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Abstract

Distributivity in natural language occurs in sentences such as John and Mary
(each) took a deep breath, when a predicate that is combined with a plurality-
denoting expression is understood as holding of each of the members of
that plurality. Language provides ways to express distributivity overtly, with
words such as English each, but also covertly, when no one word can be re-
garded as contributing it. Both overt and covert distributivity occur in a wide
variety of constructions. This article reviews and synthesizes influential ap-
proaches to distributivity in formal semantics and includes pointers to some
more recent approaches. Theories of distributivity can be distinguished on
the basis of how they answer a number of interrelated questions: To what
extent can distributivity be attributed to what we know about the world, as
opposed to the meanings of words or silent operators? What is the relation-
ship between distributivity and plurality? Does distributivity always reach
down to the singular individuals in a plurality? If not, under what circum-
stances is distributivity over subgroups possible, and what is its relation to
distributivity over individuals?
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1. INTRODUCTION: SOME KEY PHENOMENA AND QUESTIONS

The term distributivity has been applied to a variety of phenomena in natural language. All of them
have in common that a predicate is applied to the members or subset of a group or set, or to the
parts of a plurality. Following Choe (1987) and others, I refer to the predicate as the Share and to
the plurality as the Key. For example, in sentence 1a, the subject the girls is the Key, and the verb
phrase (VP) smiled is the Share. Likewise, in sentence 1b, the subject is the Key, and the VP are
wearing a dress is the Share:

(1a) The girls smiled.
(1b) The girls are wearing a dress.

Sentence 2 can be understood either distributively or nondistributively, depending on how
many sand castles were built:

(2) The children built a sand castle.

The semantic contribution of indefinite noun phrases, such as a dress in sentence 1b and a sand
castle in sentence 2, is often captured by an existential quantifier. One of the tasks for formal
theories of distributivity is to explain what gives this existential quantifier the ability to range over
multiple entities in distributive readings even though it corresponds to a morphologically singular
indefinite.

The lack of a nondistributive interpretation in sentences 1a and 1b is clearly connected to what
we know about the world (for example, we know that multiple people cannot wear the same dress
simultaneously). In other cases, it can be attributed to the presence of a distributive marker, such
as the word each:

(3) Each of the children built a sand castle.

Distributive markers can belong to multiple syntactic categories. In sentence 3, it is a deter-
miner; in sentence 4a, it is an adverb; and in sentence 4b, it is an adnominal modifier:

(4a) The children each built a sand castle.
(4b) The children built one sand castle each.

In all these cases, the marker has the same form, and one feels that it also has the same meaning.
In examples such as sentences 1 and 2, there is no overt marker of distributivity. Depending on
whether distributivity can be traced to the presence of an overt marker, we can distinguish between
overt and covert distributivity.

Not all Keys are denoted by subjects. In sentence 5b, on its distributive reading, the Key is the
indirect object two girls, not the subject. In sentence 5a, the Key can be either the girls or the boys,
depending on whether there were two stories per girl or per boy:

(5a) The girls told the boys two stories each.
(5b) John gave a pumpkin pie to two girls.

In all the examples provided so far, distributivity always reaches down to singular individuals in
the Key. But distributivity down to subgroups has been argued to be possible as well, with important
implications for the analysis of distributivity as a whole. For example, sentence 6, adapted from
Gillon (1987), arguably involves distribution over pluralities of men, at least on the reading on
which it is true in the actual world (given that Gilbert and Sullivan wrote operas together but,
unlike Mozart and Handel, not individually):

(6) Mozart and Handel and Gilbert and Sullivan wrote operas.
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Likewise, sentence 7, from Lasersohn (1998), can be understood as describing a collection of pairs
of shoes such that each pair costs $50:

(7) The shoes cost $50.

One important question is whether distributivity always reaches down to individuals or whether
distributivity to subgroups is also possible. Consider a scenario in which Mary and Sue each bought
a lottery ticket, and John and Bill bought one together. Suppose that these three tickets turn out
to be the winning ones. In response to questions such as Which women won? Which men won? Who
won? one might give answers 8a, 8b, and 8c, respectively. Answer 8a is true on its distributive
reading, answer 8b is true on its nondistributive reading, and answer 8c is true on what I call a
nonatomic distributive reading (in contrast to the atomic distributive reading of answer 8a and
most previous examples). This kind of reading has also been called a subgroup distributive reading
or, following Heim (1994), an intermediate reading:

(8a) Mary and Sue won.
(8b) John and Bill won.
(8c) Mary and Sue and John and Bill won.

