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Abstract

Sialic acid–binding immunoglobulin-type lectins (Siglecs) are expressed on
themajority of white blood cells of the immune system and play critical roles
in immune cell signaling.Through recognition of sialic acid–containing gly-
cans as ligands, they help the immune system distinguish between self and
nonself. Because of their restricted cell type expression and roles as check-
points in immune cell responses in human diseases such as cancer, asthma,
allergy, neurodegeneration, and autoimmune diseases they have gained at-
tention as targets for therapeutic interventions. In this review we describe
the Siglec family, its roles in regulation of immune cell signaling, current ef-
forts to define its roles in disease processes, and approaches to target Siglecs
for treatment of human disease.
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INTRODUCTION

The sialic acid–binding immunoglobulin (Ig)-type lectins (Siglecs) are found on most white blood
cells of the immune system and have in common an N-terminal Ig domain that recognizes sialic
acid–containing glycans commonly found on glycoproteins and glycolipids (1, 2) (Figure 1a,b).
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Figure 1 (Figure appears on preceding page)

Human and murine Siglecs. (a) Structural features of functional human and murine Siglecs, including four
members that are conserved in all mammals, and so-called CD33-related Siglecs numbering five in mice and
ten in humans (1, 2, 193). Each Siglec (Sig) has an N-terminal V-set immunoglobulin (Ig) domain that
contains the conserved sialic acid–binding site and 1–16 C2 Ig domains. On the cytoplasmic side most
Siglecs exhibit characteristic regulatory motifs including immunoreceptor tyrosine inhibitory motif (ITIM),
ITIM-like, immunoreceptor tyrosine switch motif (ITSM), growth factor receptor-bound 2 (Grb2) motif,
and a Fyn kinase binding site. Several other Siglecs contain positively charged amino acid residues in the
transmembrane domain that can associate with activating adaptor proteins such as DAP12 with an
immunoreceptor tyrosine activation motif (ITAM) (1, 2, 193, 224). (b) Crystal structure of a portion of
human CD22 including the N-terminal V-set and two C-set Ig domains (right). An expanded view of the
sialic acid–binding site with a bound ligand fragment (NeuAcα2–6Gal) shows interaction of the C-1 carboxyl
group of the sialic acid with the conserved arginine (R120) found in all Siglecs (18). (c) Shown for each Siglec
is its cell type expression and preferred natural sialoside ligand(s) (1, 35). Cell types are mainly white blood
cells in the immune system, including B cells (B), basophils (Ba), conventional and plasmacytoid dendritic
cells (cDC and pDC), Eosinophils (Eo), macrophages (Mac), mast cells (MC), microglia (Mic), monocytes
(Mo), natural killer cells (NK), neutrophils (N), osteoclasts (Ocl), and T cells (T), and a few cell types outside
the immune system such as oligodendrocytes (OD), Schwann cells (Sch), and placental trophoblasts (Troph).
All Siglecs except Siglec-H are known to bind terminal sequences on glycans of glycoproteins and
glycolipids, with some having high sequence specificity for their ligands (e.g., Sig2, Sig7, Sig8), while others
exhibit a broader specificity (1). Abbreviations: MyP, myeloid progenitor; TM, transmembrane.

Most Siglecs have regulatory motifs in their cytoplasmic domains that participate in regulation of
cell signaling (1–4). Since sialic acids are found on all mammalian cells, Siglecs can help immune
cells distinguish between self and nonself and serve as immune checkpoints to prevent unwanted
immune responses (1, 2, 5). While the diverse roles of Siglecs in immune cell functions are be-
ginning to be elucidated, the fact that they are expressed on most immune cells positions them
to participate in highly diverse cellular immune responses that are both beneficial and harmful.
Moreover, as coreceptors that regulate cell signaling, they are increasingly recognized as targets
for development of strategies to augment or suppress immune cell responses for therapeutic ben-
efit in numerous diseases (1, 3, 5–9).

In this review we describe the diverse Siglec family with respect to their overall structure,
cellular distribution, recognition of glycan ligands, and regulation of cell signaling as immune
checkpoints in health and disease. Special emphasis is placed on understanding the critical role
of microdomain localization of the Siglecs with regard to their interaction with glycan ligands
and as coreceptors for signaling receptors. Although there is a growing literature on the roles of
Siglec-mediated immune responses to commensal and pathogenic microorganisms, this work is
only mentioned in selected contexts, and the reader is referred to other recent work on the topic
(10–14). Finally, we summarize the roles of Siglecs in immune cell–mediated disease and emerging
strategies to target Siglecs and modulate their functions for treatment of disease.

THE SIGLEC FAMILY

Structure and Topology

The Siglecs are a subfamily of the Ig superfamily comprised of a single N-terminal V-set Ig do-
main that binds sialic acid–containing glycans, and 1 to 16 C-set Ig domains. These Ig domains
are structurally analogous to the variable (V) and constant (C) Ig domains of an antibody, respec-
tively. As illustrated in Figure 1a, of the 14 human and 9 murine Siglecs, 4 are highly homol-
ogous, sialoadhesin (CD169, Siglec-1), CD22 (Siglec-2), myelin-associated glycoprotein (MAG,
Siglec-4), and Siglec-15, which are clear orthologs in structure and function in all mammals. The
remaining Siglecs are called CD33-related Siglecs since they are considered to have evolved from
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duplication of the CD33 gene (2). Human Siglecs are numbered numerically, according to the
order in which they were discovered, and murine Siglecs not homologous to human Siglecs are
given alphabetic designations (e.g., Siglec-E-H).Missing are human Siglec-12 and -13, which are
nonfunctional in humans (1, 2). While CD33-related Siglecs in humans and mice are not strict
orthologs, some are related by cell type expression, ligand specificity, and regulatory functions, as
discussed further below.

There are now crystal structures or nuclear magnetic resonance structures reported for
Siglec-1 (sialoadhesin) (15–17), Siglec-2 (CD22) (18), Siglec-3 (CD33) (19), Siglec-5 (20), Siglec-
7 (21), and Siglec-8 (22). All structures contain the V-set domain, either alone or with one or two
C-set domains. The sialic acid–binding site is a shallow pocket in the V-set domain, as shown
for the V-set domain of CD22 (Figure 1c), which has been validated for several Siglecs by direct
cocrystallization with their glycan ligands. Sialic acid is a nine-carbon sugar with a carboxyl group
at C1; the anomeric carbon at C-2, which is linked to the next monosaccharide in the glycan; an
N-acetyl group at C-5; and a polyhydroxy side chain formed by C7–C9. The sialic acid–binding
sites of all Siglecs contain a conserved positively charged arginine that interacts with the nega-
tively charged C-1 carboxyl group on the sialic acid. The structure for CD22 comprising the first
three Ig domains shows that the V-set domain tilts at a 120° angle from the two C-set domains.
Combining this information with negative stained electron microscopy images of the full-length
CD22 reveals that it is a fairly rigid rod projecting the V-set domain away from the cell membrane
(18).

Most Siglecs contain structural features of receptors involved in cell signaling (Figure 1a), with
the only exception being sialoadhesin/Siglec-1. The majority contain one or more consensus im-
munoreceptor tyrosine inhibitory motifs including a classic immunoreceptor tyrosine inhibitory
motif (ITIM) (I/V/LxYxxL/V), an ITIM-like motif (D/E xYxEV/IK/R), or an ITSM switch motif
(TxYxxV/I) that can in principle participate in inhibitory or activating signals (4, 23). As further
described below, ITIMs of inhibitory receptors are phosphorylated by Src kinases (e.g., Lyn) and
recruit the Src-homology 2 domain (SH2)-containing phosphatases SHP-1 and SHP-2 that de-
phosphorylate the signaling molecules in the activation complex and suppress signaling (4, 24,
25). In addition to ITIM and ITIM-like motifs, several Siglecs contain other regulatory sites in
the cytoplasmic domain including a motif for binding Grb2 in B cell Siglecs CD22, Siglec-G, and
Siglec-10 (4, 25), and a Fyn kinase binding site in MAG/Siglec-4 that plays a key role in signaling
required for normal myelin formation (26).

