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Abstract

A high diversity of αβ T cell receptors (TCRs), capable of recognizing
virtually any pathogen but also self-antigens, is generated during T cell
development in the thymus. Nevertheless, a strict developmental program
supports the selection of a self-tolerant T cell repertoire capable of re-
sponding to foreign antigens. The steps of T cell selection are controlled by
cortical and medullary stromal niches,mainly composed of thymic epithelial
cells and dendritic cells. The integration of important cues provided by
these specialized niches, including (a) the TCR signal strength induced by
the recognition of self-peptide-MHC complexes, (b) costimulatory signals,
and (c) cytokine signals, critically controls T cell repertoire selection. This
review discusses our current understanding of the signals that coordinate
positive selection, negative selection, and agonist selection of Foxp3+

regulatory T cells. It also highlights recent advances that have unraveled
the functional diversity of thymic antigen-presenting cell subsets implicated
in T cell selection.
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INTRODUCTION

The thymus contains two distinct anatomical sites: the medulla and the surrounding cortex.
These regions are composed of several antigen-presenting cells (APCs), mainly thymic epithelial
cells (TECs) and dendritic cells (DCs), which create specialized microenvironments coordinating
T cell selection events (Figure 1). T cell receptor (TCR) gene rearrangements allow the gener-
ation of a highly diverse αβ TCR repertoire composed of more than 1015 distinct TCRs (1, 2).
Given that TCR gene rearrangements occur semirandomly, some TCRs will inevitably recognize
self-antigens. Therefore, the TCR repertoire needs to be selected for its ability to recognize for-
eign peptide–MHC complexes while being self-tolerant. Impairment of antigen presentation in
the thymus can result in a breakdown in T cell tolerance, triggering autoimmune disorders such
as type 1 diabetes and multiple sclerosis.

During their development, thymocytes sequentiallymigrate within cortical andmedullary stro-
mal niches. Their high motility allows interaction with a large array of self-peptide-MHC com-
plexes presented by numerous APCs and responding to cytokine signals. They undergo several
selection processes, including β-selection, positive selection, negative selection (also called clonal
deletion), and commitment to the regulatory T cell (Treg) lineage. Their fate is determined by
the strength of the TCR signal, triggered by the recognition of peptide-MHC complexes and
by the integration of costimulatory and cytokine signals provided by numerous thymic APCs.
Only ∼5% of developing thymocytes are selected, and ∼1–4 × 106 mouse naive T cells are ex-
ported daily to the periphery.

In this review, I summarize our latest knowledge on intrathymic αβ T cell selection and discuss
the instructive cues that drive the generation of a self-tolerant T cell repertoire. I give particular
emphasis to signals derived from TCRs, costimulatory molecules, and cytokine receptors and the
recently appreciated thymic APC heterogeneity.

T CELL DEVELOPMENT AND SELECTION

Early T Cell Development and Thymic Positive Selection

T cell development requires continuous homing of bone marrow–derived T cell progenitors via
blood vessels at the corticomedullary junction (3). At this early stage, these cells lack the TCR
coreceptors, CD4 and CD8, and are termed CD4−CD8− double-negative (DN) cells. During
their migration toward the subcapsular region, DN thymocytes can be further subclassified into
distinct subsets based on expression of CD44 and CD25 (also known as IL2Rα chain) (4–6). DN1
(CD44+CD25−) cells include early T cell progenitors that express the receptor tyrosine kinase
c-Kit (also known as CD117), which promotes their survival by interacting with its lig-
and expressed by endothelial cells (7, 8). Early T cell progenitors develop into DN2a
(CD44+CD25+CD117hi) and then into DN2b (CD44+CD25+CD117lo) cells. DN2b cells are
more committed to the T cell lineage than DN2a cells, although they retain other lineage po-
tentials (9). During DN2-to-DN3 (CD44−CD25+) transition, natural killer (NK) cell potential
and DC potential are lost upon engagement of Notch-1 receptor by its ligand, Delta-like 4 (10,
11). Sequence-specific transcription factors involved in T cell lineage identity have been recently
reviewed (12). At the DN3 stage, cells become fully committed to the αβ T cell lineage and ex-
press a pre-TCR complex at the cell surface by association of the TCR β chain with an invariant
pre–TCR α chain and CD3 molecules. Low-affinity interactions between the TCR β subunit of
the pre-TCR and peptide-MHC complexes induce pre-TCR signaling that rescues cells from
apoptosis, allowing their development into DN4 (CD44−CD25−) cells (13, 14). This first major
checkpoint, called β-selection, enables amplification of cells with productive TCRβ rearrange-
ments. These cells upregulate CD4 and CD8 coreceptors, leading to double-positive (DP) cells,
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Figure 1

T cell selection in the thymus. T cell progenitors enter the thymus via blood vessels localized at the corti-
comedullary junction. The development of DN thymocytes into discrete subsets (DN1–DN4) occurs during
their migration toward the subcapsular region. DP cells generated in the outer cortex, through an immature
ISP stage,migrate back into the inner cortex.DP thymocytes can be engulfed by thymic nurse cells, supporting
secondary TCRα rearrangements. DP thymocytes that have successfully rearranged their TCRs scan cTECs
for positively selecting ligands.DP thymocytes not recognizing peptide-MHC complexes with sufficient affin-
ity die by neglect, whereas those that strongly recognize these complexes die by negative selection.Only T cell
clones recognizing peptide-MHC complexes with adequate affinity continue their development. Recognition
of peptide-MHC-I and peptide-MHC-II complexes drives the differentiation of DP thymocytes into CD8+
and CD4+ SP thymocytes, respectively. After positive selection, CD8+ and CD4+ SP thymocytes migrate
into the medulla. They scan via their TCRs the presence of self-peptides mainly presented by mTECs and
DCs.The strength of TCR interactions dictates T cell fate.Weak interactions promote their survival, whereas
strong interactions cause negative selection by apoptosis. Intermediate to high interactions divert CD4+ SP
thymocytes to the Treg lineage. Strong TCR signals generate CD25+ Treg precursors, whereas weaker TCR
signals generate Foxp3lo Treg precursors. Abbreviations: cTEC, cortical thymic epithelial cell; DC, dendritic
cell; DN, double negative; DP, double positive; ISP, intermediate single positive; mTEC, medullary thymic
epithelial cell; SP, single positive; TCR, T cell receptor; Treg, regulatory T cell; TregP, Treg precursor.

www.annualreviews.org • Thymic T Cell Selection 97



which progress through an immature CD8+CD4−CD3− intermediate single-positive (ISP) stage
(15). DP thymocytes rearrange their TCR α chain to produce a cell surface αβ TCR and reside
three to four days in the cortex.