Despite such sentences as 6, 7, and 8c, many theories do not put atomic and nonatomic dis-
tributivity on an equal footing. Elucidating the relationship between the two kinds of distributivity
is a central problem; an example adapted from Lasersohn (1989) helps us see what makes it hard.
Suppose that there are four teaching assistants (TAs) in the local linguistics department, and
that each of them taught a recitation and was paid $7,000 for it last year. In this situation, both
sentence 9a (on its distributive reading) and sentence 9b (on its nondistributive reading) are judged
true, but sentence 9c is not:

(9a) The TAs were paid exactly $7,000.
(9b) The TAs were paid exactly $28,000.
(9c) The TAs were paid exactly $14,000.

Clearly, sentence 9c does not exhibit nonatomic distributivity; if it did, it should be true, since the
four TAs can be grouped into pairs each of which was paid $14,000. The question is: Why not?

The following minimal pair brings the problem into sharp relief:

(10a) The men wrote operas.
(10b) The men wrote an opera.

The subject of these sentences is to be understood as referring to Mozart, Handel, and Gilbert
and Sullivan, just like the subject of sentence 6. Given the known facts about these composers,
sentence 10a is judged true but sentence 10b is not. The challenge for theories of distributivity,
then, is to chart the right course between examples such as 6, 7, and 8c on the one hand and
examples such as 9c and 10b on the other (Kratzer 2008; Winter 2001, p. 256f ).

In this review, I focus on distributivity of verbs and VPs over individuals, with an emphasis on the
challenges posed by nonatomic distributivity. I describe some of the dimensions along which formal
theories of distributivity can be distinguished and how they account for the phenomena described
so far (for a more extensive overview of relevant empirical facts, with an emphasis on distributivity
across languages, see Champollion forthcoming and the references given in Section 5).

2. SOME CHOICE POINTS FOR THEORIES OF DISTRIBUTIVITY

When considering a large number of theories, it is useful to set aside certain distinctions and focus
on others. Some distinctions I ignore here concern the formal modeling of plurality. I use the term
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pluralities as a theory-neutral way to refer to collections of entities denoted by Keys, no matter how
these collections are represented formally. Most accounts of distributivity are couched in formal
systems that represent pluralities explicitly as possible referents of variables. This article focuses
on such systems and sets aside those that treat pluralities only implicitly via the resources of plural
logic, such as those presented by Schein (2008) and Oliver & Smiley (2016) (see Moltmann 2016
for a comparison of these two kinds of systems). As described in Section 2.1, for ease of comparison
I cast all theories I review in terms of mereological sums as opposed to sets. The distinctions I
focus on concern different kinds of distributivity operators (Section 2.2), whether they apply to
predicates of individuals or of events (Section 2.3), and whether they take scope at the verb level
or at the VP level (Section 2.4).

2.1. Sets Versus Sums

Within approaches that represent pluralities explicitly, we can distinguish between approaches that
represent pluralities as sets and those that represent them as mereological sums. The earliest formal
semantic approaches to distributivity use sets (Bartsch 1973, Bennett 1974, Hausser 1974). In these
approaches, singular individuals can be represented either as ordinary entities or as singleton sets.
Some approaches use a nonstandard interpretation of set theory, following Quine (1937), that
collapses the distinction between these two options (e.g., Schwarzschild 1996). Standard set theory
is used by Winter (2001) and Heycock & Zamparelli (2005).

However, most modern formal semantic research on distributivity uses mereological sums,
following Link (1983). Mereology is the philosophical study of parthood (Leśniewski 1916). The
overview articles by Champollion & Krifka (2016) and Varzi (2016) contain detailed presentations.
As applied to the semantics of natural language, mereological models countenance not only singular
individuals, such as Alice, Bob, and Chris, but also plural individuals, such as the sum of Alice and
Bob or the sum of Alice, Bob, and Chris. The most widely used and formally best-understood
version of mereology in formal semantics is classical extensional mereology (CEM), but other
versions of mereology are in use as well (Moltmann 1997, 1998).

In mereology, an operation ⊕ is assumed to combine entities into sums. In CEM, this operation
is assumed to be associative, commutative, and idempotent. If we replace singular individuals by
singleton sets, CEM makes the sum operation behave just like union in ordinary set theory.

