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Abstract

Infection with Mycobacterium tuberculosis causes >1.5 million deaths world-
wide annually. Innate immune cells are the first to encounterM. tuberculosis,
and their response dictates the course of infection. Dendritic cells (DCs) ac-
tivate the adaptive response and determine its characteristics. Macrophages
are responsible both for exerting cell-intrinsic antimicrobial control and
for initiating and maintaining inflammation. The inflammatory response to
M. tuberculosis infection is a double-edged sword. While cytokines such as
TNF-α and IL-1 are important for protection, either excessive or insuf-
ficient cytokine production results in progressive disease. Furthermore,
neutrophils—cells normally associated with control of bacterial infection—
are emerging as key drivers of a hyperinflammatory response that results in
host mortality. The roles of other innate cells, including natural killer cells
and innate-like T cells, remain enigmatic. Understanding the nuances of
both cell-intrinsic control of infection and regulation of inflammation will
be crucial for the successful development of host-targeted therapeutics and
vaccines.
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RECOGNITION OFM. TUBERCULOSIS BY PATTERN RECOGNITION
RECEPTORS OF THE INNATE IMMUNE SYSTEM

The first step in initiating an immune response to Mycobacterium tuberculosis is detection by
pattern recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors
(TLRs), nucleotide-binding domain and leucine-rich repeat–containing receptors (NLRs),C-type
lectin receptors (CLRs), and cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes
(STING), have been proposed to contribute to recognition of M. tuberculosis (Figure 1). Stud-
ies of mouse models have identified TLR2, which recognizes lipoproteins and lipoglycans from
M. tuberculosis, and TLR9, which recognizes unmethylated CpG DNA, as the most important
TLRs for control ofM. tuberculosis infection (1–4). Mice lacking both TLR2 and TLR9 are more
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PRRs implicated in detectingM. tuberculosis infection and initiating the production of important innate
cytokines.M. tuberculosis is detected by multiple classes of PRRs. The CLRs MR, DC-SIGN, and Dectin-2
have been proposed to recognize the glycolipid ManLAM, whereas Mincle and Marco recognize TDM on
the surface of bacteria. TLR2 recognizes lipoproteins and/or lipoglycans on the surface, whereas TLR9
recognizes DNA released in the phagolysosome. The NLR NOD2 recognizes MDP released from bacterial
peptidoglycan. NLRP3 triggers inflammasome activation uponM. tuberculosis infection. The ESX-1
secretion system promotes detection by cytosolic sensors by perforating the phagosomal membrane and
allowing bacterial pathogen-associated molecular patterns to enter the cytosol, resulting in activation of
cGAS/STING. CLRs, TLRs, and NOD2 signal through NF-κB to activate transcription of inflammatory
cytokines including IL-1 and TNF-α. Processing and activation of IL-1β are promoted by the NLRP3
inflammasome. The cGAS-STING pathway leads to the expression of type I interferon, which is detrimental
to the host. Abbreviations: CDN, cyclic dinucleotide; cGAS, cyclic GMP-AMP synthase; CLR, C-type
lectin receptor; ManLAM, mannose-capped lipoarabinomannan; MDP, muramyl dipeptide; MR, mannose
receptor; NLR, nucleotide-binding domain and leucine-rich repeat–containing receptor; PRR, pattern
recognition receptor; STING, stimulator of interferon genes; TDM, trehalose dimycolate; TLR, Toll-like
receptor.
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susceptible than TLR2−/− or TLR9−/− single knockout mutants, suggesting that each TLRmakes
a nonredundant contribution to the immune response (4). The importance of TLR sensing stems
from production of inflammatory cytokines, in particular IL-12, which is necessary for priming
IFN-γ-producing T cells that mediate control of M. tuberculosis infection (4–6). In addition to
TLRs, several CLRs have been proposed to play a role in immune recognition ofM. tuberculosis.
The cell wall glycolipid mannose-capped lipoarabinomannan can be recognized by DC-SIGN,
mannose receptor, or Dectin-2 (7–10), and trehalose dimycolate can be recognized by Mincle or
Marco (10, 11). However, experiments using mutant mice have suggested a limited role for indi-
vidual CLRs (10, 12–14), which may be partially explained by redundancy in function. Finally, the
NLR NOD2, which senses small muramyl peptides derived from bacterial cell wall peptidogly-
can, contributes to cytokine responses toM. tuberculosis in myeloid cells cultured in vitro (15–21).
However, mice lacking NOD2 are largely resistant to infection, exhibiting modest susceptibility
only six months after infection (19, 22). The NLRNLRP3, a component of the inflammasome, is
reviewed in the section titled IL-1.

cGAS is a cytosolic DNA sensor that produces cyclic GMP-AMP (cGAMP) upon DNA bind-
ing (23, 24). STING signaling is initiated by binding of cGAMP or other cyclic dinucleotides
exported by pathogenic bacteria (25–27). STING induces expression of type I interferons, a fam-
ily of cytokines that are detrimental to host control of M. tuberculosis infection (28–31). Activa-
tion of STING byM. tuberculosis and production of type I interferons require perforation of the
vacuolar membrane by the ESX-1 type VII secretion system (32). Three independent reports
demonstrated that cGAS is required for type I interferon induction, suggesting that DNA is the
pathogen-associatedmolecular pattern (PAMP) that leads to STINGactivation (33–35).However,
it was also reported that M. tuberculosis induces type I interferons by direct STING recognition
of cyclic-di-AMP produced by the bacterium (36). Whereas TLRs, CLRs, and NLRs have been
proposed to benefit the immune response toM. tuberculosis by promoting the production of proin-
flammatory cytokines and chemokines, the cGAS-STING pathway may be an example in which
a bacterial pathogen engages an antiviral pathway to promote pathogenesis.

