set outperformed the earlier published
web servers. This demonstrated that the size of the data set used for training plays a critical role in
determining the predictive power of a given prediction method, suggesting that not only machine
learning algorithmic advances but also persistent retraining on newly available data sets is required
for tools to have optimal predictive power. Second, the NetMHC-based method performed best
overall, with highest performance in 30 out of 46 data sets that could be compared between all
three methods, while the SMM approach had the highest performance on 16 data sets, and the
heuristic ARB method did not score highest on any data set.

Interestingly, NetMHC showed the most dominant outperformance on smaller data sets. This
conflicts with the assumption that its ability to predict nonlinear interactions is the basis of its
superior performance, as predicting nonlinear interactions should depend highly on having large
training data sets available. In fact, no method has been able to identify quantitative nonlinear
contributions to MHC binding beyond what has been published for SMM.Closer examination of
howNetMHC performed well in predicting binding when trained on small data sets revealed that
a key advantage was the way it presented peptides to the neural network. The naive approach to
encode a peptide of length N is to generate a binary vector with N × 20 entries corresponding to
theN positions in the peptide and the 20 canonical amino acids.NetMHCdoes not use binary vec-
tors but rather encodes peptides using BLOSUMmatrices that implicitly provide information on
amino acid similarity to the network.This allowed theNetMHC algorithm to extrapolate patterns
of binding to residue types not found in the training set. Motivated by this, a Bayesian Prior was
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added to the SMMmethod that essentially teaches it how similar different amino acids are, which
significantly improved the ability of the algorithm to predict MHC binding on small data sets
[SMM-PMBEC (70)]. Overall, these observations indicate that there is not a simple dichotomy
between linear versus nonlinear predictions that explains differences in prediction performance
forMHC class I binding predictions, but that additional factors, such as the encoding of biological
knowledge in the peptide presentation, are key to generating high-performance predictions.

For MHC class II, similar efforts were dedicated to the development of peptide-binding pre-
diction methods, but the challenge was substantially greater due to the open binding groove of
MHCclass IImolecules.This allows peptides to protrude outside of the binding groove andmakes
alignment of binding peptides essential to identifying the common binding core. The list of ma-
chine learning frameworks proposed to resolve this challenge is long and includes HMM (71),
SVM (72, 73), Gibbs sampling (74), and ANN (75, 76) among others. A decade ago, benchmark-
ing studies showed thatmachine learning–basedmodels achieved the highest predictive power (77,
78) and that overall prediction performance was lower than for MHC class I, but that it could be
improved by making consensus predictions, similar to what was done for MHC class I before (79).
Over the years, the ANN-based framework NNAlign (76) used to develop the NetMHCII (and
NetMHCIIpan; see below) methods (80–82) has been continuously refined (83–88). And MHC
class II binding predictions have broadly caught up to where MHC class I binding predictions
were a decade ago They achieve area-under-the-curve (AUC) values of 0.87 (80), while for MHC
class I AUC can be as high as >0.98 when identifying binders from peptide sets that were not
preselected, but such data sets are increasingly rare (89), as most peptides tested experimentally
for binding today are preselected based on predicted binding to avoid obvious nonbinders.

DEVELOPMENT OF PAN-MHC BINDING PREDICTION METHODS

The experimental data available for different MHC molecules are highly uneven, with some al-
leles being very well studied, such as HLA-A∗02:01, while many other alleles have never been
studied in binding assays at all. Given that the frequency of HLA alleles can vary substantially
between different ethnicities, and given that there is an interest in rarely expressed alleles that are
associated with specific diseases, it is desirable to generate accurate predictions for all HLA al-
leles. However, with over 10,000 allelic variants of HLA molecules described in the IMGT-HLA
database (90), the conventional approach of generating large data sets for each allele and training
allele-specific prediction algorithms on each data set is not feasible. To resolve this, pan-specific
predictionmethods were proposed that can predict binding forMHCmolecules not characterized
experimentally.The first method to successfully do this was TEPITOPE (91), which could predict
binding to 51 prevalent HLA-DR alleles. TEPITOPE is based on the construction of virtual ma-
trices that characterize the binding profile of a given HLA-DR molecule by comparing residues
in its sequence that are forming a binding pocket to pockets from other MHC molecules where
the binding specificity has been defined. This approach achieved solid prediction performances
and demonstrated for the first time that the specificity of an MHC molecule that has never been
experimentally characterized can be computationally predicted.