In contrast to the inhibitory Siglecs, Siglecs-14, -15, -16 and -H are considered to be acti-
vating Siglecs. They have a minimal cytoplasmic domain with no tyrosine regulatory motifs, but
they have positively charged amino acid residues in their transmembrane domain that associate
with the coreceptor DAP12 (4, 11, 27–31).While DAP12 has no extracellular receptor domain, it
contains an immunoreceptor tyrosine activation motif (ITAM) in its cytoplasmic domain. Thus,
when bound to DAP12 these Siglecs are effectively activating receptors, with the Siglec providing
the ligand-binding function, and DAP12 the signaling function. Each of these Siglecs has been
demonstrated to associate with DAP12 and/or elicit an activating activity (4, 11, 27–31).

Siglec-14 and Siglec-16 are somewhat unique since they appear to have evolved through gene
duplication of inhibitory Siglec-5 and -14, respectively (32–34). Indeed, in their extracellular do-
mains Siglec-5 is highly homologous to Siglec-14, and Siglec-11 is highly homologous to Siglec-
16. Moreover, these paired receptors, Siglec-5 and Siglec-14 and Siglec-11 and Siglec-16, are
typically expressed together. Evidence suggests that the paired activating Siglecs evolved in re-
sponse to pathogens that cloak themselves in sialic acid–containing glycans that can exploit the
inhibitory Siglecs to suppress immune attack. With the paired Siglec activating response, an im-
mune response to the sialylated pathogen can be activated (11, 31–34).
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Cell Type Expression and Glycan Ligands

The functions of the Siglecs are tied to the cell type they are expressed on, ligands that they
recognize, the regulatory motifs/activities they carry, and their subcellular localization relative
to other receptors involved in the immune response. As mentioned above, with few exceptions
members of the Siglec family are expressed on several cell types that comprise the immune system.
Only a few Siglecs are expressed predominately on one cell type, such as sialoadhesin (CD169;
Siglec-1) on macrophages, CD22 on B cells, and Siglec-8 on eosinophils, but these Siglecs have
also been detected at low levels on other cell types (Figure 1c).

Although the Siglecs typically bind a range of sialic acid–containing glycans as ligands
with overlapping specificity, they each exhibit a unique specificity profile and exhibit different
preferences for sialic acid–containing glycans as illustrated in Figure 1c (1, 3, 35). Although
much has been learned about the roles of Siglecs in immune cell signaling and their impact on
disease processes, relatively little is known about their natural ligands in the context of cell-to-cell
interactions.

The most extensively studied for its ligand-binding specificity is CD22 (Siglec-2). The differ-
ences in ligand specificity of human and murine CD22, a conserved Siglec, and changes in ligand
expression during B cell differentiation exemplify the subtleties that define biologically important
Siglec-ligand interactions in these two species. CD22 is strongly conserved in mammals and is
well recognized for its function as a regulator of B cell receptor (BCR) signaling (1, 4, 25, 36,
37). One well-known difference between the human and murine glycome relevant to CD22 lig-
ands is that mice have both 5-N-acetyl-neuraminic acid (NeuAc) and 5-N-glycollyl-neuraminic
acid (NeuGc), while humans have lost the ability to produce NeuGc and have only NeuAc (38).
Murine CD22 has evolved a strict specificity for glycans terminating in the sequence NeuGcα2–
6Galβ1–4GlcNAc, and it binds only weakly to the same sequence terminating with NeuAc (35).
Cell surface glycans of murine B cell glycoproteins have high levels of the NeuGcα2–6Galβ1–
4GlcNAc sequence that bind to CD22 as cis-ligands, masking the CD22 ligand-binding site (39).
Remarkably, following BCR ligation, proliferating B cells downregulate the hydroxylase that con-
verts NeuAc to NeuGc, producing the sequence NeuAcα2–6Galβ1–4GlcNAc detected by the
antibody G7, commonly used to detect germinal center B cells. Since CD22 requires NeuGc, this
change effectively results in loss of cis-ligands and unmasking CD22 (40, 41).

Since humans cannot produce NeuGc the situation for human CD22 is different, but the func-
tional paradigm is recapitulated. For human CD22 the highest-affinity ligand found on B cells is
a sulfated sialoside NeuAcα2–6Galβ1–4[6-SO4]GlcNAc (40, 42). Upon activation of B cells, the
sulfotransferase involved in its biosynthesis is downregulated, resulting in B cells that have the
lower-affinity NeuAcα2–6Galβ1–4GlcNAc. Thus, CD22 in the two species has evolved to rec-
ognize a high-affinity cis-ligand on B cells unique to that species, and in both cases activation
of B cells results in a biosynthetic change to produce a lower-avidity ligand on the proliferating
B cells. While the biological implication of this dramatic reduction of CD22 ligands in germinal
center B cells is not yet fully understood, B cells of transgenic mice with no cis-ligands or with
CD22 mutations that inactivate ligand binding exhibit increased association of CD22 with the
BCR and hypoproliferation upon BCR ligation (37, 43, 44).

Another example of a human and murine Siglec pair with high specificity for their ligands
is Siglec-8 and its murine paralog Siglec-F on eosinophils. These two Siglecs are unique in their
recognition of the sulfated sialosideNeuAcα2–3[6SO4]Galβ1–4GlcNAc as a preferred ligand (45–
49). However, Siglec-8 appears to be highly specific for the 6-sulfate group on the same galactose
as the sialic acid, while Siglec-F exhibits a broader specificity for other α2–3 sialosides without
the sulfate group (46, 48, 49). This unique sulfated sialoside sequence has recently been found on
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high-molecular-weight sialylated keratan sulfate proteoglycans in human lung tissue, which places
them in a favorable context for interaction with Siglec-8 on eosinophils (49).

Most other Siglecs bind to natural sialosides with very low avidity and with broad overlaps in
their specificity. This has motivated several groups to develop synthetic glycan ligands of Siglecs
with high specificity and avidity to target them and study their functions (16, 17, 50–55). The
general approach has been to introduce unnatural substituents at the 5-C and 9-C positions of
sialic acid that impart additional specificity and affinity through their interactions with Siglecs
in nooks and crannies around the conserved ligand-binding pocket (Figure 1b). Through these
efforts there are now many examples of synthetic glycan ligands that can be used to investigate
functions of and exploit the signaling properties of individual Siglecs in complex biological
systems.

SIGLECS AS ENDOCYTIC RECEPTORS

Most Siglecs are also endocytic receptors that can carry cargo from the cell surface into intracellu-
lar compartments such as endosomes. CD22 was identified as an endocytic receptor several years
before it was identified as a member of the Siglec receptor family (56). Subsequently, most hu-
man and murine Siglecs have been demonstrated to be endocytic/phagocytic receptors, including
Siglecs 1–5, 7–10, and E–H (57–68). While the relevance of endocytosis to the biology of most
Siglecs is still under investigation, analysis of endocytic functions of several exemplary Siglecs have
revealed both similarities and differences in the endocytic mechanisms of this family.

Sialoadhesin (Siglec-1/CD169) is expressed on sinusoidal macrophages and some peripheral
dendritic cells that capture antigen and present it to the adaptive immune system.While siaload-
hesin has no signaling motif, ligation with antibody causes endocytosis in a clathrin/dynamin-
dependent manner, indicative of endocytosis mediated by clathrin-coated vesicles that traffic be-
tween the cell surface and early endosomes (58, 69). Sialoadhesin-mediated endocytosis has been
directly implicated in the capture, dissemination, and/or infection of several membrane-enveloped
viruses, including (70) HIV and Ebola virus (69, 71, 72) (Figure 2a). As discussed further below,
the endocytic capacity of sialoadhesin offers the potential to exploit it as a target for delivery of
antigens to macrophages to boost or alter an immune response (58, 73–75).