DP thymocytes that received TCR signals upregulate CD4 and downregulate CD8 expres-
sion, becoming phenotypically CD69+CD4hiCD8lo intermediate thymocytes. Cells bearing αβ

TCR that recognize with low to moderate affinity peptides presented by MHC-I or MHC-II
are positively selected as CD8+ or CD4+ single-positive (SP) thymocytes, respectively (16). This
TCR-dependent process that promotes thymocyte survival is termed positive selection (Figure 1).
However, the majority of DP thymocytes (∼85–90%) express TCRs that do not recognize
peptide-MHC complexes and die by neglect in absence of TCR-mediated survival signals (17).
In line with this, a study based on a high-throughput, unbiased clonal screen of random αβ TCR
pairs has found that 85% of TCRs fail to induce selection.Only 15% of randomTCRs induce sig-
naling and lead to positive (7.5%) or negative (7.5%) selection (18). The development of CD8+

and CD4+ SP thymocytes takes two to four and one to two days, respectively (19). Unlike pe-
ripheral T cells, DP thymocytes respond efficiently to low TCR signals inducing the expression
of the antiapoptotic molecule Bcl-2 (20–23). TCR signaling leads to a gradual increase in intra-
cellular calcium, activating the calcium-dependent phosphatase calcineurin and the downstream
transcription factor NFAT (nuclear factor of activated T cells), both required for positive selection
(24–26).Transient calcium elevations are accompanied bymigratory pauses during the first 24 h of
positive selection, progressively becoming briefer (25, 27).The comparison of thymocytes bearing
MHC-I-restricted TCRs with distinct self-reactivities using two-photon time-lapse microscopy
showed that the positive selection of thymocytes exhibiting low self-reactivity occurs with tran-
sient calcium fluxes and brief migratory pauses (28). Positive selection can take over a week for
CD8+ thymocytes with low self-reactivity. Nevertheless, whether the positive selection of CD4+

thymocytes with low self-reactivity is similar to that of CD8+ thymocytes requires further investi-
gation. Interestingly, the subunit CNOT3 of the CCR4-NOT deadenylase complex, implicated in
poly(A) tail shortening, protects thymocytes from apoptosis during positive selection by inhibiting
upregulation of the proapoptotic gene Puma (29). This indicates that posttranscriptional regula-
tion likely influences thymocyte survival during positive selection. Although Erk-associated phos-
phorylation is essential for positive selection (30), dephosphorylation changes triggered by TCR
activation regulate thymocyte survival (31). Indeed,T cell–specific deletion of protein phosphatase
2A (PP2A) deregulates dephosphorylation of apoptosis-related proteins in DP thymocytes, result-
ing in abnormal apoptosis that could be corrected by Bcl-2 transgene expression.

Thymic Negative Selection and TCR Signal Strength

A substantial proportion of DP thymocytes bearing TCRs specific for ubiquitous self-antigens die
by negative selection in the cortex (32, 33) (Figure 1). Thymocyte apoptosis is difficult to visualize
and quantify, because dying cells are rapidly engulfed by macrophages (17). Thymocyte deletion
is mediated by the mitochondrial apoptotic pathway and requires the BH3-only protein family
member Bim (34, 35). Using mice lacking Bim and expressing a Nur77-GFP (green fluorescent
protein) transgene,which reflects theTCR signal strength perceived, Stritesky et al. (36) estimated
that six times more cells undergo negative selection than positive selection. Furthermore, 75% of
thymocytes were found to be deleted at the DP stage whereas only 25% were eliminated at the SP
stage. The Ikaros family transcription factor Helios was found to discriminate CD4+ thymocytes
undergoing positive and negative selection (33). Using Helios, researchers identified two major
waves of Bim-mediated negative selection in 55% of cortical CCR7−CD24+CD4loCD8lo DP
thymocytes and in 20% of medullary CCR7+CD4+ SP thymocytes. These estimations indicate
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that the proportion of DP thymocytes that die by negative selection in the cortex is much
higher than previously thought. The p53-upregulated modulator of apoptosis, Puma, also coop-
erates with Bim to delete autoreactive thymocytes (37). Indeed, mice deficient in both Bim and
Puma have a higher accumulation of mature SP thymocytes and a broader autoimmunity than
Bim-deficient mice. These observations provide compelling evidence that the apoptosis of autore-
active thymocytes prevents organ-specific autoimmunity. Since the estimation of the proportion
of cortical and medullary apoptotic thymocytes was based exclusively on Bim expression (33, 36)
and Puma cooperates with Bim to induce apoptosis, these proportions might be even higher.

TCR-mediated positive selection triggers CCR7 upregulation, driving SP thymocyte migra-
tion into the medulla (38, 39). At this stage, SP thymocytes, expressing the activation marker
CD69 and the heat-stable antigen CD24, are defined as semimature. These cells are further
screened for self-reactivities by being exposed to organ-specific antigens, called tissue-restricted
self-antigens (TRAs). Mice with defective medulla development and function display signs of
autoimmunity; thus, exposure to TRAs is necessary to achieve complete tolerance (40). Con-
trary to mature CD69−CD24− SP thymocytes that proliferate upon TCR stimulation, semima-
ture CD69+CD24+ SP thymocytes are susceptible to apoptosis upon high-affinity recognition
of peptide-MHC ligands. TCR stimulation thus leads to a different outcome depending on the
maturation state of SP thymocytes (41). Since thymocytes with specificity to any single self-
peptide-MHCcomplex are rare, their identification remains difficult.Most studies have usedTCR
transgenicmice also expressing the cognate antigen, either naturally or transgenically.Thesemod-
els revealed the importance of TCR reactivity in thymic selection and clonal deletion efficiency.
For instance, a seminal study showed that transgenic thymocytes for the male H-Y antigen, pre-
sented by MHC-I molecules, are massively deleted in males but not females (42). A subsequent
study showed that the appropriate expression of the H-Y TCR α chain at the DP stage results
in clonal deletion at the SP stage (43). Nevertheless, the abnormal high frequencies of mono-
clonal TCR-specific thymocytes in these transgenic models could fail to faithfully recapitulate
T cell selection. Therefore, peptide-MHC tetramers were employed to quantify self-specific
clones within an unmanipulated T cell repertoire (44). One-third of specific MHC-II-restricted
thymocytes were detected in mice expressing a ubiquitous cognate antigen, in contrast to mice
lacking the antigen, indicating that∼70%of autoreactive cells are deleted.Another study, based on
peptide-MHC-II tetramers, showed that the fate of CD4+ thymocytes depends on the expression
pattern of the self-antigen (45). CD4+ thymocytes specific for easily accessed or highly expressed
antigens are massively deleted. In contrast, CD4+ thymocytes specific for antigens with limited
thymic expression are partially deleted whereas those specific for foreign antigens or self-antigens
not encountered during their development are ignored. Intriguingly, CD8+ thymocytes are
more susceptible to apoptosis thanCD4+ thymocytes, providing an explanation for the CD8/CD4
imbalance (46).