The first computational method to implement pan-specific predictions for MHC class I
molecules was NetMHCpan (92). This method was inspired by the work of Brusic and coworkers
(93), who complemented the peptide binding information used to train a prediction model
with information about the amino acids defining the MHC binding groove, which allowed
utilizing binding data generated from different MHC molecules to train a single neural network.
NetMHCpan expanded this to make predictions for MHC molecules that had never been tested
and demonstrated that this could greatly improve the ability to make accurate predictions for

www.annualreviews.org • T Cell Epitope Predictions 131



IY38CH06_Peters ARjats.cls April 5, 2020 13:42

alleles characterized with limited or even no binding data. Later, other pan-specific approaches for
MHC class I such as ADT (94), KISS (95), and PickPocket (96) were proposed, each implement-
ing different representations of the MHC binding environment to allow for the development
of pan-specific prediction models. Independent benchmarking subsequently demonstrated the
superior performance of NetMHCpan for prediction of peptide binding, MHC ligands, and
CD8 epitopes (97). For MHC class II, later approaches similar to that of NetMHCpan described
above were proposed, including MultiRTA (98), MHCIIMulti (99), and NetMHCIIpan (100),
each of which represented the MHC binding environment along with the peptide in a machine
learning approach to enable true pan-specificity covering all class II proteins of known sequence.

PREDICTING NATURALLY PROCESSED AND PRESENTED
MHC LIGANDS

For a peptide epitope to be recognized byT cells, it has to bind to anMHCmolecule. Prior to that,
it has to be generated by the antigen-processing and -presentation pathway. Several studies have
been performed to predict steps in the MHC class I antigen-processing pathway, including pro-
teasomal cleavage (101, 102) and TAP transport efficiency (103, 104). These studies showed that
the steps involved in antigen processing have specificities that can be learned from experimental
data and applied to identify MHC ligands. However, the specificity of proteasome cleavage and
TAP transport is much less selective thanMHCbinding. Several methods have integrated the pre-
diction of different steps in antigen processing and presentation to allow for improved prediction
of MHC class I ligands and T cell epitopes (105–108). These approaches were able to achieve
consistent but minor improvements in predictive power for epitope identification compared to
state-of-the-art methods for MHC binding alone (109). Comparing the specificity of the protea-
some, TAP and MHC suggested a simple explanation for this: MHC molecules appear to have
(co)evolved to be able to bind peptides that are efficiently generated by the proteasome and trans-
ported by TAP. This means that incorporating the specificity of these antigen-processing steps
into a prediction algorithm does not significantly improve the specificity of the results (102).

While the impact of the antigen-processing machinery on the sequence composition of MHC
class I ligands is masked by the overlapping MHC binding specificity, in contrast, it does have
an apparent impact on the peptide length distribution of presented MHC ligands. While bind-
ing assays reveal that different HLA class I molecules favor distinct peptide lengths, ligand elution
profiles show amuch narrower distribution of peptide lengths, strongly favoring peptides of length
9 (110, 111). This narrower distribution can be explained by the peptide length preference result-
ing from antigen-processing steps, which limits the ligands available for binding to MHC (111),
which has been previously postulated (112–114).