As the first Siglec to be identified as an endocytic receptor, CD22 is expressed predominately
on B cells and to a lesser extent on mast cells and dendritic cells, and it is known as a negative reg-
ulator of BCR signaling (1, 4, 25, 76–79). Although endocytosis of antibody bound to CD22 was
initially concluded to result in transport of the internalized complex to lysosomes for degradation
(65), it was later shown that CD22 constitutively recycles between the cell surface and early endo-
somes (43, 62, 66), and slowly over time, a portion of the complex is shuttled to and degraded in
lysosomes (62, 65). In a typical experiment, antibody is bound to CD22 at 4°C, and upon warm-
ing to 37°C it disappears from the cell surface. While it is tempting to conclude that antibody
ligation induces endocytosis of CD22, in some cases in the presence of excess antibody a net shift
of CD22 from intracellular pools to the cell surface was observed (62). Once equilibrated with
the intracellular pool of CD22, the antibody-CD22 complex remains stable in the acidic endo-
somes and recycles back to the surface of the cell. In contrast to antibody, multivalent ligands and
ligand-decorated nanoparticles endocytosed by CD22 are released inside the cell as endosomes
are acidified, and by recycling back to the cell surface without ligand, CD22 is able to shuttle ad-
ditional ligand into the endosomal compartments (62, 80). The results underscore the fact that
CD22 undergoes constitutive endocytosis, and contrary to what is often assumed antibody lig-
ation may shift the equilibrium to a have a greater proportion of CD22 on the surface of the
cell.
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Figure 2

Endocytosis and signaling functions of Siglecs are tied to their roles in immune cell responses. (a) Most
Siglecs are endocytic receptors, as illustrated for sialoadhesin/Siglec-1/CD169 on macrophages, known for
endocytosis of sialic acid–containing antigen to endosomes for processing and presentation via the major
histocompatibility complex (MHC) to T cells (58, 73, 225, 226). (b) In B cells, CD22 is a recycling endocytic
receptor distributed between cell surface and endosomal compartments shared with Toll-like receptors
(TLRs), resulting in strong constitutive suppression of TLR signaling (62, 106, 107). (c) While B cell Siglecs,
CD22 and Siglec-G, are not constitutively colocalized with the B cell receptor (BCR), ligand-mediated
recruitment to an immunological synapse with a membrane antigen on another cell results in strong
suppression of BCR signaling (43, 44, 110, 111). (d) Negative signaling of Siglec-9 on neutrophils resulting
from ligation via trans-ligands on red blood cells, resulting in suppression of activation and apoptosis of
neutrophils in blood (134). Abbreviations: DC, dendritic cell; LPS, lipopolysaccharide; TCR, T cell receptor.

CD22 exhibits a clathrin/dynamin-dependent endocytic mechanism that phenocopies the clas-
sic recycling of the transferrin receptor, differing primarily in kinetics of internalization (66, 81).
Several different motifs in the cytoplasmic domain have shown to be important for endocytosis.
The two distal ITIMs interact with the clathrin adaptor protein A50, and when these ITIMs are
mutated endocytic efficiency is dramatically reduced (62, 81). A secondmembrane-proximal motif
(R737/Q739 in mCD22) is equally important for endocytosis and appears to work synergistically
with the ITIMs. Mutation of either set of motifs reduces endocytosis by over 50-fold (62, 82).
The endocytic mechanism and resulting subcellular localization of CD22 also play a critical role
in CD22 regulation of TLR and BCR signaling (Figure 2b,c), as discussed further below.

www.annualreviews.org • Siglecs as Immune Cell Checkpoints 371



IY38CH15_Paulson ARjats.cls April 6, 2020 19:2

While both CD22 and sialoadhesin are clathrin/dynamin-dependent endocytic receptors,
sialoadhesin has no ITIMs in its cytoplasmic domain, so clearly they differ in the precise manner in
which they associate with clathrin-rich domains (58, 66, 81). Several other inhibitory Siglecs have
also been demonstrated to undergo endocytosis through a clathrin-dependent mechanism, includ-
ingMAG (Siglec-4) and Siglec-8 (63, 68). In contrast, however, Siglec-F undergoes endocytosis in
a clathrin/dynamin- and caveolin-independentmechanism that is dependent on ADP-ribosylation
factor 6 (ARF6), a small GTPase associated with a less-studied endocytic pathway (66, 83, 84). Al-
though human Siglec-8 andmurine Siglec-F are considered to be paralogs on eosinophils (46), the
facts that Siglec-8 endocytosis is primarily clathrin dependent and Siglec-F endocytosis is clathrin
independent show that their functions have diverged (63, 66).

In summary, while most if not all Siglecs are endocytic receptors, no two Siglecs have been
demonstrated to have identical endocytic mechanisms for those that have been studied in detail.
Little studied to date is the connection between the role of Siglecs as endocytic receptors and their
functions as checkpoints in immune cell signaling.

SIGLECS IN IMMUNE CELL SIGNALING

Siglecs serve as checkpoints in immune cell signaling in diverse contexts through their roles as
inhibitory coreceptors and as activating receptors. Their signaling functions are influenced by
their microdomain localization and their interactions with ligands on the same cell (cis-ligands)
and other cells (trans-ligands) (1, 3, 4, 10, 25). As endocytic receptors, most Siglecs are also present
both on the cell surface and in endosomal compartments (58, 60, 62, 63, 66, 85, 86). Moreover,
since Toll-like receptors (TLRs) are also found in endosomal compartments, and cell surface
receptors are often endocytosed once ligated, the roles of Siglecs in cell signaling are relevant
to their locations in both cell surface and endosomal compartments (87–90). In this section we
briefly discuss the importance of microdomain localization for understanding the roles of Siglecs
on signaling. We then describe the impact of Siglecs on signaling for several cell types that have
been studied in detail.

Microdomain Localization

A critical but often overlooked aspect of Siglec function is the microdomain localization of the
Siglec relative to that of other cellular activation complexes that are themselves localized in micro-
domains, which may be referred to as nanodomains, lipid rafts, caveolae, and/or clathrin domains
(88, 91–95). For some inhibitory Siglecs like CD22, phosphorylation and subsequent recruitment
of SHP-1 requires activated kinases localized to the activation complex (1, 4, 25, 96–98). As illus-
trated in Figure 3a–d, colocalization of an inhibitory Siglec with an activating receptor can occur
constitutively, be enforced by cis- or trans-ligand interactions, or result from antibody-mediated
relocalization to the activation domain. Conversely, the Siglec may be sequestered away from the
activating receptor (Figure 3e–h), as a result of being in a microdomain remote from the sig-
naling complex, sequestered by interactions with cis- or trans-ligands, or sequestered by antibody
ligation. Inhibitory activities observed for Siglecs upon exposure to anti-Siglec antibodies or mul-
tivalent trans-ligands have suggested that ligation of inhibitory Siglecs can activate/phosphorylate
the ITIMs and produce a negative signal (Figure 3i), although the underlying mechanism has
not yet been defined. Activating Siglecs associate with the DAP12 that has an ITAM motif and
can activate signaling when ligated with an anti-Siglec antibody (4, 11, 27–31) (Figure 3j). In the
following sections particular attention is paid to the impact of microdomain localization in the
diverse cellular contexts that Siglecs can impact immune cell responses.
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B Cell Signaling

Siglecs have been most extensively studied as regulators of signaling receptors in B cells. B cells
contain two Siglecs, CD22 and Siglec-10 in humans, and CD22 and Siglec-G, an ortholog of
Siglec-10, in mice. CD22 was known as a regulator of BCR signaling before it was identified
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Figure 3 (Figure appears on preceding page)

Critical role of microdomain localization of Siglecs as checkpoints in immune cell signaling. (a–h) Most Siglecs are inhibitory
coreceptors that modulate the activity of activating receptors (1–4). (a–d) In this context, the microdomain localization of the
Siglec relative to the activating receptor plays a major role in its regulation of that receptor. Colocalization of the Siglec with the
activating receptor (a) constitutively, or mediated (b) by cis-ligand binding, (c) by trans-ligand binding, or (d) by antibody-induced
relocalization resulting in activation phosphorylation of immunoreceptor tyrosine inhibitory motifs (ITIMs) by locally activated
kinases, and recruitment of phosphatases (e.g., SHP-1, SHP-2), which in turn suppress cell signaling by dephosphorylation of signaling
molecules. (e–h) Conversely, sequestration of the Siglec away from activation rafts (e) by constitutive localization to another domain,
( f ) by cis-ligand binding, (g) by trans-ligand binding, or (h) by antibody-induced relocalization preventing physical association with the
locally activated kinases, phosphorylation, recruitment of phosphatases, and regulation of the activating receptor. (i) In principle,
ligation of inhibitory Siglecs by antibodies or ligands could directly cause activation of kinases that phosphorylate regulatory motifs,
recruit phosphatases, and suppress signaling pathways (124, 134). ( j) For Siglecs that associate with DAP12 through a positive charge in
their transmembrane domain, ligation can induce kinase activation and initiate an activating signal (27, 29, 30).

as a sialic acid–binding receptor (99, 100). Its role as a negative regulator of BCR signaling was
documented by comparing anti-IgM-induced activation of B cells from wild-type and CD22-
deficient mice, where CD22 null cells showed hyperresponsiveness in activation-induced Ca++

mobilization and proliferation (101–103). CD22 inhibition of signaling induced by BCRs involves
phosphorylation of two distal ITIMs by locally activated Lyn, recruitment of SHP-1 phosphatase,
and dephosphorylation of the BCR receptor complex and downstream signaling molecules (1, 25).
The importance of BCR-induced activation of Lyn in phosphorylation of CD22 is underscored
by the fact that CD22 ligation itself does not suppress BCR signaling. Indeed, ligation of CD22
resulting from contact of B cells with anti-CD22-coated beads sequesters CD22 away from the
BCR, causing hyperresponsiveness to activation by ligation with anti-IgM,while coligating CD22
to the BCR with beads containing both anti-CD22 and anti-IgM causes inhibition (104).