Negative selection may not be fully efficient, and autoreactive T cell clones can reach the
periphery, even in healthy individuals. Indeed, immunization with some self-antigens induces au-
toimmunity, indicating that the peripheral T cell repertoire contains self-specificities. For exam-
ple, human circulating CD8+ T lymphocytes specific for β cell antigens expressed by medullary
TECs (mTECs) were found in healthy donors and patients with type 1 diabetes alike (47, 48).
Furthermore, the frequency of human CD8+ T cells specific for the SMCY self-peptide de-
rived from the Y chromosome (the H-Y equivalent) is only approximately threefold lower in men
than in women. These observations indicate that around one-third of SMCY-specific T cells es-
cape clonal deletion in males (49). Similarly, a pioneering study using tetramers found that one-
third of male-specific Smcy3 CD8+ thymocytes escapes clonal deletion in male mice (50). Since
the efficiency of clonal deletion depends on the affinity and avidity of the studied TCR for its
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cognate antigen, its degree of global efficiency is certainly difficult to estimate in a normal poly-
clonal T cell repertoire in the absence of TCR sequencing. Furthermore, the incomplete repre-
sentation of splice isoforms could account for clonal deletion escape. For example, the absence of
expression of a splice variant of the myelin antigen proteolipid protein (PLP) induces the sponta-
neous development of experimental autoimmune encephalomyelitis in SJL TCR transgenic mice
expressing a TCR derived from a pathogenic T cell clone (51, 52). Even if clonal deletion is in-
complete, tolerance mechanisms likely rely on thymus-derived, antigen-specific Foxp3+ Tregs, at
least for some TRAs (53).

Foxp3+ Regulatory T Cell Development and TCR Signal Strength

SP thymocytes bearing strongly autoreactive TCRs do not necessarily undergo clonal deletion. A
fraction of them are redirected into the Foxp3+ Treg lineage, a process called agonist selection (54,
55) (Figure 1). Strong TCR signals can also induce the differentiation of other lineages, such as
invariant NK T cells (iNKTs) or CD8αα+ intraepithelial lymphocytes (IELs), a concept reviewed
elsewhere (56). Strong TCR signals driving Foxp3+ Treg development were initially observed in
TCR transgenic mice expressing the agonist ligand. Treg selection was observed when TS1 mice
with a transgenic TCR recognizing an epitope of PR8 influenza virus hemagglutinin (HA) were
crossed with transgenic mice expressing the PR8 HA as a neo-self-antigen (57, 58). Similar ob-
servations were made with other TCR transgenic systems such as DO11.10 TCR transgenic mice
crossed with mice expressing ovalbumin (OVA) (59–61). Strikingly, thymic Tregs are absent when
TCR transgenic mice are bred on a Rag (recombination activating gene)-deficient background
(54), revealing the importance of self-antigen recognition in Treg selection. Accordingly, the TCR
repertoire of Foxp3+ Tregs exhibits limited overlap with nonregulatory T cells and resembles au-
toreactive T cells of Foxp3-deficient mice (62). Furthermore,Treg selection for one givenTRA can
be critical to prevent organ T cell infiltration. Indeed, altered Treg selection for a single prostate-
specific antigen renders mice susceptible to prostate-specific T cell infiltration (63).

Several studies concluded that Treg selection is induced by an intermediate TCR avidity be-
tween those that drive positive and negative selection (55). Transgenic mice expressing natural
Treg-derived TCRs, backcrossed on a Rag-deficient background, develop very few Foxp3+ Tregs
(64, 65). Efficient Treg selection occurs only at very low clonal precursor frequencies in the pres-
ence of a polyclonal population, suggesting that intraclonal competition is required for Treg gen-
eration. However, numerous TCR transgenic mice backcrossed on a Rag-deficient background,
such as Marilyn-Rag2−/−, 3BBM74-Rag2−/−, B3K508-Rag1−/−, and OTII-Rag2−/−, show defec-
tive medulla formation with altered mTEC development (as discussed below) (66, 67). Therefore,
the poor development of Tregs in transgenic mice expressing natural Treg-derived TCRs could
be due to a low representation of its cognate self-antigen in the medulla and/or weak production
of IL-2 in the absence of self-reactive CD4+ thymocytes (68). Furthermore, mixed bone marrow
chimeras and the intrathymic transfer of TCR transgenic Tregs into wild-type recipients lead
to Foxp3+ Treg numbers that reach a plateau, indicating that clonal Treg selection involves a
saturable niche, probably due to restricted availability of the cognate antigen, even in a normal
medullary microenvironment.

Treg selection relies on a two-step model (69, 70). The first step is driven by strong TCR/
CD28 stimulation that induces CD25 expression, thereby generating CD25+Foxp3− cells, called
CD25+ Treg precursors. The second step depends on γ-chain cytokines, mainly IL-2 and IL-15,
promoting Foxp3 upregulation and CD25+Foxp3+ Treg development. A second Treg precursor
lacking CD25 expression and characterized by a low level of Foxp3, called Foxp3lo precursor,
was subsequently identified (71, 72). Intrathymic transfer of either CD25+ or Foxp3lo precursors
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leads to CD25+Foxp3+ Treg development (72, 73), indicating that Tregs arise from two devel-
opmental pathways. Whereas CD25+ precursors appear at day 2 after birth, Foxp3lo precursors
are detectable only at day 4. Furthermore, the TCR repertoire of Foxp3lo precursors shows
little overlap with that of CD25+ precursors and resembles that of mature CD25+Foxp3+ Tregs
(73). Accordingly, Foxp3lo precursors also show a more mature CD69−MHC-I+ phenotype.
These observations indicate that the mature Treg pool is heterogeneous, with cells derived from
both precursors. In accordance with this, two mature thymic Treg subsets defined as Triplelo

(GITRloPD-1loCD25lo) and Triplehi (GITRhiPD-1hiCD25hi) show a distinct TCR repertoire
(74). Triplehi Tregs express TCRs with stronger self-reactivity than Triplelo Tregs. Although it is
tempting to speculate that Triplehi and Triplelo Tregs would be derived from CD25+ and Foxp3lo

precursors, respectively, their developmental relationship remains to be established. Interestingly,
CD25+Foxp3+ Tregs have distinct functional activities, with Tregs derived from Foxp3lo precur-
sors protecting from T cell–induced colitis and those derived from CD25+ precursors protecting
from experimental autoimmune encephalomyelitis (73, 75). Similarly to Tregs derived from
Foxp3lo precursors, Triplelo Tregs limit T cell–induced colitis, whereas Triplehi Tregs control
lymphoproliferation in lymph nodes (74). Considering the therapeutic potential of Tregs for a va-
riety of autoimmune disorders in clinical trials, further investigations are required to decipher the
mechanisms driving these two Treg developmental pathways (76, 77). Improving our understand-
ing could help in generating Tregs from thymuses discarded during cardiac surgery (an interesting
source of sufficient quantities of stable Tregs) that will protect against specific pathologies (78).