For MHC class II, a different set of cellular and biochemical processes are operational in de-
termining how the antigen-processing machinery shapes the ligand repertoire. These processes
have also been studied and characterized in detail (10, 18, 115, 116), but until recently, they had
not been incorporated into computational predictionmethods.Large-scale data sets ofMHC class
II–restricted eluted ligands made it apparent that there is indeed a sequence motif characteristic of
N-terminal and C-terminal residues of processed ligands, consistent with the termini being gen-
erated through proteolytic cleavage with specific motifs (117, 118), and that incorporation of these
cleavage signals benefits the prediction ofMHC class II ligands.However,T cell epitopes are typi-
cally discovered by testing synthetic peptides, and for class II–restricted peptides, their ends can be
normally extended or trimmed without impacting T cell recognition. This is because the epitope
core residues directly interacting with the MHC molecule are also neighboring or close to the
residues that contact the TCR (although examples of TCR interaction with the residues flanking
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the binding core have been described, such as in Reference 119). Thus, the termini of MHC class
II T cell epitopes are not well defined, which is also apparent from MHC class II ligand elution
data, which often results in ladders of peptides (44) that share a common core of typically nine
residues binding the MHCmolecule. This multitude of possible peptide ligands that the antigen-
processing machinery can generate for any given binding core might explain why it has not been
feasible to use the antigen-processing motifs to significantly improve T cell epitope prediction.
Overall, there is symmetry in that both MHC class I and class II antigen processing follow de-
terministic steps that can be successfully predicted in isolation, but incorporating these steps into
T cell epitope predictions as a separate selective step does not result in notable performance gains
beyond MHC binding.

COMBINING MHC BINDING AND ELUTION DATA TO IMPROVE
PREDICTION PERFORMANCE

The elution of MHC ligands naturally processed and presented by antigen-presenting cells and
their identification by mass spectrometry have rapidly advanced in recent years, and it is now
possible to routinely generate data sets with thousands of MHC ligands. As described above, ef-
forts to learn motifs unrelated to MHC binding that enable identification of naturally processed
and presented ligands and can be transferred to T cell epitope predictions have been disappoint-
ing. However, large-scale ligand elution data are still highly useful to improve the prediction
of MHC binding overall. The analysis and interpretation of MHC eluted ligand data to improve
MHC ligand prediction can be challenging if the ligands are eluted from cells expressing multiple
MHC molecules and thus do not have well-defined MHC restriction. Experimental approaches
to address this include the use of mono-allelic cell lines, such as in Abelin et al. (120), or the use
of cell lines expressing a secreted form of specific MHC molecules, which was pioneered by the
Hildebrand group (121). However, the use of such cell lines is not always possible, and compu-
tational approaches have been proposed to deconvolute data gathered in the context of multiple
MHC molecules. Bassani-Sternberg et al. (122) demonstrated how the unsupervised Gibbs clus-
tering approach developed by Andreatta et al. (123) could be elegantly used to deconvolute MHC
class I ligand data. Later, Gfeller and colleagues extended this approach and suggested a frame-
work for deciphering and annotating HLA-I motifs based on co-occurrence of alleles across large
MHC ligand data sets (124). Other studies applied binding prediction methods to infer the MHC
restriction of each ligand (125). Independent of the approach utilized, the analyses result in long
lists of MHC ligands and their putative MHC restriction.

The availability of large MHC ligand data sets allowed training machine learning algorithms
that demonstrated high performance in particular for the prediction of other MHC eluted ligands
but also to a lesser extent for T cell epitopes (120, 126, 127). While this shows that MHC ligand
data are a rich source of information, there are downsides in that the numbers of alleles covered
are still comparably low (although this is rapidly changing), and more importantly, MHC ligand
elution data are not quantitative in contrast to MHC binding data. Given that these two types
of data measure overlapping characteristics, it is desirable to develop prediction algorithms that
can benefit from both MHC binding and MHC ligand elution data. This was implemented in
NetMHCpan version 4.0 by Jurtz et al. (127), which took MHC binding data covering 130 MHC
class I alleles and MHC ligand elution data covering 55 alleles and combined these to train a
single neural network with a novel architecture that outputs both predicted binding affinity and
likelihood of being an eluted ligand for a given peptide, which enables the combined training.
This approach had better performance than models trained on each data set separately for both
for class I and class II (117, 127). An alternative approach for integratingMHC binding andMHC
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ligand data was implemented in the MHCFlurry tool (128), where the discordance between the
qualitative eluted ligand and quantitative binding affinity data was handled using measurement
inequalities in the machine learning cost function. This approach also demonstrated improved
performance in particular for prediction of ligand elution data, further supporting that combining
MHC binding and elution data generates superior prediction models.