Several studies suggest that CD22 regulation of BCR signaling is context dependent, involv-
ing its microdomain localization and glycan ligand interactions. On a resting B cell, the BCR and
CD22 are only weakly associated, with the BCR and CD22 localized to separate partially overlap-
ping nanoclusters, each occupying approximately 10% of the total surface of the cell (43, 44, 91)
(e.g., Figure 3e). The majority of CD22 is localized to clathrin-coated pits (Figure 2b), forming
clusters resulting from cis-ligand interactions of CD22 with sialic acids on glycans on adjacent
CD22 molecules (43, 44, 105). The role of cis-ligand interactions in sequestering CD22 from
IgM is supported by analysis of B cells deficient in the ST6Gal 1 sialyltransferase that synthesizes
CD22 ligands, and B cells with a CD22 mutation removing the conserved arginine required for
sialic acid binding (R130E) (24, 43, 44). In both cases, disruption of CD22 cis-ligand interactions
results in a greater association with IgM and stronger suppression of B cell activation.

While CD22 is mainly viewed as a coreceptor of the BCR,CD22 also regulates TLR signaling
(106, 107). B cells from CD22−/− mice exhibited modest hypersensitivity to BCR activation with
anti-IgM but showed profound increases in sensitivity to the ligands of TLR3, TLR4, and TLR9
(106, 107). The dramatic suppression of TLR signaling in wild-type B cells likely reflects the
constitutive localization of CD22 in microdomains where these TLRs reside (Figure 2b). There
are also indications that CD22 plays activating roles in some contexts (103). In this regard, calcium
signaling mediated by the B cell plasma membrane calcium ATPase has been demonstrated to
involve an ITIM/SHP-1-independent signaling pathway mediated by the CD22 Grb2 tyrosine
motif (108, 109).

In contrast to the case with soluble antigens or anti-IgM, CD22 strongly suppresses BCR acti-
vation of membrane antigens. Although cis-ligands impact the membrane and effectively limit the
association of CD22 with the BCR, they do not prevent CD22 from interacting with trans-ligands
on an adjacent cell, causing it to redistribute to the site of cell contact (110–112) (Figure 2c). The
structure of CD22 as a rigid rod with the ligand-binding site extended away from the membrane
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makes it favorably positioned for trans-ligand-mediated recruitment to the immunological synapse
with a membrane antigen (18) (Figure 1b), resulting in profound suppression of B cell signaling
that can lead to apoptosis of the impacted B cells (110, 111, 113). In this regard, it is notable that
murine red blood cells do not express glycan ligands of either CD22 or Siglec-G, and membrane
antigens on these cells robustly activate B cells (114).

Siglec-G is the other major Siglec on murine B cells with Siglec-10 as its ortholog on human
B cells. Although regulation of BCR signaling by these Siglecs has not been studied in as much
detail as that by CD22, they also suppress signaling through a similar mechanism that results
in dephosphorylation of downstream signaling molecules (e.g., Erk, Akt) (36, 115–117). Although
they are to some extent redundant in their functions, they do exhibit some clear differences.While
both CD22 and Siglec-G are expressed on all B cells, Siglec-G is dominant on B1 cells and CD22
is dominant on B2 cells (36, 115–117). Moreover, CD22 and Siglec-G/10 differ in their ligand-
binding preferences, with CD22 having high specificity for glycans terminating in the NeuGcα2–
6Gal linkage, and Siglec-G binding both NeuGcα2–6Gal and NeuGcα2–3Gal glycans (98, 117).
Moreover, in contrast to the ligand-mediated sequestration of CD22 from the BCR on resting
B cells, Siglec-G exhibits ligand-mediated colocalization with the BCR on B1 cells (36, 115, 116).

Eosinophil Signaling

Eosinophils are key effector cells in asthma and allergic lung inflammatory diseases. Siglec-8 is
selectively expressed on human eosinophils and mast cells, and weakly on basophils, and has been
investigated as a therapeutic target in eosinophil-mediated diseases (3). Antibodies to Siglec-8 in-
duce eosinophil apoptosis by a mechanism involving production of reactive oxygen species (ROS)
and induction of caspase-3 (118–121). This apoptotic activity is dramatically enhanced by IL-5,
GM-CSF, or IL-33. While the mechanism of anti-Siglec-8 induction of apoptosis is still under
investigation, apoptosis appears to result from activation of an Akt/p38/JNK-1 pathway, and am-
plification of apoptosis by IL-5 or GM-CSF appears to result from upregulation of integrins that
increase cell adhesiveness and susceptibility to apoptosis (118, 121). In this context, Siglec-8 ap-
pears to be an activating receptor (118, 121). In this regard, Siglec-8 is reported to have two
isoforms in eosinophils (120), a longer isoform with an extended cytoplasmic domain with two
ITIMs (Figure 1a) and a more abundant short isoform with a truncated cytoplasmic domain with
no ITIMs (120, 122, 123). It remains to be determined if one or both isoforms mediate anti-
Siglec-8 activation of the JNK-1 pathway and apoptosis of eosinophils. In this regard, Siglec-7
is also expressed on eosinophils, and while anti-Siglec-7 suppresses activation and production of
cytokines characteristic of an inhibitory receptor, it causes no apoptosis of GM-CSF-treated cells
(124) (Figure 1a), consistent with anti-Siglec-induced apoptosis affecting its ITIMs.

Signaling in Other Immune Cells

Siglecs also modulate signaling in other immune cells in numerous other contexts. Liu and
coworkers have described a Siglec-G/10-CD24 axis for regulation of damage-associatedmolecular
pattern (DAMP) receptors in human and murine dendritic cells and murine T cells (125). Regula-
tion involves cis-ligand-mediated association of the Siglec and CD24,which in turn associates with
DAMP receptors for negative regulation of signaling to control the damage response (1, 125–127).
TLRs, as exemplary pathogen-associated molecular pattern (PAMP) receptors on dendritic cells,
have also been reported to be negatively regulated by Siglec-7 and -9, and in a ligand-dependent
manner (128). Similarly Siglec-E has been reported to regulate TLR4 by Siglec-E on murine
macrophages (129, 130), but this result has not been confirmed by others (61). CD33 (Siglec-3)
has been reported to negatively regulate the NKG2D/DAP10 activating receptors in NK cells
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(131), and Siglecs-7 and -9 to be negative regulators of NK-mediated cell killing of tumor cells
expressing ligands of these Siglecs (132, 133).

A common perception is that ligation of Siglecs can send a negative signal to the cell (e.g.,
Figure 3i) (1). Notable examples are erythrocyte sialic acids engaging Siglec-9 on neutrophils to
suppress activation and apoptosis (134) (Figure 2d), sialylated glycans on group B Streptococcus en-
gaging Siglec-9 to suppress platelet-mediated killing (13), and anti-Siglec-7-mediated suppression
of NK cell activation and proliferation (133, 135). However, these contexts have not been investi-
gated in sufficient detail to determine whether Siglec ligation itself can induce kinase activation,
ITIM phosphorylation, and recruitment of SHP-1/SHP-2 phosphatases, or whether ligation re-
sults in altered microdomain localization to place the Siglec in the context of kinases activated by
other receptors (e.g., Figure 3c,d). This is an area that requires more attention to better under-
stand the roles of Siglecs in regulation of cell signaling.