ANTIGEN-PRESENTING CELLS IN T CELL SELECTION

Functional Properties of Cortical TECs

Cortical TECs (cTECs) constitute a three-dimensional reticular network facilitating interac-
tions with cortical thymocytes. They express epithelial cell adhesion molecule (EpCAM) and
the surface markers Ly51 (encoded by Enpep) and CD205 (encoded by Ly75) but lack reac-
tivity to the lectin Ulex europaeus agglutinin 1 (UEA-1). cTECs are thus commonly defined as
EpCAM1+Ly51+CD205+UEA-1−. Given their paucity, they remain difficult to study and their
diversity is probably underestimated. Nevertheless, they are heterogeneous based on their levels
of MHC-II, CD40, and the Notch ligand Delta-like 4, which likely reflect their maturation state
(Table 1). Recent single-cell transcriptomic analyses also identified two main cTEC subsets in
humans: cTEClo and cTEChi, characterized by increasing expression levels of HLA class II genes,
PSMB11, PRSS16, and CCL25 (79). Signals provided by thymocytes beyond the DN1 stage drive
cTEC maturation. This is illustrated by the transplantation of bone marrow cells from Rag2−/−

mice, which show a block at the DN3 stage, into human CD3ϵ transgenic recipients (Tgϵ26 mice),
in which T cell development is arrested at the DN1 stage (80, 81). Development of DN3 thymo-
cytes in mice after transplantation restores the cortical organization and the differentiation of
CD40+MHC-IIhi cTECs.

cTECs control (a) T cell progenitor recruitment by expressing CXCL12 and CCL25
chemokines, (b) T cell lineage engagement by providing the Notch ligand Delta-like 4, and
(c) immature thymocyte survival and proliferation by secreting IL-7 and stem cell factor (SCF)
cytokines (10, 11, 82–84). Although DP thymocytes recognizing ubiquitous self-antigens die by
negative selection in the cortex (32), cTECs are not likely implicated in this process. Transgenic
mice expressing MHC-II molecules only in cTECs generate autoreactive CD4+ T cells, arguing
against their implication in clonal deletion (85). Cortical clonal deletion is likely mediated by
rare DCs that are in contact with dying autoreactive thymocytes (32). Importantly, cTECs
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Table 1 cTECs, mTECs, and DCs involved in thymocyte selection: non-exhaustive list of markers classically used to
identify distinct subsets of cTECs, mTECs, and DCs

Cell type Phenotype Cell type Phenotype

cTEClo

EpCAM+UEA-1−Ly51+CD205+MHC-
IIloCD40loDLL4lo

Post-Aire mTEC

EpCAM+UEA-1+Ly51−MHC-
IIloCD80loAire−KRT10+Involucrin+

cTEChi

EpCAM+UEA-1−Ly51+CD205+MHC-
IIhiCD40hiDLL4hi

Tuft-like mTEC

EpCAM+UEA-1+Ly51−CCL21−MHC-
IIloDCLK1+Pou2f3+

CCL21+ mTEClo

EpCAM+UEA-1+Ly51−MHC-
IIloCD80loCCL21+

cDC1

CD11chiMHC-
II+CD8αhiSirpα−CD11b−XCR1+

Aire− mTEChi

EpCAM+UEA-1+Ly51−MHC-
IIhiCD80hiAire−

cDC2

CD11chiMHC-
II+CD8αloSirpα+CD11b+XCR1−

Aire+ mTEChi

EpCAM+UEA-1+Ly51−MHC-
IIhiCD80hiAire+

pDC

CD11cintMHC-IIloPDCA1+B220+

Abbreviations: Aire, Autoimmune regulator; cTEC, cortical TEC; cDC, conventional dendritic cell; DLL4, Delta-like ligand 4; EpCAM, epithelial cell
adhesion molecule; mTEC, medullary TEC; pDC, plasmacytoid dendritic cell; TEC, thymic epithelial cell; UEA-1,Ulex europaeus agglutinin 1.

support positive selection of thymocytes through their unique expression of protein degradation
machineries (Figure 2a). They express the thymoproteasome subunit β5t (encoded by Psmb11),
which is required for MHC-I presentation of low-affinity self-peptides specialized for CD8+

thymocyte positive selection (86, 87). Psmb11−/− mice show defective positive selection of
CD8+ thymocytes, indicating a key role for this catalytic subunit in the generation of a diverse
repertoire of MHC-I-restricted T cells. Similarly, cTECs express the lysosomal endopeptidase
cathepsin L (encoded by Ctsl) and the thymus-specific serine protease TSSP (encoded by Prss16),
which contribute to the generation of MHC-II-restricted self-peptides specialized for CD4+

T cell positive selection (88, 89). Mice deficient for Ctsl have a drastic reduction in CD4+

thymocyte positive selection, whereas mice deficient for Prss16 have impaired positive selection
for some TCR specificities. Furthermore, cTECs show a high constitutive macroautophagy
that contributes to MHC-II presentation of cytosolic proteins (90). By encompassing viable DP
thymocytes, a fraction of cTECs generate multicellular complexes, called thymic nurse cells (91).
They are believed to participate in T cell selection by creating a microenvironment favorable to
secondary TCRα rearrangements of long-lived DP thymocytes (92).

Thus, cTECs play multiple roles in early T cell development and selection, including pro-
genitor cell homing, T cell lineage commitment, thymocyte proliferation, and positive selection.
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Functional properties of cTECs and mTECs in positive and negative selection of thymocytes. (a) cTECs induce the positive selection
of DP thymocytes by expressing unique antigen-processing and -presentation machineries. They are equipped with a cortex-restricted
thymoproteasome containing a β5t subunit that produces a unique set of MHC-I-associated peptides for the selection of CD8+ SP
thymocytes. By expressing CTSL and TSSP, they generate MHC-II-associated self-peptides required for the positive selection of
CD4+ SP thymocytes. Constitutive macroautophagy in cTECs favors the presentation of a broad spectrum of peptides via MHC-II
molecules, enlarging the T cell repertoire of positively selected thymocytes. (b) By expressing TRAs, regulated by Aire and Fezf2,
mTECs are crucial for the negative selection of CD8+ SP and CD4+ SP thymocytes. Macroautophagy favors the direct presentation of
endogenous TRAs by mTECs, thus contributing to autoreactive thymocyte deletion. TRAs can also be transferred to and presented by
cDC1s, which reinforces negative selection. Abbreviations: Aire, Autoimmune regulator; cDC1, type 1 conventional dendritic cell;
cTEC, cortical thymic epithelial cell; CTSL, cathepsin L; DP, double positive; Fezf2, Fez family zinc finger 2; mTEC,medullary thymic
epithelial cell; SP, single positive; TCR, T cell receptor; TRA, tissue-restricted self-antigen; TSSP, thymus-specific serine protease.

Nevertheless, it remains unknown whether a single cTEC can simultaneously promote all these
functions or whether discrete cTEC subsets are specialized for specific functions. Further inves-
tigations are required to elucidate cTEC functional heterogeneity.