A recently proposed novel approach to utilize MHC ligand elution data from cell lines ex-
pressing multiple MHC molecules is to make the assignment of MHC restriction to individual
peptides a concurrent step in the training of a pan-allele ligand predictor, which was implemented
as an extension of the NNAlign framework described above. This extension is capable of taking
a mixed training set composed of single-allele (peptides assigned to single MHCs) and multiple-
allele data (peptides with multiple options for MHC assignments) as inputs and fully deconvolut-
ing the individual MHC restriction of all sequences while simultaneously training a pan-specific
MHC binding predictor covering the binding specificities of all the MHCs present in the training
set (129). This promises to be the next conceptual advance for prediction of bothMHC class I and
class II, as it allows compiling even larger combined data sets from both MHC binding and MHC
ligand elution experiments. It has to be stressed again that integrating MHC ligand elution data
sets does not seem to provide insights into fundamentally distinct properties of ligands in contrast
to binding, but that the main advantage is simply the increase in the amount of data that can be
used for training, which provides for a more refined understanding of the MHC binding motif.

IDENTIFYING T CELL EPITOPES USING MHC
BINDING PREDICTIONS

The ultimate goal of mostMHCbinding andMHC ligand processing predictions is the identifica-
tion of T cell epitopes. These applications require translating how differences in predicted MHC
binding affinity or in the probabilities of being an MHC ligand relate to T cell recognition. The
first systematic assessment that compared MHC class I binding affinity to T cell epitope recog-
nition revealed that an affinity measurement of IC50 < 500 nM is a useful threshold to identify
∼90% of class I restricted T cell epitopes (130). While this first assessment was largely based on
data for HLA-A∗02:01, a much larger data set of T cell epitopes covering diverse MHC alleles has
become available from the Immune Epitope Database (IEDB) (64). Analysis of the IEDB data set
confirmed the usefulness of 500 nM as a general threshold that captured about 85% of all epitopes
when epitopes from all alleles were considered together (131). However, it also revealed signifi-
cant variability of this threshold’s performance when epitopes restricted by individual HLA alleles
are considered separately. The frequency of peptides that are predicted to bind at <500 nM varies
substantially between MHC alleles, reflecting the difference in permissiveness of their binding
motifs. Alleles that have a high frequency of binding peptides showed clustering of T cell epitopes
at the higher end of the binding range, while alleles that had few predicted binders showed more
T cell epitopes at lower affinity ranges. Incorporating these findings into epitope candidate se-
lection can be achieved by using HLA allele–specific binding affinity cutoffs. However, concerns
about study bias and the desire to have epitope candidates for different HLA alleles equally rep-
resented support a different approach of using a percentile ranking system. Such percentile ranks
are established by predicting IC50 values for peptides from a large set of protein sequences for
each MHC allele of interest, and establishing buckets that identify the top 0.1 percentile of IC50

values, the 0.1–0.2 percentile, and so on. Any predicted IC50 value can then be transformed into
percentile values using these buckets. Based on the analysis of MHC class I–restricted epitope
data, we would consider 2% to be a minimum predicted binding affinity (covering >95% of epi-
topes), 1% covering >80% percent of all epitopes, and 0.5% a threshold for high-affinity binders
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that are enriched for T cell epitopes. These thresholds were confirmed to be applicable for the
identification ofMHC class I–restricted neoepitopes in cancer cells (132, 133), and in a large-scale
comparison of different prediction methods to identify epitopes derived from vaccinia virus (134).

For MHC class II molecules, an IC50 < 1,000 nM threshold was established using the same
methodology used to establish the 500 nM threshold for class I (135). A thorough evaluation
of MHC class II allele–specific thresholds using percentile cutoffs or IC50 values remains to be
performed.

THE IMPACT OF MHC/HLA POLYMORPHISM: WHICH ALLELES
TO CONSIDER

As different MHC alleles can have very different binding specificities, it is necessary to define
which alleles are considered when making T cell epitope predictions. Importantly, the answer to
this question will strongly depend on the application. If a study is testing candidate epitopes that
are intended to cover a broader human population, it is necessary to cover a sufficient number of
alleles expressed by most individuals in that population. This can be achieved by covering rep-
resentative alleles of different supertypes of HLA molecules. Such supertypes of HLA molecules
have been defined based on grouping together MHC alleles that share similar binding specificity,
and they include ten major MHC class I (136) and ten MHC class II (137) supertypes. Alterna-
tively, peptides can be assessed for their ability to cover a panel of alleles that represent all MHC
molecules expressed in a significant frequency worldwide. While the supertype concept is useful
to explain broad MHC binding patterns, we prefer to pick peptides predicted to bind to specific
MHC alleles.We have found that approximately 25–30HLA alleles for both class I (138) and class
II (139) provide coverage for the most common allelic variants expressed in most well-studied
ethnicities.