INNATE CYTOKINES

TNF-α

TNF-α was one of the first cytokines associated with tuberculosis and is crucial for control of
infection.Macrophages and dendritic cells (DCs) are the primary producers of TNF-α during in-
fection; however, TNF-α is also produced abundantly by CD4 T cells (37). Mice lacking TNF-α
or the TNF receptor are highly susceptible to infection and exhibit poor activation of myeloid
cells, a defect in chemokine production, and diffuse inflammation that lacks organized structure
(38–41). Evidence for the importance of TNF-α in human tuberculosis infection comes primarily
from patients treated with anti-TNF agents for inflammatory disorders, who have a high propen-
sity for reactivation of tuberculosis disease (42–44). Nonhuman primate and mouse models sup-
port the idea that TNF-α is important for granuloma formation, structure, and integrity (45–47).
However, studies using the zebrafish model of infection with Mycobacterium marinum, which is
particularly well-suited to studying granuloma formation (48), have suggested that TNF-α main-
tains granuloma structure indirectly by restricting mycobacterial growth (49, 50); this has also
been suggested by mouse studies (51). Furthermore, the zebrafish model has demonstrated that
excess TNF-α can lead to increased macrophage cell death, which promotes hyperinflammation
and death of the host. This finding illustrates the concept that in innate immunity to tuberculosis,
excessive production of protective factors can be detrimental (52, 53) (Figure 2).
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A combination of antimicrobial function and regulation of inflammation is required for successful control of
M. tuberculosis infection. Successful control ofM. tuberculosis infection is associated with robust
macrophage-based control of bacterial replication by antimicrobial mechanisms. Mechanisms that have been
proposed to contribute to cell-intrinsic control of infection include autophagy, interferon-inducible
GTPases, ROS, NO, and antimicrobial peptides. Cytokines such as GM-CSF produced by
nonhematopoietic cells and IFN-γ produced by CD4 T cells promote the microbicidal functions of
macrophages. In controlled infection, there is appropriate production of inflammatory cytokines including
TNF-α and IL-1; type I interferons, which block IL-1 function, are produced at low levels. Indeed, some of
the susceptibility of mice lacking factors formerly assumed to be directly antimicrobial may be attributed to
inflammatory imbalances. In contrast, uncontrolled infection may result from either a failure of
antimicrobial control or imbalanced cytokine production. If antimicrobial mechanisms fail, the increased
bacterial burden can drive the excessive production of inflammatory cytokines, leading to the recruitment of
neutrophils that contribute to excessive inflammation. Alternatively, increased type I interferon production
can functionally block IL-1 signaling, leading to immune failure. In most cases in mice, susceptible strains
can be rescued by depletion of neutrophils, suggesting that in the mouse model diverse failures of immunity
converge on a single neutrophil-driven mechanism of mortality. Abbreviations: AMP, antimicrobial peptide;
GM-CSF, granulocyte-macrophage colony-stimulating factor; NH, nonhematopoietic; NO, nitric oxide;
ROS, reactive oxygen species.

GM-CSF

The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) was originally impli-
cated in myeloid cell and granulocyte differentiation. However, mice lacking the GM-CSF gene,
Csf2, have normal steady-state myelopoiesis but lack alveolar macrophages (AMs) (54). Lungs of
Csf2–/– mice exhibit a buildup of pulmonary surfactant due to impaired catabolism by AMs, as well
as pulmonary lymphoid hyperplasia at baseline (55). GM-CSF levels rise in the lungs of wild-type
mice for at least 60 days after M. tuberculosis infection, and Csf2–/– mice are highly susceptible to
M. tuberculosis, succumbing rapidly after infection (56).While nonhematopoietic cells are the pri-
mary producers of GM-CSF, Csf2–/– mice are partially rescued by adoptive transfer of wild-type
but not Csf2–/– CD4 T cells, implying a minor role for T cell–derived GM-CSF (57). Csf2–/– mice
have a defect in their production of inflammatory cytokines and chemokines in response to infec-
tion, resulting in impaired recruitment of both myeloid cells and T cells to the lungs (56). Csf2–/–
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infected mice also exhibit a significant increase in bacterial burden in the lungs compared with
wild-type mice, suggesting a potential antibacterial role for GM-CSF (56). Indeed, addition of
exogenous GM-CSF to M. tuberculosis–infected murine bone marrow–derived macrophages and
human monocytes results in enhanced control of infection (57, 58). However, whereas treatment
of wild-type mice with anti-GM-CSF neutralizing antibodies results in significant weight loss and
larger granulomas in the lungs, it induces no change in lung colony-forming units, suggesting a
role for GM-CSF in immune regulation rather than control ofM. tuberculosis growth (59). A clear
role for GM-CSF in activating the microbicidal capabilities of macrophages in vivo has yet to be
demonstrated. Furthermore, the fact that Csf2–/– mice have baseline alterations in lung function
complicates the interpretation of results from these mice (58, 60, 61).

IL-1

The first interleukin to be described was IL-1, discovered as a potent modulator of innate immu-
nity.The IL-1 family members IL-1α and IL-1β are produced during infection withM. tuberculosis
by inflammatory monocyte-macrophages, inflammatory DCs, and neutrophils (30, 62). They play
critical and nonredundant protective roles early during infection, despite signaling through the
same receptor. Neutralization of both IL-1α and IL-1β has a more significant impact on morbid-
ity after infection than neutralization of either protein individually (63). Similarly, mice doubly
deficient for IL-1α and IL-1β (Il1a–/–/Il1b–/–) are more susceptible toM. tuberculosis infection and
show higher bacterial burdens in the lungs compared to mice lacking the individual cytokines
(30, 51, 64). The protective function of IL-1 is further confirmed by blocking receptor signaling
with anti-IL-1R antibodies or in an Il1r–/– mouse model; the mice become highly susceptible to
M. tuberculosis infection and show increased bacterial burden in the lungs (30, 31, 62, 63, 65). In-
terestingly, loss of IL-1 signaling does not result in diminished TNF-α, IL-12p40, inducible nitric
oxide synthase (iNOS), or IFN-γ responses (30). In other bacterial infections, the protective func-
tion of IL-1 is often ascribed to recruitment of neutrophils; however, neutrophils are not known to
be protective in the context of tuberculosis, and it remains unclear why IL-1 signaling is critical for
resistance. IL-1R signaling in trans by infected bystander cells is sufficient to induce restriction of
intracellular bacterial growth in infected myeloid cells that lack IL-1R (66), suggesting that IL-1
promotes production of a soluble protective factor. Finally, a protective role of IL-1 during hu-
man tuberculosis infection has been suggested based on case studies in which rheumatoid arthritis
patients treated with IL-1R antagonist anakinra occasionally showed reactivation of tuberculosis
(67, 68).