A central notion in mereology is the parthood relation ≤. In CEM, this is assumed to be a partial
order. Parthood and sum are interdefinable, in the sense that a ≤ b is equivalent to a ⊕ b = b .
In CEM, parthood is analogous to the subsethood relation in ordinary set theory. Models of
CEM are lattice structures that are isomorphic to complete Boolean algebras with the bottom
element removed. The powerset algebra of any set of singular individuals, minus the empty set, is
isomorphic to the mereology that has these individuals as its atoms (where an atom is defined as
an individual that has no proper parts, that is, no parts other than itself ).

One of the differences between set theory and mereology is that the empty set is a subset of any
set, but there is no such thing as an “empty part,” which would be a part of every entity. Another
difference concerns the lack of structure in sums. Set theory allows for nested sets and makes
distinctions that do not correspond to anything within CEM. For example, {{a , b}, c }, {a , {b , c }},
and {a , b , c } are distinct sets, but there is no such difference in CEM; since the sum operation is
associative, the mereological object a ⊕ b ⊕ c can be taken to correspond to any of these sets.
This difference might seem substantive, but as discussed below, semanticists who use mereology
sometimes avail themselves of “group formation” operators that reinsert into sums the structure
that has been lost in the transition from set theory to CEM.
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Another difference between set theory and mereology is that the standard axiomatization of
set theory forbids infinitely descending chains of sets of the form . . . ∈ S3 ∈ S2 ∈ S1. By contrast,
nothing in mereology forbids analogous infinitely descending chains of sums . . . s3 ≤ s2 ≤ s1.
Indeed, it is possible for every object in a mereology to have proper parts; this gives rise to an
“atomless” mereology, which is often used to model the semantics of mass terms and other domains
such as events and temporal and spatial intervals. Link (1983) regards mereology as a better fit
than set theory for the mass domain, and extends it to the semantics of plurals in order to capture
certain parallels between the count and mass domains. However, treatments of mass terms that
use standard set theory have been proposed since then (Chierchia 1998, 2010), leading some (e.g.,
Winter 2001) to question whether mereology is a well-motivated choice, despite its widespread
adoption. The use of mereology for events and intervals has not been questioned in the same way,
however. Because events and intervals play an important role in the semantics of verbs, mereology
is arguably a natural choice for theories that aim to account for parallels between the nominal and
verbal domains (e.g., Bach 1986, Krifka 1998, Champollion 2017). In this article, I adopt sums as
a lingua franca, even though doing so occasionally requires me to reformulate proposals that were
originally based on sets rather than sums.

2.2. The Star Operator Versus the D Operator

The vast majority of formal semantic approaches to distributivity model it using one or more silent
operators, with major questions revolving around the choice and the division of labor between
different operators. In order to understand how the need for operators arises, it is useful to
consider an alternative view that makes no use of them. In the earliest formal semantic treatments,
distributivity is as a property of predicates, with no operators involved. Thus, for Bartsch (1973),
Scha (1981), and Hoeksema (1983), predicates in general admit both individuals and pluralities
of individuals in their extension; a distributive predicate is a predicate which, whenever it applies
to a plurality, also applies to each of the individuals in that plurality. Hoeksema (1983) suggests
capturing the difference between distributive and nondistributive predicates by using meaning
postulates to put restrictions on admissible models. On this type of approach, the sentence Alice
and Bob smiled is represented (assuming mereology) as smile(a ⊕ b). A meaning postulate to the
effect that smile is distributive rules out models in which this predicate applies to the sum a ⊕ b
without also applying to a and to b separately.

In contrast to these approaches, Link (1983) suggests that distributive predicates such as smile or
sleep admit only atoms in their extension. This property sets them apart from collective predicates
such as meet, which contain only proper sums of individuals, and from “mixed” (neither distributive
nor collective) predicates such as win and carry the piano, which contain atoms as well as sums (for
an overview of the distributive–collective opposition, see Champollion forthcoming). When a
distributive predicate combines with a plural argument, an operation called algebraic closure,
represented by a star (∗), is applied to the predicate. For example, the sentence Alice and Bob smiled
is represented as ∗smile(a ⊕ b). This operation can be defined as follows (the formulation is taken
from Sternefeld 1998):

Star operator
For any set P , ∗ P is the smallest set such that

(11a) P ⊆ ∗ P , and
(11b) if a ∈ ∗ P and b ∈ ∗ P , then a ⊕ b ∈ ∗ P .