For MHC class II, we found that promiscuous peptides, defined as those capable of binding
multiple common HLAs, are often dominant and account for approximately 50% of the total
response (140).We further found that due to the high cross-reactivity between alleles, predicting
peptides on the basis of the median MHC binding for a limited set of HLA alleles representative
of main binding patterns was most effective in predicting responses of patient populations exposed
to various pathogens or allergens (141). In the case of HLA class I, development of a similar single
predictor has not yet been achieved, perhaps because of the more limited cross-reactivity across
the main class I supertypes.

In contrast, if the goal of a study is to define epitopes for a specific human individual, theMHC
alleles expressed by that host should be the focus. This is where the value of pan-allelic prediction
approaches that are able to make predictions for all MHC alleles (including understudied ones)
has greatly improved the ability to perform such personalized predictions.This is of particular im-
portance in cancer for the discovery and evaluation of neoepitopes, which are inherently personal
to a specific host (142, 143).

PREDICTIONS OF T CELL IMMUNOGENICITY

Prediction of which peptides are not just MHC binders or eluted ligands, but are immunogenic,
meaning they trigger a T cell response, is highly desirable but also highly challenging. T cell re-
ceptors are generated in stochastic processes, and substantial differences in TCR repertoires exist
between individuals.Despite the stochasticity of the TCR repertoire, it is possible (and likely) that
at least on average, some residues or residue combinations in an MHC ligand that face the TCR
are more likely to induce a response than others. For MHC class I, it was indeed possible to derive
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a score based on amino acid composition that separates MHC-binding peptides of similar affinity
into immunogenic and nonimmunogenic peptides (144). However, while this separation was sta-
tistically significant, it was far from perfect. Similar results were obtained for MHC class II (145).

OUTLIERS ARE REAL. AND THEY ARE OUTLIERS

The advent of high-throughput MHC ligand identification by mass spectrometry has not only
improved the ability to predict such ligands, but it has also led to the discovery of a number of
highly unusual peptide ligands that would not have previously been expected to be presented
but that have been reproducibly identified by different groups. This includes peptides that are
not simple cleavage products of protein sequences but appear to have been spliced together after
protein expression (146, 147). Another unexpected finding has been the identification of peptides
binding to MHC class I molecules that extend past the expected termini, several of which have
been confirmed by X-ray crystallography (148–152). For C-terminally extended peptides, which
appear to bemore common, it was shown that certain amino acids following theC-terminal anchor
residues in a peptide are capable of inducing structural changes in MHC molecules that open up
the C-terminal pocket and allow for extension of the peptide out of the pocket (150, 152, 153).
Comprehensive profiling of HLA class I alleles in Reference 153 revealed that the ability to bind
such C-terminal extended ligands is shared by at least 8 of 54 studied alleles. Traditional MHC
binding prediction approaches will likely miss unconventional peptide ligands such as these, and
this has to be taken into consideration when applying them for epitope discovery.At the same time,
it is important to not throw out the baby with the bathwater: The majority of T cell epitopes
discovered so far do not require peptide splicing or changes in the structural conformation of
MHC molecules. When algorithms are used to down select which peptides to test for T cell
recognition of the most likely targets, it is appropriate to prioritize conventional candidates, while
keeping in mind that such candidates do not represent the totality of possible recognized targets.