As mentioned above, all the activating Siglecs that have a positive charge in their membrane
domains (Siglec-14, -15, -16, and -H) have been shown to associate with DAP12 that contains
ITAM motifs in its cytoplasmic domain (4, 11, 27–31). In multinucleated osteoclasts, Siglec-15
is constitutively associated with DAP12, and anti-Siglec-15 ligation causes phosphorylation of
DAP12, resulting in downstream phosphorylation of Akt and activation of the Akt pathway (136,
137). Subsequent to ligation, Siglec-15 was endocytosed and degraded in lysosomes (137). Anal-
ysis of Siglec-15 activity in macrophages has suggested that ligation of Siglec-15 with sialic acid–
containing ligands on tumor cells also causes activation and downstream TGF-β secretion (30).

SIGLECS AS CHECKPOINTS IN DISEASE

Modulating Adaptive Immune Responses

The endocytic properties of Siglecs have been exploited for targeted delivery of antigen to key
antigen-presenting cells (APCs) such as macrophages and dendritic cells to elicit desired im-
mune responses (1, 9) (Figures 2a and 4a). Targeting CD169/sialoadhesin/Siglec-1-expressing
macrophages and dendritic cells with protein/peptide antigens conjugated to a CD169 antibody
or nanoparticles bearing a synthetic glycan ligand of CD169 (CD169L) has been shown to en-
hance a T cell immune response (73, 74, 138, 139), and to present intact antigen to B cells (75).
Similarly, delivery of a glycolipid antigen (α-galactosyl-ceramide) via CD169L-liposomes induced
CD1d-restricted activation of natural killer T (NKT) cells (86). CD169-targeted liposomes for-
mulated with or without adjuvants have been shown to bias T cell immune responses to CD4+

helper cells or CD8+ cytotoxic T cells, which may have an implication in cancer immunother-
apy (74). Finally, Siglec-7-targeted liposomes have been used to deliver mycobacterial antigen to
dendritic cells for display on CD1b to promote CD1b-restricted activation of T cells that could
improve efficiency of vaccination for mycobacteria (60) (Figure 4a).

Autoimmune Disease and Immune Tolerance

Many autoimmune diseases such as rheumatoid arthritis, Grave disease, thrombotic thrombocy-
topenic purpura (TTP), and systemic lupus erythematosus (SLE) are based on a deficiency in nor-
mal mechanisms of immune tolerance, resulting in production of autoantibodies that result in in-
flammatory disease (140, 141).As regulators of immune cell signaling,Siglecs play a significant role
in normal homeostasis and self-tolerance (25, 116, 142–145).Mice with deficiencies of the twoma-
jor B cell Siglecs, CD22 and Siglec-G, develop autoimmune antibodies to nucleic acids (dsDNA/
ssDNA/RNA) and protein (IgG-Fc/rheumatoid factor) (106, 107, 145). Interestingly, the nucleic
acid antigens are ligands of TLRs, and both CD22 and Siglec-G are in microdomains that
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Figure 4 (Figure appears on preceding page)

Examples of targeting Siglecs to modulate immune cell responses in disease. (a) Delivery of antigens to
antigen-presenting cells using liposomes with glycan ligands targeting endocytic Siglecs (60, 73).
(b,c) Suppressing IgE-mediated mast cell responses to allergen. (b) Allergen-mediated ligation of the
anti-allergen IgE-FcεRI complex activates mast cells leading to degranulation and anaphylaxis (227).
(c) Recruitment of CD33 (Siglec-3) to the IgE-FcεRI complex using a liposome displaying both allergen and
ligand for CD33 suppresses mast cell activation and desensitizes to subsequent allergen challenge (76).
(d) Treating lymphoma/leukemia cells by targeting endocytic Siglecs with toxin conjugated to antibodies or
glycan ligands (85, 174, 175). (e) Like programmed cell death protein 1 (PD-1), inhibitory Siglecs are
checkpoint inhibitors that can suppress antigen-mediated activation and killing of cancer cells by
tumor-infiltrating T cells (185, 196). ( f ) Analogous to anti-PD-1, anti-Siglec antibodies can in principle
prevent trans-ligand-mediated recruitment of Siglecs to the T cell receptor (TCR) immunological synapse,
allowing activation and killing of tumor cells (185, 196, 197). (g) Antibody-dependent cellular cytotoxicity
(ADCC) mediated by natural killer (NK) cells and T cells through recognition of tumor-specific anti-HER2
antibody by the FcγRIII receptor is suppressed by recruitment of inhibitory Siglecs by trans-ligands on the
cancer cell (200, 228). (h) Engineered HER2 with sialidase destroys sialic acid–containing ligands on the
cancer cell resulting in activation of ADCC killing by preventing recruitment of inhibitory Siglecs (200,
228). Other abbreviations: DC, dendritic cell; MHC, major histocompatibility complex.

endogenously regulate TLRs (Figure 2b). In this regard, for B cells that recognize nucleic acid
antigens, the loss of the Siglecs likely results in a lower threshold for TLR activation contributing
to autoantibody production (25, 106, 107). Mice with mutations in the sialic acid–binding sites
of CD22 and Siglec-G do not produce autoantibodies to nucleic acids (37), suggesting that the
presence of the ITIMs is sufficient to suppress BCR/TLR responses to these antigens. CD22
and Siglec-G have also been demonstrated to induce tolerance to membrane antigens through
their recruitment to the BCR immunological synapse by trans-ligands on the APC (110, 111)
(Figure 2c). However, to date there has not been a systematic search for increased autoantibodies
to membrane antigens in aged CD22 and Siglec-G double knockout mice (25, 144).

In mice, CD22 alleles have been linked to susceptibility to SLE-like disease, as thoroughly
reviewed byClark&Giltiay (25) andMahajan&Pillai (144). Strain backgroundmakes a difference
since CD22 deficiency in C57Bl/6 produces little or no autoantibodies or SLE-like disease, but
in strains that predispose mice to autoimmune disease, CD22 deficiency results in higher anti-
DNA antibodies and glomerulonephritis (25, 144, 146, 147). In humans polymorphisms of the
CD22 gene have been associated with susceptibility to rheumatoid arthritis, SLE, and cutaneous
systemic sclerosis, but as yet the role of CD22 in the etiology of these diseases is not confirmed
(148–150). Pillai and coworkers identified an association of common autoimmune disorders in
a European population with a defective sialic acid O-acetylesterase (SIAE) that removes 9-O-
acetyl substituents on sialic acids (151). This 9-O-Ac substitution blocks binding by CD22, and
transgenic mice with SIAE deficiency showed altered BCR regulation by CD22, suggesting a link
between SIAE/CD22 and autoimmune disease in humans (25, 145, 151, 152).

Based on the roles of B cell Siglecs in maintaining tolerance, several groups have investigated
the potential to exploit Siglecs to induce antigen-specific tolerance (1, 25, 153). In analogy to in-
duction of tolerance to membrane antigens by ligands on the same cell recruiting Siglecs to the
immunological synapse (111, 113) (Figure 2d), the concept is to use antigen-bearing polymers
or liposomal nanoparticles that display synthetic glycan ligands of CD22 or Siglec-G to recruit
Siglecs to the BCR/antigen complex (98, 113, 117, 154). In in vivo models, recruitment of the
Siglec strongly suppresses activation of B cells that recognize the antigen and induces apoptosis of
the impacted cells, preventing response to subsequent antigen challenge (110, 113). Examples il-
lustrating potential utility include preventing production of inhibitory antibodies to recombinant
FVIII needed by hemophilia patients (113), and suppression of the production of IgEs for peanut
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allergens (155). Nanoparticles formulated with rheumatoid arthritis–associated antigen citrulline
and CD22 ligand can also suppress autoantibody production from memory B cells of rheumatoid
arthritis patients (156).With this Siglec platform targeting B cells is effective at inducing tolerance
in mice naive to the antigen; it is minimally effective for inducing tolerance in antigen-sensitized
animals with memory B and T cell responses. In this regard, however, combining alternative ap-
proaches for inducing tolerance offer promise for the future (153, 157).