Because this definition is inductive, not only binary sums but also sums of arbitrary large finite
subsets of P end up in ∗ P . Alternative definitions of the star operator make sure that even the
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sums of infinitely large subsets of P make it into ∗ P (e.g., Link 1983, Champollion 2017). When
considering only finitely large P , this difference does not matter.

Link (1987, 1991) takes the same approach as Link (1983) for distributive predicates like smile
and sleep, but treats mixed predicates such as build a sand castle through a different mechanism,
namely a VP-level operator that shifts nondistributive predicates into distributive predicates:

D operator
(12) [[D]] = λPλx∀y[[y ≤ x ∧ atom(y)] → P (y)]

This operator takes a predicate P over individuals and returns a predicate that applies to any
individual whose atomic parts each satisfy P . Its intuitive meaning and function correspond to
those of the English adverb each: When the operator is inserted into sentence 2, the resulting
meaning can be paraphrased by sentences 4a and 4b. Roberts (1987) and others suggest an analysis
of adverbial each in terms of Link’s D operator.

2.3. Events Versus No Events

The D operator has been adapted to various frameworks (e.g., Lasersohn 1995). Champollion
(2016a) adapts it to the Neo-Davidsonian setting, in which verbs and VPs are assumed to denote
sets of events rather than individuals (Davidson 1967, Parsons 1990):

Event-based D operator
(13) [[Dθ ]] = λVλe . e ∈ ∗{e ′ | V (e ′) ∧ atom(θ (e ′))}

The operator applies to a set of events V, typically denoted by a verb or VP, and returns another
event predicate, which contains events e that either are or consist of events e ′ in V. Each of these
events e ′ is mapped to some atomic entity by what I call the dimension parameter θ , which can be
resolved to a thematic role such as agent, theme, or goal (Parsons 1990). Typically, but not always,
this is the thematic role of the subject. Similar operators are proposed by Lasersohn (1998), Kratzer
(2008), and LaTerza (2014a,b); event-based distributivity is also discussed by Schein (1993) and
Lasersohn (1995), among others.

Because thematic roles relate events to individuals, they are available only in the event semantic
setting. By letting the dimension parameter vary, one can account for nonsubject Keys, such as
that in the prepositional phrase in sentence 5b; in eventless frameworks, one would instead resort
to type shifting or quantifier raising (Roberts 1987, Lasersohn 1995). An advantage of the event
semantic framework is that an operator such as the one in definition 13 can make the sum event
e available for modification by further arguments, or by adjuncts such as the one in the following
sentence (Schein 1993, Eckardt 1998):

(14) From 2pm to 4pm, the children [D built a sand castle].

Champollion (2016b) builds on the event-based D operator in definition 13 and on the flexibility
of event semantics to analyze the word each in its various uses as a determiner (sentence 3), as
an adverbial (sentence 4a), and as a distance-distributive adnominal (sentence 4b). For previous
analyses of each, see Choe (1987), Moltmann (1997), Zimmermann (2002), and Dotlačil (2012),
among many others. The dimension parameter of the event-based D operator can then be used
to model the ambiguity in sentences such as example 5a. Depending on whether it is set to the
thematic role of the subject the boys or to that of the object the girls, the sentence entails either
that there were two stories per boy or that there were two stories per girl. The parameter thus
captures the difference between covert and overt distributivity over subjects and over nonsubjects
in a uniform way.
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2.4. Verb-Level Versus VP-Level Distributivity Operators

In Link 1983, the star operator applies only to individual words, such as verbs and nouns. In Link
1987, by contrast, the D operator can apply to entire VPs as well. This explains why in sentence 1b,
repeated below in modified form, the indefinite can range over multiple dresses even though it is
morphologically singular:

(15) Annie, Bonnie, and Connie are wearing a dress.