Functional Properties of Medullary TECs

mTECs are more abundant than cTECs and are classically defined as EpCAM1+Ly51−UEA-1+.
They were initially described as two subsets: MHC-IIloCD80lo (mTEClo) and MHC-IIhiCD80hi

(mTEChi), with mTEChi derived from progenitors included in the mTEClo subset (93, 94).
mTECs play a unique role inT cell selection through their exclusive ability to express self-antigens
that mirror peripheral tissues. Reports of pioneering studies in the 1990s described the expression

www.annualreviews.org • Thymic T Cell Selection 103



of TRA genes in the thymus, such as pancreatic and ocular genes (95–97). Later in 2001, mTECs
were identified as the unique cells that express a broad range of TRAs (98). RNA-sequencing
analyses revealed that mTEChi express up to 85% of the genome, i.e., more than 18,000 genes
(99). This promiscuous gene expression is activated in part by the transcription factors Aire (au-
toimmune regulator) and Fezf2 (Fez family zinc finger 2) transcription factors, controlling the
expression of∼3,000–4,000 and∼600–700 genes, respectively (99–102).Nevertheless, the molec-
ular regulators of about half of TRAs remain to be identified. A given TRA is expressed by
only ∼1–3% of mTECs, implying that the full repertoire of TRAs is covered by ∼200–
500 mTECs at a given time point (103). The high motility of SP thymocytes during their 4- to
5-day residency in the medulla probably facilitates efficient scanning of TRAs (19).

mTECs not only constitute an antigen reservoir but also act as bona fide APCs. They can effi-
ciently induce clonal deletion of CD8+ thymocytes and present endogenously expressed TRAs via
MHC-II molecules using macroautophagy (104, 105) (Figure 2b). Diminished MHC-II expres-
sion on mTECs results in the escape of autoreactive CD4+ thymocytes from clonal deletion with
enhanced Treg selection, demonstrating the autonomous contribution of mTECs in CD4+ T cell
tolerance (106). An increased mTEC compartment leads to higher Treg numbers (107, 108).Con-
versely, a decreased mTEC compartment results in reduced Treg numbers (109, 110), implicating
mTECs in Treg selection. Furthermore, HA expression under the Aire promoter leads to HA-
specific Treg induction, independently of antigen transfer to DCs, demonstrating that mTECs
can autonomously induce antigen-specific Tregs (60). Accordingly, mTECs foster the genera-
tion of CD25+ Treg precursors (111). Furthermore, the costimulatory signal CD70 provided by
mTECs and DCs rescues Tregs from apoptosis (112). Lineage tracing and single-cell RNA se-
quencing recently uncovered that mTECs are highly heterogeneous (Table 1) (recently reviewed
in 113, 114). In particular, mTEClo include mTEChi progenitors and a CCL21+ subset, impli-
cated in the medullary positioning of positively selected thymocytes. They also include post-Aire
cells that have downregulatedMHC-II expression and thymic tuft cells resembling gut chemosen-
sory epithelial tuft cells. mTEChi include two subsets, Aire−Fezf2+ and Aire+Fezf2+. Single-cell
transcriptomic analyses revealed a largely conserved mTEC heterogeneity in humans (79, 115).
Although mTECs are heterogeneous, the contribution of distinct subsets in T cell tolerance in-
duction remains only partially understood.

Alike mTECs control T cell selection; conversely, thymocytes control mTEC differentiation,
a process referred to as thymic cross talk (40, 116). CD4+ thymocytes play a dominant role in
this process, as illustrated by impaired differentiation of Aire+ mTECs and an underdeveloped
medulla in mice deficient in CD4+ thymocytes (66, 67). By providing RANKL (encoded by
Tnfsf11) and CD40L (encoded by Cd40lg), CD4+ thymocytes activate RANK (encoded by
Tnfrsf11a) and CD40 (encoded by Cd40) signaling, promoting mTEC differentiation (reviewed
in 114, 117). RANKL and CD40L signals are delivered upon antigen-specific TCR/MHC-II in-
teractions with mTECs. These findings are consistent with the fact that membrane-bound rather
than soluble RANKL inducesmTECdifferentiation (118). Furthermore, autoreactive thymocytes
remain viable for a while after encountering a negative-selection ligand, which would allow them
to provide instructive signals to mTECs (119). Therefore, mTEC differentiation is probably cou-
pled with T cell selection, even if further investigations would be worthwhile to determine the
TCR signal threshold for this process.

Functional Properties of DCs

DCs contribute to T cell selection, since their constitutive ablation impairs clonal deletion of
CD4+ thymocytes and leads to spontaneous fatal autoimmunity (120). There are three main

104 Irla



subsets of thymic DCs: two subsets of CD11chi conventional DCs (cDCs) and CD11cint

plasmacytoid DCs (pDCs) (40, 121) (Table 1). Approximately 70% of cDCs are resident
cells of intrathymic origin (also called cDC1s; CD11chiCD8αhiSirpα−), and ∼30% are mi-
gratory cells of extrathymic origin (also called cDC2s; CD11chiCD8αloSirpα+). Three thymic
DC counterparts have been identified in humans: DC1s (XCR1+CLEC9A+CD11b−), DC2s
(SIRPA+CLEC10A+CD11b+), and pDCs (IL3RA+CLEC4C+) (115, 121). This heterogeneity
suggests a distinct contribution of DC subsets in thymocyte selection.

cDC1s express the chemokine receptor XCR1, which contributes to their medullary localiza-
tion in response to XCL1 produced by Aire+ mTECs (122). They form a dense network with
mTECs, which allows them to cross present TRAs (104, 123). This phenomenon contributes
to the deletion of autoreactive CD8+ and CD4+ thymocytes (104, 124). Furthermore, the rapid
turnover of mTECs (two to three weeks) is suspected to favor TRA cross presentation by cDCs
(94, 125, 126). Several mechanisms of intercellular antigen transfer have been proposed, including
membrane exchange, apoptotic body uptake, exosome transfer, and gap junctions (127). Interest-
ingly, a recent study found that CD36, a scavenger receptor preferentially expressed by cDC1s,
facilitates the transfer of cell surface antigens frommTECs to cDC1s (128).CD36-mediated cross
presentation participates in TCR repertoire selection of conventional T cells and Tregs. Never-
theless, other mechanisms remain to be identified, since CD36 is dispensable for the transfer of
cytoplasmic antigens. Interestingly, the combined deletion of cDC1s (Batf3−/− mice) and mTECs
(Traf6�TECmice) leads to severe multiorgan autoimmunity, while mTEC deletion alone results
in chronic liver inflammation (129).This indicates that cDC1s andmTECs cooperate to safeguard
against autoimmunity. cDC1s and mTECs select distinct clones among Tregs and conventional
T cells, and approximately half of Aire-dependent clonal deletion and Treg selection requires
cDC1s (130). These findings indicate a division of labor between mTECs and cDC1s in shaping
the TCR repertoire.