Siglecs have also been implicated in T cell–mediated tolerance (5, 158). The Van Kooyk group
has found that dendritic cells or whole animals primed with sialylated antigens can induce T reg-
ulatory cells (Tregs) that reduce expression of inflammatory cytokines and suppress activation and
proliferation of CD4+ T cells. In mice this effect was mediated by Siglec-E, since antigen uptake
by dendritic cells and suppressed production of INF-γ was reduced in mice deficient in Siglec-E
(5, 158).

Asthma and Eosinophilia

Eosinophil dysregulation is associated with asthma, eosinophilia, and other allergic diseases (3).
Asthma is a chronic condition characterized by mucus-congested airways and increased suscep-
tibility to bronchospasms. Eosinophil recruitment to inflamed airways is a hallmark of asthma
(159). Siglec-8 has been identified as a target for eosinophil depletion due to its restricted expres-
sion and consistent levels of expression on eosinophils of healthy and asthmatic patients (160, 161).
Anti-Siglec-8 has been shown to promote eosinophil killing throughNK cell–mediated antibody-
dependent cellular cytotoxicity (ADCC) (161). As described above, anti-Siglec-8 antibody also
induces eosinophil apoptosis independent of ADCC, an activity that is significantly enhanced by
the eosinophil survival factor IL-5 (3, 118, 161). These in vitro activities translate to depletion
of eosinophils in IL-5-treated humanized mice (161), and human clinical trials with anti-Siglec-8
for treatment of eosinophil disorders are being conducted by Allakos (162).The recent availability
of Siglec-8 knock-in mice provides an important genetic tool to further define the potential for
targeting Siglec-8 in eosinophil-mediated disease (163).

Allergy and Anaphylaxis Mediated by IgE

Allergy is a chronic disease wherein the patient is hyperresponsive to innocuous substances in the
environment (164). Allergic symptoms range from mild itching and sneezing to life-threatening
anaphylaxis. Mast cells are key effector cells responsible for the pathology of allergy and ana-
phylaxis. They express the high-affinity IgE receptor (FcεRI) that strongly binds allergen-specific
IgEs.Allergen cross-linking of the IgE-FcεRI complex triggers an activating signaling cascade that
leads mast cells to release presynthesized bioactive mediators, such as histamine and inflammatory
cytokines, that cause allergic symptoms (165, 166).

Human mast cells express several Siglecs, including CD33 and Siglec-5, -6, -7, and -8, and low
levels of CD22 (3, 76, 77). Although the natural roles of Siglecs in human mast cell biology are
currently unknown (166), antibodies to Siglec-8 induced partial inhibition of mast cell activation/
degranulation induced by anti-FcεRI, and showed even more profound inhibition when Siglec-8
was cross-linked to the IgE-FcεRI complex (167). Similarly, while anti-Siglec-7 caused no sup-
pression of mast cell degranulation, cross-linking to the FcεRI receptor with secondary antibodies
caused inhibited degranulation (168). These results suggested that while Siglecs may not consti-
tutively suppress FcεRI signaling (Figure 4b), they could be recruited to actively suppress mast
cell activation, as had been demonstrated for other murine mast cell inhibitory receptors (e.g.,
FcγRIIb, CD300a) (169, 170).
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This idea was supported in experiments using liposomes bearing an antigen (e.g., trinitro-
phenol, ovalbumin, peanut allergen) alone, or liposomes copresenting the antigen and a synthetic
glycan ligand for human CD33 (CD33L).The presence of the CD33L was found to recruit CD33
to the IgE-FcεRI complex and profoundly reduce antigen-induced mast cell degranulation (76)
(Figure 4c). Moreover, in transgenic mice with mast cells expressing human CD33, liposomes
copresenting antigen with the CD33L completely suppressed antigen-induced passive cutaneous
and passive systemic anaphylaxis and desensitized mice from subsequent antigen challenge by re-
ducing antigen-specific IgE both on the mast cell surface and from the circulation. Suppression of
antigen-induced mast cell degranulation required that both antigen and CD33L were on the same
particle since addition of amixture of liposomeswithCD33Lonly and liposomeswith antigen only
induced degranulation equivalent to liposomes with antigen only. In this context, anti-CD33 anti-
bodies caused no inhibition of allergen-mediated degranulation but prevented suppression caused
by CD33L, presumably by blocking CD33L-mediated recruitment to FcεRI. Inhibition induced
by CD33L is mediated by CD33 recruitment of SHP-1 since no inhibition is observed in SHP-
1-deficient mast cells. It is notable that while wild-type murine mast cells do not express murine
Siglecs, they contain signaling pathways compatible with human Siglec-mediated suppression of
mast cell signaling. Thus, the development of mouse models with mast cell expression of human
CD33 and Siglec-8 will be important for assessing the impact of Siglecs in mast cell–mediated
disease (76, 171).

Basophils also express FcεRI.Upon allergen cross-linking of IgE-FcεRI, they release histamine
and platelet-activating factor that contribute to allergic symptoms (172). Human basophils ex-
press CD33 and Siglec-5, -6, and -7. Although the impact of Siglecs on basophil activation is
less studied, FcεRI-induced basophil activation was suppressed by antibody-mediated ligation of
Siglec-7 to the IgE-FcεRI complex, but not by anti-Siglec-7 antibody alone, suggesting forced
colocalization of Siglec to the IgE-FcεRI is also critical for Siglec to inhibit basophil degranulation
(168).

Mast cells and basophils can be activated through other receptors, such as TLRs and comple-
ment. They participate in host defense against pathogens and diseases other than allergy (173).
The possible roles of Siglecs on these other receptors and the potential to exploit them thera-
peutically in these contexts remain to be determined. Based on evidence to date, recruitment of
inhibitory Siglec to the IgE-FcεRI complex or other activating receptors is one strategy to reduce
the risk of anaphylaxis and increase safety of allergen immunotherapy.

Cancer—Siglecs as Targets for Immunotherapy

Siglecs have been targets for immunotherapy of hemopoietic cancers for over 40 years based on
their selective expression and their ability to transport toxic cargo into the cell by endocytosis (56,
100) (Figure 4d). Indeed, gemtuzumab ozogamicin (GO) (Pfizer), an anti-CD33 immunotoxin
conjugated to a derivative of DNA-damaging calicheamicin was the first immunotoxin approved
by the FDA (174). GO was first approved to treat acute myeloid leukemia (AML) in the United
States in 2000 and was withdrawn due to toxicity and lack of efficacy in 2010.With altered dosing
regimensGOwas shown to be effective and regained approval for treatment of AML in 2017 (175).
There are now numerous clinical trials investigating the utility of anti-CD22 and anti-CD33 in
lymphoid and myeloid leukemias/lymphomas (176, 177). As an alternative approach to antibody-
based targeting of B cell lymphoma, liposomal docorubicin displaying synthetic ligand CD22 was
found to effectively deplete human B cell lymphoma in a mouse model. More recently, chimeric
antigen receptor T cell (CART) therapy approaches targeting CD22 or CD33 have shown some
promise (178, 179).
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Cancer—Targeting Siglec Checkpoints

Amajor thrust in cancer therapy is targeting immune checkpoints that prevent the immune system
from eliciting a robust response against the tumor (180). In particular, cancer cells are known to
express ligands for inhibitory receptors on their surfaces. Upon contact with the immune cell
(e.g., NK cell or CD8 T cell), inhibitory receptors are recruited to suppress an immune response
(180–182) (Figure 4e). The classic example is the inhibitory receptor PD-1 (programmed cell
death 1) expressed by activated T cells that normally protect the host from autoimmunity. In the
cancer microenvironment the ligand for PD-1 (PD-L1) is upregulated on cancer cells, leading to
suppression of antitumor cytotoxic T cells by recruitment of PD-1 to the immunological synapse
(181, 183, 184) (Figure 4e). Antibodies blocking either PD-1 or PD-L1 prevent recruitment of
PD-1 to the immunological synapse, restoring the ability of cytotoxic T cells to attack the tumor
(Figure 4f ). There are currently nine approved antibody-based blockbuster drugs that bind to
inhibitory receptors PD-1 or CTLA-4 or their ligands (180).While they have remarkable efficacy
in some patient subsets, they show little benefit in other patients, leaving major unmet medical
need for more effective and/or complementary cancer therapies (180).