IL-1β is produced as a precursor protein and is cleaved into a mature form by inflammasome
and caspase-1 activation and then released to act systemically. Unlike the case of IL-1β, IL-1α
activity does not require proteolytic processing by caspase-1. The main inflammasome that be-
comes activated upon in vitro infection with M. tuberculosis appears to be NLRP3. This requires
the ESX-1 secretion system (69–73), although the exact mechanism remains controversial. De-
spite detection ofM. tuberculosis by the inflammasome, Nlrp3–/–, Asc–/–, and Casp1–/– mice are not
nearly as susceptible to infection as mice deficient in IL-1α and/or IL-1β or IL-1R (65, 72, 74–
77). Furthermore, IL-1β production is still present inNlrp3–/– or Casp1–/– mice (65, 72), indicating
that pro-IL-1β can be processed and released through an inflammasome-independent mechanism
(78–81). An excess of IL-1 has been linked to an increased influx of neutrophils and lung inflam-
mation, which results in high bacterial burden and mortality (82) (Figure 2). However, IL-1α and
IL-1β regulation is complex, and postsecretion, their activity is controlled further by the presence
of IL-1R antagonist (IL-1Ra), complicating the interpretation of IL-1 protein levels. For exam-
ple, Sst1S mice, which are highly susceptible to M. tuberculosis infection, have elevated levels of
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IL-1 protein in the lungs during infection. However, they also have high levels of IL-1Ra, which
limit IL-1 activity, causing a functional deficiency in IL-1 signaling and increased M. tuberculosis
susceptibility (31).

Type I Interferons

Type I interferons comprise a family of cytokines that signal through the interferon receptor
to induce interferon-stimulated genes. Most cell types produce type I interferon upon stimula-
tion of cytosolic DNA or RNA sensors that normally sense cytosolic viruses or through signaling
via specific TLRs. In the case of M. tuberculosis infection, type I interferon is induced when the
ESX-1 secretion system perforates the vacuolar membrane, leading to activation of the
cGAS/STING pathway (28, 32, 83). Although type I interferon is critical for resistance to viral
infections, the effect of type I interferon during M. tuberculosis infection is primarily detrimen-
tal. Tuberculosis patients with active disease show a distinct upregulation of type I interferon–
inducible transcripts in blood neutrophils and monocytes. This gene expression profile correlates
with disease severity and may predict the transition from active to latent disease (84–89). In mice,
type I interferon is detrimental toM. tuberculosis infection; however, the severity of the phenotype
appears to be background dependent. In C57BL/6 wild-type mice, loss of the type I IFN receptor
or other signaling components results in only modest enhancement of control of infection (28,
31, 90–93). However, if these mice are stimulated to produce higher levels of type I interferon
than are naturally produced duringM. tuberculosis infection by administration of intranasal TLR3
ligand poly-ICLC, increased lung pathology and mortality during M. tuberculosis infection are
observed, demonstrating that increasing type I interferon levels in the C57BL/6 background re-
sults in highly impaired immunity (94). Furthermore, the susceptibility of B6.Sst1S congenic mice,
which carry the tuberculosis susceptibility allele of the Sst1 locus derived from the highly suscepti-
ble C3H/HeBFeJ strain,was recently shown to be primarily driven by type I interferon, as crossing
thesemice with Ifnar–/– mice alleviated the exacerbated disease (31).Type I interferons inhibit IL-1
signaling indirectly through strong upregulation of IL-1Ra expression during M. tuberculosis in-
fection (31). Blocking IL-1Ra in B6.Sst1S mice restores IL-1 protective signaling and rescues the
type I interferon–induced susceptibility to infection, suggesting that the type I interferon–based
susceptibility observed in these mice is almost entirely explained by inhibition of IL-1 signaling
(31). Although several mechanisms by which type I interferons inhibit host defenses have been
proposed, including modulating eicosanoids, iNOS production, and IL-10 (30, 31, 95–97), it is
likely that the primary impact of type I interferon on M. tuberculosis immunity is to impair the
production of IL-1, which is critical for protection against infection.Despite deleterious effects of
high levels of type I interferon on the host immune response, it is possible that type I interferon is
protective in some contexts, particularly in the absence of IFN-γ. The balance of deleterious and
protective responses of type I interferon is further reviewed by Moreira-Teixeira et al. (98).

IL-10

IL-10 is an anti-inflammatory cytokine that downregulates both innate and adaptive immune re-
sponses. Pulmonary tuberculosis patients have elevated levels of plasma IL-10, and their T cells
exhibit both enhanced Il10 expression and evidence of IL-10 stimulation (99, 100). Studies of the
role of IL-10 in mice have yielded mixed results, likely reflecting the complex role of IL-10 and
other immunosuppressive cytokines in infection.One study showed that Il10–/– C57BL/6mice ex-
perience a significant increase in bacterial numbers in the lungs and increased mortality starting
late in infection (101), while another study found that Il10−/− mice on the C57BL/6 and BALB/C
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backgrounds have reduced bacterial burdens in the lungs during the late stage of infection (102).
CBA/J mice, which are highly susceptible to M. tuberculosis, are clearly impacted by IL-10 defi-
ciency, as Il10−/− mice on this background exhibit lower bacterial numbers in the lungs and spleen
throughout the course of infection when compared with wild type (103). Furthermore, treatment
of CBA/J mice with an anti-IL-10R blocking antibody during the chronic stage of M. tuberculo-
sis infection lowers bacterial numbers in the lungs and improves survival compared to untreated
CBA/J mice (104). The seemingly contradictory results in the mouse model likely reflect the fact
that IL-10 has a context-dependent role in infection; while it can contribute to restraining detri-
mental inflammation in the context of a potential hyperinflammatory response (such as CBA/J
mice), it can also harm the host by suppressing effective responses.