Although mTECs express thousands of TRAs, they cannot cover the whole spectrum of pe-
ripheral self-antigens (99). However, cDC2s and pDCs can transport into the thymus inoffensive
self-antigens captured in the periphery that otherwise would not be presented to thymocytes (40,
131–135). The notion that migratory DCs can delete autoreactive thymocytes is supported by
the fact that the adoptive transfer of OVA-loaded DCs into OTII transgenic mice, expressing an
MHC-II-restricted TCR specific for OVA, leads to the deletion of DP and SP thymocytes (131,
132, 136). This further reinforces the notion that cDCs are important mediators of cortical nega-
tive selection. cDC2smigrate to the thymus in a CCR2-dependent manner and are localized in the
cortex and around blood vessels, allowing them to capture and present circulating antigens (134).
Overall, cDC2s exhibit a more activated phenotype than cDC1s, characterized by high MHC-
II, CD40, and CD80 expression (133). Furthermore, although cDC1s are particularly efficient in
cross presenting self-antigens, cDC2s are also capable of capturing mTEC material (124, 137).
cDC2s participate in the negative selection of CD4+ thymocytes and Treg selection (133, 134,
138). However, their contribution in CD8+ T cell selection remains unclear.

pDCs continuously migrate via the bloodstream into the thymus, where they adopt a semima-
ture phenotype by upregulating CD11c andMHC-II molecules (139).Their recruitment depends
on the chemokine receptor CCR9 (132). However, CCR9 deficiency does not fully block their
thymic entry, indicating that other chemokine receptors are involved in this process. In line with
this, CCR2 is an appealing candidate since (a) pDCs express CCR2, (b) thymic CCL2 overexpres-
sion leads to massive pDC recruitment in the thymus, and (c) thymic pDCs are reduced in Ccr2−/−

mice (140, 141). The recruitment of pDCs into the thymus likely relies on both CCR9 and CCR2,
although the generation of Ccr9−/− × Ccr2−/− double-knockout mice would help to clarify this
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question. Similarly to their peripheral counterparts, thymic pDCs can function as bona fide APCs.
Although pDCs participate in the deletion of autoreactive CD4+ thymocytes (132), their role in
CD8+ T cell and Treg selection remains unclear. pDCs were recently found to be capable of mi-
grating from the colon into the thymus in early life, suggesting that they might induce tolerance
to commensal bacteria (142). In line with this hypothesis, TCR sequencing indicated that a sub-
stantial fraction of colon-associated Foxp3+ Tregs correspond to thymus-derived Tregs and that
microbiota composition influences the repertoire of these cells (143).

Interestingly, whereas DCs control T cell selection, reciprocally, thymocytes regulate the
functional properties of DCs. The maturation of cDC1s and cDC2s, characterized by increased
MHC-II levels, is driven by autoreactive CD4+ thymocytes via CD40-CD40L interactions (144).
Nevertheless, it remains unknown whether SP thymocytes control pDC functional properties.
Furthermore, antigen-specific interactions between mTECs and CD4+ thymocytes regulate
the recruitment of peripheral DCs into the thymus. Upon these interactions, lymphotoxin α

(LTα), upregulated in CD4+ thymocytes, negatively regulates the expression of CCR2 ligands,
fine-tuning cDC2 and pDC entry and clonal deletion (66, 136). Consequently, Lta−/− mice show
increased thymic recruitment of cDC2s and pDCs, resulting in enhanced clonal deletion of corti-
cal and medullary thymocytes (136). Thus, interactions between mTECs and CD4+ thymocytes
regulate the pool of peripheral DCs in the thymus. The implication of RANKL, also involved in
these interactions, in thymic DC biology remains to be determined. These findings illustrate the
complex interplay between different cellular actors that mediates efficient T cell selection.

SURFACE RECEPTORS DIRECTING THYMOCYTE SELECTION

Costimulatory Molecules

The CD28 costimulatory molecule and its two ligands, CD80 and CD86 (also known as B7-1
and B7-2), play a major role in thymocyte selection. Cd28−/− and Cd80−/− × Cd86−/− mice have
impaired Treg development from the precursor stage (73, 145, 146). CD28 costimulation acts
concomitantly with TCR stimulation to promote differentiation into the Treg lineage by induc-
ing Foxp3 expression (147).As a costimulatorymolecule, the CD28-CD80/CD86 axis likely favors
Treg generation from CD4+ thymocytes bearing TCRs of low to intermediate affinity. Further-
more, CD28 drives Treg generation by activating the NF-κB pathway, including the nonclassical
member c-Rel, that critically promotes Treg precursor development (146, 148–151).

The role of the CD28-CD80/CD86 axis in clonal deletion has been debated (55). Pobezinsky
et al. (152) reported that clonal deletion requires CD28-mediated costimulation at the
CD4+CD8lo intermediate stage of thymocyte development. Moreover, in the absence of CD28,
surviving thymocytes are diverted to anergic TCRαβ+ DN cells that then migrate to the intes-
tine, where they become CD8αα+ IELs. Thus, CD28 costimulation is required for clonal dele-
tion, and CD8αα+ IELs probably derive from autoreactive thymocytes that survive negative se-
lection. A recent study revisited the role of CD28-CD80/CD86 costimulation in clonal deletion
(153). Cd80−/− × Cd86−/− mice have increased numbers of CD4+ and CD8+ thymocytes, a phe-
nomenon observed from the CD4+CD8lo intermediate stage. CD80/CD86 costimulation likely
triggers clonal deletion rather than prolonging the survival of thymocytes undergoing deletion,
since they remain decreased even upon Bcl-2 introduction in Cd80−/− × Cd86−/− mice. Peptide-
MHC-II tetramers used to identify endogenous antigen-specific polyclonal CD4+ thymocytes
showed that CD28-CD80/CD86 costimulation is important for clonal deletion andTreg selection
of TRA-specific CD4+ thymocytes. However, it seems dispensable for the deletion of thymocytes
specific for widely expressed antigens. Furthermore, CD28 costimulation was also shown to be
essential to clonal deletion events in both the cortex and the medulla (154).