Siglecs are also expressed on tumor-infiltrating T cells, NK cells, dendritic cells, and
macrophages, and they are gaining attention as immune checkpoint targets for development of
therapeutics that exploit them to boost an antitumor immune response (6, 7, 9, 185–187). The in-
terest in inhibitory Siglecs in tumor immunology is heightened by the historical observation that
hypersialylation of cancer cells is a hallmark for poor prognosis, and it is believed to help tumor
cells escape from immune surveillance (158, 188, 189). Since sialic acids are ligands for inhibitory
Siglecs, there is a direct analogy to PD-1/PD-L1, where sialic acids on cancer cells are ligands
that could recruit Siglecs to suppress immune responses (Figure 4e,f ).

Siglecs were not initially thought to play an important role in T cell biology since only minor
subsets of peripheral naive human T cells were reported to express Siglec-7 and -9 (190–194).
Recently, however, inhibitory Siglecs (CD33, Siglec-5, -7, -9, and -10) were found to be upreg-
ulated on tumor-infiltrating CD4+ and CD8+ T cells of various cancers, positioning them to
contribute to exhaustion of tumor T cell responses (Figure 4e). In mice, naive T cells also express
no Siglecs, but transcription of Siglec-F is highly elevated in both CD8+ and CD4+ T cells in a
mouse model of T cell exhaustion (195), and Siglec-E is upregulated on tumor-infiltrating T cells
in mouse tumor models (196). The potential for regulation of TCR signaling was shown using
Siglec-transfected human Jurkat T cell lines, where Siglec-7 and -9 were found to partially colo-
calize with the TCR-CD3 complex and inhibit TCR-mediated cell activation by a mechanism
involving phosphorylation of the Siglec and recruitment of SHP-1 (e.g., Figure 3a or b) (194).
VonGunten and coworkers found that target cell killing by Siglec-9-expressing tumor-infiltrating
CD8+ T cells was enhanced by neuraminidase treatment of the target cells, consistent with de-
struction of Siglec-9 ligands preventing recruitment to the site of cell contact (197) (Figure 4e).
In this in vitro assay, Fab fragments of a Siglec-9-blocking antibody also activate CD8+ T cell
cytotoxicity, consistent with blocking recruitment via Siglec-ligands (Figure 4f ), but intact anti-
Siglec-9 antibodies inhibited cytotoxicity, suggesting induction of a negative signal (Figure 3i)
or antibody-mediated relocalization to the activation complex (196, 197) (Figure 3d). Results to
date show that Siglec-9 is an attractive target for boosting a T cell antitumor response, but a better
understanding of Siglec-9 regulation of signaling is needed.

NK cells participate in the surveillance, identification, and killing of cancer cells and infected
cells and are main effector cells for immune targeting of cancer cells through FcγRIII (CD16)-
mediated ADCC (198). NK cells also express many inhibitory receptors, including Siglec-7 and
-9 that sense self to prevent damage to normal cells and tissues (1, 7, 9). Numerous in vitro studies
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support the idea that glycan ligands expressed by cancer cells translocate Siglec-7/-9 to colocalize
with activating receptors through which NK cells deplete target cells (1, 7) (Figure 4g). Indeed,
enhancing the interaction between Siglecs and target cells by increasing ligands on the target cells
with natural ganglioside ligands or synthetic multivalent ligands decreases cell killing (132, 199,
200), and blockade of this interaction with Fab fragments of anti-Siglec-7/9 antibodies enhance
NK cell cytotoxicity (e.g.,Figure 3h). However, as observed with CD8+ T cells, intact anti-Siglec
antibodies inhibit cytotoxicity, suggesting that they induce an inhibitory activity or translocate the
Siglecs to the activating receptor in these assays (132) (Figure 3d,i). Thus, while there is strong
support for the idea that glycan ligands on cancer cells suppress NK cell killing by recruiting
inhibitory Siglec-7 and/or -9, the data do not unambiguously support the concept of using anti-
Siglec antibodies to enhance NK cell activity in analogy to use of anti-PD-1 (Figure 4f ).

In some cancers, neutrophils can be a predominant leukocyte infiltrating cell type that can
play various roles in cancer progression and metastasis, including direct killing of cancer cells
(201). Human neutrophils highly express Siglec-9, and in target cell killing assays Siglec-9 was
enriched at the site of contact between the neutrophil and target cell (202) (Figure 3c). Blocking
the trans interactionwith anti-Siglec-9 reduced recruitment to the site of cell contact and increased
target cell cytotoxicity. Similar results were obtainedwithmouse neutrophils,where Siglec-E is the
predominant Siglec. In a study of a mouse model of lung cancer in which cancer cells were injected
intravenously, there were more lung nodules in wild-type mice than in Siglec-E-deficient mice,
and knock-in of human Siglec-9 restores lung nodule formation to wild-type levels. However, in
the in vivo models, the Siglec-E is also expressed on other leukocytes, so the impact of neutrophils
was not directly assessed (202).

Macrophages are another tumor-infiltrating cell type that express Siglecs. Tumor-associated
macrophages (TAMs) can suppress immune responses indirectly by creating an anti-inflammatory
environment through producing inhibitory cytokines, such as IL-10 and transforming growth
factor-β (TFG-β), or through direct interactions with cytotoxic T cells to suppress activation
through inhibitory receptors like PD-1/PD-L1 (203). Siglec-E is also a dominant Siglec onmurine
macrophages. In a subcutaneous syngeneic tumormousemodel Siglec-E deficiency results inmore
aggressive tumor growth than in wild type, contrary to the lung tumormodel described above, and
knock-in of human Siglec-9 inhibits the growth rate of tumors to wild-type levels (202). It was hy-
pothesized that glycan ligand expressed by cancer cells engages Siglec-E and inhibits macrophage
M2 polarization, which is a protumor phenotype (202, 203). Seemingly contradictory results were
obtained with human macrophages that express Siglec-9. Sialylated-MUC1 (MUC1-ST) is com-
monly upregulated on adenocarcinomas and is a ligand for Siglec-9 (204). MUC1-ST induces
macrophages to express a TAM surface marker and inhibit CD8+ T cell proliferation (204).More
is involved than simple ligation of Siglec-9, since a V-set-binding Siglec-9 antibody blocks the
phenotype induced by MUC1-ST, suggesting the involvement of other receptors, or differential
localization of Siglec-9 by these two agents (204).

Another function of TAMs is to phagocytose damaged cancer cells, which results in down-
stream activation of immune responses by the macrophages and other infiltrating leukocytes. As
discussed above, in dendritic cells and B and T cells, Siglec-10 binds to the sialo-glycoprotein
CD24 in cis to negatively regulate DAMP receptors (1). Recently, Weissman and coworkers pro-
vided evidence that Siglec-10 onmacrophages can interact in transwith CD24 expressed on breast
cancer cells to prevent phagocytosis of cancer cells that induce protective immune responses to
the cancer (205).

Siglec-15 is another Siglec that has been detected on TAMs (30). Unlike Siglec-E and -9,
Siglec-15 does not contain cytoplasmic ITIMs but binds the activating adaptor protein, DAP12,
through a transmembrane lysine residue (206). Ligation of DAP12 binding protein is well
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characterized to induce activating signaling cascade (207) (Figure 3j). Both human and mouse
Siglec-15 preferentially bind sialyl-Tn (Neu5Acα2–6GalNAc) (206). A model cell line that over-
expresses sialyl-Tn binds to Siglec-15-expressing macrophages and induces TGF-β production
through DAP12 and Syk (30). Siglec-15 suppresses antigen-specific cytotoxic T cell expansion
and promotes tumor growth in mouse models of tumor (186). Siglec-15 suppresses activation of
T cells through multiple mechanisms. In vivo, Sigelc-15-expressing macrophages produce IL-10,
which suppresses the expansion of antigen-specific CD8+ T cells. Siglec-15 also directly inhibits
antigen-specific T cell expansion independent of macrophages or IL-10 in vitro (186). Siglec-
15 antibody treatment reduces tumor growth especially when given in conjunction with anti-
PD-1 (186). Siglec-15 may be a new target for checkpoint blockade to improve existing cancer
immunotherapies.