TGF-β

Transforming growth factor beta (TGF-β) is an immunosuppressive cytokine that plays a crucial
role in immune homeostasis and peripheral tolerance. TGF-β has a suppressive effect on cells that
play a key role in regulating M. tuberculosis infection, including macrophages, DCs, neutrophils,
and T cells (reviewed in 105). High levels of TGF-β are found in the lungs of patients with ac-
tive pulmonary tuberculosis (106, 107), and serum levels of TGF-β correlate with disease severity
(108). Similarly, high TGF-β levels are associated with active disease in murine and in nonhu-
man primate models, where successful antibiotic therapy results in diminished TGF-β levels (109,
110). Although production of TGF-β is crucial to prevent hyperinflammation and autoimmu-
nity (105), several lines of evidence suggest that TGF-β suppresses effective immune responses to
M. tuberculosis to the detriment of the host. In mice, blocking TGF-β signaling using neutralizing
antibody, recombinant TGF-β receptor, or small-molecule inhibitors results in increased control
of disease as measured by bacterial burden in the lungs (111, 112). One study suggests that the
specific mechanism by which TGF-β suppresses host immunity is prevention of CD4T cells from
producing IFN-γ in granuloma cores, which limits effective macrophage activation (113). Thus,
pharmacological inhibition of TGF-β may be an attractive strategy for managing patients with
active tuberculosis disease.

MACROPHAGE-BASED MECHANISMS OF INNATE CONTROL

Macrophages are programmed to detect invading pathogens, activate microbicidal mechanisms,
and coordinate the subsequent immune response. However, in the absence of adaptive immu-
nity, macrophages are not capable of controlling M. tuberculosis infection. Although for many
years it was speculated that M. tuberculosis resisters (individuals whose purified protein deriva-
tive (PPD) and IFN-γ release assay (IGRA) results never convert despite considerable exposure
toM. tuberculosis) were able to clear infection via innate immunity, deeper immunological analysis
of these individuals revealed the existence of class-switched antibodies, solid evidence of an adap-
tive response to infection (114). Indeed, in both mouse and nonhuman primate models, growth of
M. tuberculosis is unrestricted in macrophages until the arrival of CD4 T cells in the lungs (115,
116). The primary role of CD4 T cells in macrophage activation is understood to be the pro-
duction of IFN-γ, which can directly activate macrophages to control infection (6). In addition,
there appear to be IFN-γ-independent mechanisms that have yet to be identified (117). Although
several decades of research have focused on understanding the cell-intrinsic mechanisms of bac-
terial killing downstream of macrophage activation, recent revisions in our understanding of the
functions of antimicrobial responses have left holes in our knowledge of effectors that have direct
antimicrobial activity (Figure 2).
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Autophagy

Autophagy (self-eating) is a conserved cellular process with important roles in homeostasis, de-
velopment, and metabolism. In addition, it is well-established that a form of selective autophagy
known as xenophagy is a major contributor to innate immune defense against microbial infec-
tions (reviewed in 118). The first evidence for an antimycobacterial effect of autophagy was the
observation that starvation or rapamycin treatment leads to restriction ofM. tuberculosis growth in
RAW macrophages (119). Subsequently it was found that autophagic targeting of M. tuberculosis
occurs as a response to perforation of the phagosome by the bacterial ESX-1 secretion system
and stimulation of cGAS-STING (33, 35, 36, 83). TBK1 activation downstream of STING leads
to ubiquitin-mediated autophagic targeting of theM. tuberculosis–containing phagosome. The E3
ubiquitin ligases Parkin and Smurf promote autophagic targeting ofM. tuberculosis, and mice defi-
cient in these factors are susceptible toM. tuberculosis (120, 121). In addition,Atg5fl/flLyz2Cremice,
which lack the core autophagy effector ATG5 in myeloid cells, are hypersusceptible toM. tuber-
culosis (83, 122). However, subsequent detailed analyses of autophagy-deficient mice have shown
the role of autophagy to be complex. While Atg5fl/flLyz2Cre mice succumb rapidly to M. tuber-
culosis, mice deficient in other core autophagy effectors have no significant weight loss or inabil-
ity to restrict bacterial replication through several months of infection (123). The susceptibility
of Atg5fl/flLyz2Cre mice is rescued by depletion of neutrophils, and much of the susceptibility is
recapitulated in Atg5fl/flMrp8Cre mice, which lack ATG5 specifically in neutrophils (123). This
suggests there is a unique role for ATG5 in the regulation of inflammation and neutrophil re-
cruitment, discrete from its role in autophagic targeting of bacteria. Taken together, these find-
ings provide significant evidence that autophagy plays a role inM. tuberculosis infection but not all
effects are intrinsic to the macrophage.

Vitamin D and Cathelicidin

Vitamin D has been used to treat tuberculosis since the mid-1800s. Multiple cohort studies show
an association between low serum vitamin D levels and tuberculosis disease risk (124, 125). How-
ever, clinical trials have not clearly demonstrated that vitamin D treatment of tuberculosis patients
already receiving antibiotics improves outcomes (126, 127). In vitro treatment ofM. tuberculosis–
infected cells with vitamin D restricts growth of the bacteria, indicating that vitamin D leads
to cell-intrinsic control of M. tuberculosis (128, 129). A major effect of vitamin D treatment in
M. tuberculosis–infected human monocytes is expression of the cathelicidin antimicrobial peptide
LL-37 (128, 130). LL-37 has antibacterial activity against M. tuberculosis in liquid culture (131),
and administration of LL-37 to M. tuberculosis–infected mice starting 60 days postinfection sig-
nificantly reduced the bacterial load in the lungs (131). Cramp–/– mice, which lack the gene for
murine cathelicidin, have enhanced mortality and a defect in controlling bacterial growth after
M. tuberculosis infection compared to wild-type mice (132). Importantly, in other studies re-
searchers have observed no effect of exogenous vitamin D on M. tuberculosis growth in human
monocytes (133, 134).Thus, although low vitaminD levelsmay correlate with tuberculosis disease,
whether the main function of vitamin D is to activate microbicidal mechanisms remains unclear.