THE IMPACT OF EXPOSURE HISTORY, SEQUENCE CONSERVATION,
AND CROSS-REACTIVITY ON T CELL EPITOPE RECOGNITION
IN HUMANS

Humans are continuously exposed to foreign antigens, resulting in the generation of a pool of
memory T cells whose epitope specificity was shaped by prior exposures. These memory T cells
can rapidly re-expand when they encounter the epitope again. Importantly, an epitope may be
contained in a different antigen than the original one, and it can still be recognized even if not
100% conserved. For example, preexisting T cell immunity to the pandemic 2009 influenza strain
was found in blood samples from individuals gathered years prior, which confirmed that T cells
could recognize epitopes in the more conserved proteins of the pandemic strain (154). Such cross-
reactive responses were shown to be predictive of protection from symptomatic disease (155).
Similarly, in the case of dengue virus, individuals that were infected by viruses with two differ-
ent serotypes show a skewing toward recognition of epitopes that are conserved, and therefore
cross-reactive between the two strains, compared to individuals that have been infected only once
(139). In the case of pollen allergens, where the exposure history of individuals cannot be read-
ily ascertained, epitopes conserved across different pollen allergens have a higher likelihood of
being recognized (156), suggesting again that repeated exposures to the same epitopes drives the
dominant T cell specificity.

Conservation of epitopes can also dampen their recognition by T cells. It is expected that epi-
topes that are found conserved in proteins from the host will not be recognized by T cells, as such
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self-reactive T cells should have been negatively selected during maturation. For humans, such
reduced recognition of self-peptides could indeed be confirmed, but to a much lesser degree than
expected (157), confirming that negative selection is not a straightforward yes/no process (158). In
addition to tolerance of self-proteins due to negative selection, epitopes highly conserved across
bacterial species, including those making up the human microbiome, could also be less recog-
nized to avoid chronic inflammatory processes. Indeed, there is evidence for increased tolerance
of epitopes fromMycobacterium tuberculosis that were conserved across the microbiome to be less
frequently recognized (157), although this finding could not be universally confirmed in other
systems (159). Importantly, T cell epitope recognition is heavily shaped by the antigens in which
an epitope is found. This can be incorporated into T cell epitope prediction schemes (160): If the
goal is to identify epitopes recognized in a viral species, peptides contained in only one isolate
need to be avoided. If the goal is to identify epitopes that could be used as diagnostics for specific
infections, epitopes conserved in other antigens need to be avoided. And so on. Several tools to
assess the conservation and sequence overlap of epitopes exist to facilitate such study designs in
the IEDB (161, 162).

CURRENT CHALLENGES FOR THE FIELD

While a lot of progress has been made in the development of T cell epitope predictions, a number
of challenges remain. Some of these are incremental, but nevertheless important: The utility of
HLA allele–specific thresholds needs to be further explored when applied to the de novo predic-
tion of epitopes.More generally, for MHC class II–restricted epitopes some groups have reported
poor results of epitope predictions (163), which are at odds with our experience and need to be
more thoroughly investigated. Broadly speaking, the performance of all algorithms needs to be
(re)assessed for the ability to identify T cell epitopes in data sets that are large-scale, cover mul-
tiple alleles, and were generated in a consistent fashion. This will enable clear recommendations
for what methods and thresholds to use for predictions in practice.

In addition to the need for incremental changes, several new challenges have emerged that
could significantly shape the T cell epitope prediction field in the future. Three of these that we
consider particularly important are the following. (a) First is integration of RNA expression data
into epitope predictions. It is obvious that a peptide that is not expressed cannot be recognized.
But the relevant thresholds and kinetics of expression that impact which antigens are most visible
to the immune system remain to be determined. (b) Second are TCR-specific epitope predictions.
New technologies have enabled routine sequencing of epitope-specific TCRs, and such data are
now becoming available in the IEDB and other databases (164). Several pioneering methods have
established that it is possible in principle to determine what epitope is recognized by a given TCR
in a controlled setting (165, 166).The ultimate goal of suchmethods is the de novo identification of
an epitope given aTCR sequence from aT cell of unknown specificity.With enough data available,
it should be possible to achieve this. (c) Third is prediction of neoepitopes that arise from somatic
mutations in cancer cells as targets of T cell responses. In this context, factors not previously
considered for traditional epitope predictions become relevant, such as clonality and expression
level of the mutation. Common to all of these challenges is the need to provide community-
accepted data sets and metrics that allow comparison of different prediction approaches in an
unbiased fashion. If one thing is for certain, it is that this challenge will remain.
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