While Siglecs are clearly attractive targets for cancer immunotherapy, the use of anti-Siglecs
as an alternative to or in synergy with anti-PD-1 has raised concerns about the number of differ-
ent tumor-infiltrating leukocytes expressing the same Siglec, the redundancy of multiple Siglecs
expressed on a single cell type, and the potential for anti-Siglec antibodies to themselves induce
an inhibitory response (e.g., Figure 3j). The Bertozzi group has addressed these potential limi-
tations using an alternative strategy to destroy the Siglec ligands on the cancer cell using tumor-
specific antibodies engineered to contain a sialidase/neuraminidase (200, 208). Removing sialic
acids expressed on the cancer cell would prevent Siglec recruitment to the immunological synapse
and allow activation of an immune response against the cancer (Figure 4h) or alternatively pre-
vent ligand-ligation-induced Siglec-mediated inhibitory signal (Figure 3i). This approach was
originally tested in the context of the Fc receptor of cytotoxic NK cells engaging a tumor cell
coated with the tumor-specific anti-HER2 antibody, an inhibition of NK cell killing by recruit-
ment of Siglec-7/-9 to the immunological synapse (209) (Figure 4g). Conjugation of a sialidase to
anti-HER2 was shown to enhance NK cell–mediated ADCC against tumor cells and overcomes
anti-HER2-resistant tumors (208). This same concept would in principle apply to cell killing by
cytotoxic T cells, or any other activating leukocyte receptor engaging its ligand on a cancer cell.

An alternative strategy to removing Siglec ligands on the cancer cells is the use of a small-
molecule inhibitor of sialyltransferase, which would prevent addition of sialic acids to glycopro-
teins on the rapidly dividing tumor cells. Indeed, Bull et al. (51, 210) have shown that injection
of the sialyltransferase inhibitor 3axF-Neu5Ac directly into tumors in vivo followed by adoptive
transfer of OVA-specific CD8+ T cells (OT-I) results in prolonged survival of mice relative to
mice with tumors injected with buffer only. Since the OT-I T cells were required for tumoricidal
activity, but do not themselves express Siglecs, it was proposed that other Siglec-expressing cells
in the tumor microenvironment play a role in the efficacy of the cytotoxic T cells (210).

Neurodegenerative Disease

Alzheimer disease (AD) is a chronic neurodegenerative disease and the leading cause of dementia
among the elderly. One hypothesis for the cause of AD is dysregulated deposition of Amyloid
beta (Aβ) plaques in the brain (211). Microglia are resident immune cells in the brain, and they
are capable of clearing Aβ plaques through phagocytosis. The failure of microglia to phagocy-
tose plaques is hypothesized to contribute dysregulated plaque buildup that eventually leads to
AD (212). Restoring the ability of microglia to phagocytose plaque is one of the hypothesized
treatments being tested for AD.

Polymorphisms in the human CD33 gene, which is constitutively expressed in microglia, have
been strongly associated with AD susceptibility in genome-wide association studies (213–215).
The common polymorphism considered the risk genotype (rs3865444C) results in expression of
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two gene products that arise from alternative splicing, a major isoform that is the full-length CD33
(CD33M) (Figure 1) and aminor truncated isoform (CD33m) that lacks the sialic acid–binding V-
set domain (216). A minor protective polymorphism (rs3865444A) results in exclusive expression
of the truncated CD33m isoform missing the sialic acid–binding V-set domain (216). Monocytes
from patients bearing the common risk genotype have decreased phagocytic activity compared
to cells from patients bearing the rare protective genotype (217). Moreover, transfection of full-
length but not truncated human CD33 inhibits phagocytosis of a mouse microglia cell line (218).

The full-length CD33 associated with AD risk is hypothesized to inhibit activating recep-
tors involved in microglia phagocytosis, such as TREM2 (219). An interesting observation is that
while the full-length CD33 is prominently on the cell surface, the truncated CD33 associated
with CD33m is predominantly found in peroxisomes (220). Thus, if full-length CD33 constitu-
tively colocalizes with TREM2 on the cell surface (e.g., Figure 3a,b), and CD33m is physically
sequestered in peroxisomes, this alone could account for increased phagocytosis. Since CD33m is
missing a V-set domain, an attractive hypothesis is that antibodies to the V-set domain or block-
ing the ligand-binding site of CD33M might result in a protective phenotype. However, CD33
antibodies that bind to the V-set domain and block sialic acid binding (cloneWM53) have not yet
been observed to enhance microglia phagocytosis (221). Recently, however, macrophages treated
with microparticles decorated with high-affinity ligands of CD33 exhibited more robust phago-
cytosis of Aβ plaques, suggesting the potential for ligand-based targeting to block suppression of
microglia uptake of Aβ plaques (19). Clearly a better understanding of microglial cell phagocytosis
is needed to determine how targeting human CD33M could improve microglia phagocytosis and
reduce AD risk.

To study the impact of CD33 on microglia phagocytosis, mouse CD33-deficient mice have
been used in AD models. Mouse CD33 deficiency leads to reduced plaque burden, and this re-
duction depends on TREM2 (218, 222). However, unlike human CD33, mouse CD33 does not
have cytoplasmic ITIMs but has a positively charged amino acid in the transmembrane domain
predictive of binding to DAP12 with an activating ITAM (Figures 1a and 3j). Therefore, since
signaling is likely to play a role in human CD33 function in microglia, conclusions reached based
on changes inmouseCD33 should bemadewith caution. In this regard, recently developed human
CD33 knock-in mice could be a useful genetic tool to study whether human CD33 contributes to
AD pathology (76).

In combination with a CRISPR-Cas9 screen of a mouse microglia cell line and comparing
microglia RNA-seq from young versus aged mice, mouse CD22 has been found to be upregu-
lated in aged microglia, reducing phagocytosis through a mechanism involving recruitment by
α2–6 linked sialic acid ligands and ITIM-mediated recruitment SHP-1 (223). Consistent with
this mechanism, deleting CD22 in a CD22 knockout mouse, or pharmacological removal of sialic
acid, enhanced phagocytosis in a CD22-dependent manner (223). Moreover, a CD22 antibody
enhanced microglia phagocytosis and cognitive performance in mouse models (223).While these
results provide additional support, the relevance of Siglecs for regulation of plaque uptake by mi-
croglial cells in neurodegenerative disease and a direct link to the role of CD22 in regulation of
plaque phagocytosis by human microglial cells are yet to be established.

OUTLOOK

In the last decade there has been enormous progress in understanding the roles of Siglecs in
immune cell functions, and the interest in how they serve as immune checkpoints has grown from
an appreciation of their relevance to human disease processes. However, even for the best-studied
Siglecs such as CD22, much is yet to be learned. As discussed in detail in this review, regulation of
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B cell activation throughCD22 is highly context dependent, based on itsmicrodomain localization
and the presentation of soluble or membrane-bound antigen to the BCR, or ligands for TLRs (1,
25, 79, 116, 144). Now, using what has been learned to date, experiments to study CD22 function
in most contexts can be designed rationally.

With the growing interest of other Siglecs as immune checkpoints in human disease processes
as diverse as cancer, AD, autoimmune diseases, and allergies, there is a need to better understand
the context of their functions in relevant immune cell types. This will facilitate development of
approaches to target Siglecs for therapeutic benefit. There are many experimental challenges to
such research.One is the selection of in vitro cellular assays that reflect the role of the Siglec in the
disease process. Another is to ensure that a targeting agent, e.g., antibody or a ligand-based probe,
perturbs Siglecs in vitro in the same way that it would in vivo. Yet another challenge is to select an
animal model that reflects the disease in humans. Since mice are commonly used, it is important
to note only a few Siglecs have true orthologs between the two species. Moreover, even for clear
orthologs such as human andmurine CD22, there are significant differences in their specificity for
glycan ligands. Thus, while human Siglec knock-in murine models are clearly helpful, the model
should be validated to ensure there is not critical mismatch with its ligands.

With reliable assays andmodels in hand, it will be increasingly important to consider alternative
interpretations of the results to define the mechanism of Siglec function. For example, the use of
anti-Siglec antibodies that result in inhibition of cell signaling can be interpreted to mean that
ligation of the Siglec induces a negative signal that suppresses activation. But as discussed in this
review, the same result could mean that the antibodies alter the localization of the Siglec to the
site of an activating receptor where endogenous activated kinases initiate phosphorylation of the
Siglec. Distinguishing between such alternatives will be critical to designing rational strategies for
therapeutic intervention.

As reflected by the rapid progress in the last few years, it is highly likely that the momentum in
understanding the roles of Siglecs as checkpoints in immune responses and their roles in human
diseases will continue in the foreseeable future.
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