Reactive Oxygen Species

The production of reactive oxygen species (ROS) is a crucial defense against phagocytosed
pathogens. The production of ROS is initiated by the NADPH oxidase complex, which catalyzes
the production of superoxide. Through a series of reactions, multiple other ROSs are then pro-
duced, including hydrogen peroxide, hypochlorous acid, and hydroxyl radicals. Data suggest that
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NADPH oxidase is required for control of tuberculosis in humans. Patients with chronic granu-
lomatous disease (CGD), who have inherited defects in NADPH oxidase, have presented with ac-
tive tuberculosis or disseminated bacillus Calmette-Guérin (BCG) disease upon vaccination (135).
Macrophages isolated from a CGD patient were unable to control growth ofM. tuberculosis, sug-
gesting that ROSs are important for cell-intrinsic control of M. tuberculosis infection in humans
(136). However, studies on the role of ROSs in control ofM. tuberculosis in the mouse model are
inconclusive. Mice lacking components of NADPH oxidase display no increase in bacterial bur-
den in the lungs or, at most, a mild and transient increase (137, 138). A recent study in the mouse
model revealed a potential immunoregulatory role for ROSs, independent of bactericidal poten-
tial. While Cybb–/– mice, which lack the NADPH oxidase component gp91, are able to control
M. tuberculosis growth similarly to wild-type mice, they experience greater weight loss and have a
significant increase in mortality associated with excessive neutrophil recruitment (138). Blocking
IL-1 signaling in Cybb–/– mice reduces neutrophil infiltration and rescues susceptibility, demon-
strating that ROSs may limit harmful inflammation (138).

iNOS

The importance of IFN-γ during M. tuberculosis infection has been attributed to its ability to
activate microbicidal mechanisms of macrophages, most importantly expression of the enzyme
iNOS, encoded by the gene Nos2 (139). iNOS catalyzes the production of the bactericidal/static
radical nitric oxide (NO). Human tuberculosis patients exhibit iNOS expression in the lungs and
are known to exhale NO, confirming that this molecule is produced during human M. tuberculo-
sis infection (140–142). The importance of NO for control of M. tuberculosis infection is clear, as
Nos2–/– mice are extremely susceptible to infection (143). However, studies of mixed bone mar-
row chimeras that examined different genotypes in the same inflammatory environment have
demonstrated no difference in M. tuberculosis burden in wild-type and Nos2–/– cells, raising the
possibility that NO does not function in a cell-intrinsic manner for control of bacterial num-
bers. Indeed, it has been proposed that NO limits IL-1β production by two mechanisms. First,
by nitrosylation and inhibition of the NLRP3 inflammasome, NO may limit neutrophil recruit-
ment and subsequent destruction of host tissue (82, 144). Depleting neutrophils in Nos2–/– mice
rescues the increase in bacterial burden in the lungs at 24 days after infection (82). Second, NO
may also limit IL-1β transcription by inhibiting NF-κB signaling (145). However, the facts that
the ability to resist NO is an important virulence trait for M. tuberculosis (146) and that iNOS-
deficient macrophages suffer from increased bacterial burdens in vitro make it clear that NO can
impact cell-intrinsic antimicrobial activity of macrophages, independent of the inflammatory con-
text.Thus, a role forNO in cell-intrinsic control of infection in vivo cannot be ruled out, and there
is likely more to learn about the contribution of NO to control of infection in vivo.

Interferon-Inducible GTPases

Interferon-inducible GTPases are a family of proteins that encompass myxovirus resistance pro-
teins (Mxs), guanylate-binding proteins (GBPs), immunity-related guanosine triphosphatases
(IRGs), and very large inducible GTPase proteins (VLIGs). Both GBPs and IRGs are IFN-γ-
inducible proteins that have been implicated in mycobacterial infections. Almost a decade ago,
it was demonstrated that Gbp1 is required for control of Mycobacterium bovis BCG infection in
vivo (147).However, mice with a chromosomal deletion that removes six GBPs, including Gbp1,
are only mildly susceptible to M. tuberculosis, with a modest increase in bacterial burden emerg-
ing at 100 days after infection (148). A gene expression signature associated with the transition
from latent to active disease contains Gbp1, providing some relevance to human disease (88, 149).
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Although the IRG family member Irgm1 was shown to mediate host resistance toM. tuberculosis
in mice (150), the significance of this finding is difficult to interpret in light of the emerging un-
derstanding that these knockout mice exhibit baseline alterations in immunity (151).Nonetheless,
results from human studies suggest a role for IRGM1 in resistance toM. tuberculosis (reviewed in
152).Therefore,more research is needed into a potential role for these proteins in antituberculosis
immunity.

Aerobic Glycolysis and Metabolic Regulation of Infection

The metabolic program of aerobic glycolysis is associated with differentiation of macrophages
into the M1 phenotype. It is now understood that changes in levels of metabolites during aerobic
glycolysis impact specific programs of gene expression and cellular differentiation.M. tuberculosis–
infected macrophages transition to aerobic glycolysis, and this transition is required for effective
control of bacterial growth (153, 154). DuringM. tuberculosis infection, aerobic glycolysis impacts
gene expression by promoting the activity of the transcription factor hypoxia-inducible factor
1α (HIF-1α) (155). HIF-1α is a crucial mediator of IFN-γ-dependent immunity required for host
defense againstM. tuberculosis and is essential for expression of inflammatory cytokines, production
of host-protective eicosanoids, and cell-intrinsic control of bacterial replication (154). How HIF-
1α and/or aerobic glycolysis promote cell-intrinsic control of infection is yet unknown.