106 Irla



CD40-CD40L costimulation also participates in thymocyte selection. Contrary to CD28,
largely expressed by thymocytes, CD40L is restricted to CD4+ thymocytes (67, 155). CD40-
CD40L interactions, involving bothDCs andmTECs, are required for normal numbers of thymic
Tregs (144, 156, 157).Treg reduction inCd40- orCd40lg-deficient mice is likely due to a decreased
homeostatic proliferation resulting from lower thymic IL-2. However, it cannot be excluded that
thymic Treg reduction is due to reduced thymic B cells, as CD40−/− mice have few thymic B cells
and B cell–deficient mice have reduced Tregs (158). In contrast to reports on CD28-CD80/CD86
costimulation, few studies have found a role for CD40-CD40L in clonal deletion. Early works
indicated that CD40L is required for the deletion of thymocytes recognizing endogenous super-
antigens (159).However, bonemarrow chimera, containing bothCd40lg-expressing and -deficient
thymocytes, indicated that CD40L likely acts in a non-cell-autonomous manner during nega-
tive selection (160). Accordingly, it was later shown that CD40-CD40L, together with CD28-
CD80/CD86 control mTEC development (66, 67, 161, 162). CD40-CD40L interactions are also
required for thymic DC maturation and a normal thymic B cell pool (163–165). Thus, CD40-
CD40L and CD28-CD80/CD86 costimulatory axes control the functional properties of mTECs,
DCs, and B cells, all implicated in tolerance induction. Studies focused on these costimulatory
axes should consider the defects associated with medullary APCs in mice deficient for these re-
ceptors and ligands.

Tumor Necrosis Factor Receptors

TCR and CD28 stimulation induces the expression of tumor necrosis factor receptors (TNFRs)
such as GITR (also known as Tnfrsf18), OX40 (also known as Tnfrsf4) and TNFR2 (also known
as Tnfrsf1b) at higher levels in Treg precursors than in conventional CD4+ thymocytes (166,
167). The expression level of these TNFRs correlates with TCR signal strength measured by
Nur77. This upregulation depends on CD28 since Cd28-deficient Treg precursors lose GITR,
OX40, and TNFR2 expression (166). Stimulation of Treg precursors with GITRL or OX40L
promotes their conversion into Foxp3+CD25+ Tregs by increasing their responsiveness to IL-2.
High expression of these TNFRs on Treg precursors thus likely confers a selective advantage in
Treg differentiation. Conversely, GITRL and OX40L neutralization inhibits the generation of
mature Foxp3+CD25+ Tregs. Furthermore, the single deletion of Gitr or Ox40 leads to a modest
reduction in mature Tregs, suggesting that these TNFRs collectively drive Treg development.
Given the heterogeneity of mTECs and DCs (40, 113) (Table 1), it remains to be defined which
subtype of medullary APCs expresses GITRL,OX40L, and TNF-α and whether these ligands are
provided in a dedicated niche. It would be also interesting to investigate whether these ligands are
delivered simultaneously or sequentially during their migration in the medulla and whether their
delivery is coupled or not to antigen presentation.

CYTOKINES IN T CELL SELECTION

IL-2 and IL-15

In addition to the TCR/CD28 signals triggered by the recognition of self-peptide-MHC com-
plexes presented by thymic APCs, cytokines have emerged as important regulators of Treg se-
lection (Figure 3a). They serve as molecular messengers between thymic APCs and developing
thymocytes. In particular, common cytokine receptor gamma chain (γc)-dependent cytokines are
critical for Treg development. These γc-dependent cytokines prevent the deletion of developing
Tregs by providing survival signals that counterbalance the proapoptotic effects of Foxp3 (71, 168).
Mice deficient for γc, which is shared by IL-2, -4, -7, -9, -15, and -21 receptors, fully lack Tregs
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Figure 3

Cytokines involved in CD25+Foxp3+ Treg cell development. (a) TCR/CD28 signals drive generation of Foxp3lo and CD25+ TregPs,
while IL-2 and IL-15 cytokine signal integration promotes their development into mature CD25+Foxp3+ Tregs. (b) The heterotrimeric
IL-2 and IL-15 receptors share two subunits: IL-2Rβ and the common cytokine receptor gamma chain (γc). They have distinct α

subunits: IL-2Rα and IL-15Rα, respectively. IL-2 is a secreted cytokine binding the heterotrimeric IL-2 receptor on the Treg cell
surface, whereas IL-15 is trans-presented by the membrane-bound IL-15Rα of mTECs. (c) Several cells secrete cytokines implicated in
CD25+Foxp3+ Treg development. IL-2 is mainly provided by self-reactive CD4+ thymocytes and also likely by CD25+ TregPs, whereas
IL-15 is mainly produced by mTECs. The production of TGF-β by DCs, TECs, and macrophages would be regulated by thymocyte
apoptosis. Abbreviations: DC, dendritic cell; mTEC, medullary thymic epithelial cell; SP, single positive; TCR, T cell receptor; TEC,
thymic epithelial cell; Treg, regulatory T cell; TregP, Treg precursor.

(169). Thymic Foxp3+ Tregs express the IL-2Rβ, IL-4Rα, IL-7Rα, IL-15Rα, and IL-21Rα chains
(170).The genetic deletion of specific receptor chains has revealed that IL-2 and, to a lesser degree,
IL-15 play a dominant and nonredundant role in Treg development.Mice that are Il2−/−, Il15−/−,
or Il2ra−/− display a modest reduction in Foxp3+ Tregs in their thymuses (169, 171, 172). By con-
trast, mice deficient for both Il2 and Il15 or for Il2rb, which encodes a common chain for IL-2 and
IL-15 receptors, have a profound reduction in thymic Foxp3+ Tregs (169, 171–173) (Figure 3b).

In vitro stimulation of CD25+ Treg precursors with IL-2 or IL-15 induces their differentiation
into Foxp3+CD25+ cells, although IL-2 is more efficient (69, 170).However, it cannot be excluded
that IL-15 in vivo trans-presentation via high-affinity IL-15Rα expressed by mTECs enhances
the efficiency of IL-15 to induce Foxp3 (Figure 3b). IL-2 stimulation of Foxp3lo Treg precursors
induces their differentiation into Foxp3+CD25+ cells more efficiently than IL-2 stimulation of
CD25+ precursors (71, 72). In humans, IL-2 and IL-15 also drive CD4+CD25+CD127+ Treg
precursor differentiation into FOXP3+ cells and promote their proliferation and survival (174).
Furthermore, in the absence of IL-15Rα but not IL-2, the generation of Foxp3lo Treg precursors
is reduced (72). The stimulation of IL-2 and IL-15 receptors induces STAT5 signaling, which
drives Treg development. Mice with a T cell–specific deletion of Stat5 show a severe defect in
Tregs (171). Conversely, constitutive expression of active STAT5 rescues Treg development in
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Il2rb-deficient mice. STAT5 directly regulates expression of Foxp3 by binding to its promoter and
a distal enhancer called conserved noncoding sequence 0 (171, 175, 176).

Recent efforts were made to identify the cellular sources of IL-2. DCs bearing the cognate
self-antigen have been initially proposed to provide locally IL-2 (177). However, transgenic mice
with a conditional deletion of the Il2 gene revealed that self-reactive CD4+ thymocytes, includ-
ing Treg precursors, are the critical source of IL-2 for Treg development (68, 178) (Figure 3c).
Since thymocyte apoptosis has been proposed to drive Treg generation (179), this raises the ques-
tion of whether IL-2 production by self-reactive CD4+ thymocytes is coupled to their apoptosis.
Moreover, it remains to be seen whether IL-2 is produced by recirculating T cells exhibiting an
activated phenotype (180). Hematopoietic chimeras showed that in contrast to IL-2, IL-15 pro-
vided by stromal cells supports the development of Foxp3lo precursors and CD25+Foxp3+ Tregs
(72). IL-15 reporter mice were used to show that mTECs are the main producers of IL-15 (181)
(Figure 3c). Since mTECs express self-antigens involved in Treg selection, it remains unclear
whether TCR and IL-15 receptor engagements occur simultaneously.