CELL DEATH AND EICOSANOIDS

There are multiple mechanisms by which the host cell can undergo cell death during M. tuber-
culosis infection, and the field has coalesced around a paradigm in which apoptotic death benefits
the host whereas necrotic death benefits the bacterium. However, this paradigm is based largely
on in vitro experiments and is difficult to establish conclusively, as there is no experimental means
to selectively eliminate either form of death in vivo without also affecting other parameters of the
immune response. In general, several attenuated strains and mutants of M. tuberculosis have been
found to induce apoptotic cell death in macrophages (156–158). Apoptotic cells can be phagocy-
tosed byDCs and subsequently stimulate T cell priming and activation (159–163).Efferocytosis of
apoptotic cells by uninfected macrophages is thought to result in killing of bacteria through fusion
of the efferocytic phagosome with lysosomes, and macrophage apoptosis is therefore considered
beneficial for host survival (163, 164). In contrast,macrophages infected with virulentM. tuberculo-
sis undergo necrosis (158, 165). Recent findings with a zebrafish model ofMycobacterium marinum
infection showed that excess TNF-α can induce necrosis through interaction of multiple signaling
pathways, including activation of RIP kinases, production of mitochondrial ROSs, and subsequent
activation of cyclophilin D (52). TNF-α was also implicated in apoptosis induced by eicosanoid
synthesis (166). Production of the eicosanoid PGE2 promotes apoptosis in macrophages infected
with avirulent M. tuberculosis (167). In contrast, PGE2 production is inhibited by LXA4, which is
induced during infection with virulent strains and leads to necrosis. Mice lacking prostaglandin
E synthase (Ptges–/–) show a higher bacterial burden in the lungs, whereas Alox5–/– mice, which
are unable to synthesize certain eicosanoids (including LXA4 and LTB4), are more resistant to
M. tuberculosis infection (165). This suggests that PGE2 has a protective effect against virulent
M. tuberculosis. However, whether this effect is mediated through regulation of cell death or regu-
lation of inflammation is unclear. PGE2 has both pro- and anti-inflammatory functions, including
the regulation of cytokine expression in DCs and T cell differentiation (168). In addition, lipox-
ins have been described as negative regulators of acute inflammatory processes and together with
PGE2 regulate neutrophil recruitment (144, 169). Interestingly, polymorphisms in the promoter
region of leukotriene A4 hydrolase (lta4h), which catalyzes the production of the eicosanoid LTB4,
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have been associated with mortality and response to anti-inflammatory treatment in patients with
tuberculosis meningitis, further supporting the notion that eicosanoids are important for regulat-
ing inflammatory processes (170, 171).

OTHER INNATE CELLS

Neutrophils in Host Defense

Polymorphonuclear neutrophils are short-lived cells of the innate immune response that are
highly abundant during bacterial infections. Neutrophils possess a potent antimicrobial arsenal
effective against many bacterial and fungal pathogens (172). In the case of M. tuberculosis, while
there is some evidence that neutrophils participate in protective immunity, a clear role in host
defense has yet to be defined. In some settings, they may promote M. tuberculosis infection. Re-
cruitment of neutrophils to the lungs afterM. tuberculosis infection is rapid and is mediated through
multiple chemokines, including IL-17, CXCL5, and KC, and by eicosanoids produced by 12/15-
lipoxygenase (144, 173, 174). Neutrophils take up bacteria in vivo (144, 163, 175). However, stud-
ies examining whether neutrophils are able to effectively kill phagocytosed M. tuberculosis are
inconclusive and contradictory (176), in part because of the difficulty of working with primary
neutrophils ex vivo and the paucity of appropriate cells lines for neutrophil research. Studies of
neutrophil function in vivo are also inconclusive.Neutrophils harboring bacteria may die by apop-
tosis, which is followed by efferocytosis by resident macrophages, possibly facilitating control of
infection (164). Alternatively, it has also been proposed that neutrophils are a permissive niche for
growth and persistence in vivo (177, 178). Separate from their ability to kill bacteria, neutrophils
may have an influence on priming of adaptive immunity. Depletion of neutrophils at early stages
of infection in resistant mouse strains has yielded differing results, with some studies finding no
impact and other studies finding that depletion of neutrophils compromises host defense (175,
179).

Destructive Inflammation Mediated by Neutrophils

In human tuberculosis, neutrophils are generally associated with active disease, caseous necrosis,
and exacerbated pathogenesis (180), and neutrophils may be drivers of the pathology associated
with active disease. Indeed, animal models established that excessive accumulation of neutrophils
in the lungs drives destructive inflammation and susceptibility to infection. Furthermore, the phe-
notypes of many mice known to be susceptible to M. tuberculosis infection, including Nos2–/–,
Atg5–/–, Irg1–/–, and Card9–/– mice, can be at least partially rescued by depletion of neutrophils
(123, 144, 181, 182). These data suggest that defects in immunity resulting from disparate pertur-
bations lead to a common pathway of neutrophil-driven susceptibility (Figure 2). However, many
questions remain. First, it is unclear whether neutrophils are a common driver of susceptibility
in humans. Second, the mechanisms by which neutrophils are recruited to excess under specific
conditions, and how they drive destructive inflammation, are unclear. Finally, it is possible that
neutrophils are in fact more heterogeneous in tuberculosis disease than is currently appreciated
and that specific subsets of neutrophils participate in host defense, whereas others contribute to
pathology.

Alveolar Macrophages and Innate Cells During Early Infection

AMs are a subset of tissue-resident macrophages that reside within the lung airspace and play cru-
cial roles in lung homeostasis, surfactant metabolism, and tissue repair (183). AMs are the first cell
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type to encounterM. tuberculosis. Studies of human AM infections are difficult, as the AM pheno-
type is programmed and maintained in the tissue niche and is rapidly lost in cell culture (184). In
mice, a productiveM. tuberculosis infection starts with infection of AMs that reside in the lung alve-
oli (185, 186). Depletion of AMs with liposome-encapsulated dichloromethylene diphosphanate
prior to infection reduces the bacterial burden in the lungs and increases survival, suggesting that
AMs form a replicative niche early after infection (187, 188). Indeed, infected AMs initially ex-
hibit an anti-inflammatory NRF2-dependent antioxidant response (186, 188, 189). Approximately
10 days after infection is initiated, AMs exhibit a more proinflammatory transcriptional state that
precedes their transition from the airway into the pulmonary interstitium at approximately 14 days
postinfection (185, 186). AMs in the interstitium localize in infectious foci, a process that is me-
diated by IL-1R signaling in nonhematopoietic cells (185). At two weeks, AMs appear to be the
predominant infected cell type in the lungs (190, 191). Shortly thereafter, however,M. tuberculosis
disseminates to monocyte-derived cells and neutrophils (188, 192). Interstitial macrophages show
a glycolytic transcriptional profile, express iNOS and IL-1, and restrict intracellular growth of
M. tuberculosis more efficiently than AMs (188). In addition, mycobacterial growth in the lungs
appears to be sustained by a constant influx of new monocytes into the lungs (193). Thus, al-
though airway AMs are a more permissive niche for growth early after infection,M. tuberculosis
replication in the lungs can be sustained through dynamic infection of newmonocytes that provide
M. tuberculosis with new cellular niches that become rapidly infected.

Dendritic Cells

DCs bridge innate and adaptive immunity, traveling from sites of infection and inflammation to
secondary lymphoid tissues for activation of T cells. Both classical/resident and monocyte-derived
DCs are present in the lungs during M. tuberculosis infection (194). Antibody-based depletion of
CD11c+ cells, which transiently eliminates both classical and monocyte-derived DCs, results in
defective CD4 T cell priming and increased susceptibility to M. tuberculosis infection, demon-
strating the importance of DCs for host defense (195). Several studies using CCR2–/– mice have
suggested that inflammatory monocytes, and not DCs,may be responsible for traffickingM. tuber-
culosis to the draining lymph nodes for activation of T cell responses (196, 197). However, a more
recent study using diphtheria toxin to selectively ablate CCR2 at different stages of infection found
that while interstitial macrophages traffic bacteria to the draining lymph nodes, classical DCs are
largely responsible for priming CD4 T cell responses (198). Human data have suggested that the
onset of adaptive immunity toM. tuberculosis is significantly delayed (199–201). Indeed, data from
both mice and nonhuman primates have clearly demonstrated that the priming of T cells in drain-
ing lymph nodes is delayed during M. tuberculosis infection relative to other infections (163, 194,
202–204), although limited antigen availability due toM. tuberculosis’s slow replication rate and low
infectious dose may be a confounding factor. Importantly, experimental perturbations that result
in more rapid priming of effector T cells, through BCG vaccination, dendritic cell vaccination, or
adoptive transfer, result in more effective control ofM. tuberculosis infection (205–207).

Natural Killer Cells

Natural killer (NK) cells are innate lymphocytes present in both lymphoid and nonlymphoid tis-
sues that play a major role in defense against viral infection. In human tuberculosis, a reduction in
the number of NK cells or in their expression of activation markers correlates with loss of control
and the transition to active disease (208, 209). Furthermore, changes in peripheral blood NK cell
levels correlate with disease progression and treatment response, and they inversely correlate with
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lung inflammation in tuberculosis patients across multiple independent cohorts (209). However,
whether these studies indicate a functional role for NK cells in the immune response is unclear.
Although the exact ligands are unknown,NK cells are capable of detectingM. tuberculosis–infected
macrophages through activating receptors (e.g., NKp46, NKG2D) (210). Human and mouse NK
cells produce perforin and granulysin, are capable of killingM. tuberculosis–infected cells through
a contact-dependent mechanism (211–214), and produce IFN-γ during infection.M. tuberculosis–
infected mice show an increase in NK cell numbers in the lungs within 21 days (92, 214). NK
cell depletion does not result in an increase in bacterial growth in the lungs in C57BL/6 mice
(214), indicating that these cells are not critical for restricting the bacterial burden. However, de-
pletion of NK cells or IFN-γ in RAG−/− mice further increases the susceptibility of these mice to
M. tuberculosis infection (215).

Nonclassical T Cells

Nonclassical T cells, including mucosal-associated invariant T (MAIT) cells and γδ T cells, span
innate and adaptive immunity. Their T cell receptor repertoire is highly limited, often recogniz-
ing PAMPs, and they participate in rapid innate-like effector responses. MAIT and γδ T cells
have been frequently associated with tuberculosis; however, their role during infection remains
unclear. MAIT cells are activated by intermediates of bacterial riboflavin biosynthesis that bind
to the highly conserved major histocompatibility complex–related 1 (MR1) molecule (216). Most
bacterial species, includingM. tuberculosis, synthesize riboflavin and therefore activate MAIT cells.
Once activated, individual MAIT cell subsets can produce different combinations of inflamma-
tory/T helper 1 (Th1) cytokines and can kill infected cells through the release of cytotoxic gran-
ules (216). In nonhuman primates, tetramer-restricted MAIT cells accumulate in the airways
but not inside granulomas and only show minimal expression of granzyme B or the prolifera-
tion marker Ki76, suggesting that MAIT cells are not essential contributors to M. tuberculosis
restriction in macaques (217, 218). Mice lacking MR1 are susceptible to infection with BCG and
M. tuberculosis (219). BCG induces MAIT cell formation in BCG-vaccinated humans and
nonhuman primates (220, 221). Furthermore, MAIT cells have activity against BCG-infected
macrophages (222). However, it is unclear whether induction of MAIT cells contributes to the
efficacy of BCG and what role MAIT cells play in humanM. tuberculosis infection.

γδ T cells expand early during M. tuberculosis infection (223, 224). Furthermore, tuberculosis
patients have a higher proportion of IL-17-producing γδ T cells compared to healthy controls
(225). Human γδ T cell clones derived from peripheral blood mononuclear cells respond to live
M. tuberculosis and to M. tuberculosis lysate in vitro (226). Both AMs and monocytes activate and
induce expansion of γδ T cells (227). Activated γδ T cells can produce IFN-γ in response to M.
tuberculosis and are cytotoxic to infectedmonocytes,macrophages, and extracellular bacteria due to
release of perforin and granulysin (228, 229). C57BL/6 mice deficient for T cell receptor (TCR) δ
chain lack γδ T cells and show a transient higher bacterial burden early in infection compared to
control mice. Interestingly, TcR-δ–/– mice show control of low-dose infection at later time points
but eventually succumb to high-dose infections (230). The most abundant population of γδ T
cells in humans are Vγ9Vδ2 T cells that recognize HMBPP, an intermediate of the nonmeval-
onate pathway of isoprenoid biosynthesis (231–233). Vγ9Vδ2 T cells activated by BCG are able
to protect againstM. tuberculosis infection in a macaque model (234). Furthermore, using Listeria
monocytogenes as a vaccine platform to stimulate Vγ9Vδ2 T cells effectively protects againstM. tu-
berculosis infection in primates (235), demonstrating the potential of γδ T cells for vaccine-elicited
control of infection. However, whether they play an important role in containing natural human
infection remains unclear.
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HARNESSING THE INNATE IMMUNE RESPONSE