Transforming Growth Factor β

Similar to findings for Tgfb1−/− mice, T cell conditional deletion of Tgfbr1 or Tgfbr2 results in
an early fatal inflammatory syndrome (182–184), demonstrating that TGF-β signaling crucially
controls T cell tolerance. The level of active TGF-β1 increases during the neonatal period,
concomitantly with medulla development, and TGF-β receptor II (TGF-βRII) is upregulated
during the transition from DP to SP thymocytes. These observations suggest that TGF-β
signaling might regulate T cell selection (179, 185).

Although it is widely accepted that TGF-β controls Foxp3 induction in naive CD4+CD25−

T cells in the periphery (186), its role in thymic Treg development has been debated. Initial
analyses of mice with a T cell–specific deletion of Tgfbr2 (Cd4Cre × Tgfbr2fl/fl mice) suggested
that TGF-β signaling is dispensable for Treg development in 12- to 16-day-old mice (182,
183). However, a subsequent study showed that mice deficient for Tgfbr1 specifically in T cells
(LckproximalCre × Tgfbr1fl/fl mice) lack CD25+Foxp3+ Tregs at postnatal days 3–5, showing that
TGF-β signaling in thymocytes controls the emergence of thymic Tregs (187). Notably, although
at this early stage CD25+ Treg precursors are unaffected, both Foxp3+ Treg precursors and
mature CD25+Foxp3+ Tregs are almost absent, which could be in line with a role in Foxp3 in-
duction. The proportion of thymic CD25+Foxp3+ Tregs with an activated phenotype drastically
increases when these mice develop a systemic inflammatory syndrome by three to four weeks of
age. This increase is due to IL-2 overproduction and heightened responsiveness, since genetic
ablation of Il2 in these mice leads to the complete absence of Foxp3+ Tregs. Thymic Tregs from
Cd4Cre × Tgfbr2fl/fl mice highly express Bim, Bax, and Bak proapoptotic proteins and weakly
express the antiapoptotic protein Bcl-2 (185). Remarkably, deletion of the proapoptotic gene Bim
in these mice restores Foxp3+ Treg numbers in four-day-old thymuses, indicating that TGF-β
protects Tregs from Bim-induced cell death.

Interestingly, the production of TGF-β by DCs,macrophages, and TECs is stimulated by thy-
mocyte apoptosis (179) (Figure 3c). Thymocyte apoptosis enhanced by treatment with dexam-
ethasone, gamma irradiation, or anti-CD3 antibody increases TGF-β production. Furthermore,
gamma irradiation after birth increases thymocyte apoptosis, TGF-β levels, and Treg frequencies.
Conversely, decreased thymocyte apoptosis in gamma-irradiated Bim−/− mice leads to reduced
TGF-β production andTreg frequencies. Since thymocyte apoptosis increases after birth (17), this
finding likely explains the delay of Treg emergence by day 3 as compared to conventional thymo-
cytes. Thus, the negative selection of autoreactive thymocytes seems to control Treg production
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efficiency. Although further studies are required to clarify the role of TGF-β in Treg selection, it
is likely that TGF-β signaling acts as both a differentiation and a survival factor for thymic Tregs.

Few studies have attempted to investigate the role of TGF-β signaling in the negative selec-
tion of thymocytes. To address this question,OTII transgenic mice were crossed with RIP-mOVA
mice, in which the rat insulin promoter (RIP) drives the synthesis of a membrane-bound form of
ovalbumin (mOVA), specifically in mTECs. The deletion of TCRβhi OTII thymocytes was en-
hanced on a Tgfbr2−/− background in eight-day-old mice (185). This phenotype was accompa-
nied by reduced survival of these cells, suggesting that TGF-β signaling protects thymocytes from
negative selection. The identification of Helios as a marker of autoreactive conventional CD4+

thymocytes has helped in evaluating the proportion of thymocytes undergoing negative selection
in an unskewed polyclonal repertoire (33).Cd4Cre × Tgfbr2fl/fl mice show an increased proportion
of Helios+ cortical and medullary CD4+ thymocytes at seven to ten days of age, a phenotype also
observed in fetal thymic organ culture (188). A reduced proportion of these autoreactive CD4+

thymocytes express the proapoptotic factor Bim and the active caspase 3, indicating that TGF-β
signaling controls the survival of highly autoreactive thymocytes. In line with defective negative
selection, these cells preferentially accumulate at the corticomedullary junction and escape from
negative selection in the medulla. Interestingly, TGF-β signaling upregulates RANKL expression
in autoreactive CD4+ thymocytes, known to trigger Aire+ mTEC differentiation (114). TGF-β
by itself is inefficient at inducing RANKL expression and requires synergy with TCR stimula-
tion (189). Accordingly, RANKL levels in Helios+ autoreactive CD4+ thymocytes are reduced in
Cd4Cre × Tgfbr2fl/fl mice (188). Thus, highly autoreactive thymocytes also escape from negative
selection by failing to provide RANKL signals to mTECs, resulting in altered Aire+ mTEC dif-
ferentiation and self-antigen expression. Although TGF-β signaling is likely implicated in both
Treg selection and the negative selection of CD4+ thymocytes, its involvement in the selection of
CD8+ thymocytes remains to be established.

FUTURE ISSUES

Advances of the last decade have revealed a high heterogeneity in the stromal compartment, open-
ing new exciting questions on T cell selection.The respective roles of the newly identified discrete
subsets of APCs in clonal deletion and Treg selection remain to be defined. The identification of
self-antigens presented and costimulatory molecules expressed by each subset and their cytokine
environment may help in addressing this important question. In particular, to improve our under-
standing of T cell selection, it would be interesting to determine whether these ligands are de-
livered simultaneously or sequentially during their trafficking in the thymus. Although single-cell
RNA sequencing identified new stromal cell subsets, their lineage relationships, tissue localization,
and neighboring cells remain unknown. The recently developed revolutionary techniques that al-
low visualization of the transcriptome within tissue are expected to shed new light on specialized
stromal niches that dictate T cell fate. Furthermore, deciphering the developmental signals that
drive the generation of CD25+ and Foxp3lo Treg precursors is of importance for Treg therapy
given that they harbor a distinct TCR repertoire. The ability of Tregs derived from these two
precursors to treat and/or prevent distinct autoimmune and inflammatory disorders and their tis-
sue regenerative potential remains to be established.
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