Innate Immunity and Adjuvant Development for Protein Subunit Vaccines

One of the most important practical applications of understanding innate immunity toM. tuber-
culosis is the rational design of novel vaccines. The current vaccine strain BCG is widely admin-
istered due to its efficacy in preventing severe manifestations of childhood tuberculosis; however,
it has limited efficacy against adult pulmonary tuberculosis. Recently, the M72/AS01E protein
subunit vaccine demonstrated 50% efficacy in preventing reactivation disease in previously BCG-
vaccinated adults, providing some of the first concrete evidence that vaccines other than BCG can
enhance naturally acquired immunity to tuberculosis (236). Formulating novel vaccines with op-
timized adjuvant and antigen combinations could improve upon this efficacy, raising the exciting
possibility of a truly effective vaccine for tuberculosis. Recent years have witnessed a major leap
forward in the development of novel adjuvant systems, including alum and emulsions, TLR ago-
nists, STING agonists, and several lipids derived from M. tuberculosis (237, 238). Although these
adjuvants all elicit inflammatory responses, the balance of specific cytokines produced can be ad-
juvant specific, suggesting that adjuvant selection may be important for fine-tuning the innate,
and therefore adaptive, response to vaccination. In the context of M. tuberculosis, adjuvants un-
der development that have shown efficacy in preclinical animal studies include agonists of TLR2,
TLR3, TLR4, TLR7/8, Mincle, and the inflammasome (reviewed in 238). Thus far, the develop-
ment of vaccines and selection of specific adjuvants have been largely empirical, due to the lack
of immune correlates of protection to guide tuberculosis vaccine design. However, several key
lessons have emerged from vaccine development. First, whereas traditional vaccination strategies
have sought to maximize the development of IFN-γ-producing Th1 and polyfunctional T cells,
it is now appreciated that excessive Th1 development may inhibit the development of other (as
yet unidentified) protective T cell subsets (239, 240). Furthermore, mucosal delivery of vaccines
for tuberculosis can promote enhanced protective immunity relative to parenteral immunization,
promoting the development of antigen-specific Th17 cells (241, 242). Therefore, it is crucial that
adjuvants for tuberculosis vaccines be selected not purely for their ability to elicit strong inflamma-
tory responses but also for their capacity to elicit balanced Th1/Th17 immunity and for mucosal
efficacy. Finally, because the effect of adjuvants can differ based on genetic and epigenetic factors,
care must be taken in the selection of the appropriate adjuvant for tuberculosis vaccination in the
target population (e.g., infant versus adult) (237).

Trained Immunity

Soon after the introduction of the BCG vaccine in Europe in the early twentieth century, it
was noted that BCG reduces childhood mortality in a manner that could not be explained by
a reduction in tuberculosis incidence. Subsequent studies have confirmed this phenomenon and
have attributed the efficacy to a reduction in mortality from childhood respiratory diseases (re-
viewed in 243). The ability of BCG to protect against nonmycobacterial infections is attributed to
trained immunity—the long-term functional reprogramming of innate immune cells resulting in
enhanced responses to other pathogens. BCG vaccination protects mice from viral infections in-
cluding influenza and herpes simplex virus 2 via nonspecific trained immunity (244, 245). Intrigu-
ingly, the observation that coronavirus disease 2019 (COVID-19) cases and fatalities are fewer in
regions of the world with universal BCG vaccination has prompted speculation that BCG vaccina-
tion may be protective against COVID-19 (246). However, this has not been established through
rigorous clinical trials. Intravenously injected BCG elicits an expansion and reprogramming of
hematopoietic stem cells in the bonemarrow that promote the production of macrophages primed
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to respond to M. tuberculosis infection. This trained immunity is induced via epigenetic changes
that result in enhanced responsiveness of innate immunity genes in macrophages and other in-
nate cells. In the mouse model this results in a modest reduction in bacterial titers after infection
with M. tuberculosis of ∼0.5–1 log—comparable to standard vaccination with BCG (247). BCG
infection of bone marrow results in changes that persist for many weeks after eradication of BCG
using antibiotics. However, as the timing of infection in the mouse model is necessarily com-
pressed due to a short life span, it is unclear how long-lived trained immunity can be in humans.
Importantly, intravenous BCG results in almost complete protection againstM. tuberculosis infec-
tion in macaques (248, 249); however, there is no evidence of a contribution of trained immunity
to this remarkable protective efficacy (248). Although early exposure toM. tuberculosis in humans
induced a protective state in circulating monocytes that limited M. tuberculosis outgrowth, this
effect was modest in BCG-vaccinated individuals (250). Although it is unclear whether innate im-
munity alone, even when trained, can ever completely protect against M. tuberculosis infection,
future vaccination strategies should consider eliciting trained immunity as a contributor to other
mechanisms.

CONCLUSIONS AND PERSPECTIVES

The original view of innate immunity to tuberculosis primarily focused on resistance—the abil-
ity of the cells and cytokines of the immune system to prevent infection or eliminate infectious
microbes. Thus, much of the first few decades of tuberculosis research focused on identifying
mechanisms by which activated macrophages kill or prevent the proliferation of M. tuberculosis
bacilli in a cell-intrinsic manner and inflammatory cytokines that are important for control of
disease. However, there are still major gaps in our understanding of resistance mechanisms. It re-
mains unclear exactly how macrophages control infection withM. tuberculosis at the cell-intrinsic
level. Furthermore, we lack an understanding of how cytokines like IL-1 contribute to control of
infection.The roles of many innate cells, includingNK cells and nonclassical T cells, remain enig-
matic. The idea that tolerance—limiting the collateral damage caused by the immune response
to infection—determines the outcome of infection has more recently become a major focus of
research. In the mouse model of infection, it appears that disturbing tolerance may be a major
pathway to host susceptibility. This corresponds with our understanding that death from human
tuberculosis results from inflammatory destruction of host lung tissue. However, in most suscep-
tible strains of mice rescued by neutrophil depletion, there is an increase in bacterial burden in the
lungs, leaving open the question of whether a failure of resistance drives the excessive inflamma-
tion that results in death. Furthermore, simply suppressing the immune response using nonspe-
cific anti-inflammatory drugs does not clearly benefit patients with active pulmonary tuberculosis
(251). Human tuberculosis is a remarkably heterogeneous disease, both during different stages of
disease within an individual patient and from patient to patient. The design of novel therapeu-
tics that modulate inflammation appropriately for individual patients, or that enhance resistance
mechanisms, will require a deeper understanding of the innate pathways that contribute to pro-
gression of disease.
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