The distributive reading of sentence 15 cannot be modeled by assuming that only its main verb is
interpreted distributively, as this would entail that there is a dress that the three girls are wearing;
rather, the D operator must apply to the VP, as in sentence 16a. The universal quantifier that this
operator introduces takes scope over the existential quantifier over dresses:

(16a) Annie, Bonnie, and Connie [D [are wearing a dress]].
(16b) ∀y [[atom(y) ∧ y ≤ (a ⊕ b ⊕ c )] → ∃x [dress(x) ∧ wear(y , x)]]

For Link (1987), the D operator models distributivity at the VP level, while the star operator
models distributivity at the verb level. Winter (2001), Champollion (2016a), and de Vries (2017)
advocate similar approaches; Moltmann (1997) draws a related distinction. To be sure, the star
operator is defined on one-place predicates, so it would not be able to apply to the transitive verb
lift if that verb is modeled as a two-place predicate; but this is an accidental property of the specific
framework. In Neo-Davidsonian event semantics, even transitive verbs are modeled as one-place
predicates, and the event-based D operator can apply to them as well. A generalization of the star
operator to two-place predicates is discussed in Section 4.3, below.

3. ATTEMPTS TO UNIFY THE D AND STAR OPERATORS

Although the D and star operators differ, they also overlap to some extent. Could one of them
replace the other? This question is taken up by Landman (1989a,b, 1996, 2000) and by Winter
(2001), who approach it from two different perspectives. Landman uses only the star operator,
whereas Winter uses only the D operator. As discussed in this section, both authors also use
resources other than those provided by CEM alone. Let us first take a closer look at the difference
between the two operators and then consider the attempts to unify them.

To sidestep scope-related differences between the D and star operator, let us consider a VP that
consists of only one nondistributive verb, win. In the scenario considered in Section 1, Mary and
Sue each bought a winning lottery ticket, and John and Bill bought one together. Suppose there
are no other winning tickets. It seems natural to represent the denotation of win by set 17a (this
assumption is revised below). Compare the results of applying the star operator to that predicate,
in set 17b, with applying the D operator to it, in set 17c:

(17a) [[win]] = {m, s, j ⊕ b}
(17b) [[∗win]] = {m, s, m ⊕ s, j ⊕ b , m ⊕ j ⊕ b , s ⊕ j ⊕ b , m ⊕ s ⊕ j ⊕ b}
(17c) [[D(win)]] = {m, s, m ⊕ s}

The star operator expands the original set 17a by including all the sums built from its members,
while the D operator in effect restricts set 17a to its atomic elements and then adds only those
sums that are built from them. The two operators have the same result when they are applied to
predicates that have only atoms in their extensions, but this is not what we have assumed in set 17a.

In order to appreciate what is at stake, it is useful to look at the truth conditions of various
sentences in our scenario according to the different analyses, assuming for the time being that
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conjoined proper names refer to sums. Consider again sentences 8a–c, repeated below. Sentence 8a
is predicted to be true when either of the operators applies, and false when no operator does:

Mary and Sue won. = 8a
(18a) win(m ⊕ s) False
(18b) D(win)(m ⊕ s) True
(18c) ∗win(m ⊕ s) True

Sentence 8b is predicted to be true when no operator or the star operator applies, and false when
the D operator applies:

John and Bill won. = 8b
(19a) win( j ⊕ b) True
(19b) D(win)( j ⊕ b) False
(19c) ∗win( j ⊕ b) True

Sentence 8c is predicted to be false when no operator or the D operator applies, and true when
the star operator applies:

Mary and Sue and John and Bill won. = 8c
(20a) win(m ⊕ s ⊕ j ⊕ b) False
(20b) D(win)(m ⊕ s ⊕ j ⊕ b) False
(20c) ∗win(m ⊕ s ⊕ j ⊕ b) True

Formula 20a is false because there was no instance of winning in which the four individuals
were involved together. Formula 20b is false because the four individuals did not each win. As for
formula 20c, this is a nonatomic distributive reading. It essentially says that the group of children
can be divided into atomic or nonatomic parts, such that each of these parts won.

Clearly, the D operator does not give rise to nonatomic distributive readings, whereas the star
operator does. This might be taken as an argument for giving up the D operator, but, as shown
below, things are not so straightforward. In Section 4, I present reasons to model nonatomic
distributivity with operators that differ from both D and star. The remainder of this section,
though, stays with the two operators introduced so far, and asks whether we can give up one or
the other.

3.1. Landman: No D Operator

Landman (1989a) argues that set 17a is not the right way to represent the meaning of win in
our model. Instead, Landman proposes that, following Link (1984), certain pluralities should be
modeled not as sums but rather as groups. These entities are technically atomic entities, in the
sense that they do not have any mereological proper parts, but they are related to sum individuals
that are taken to correspond to their members. On this view, for example, a committee that consists
of John and Bill is modeled as a group whose members are John and Bill. The sum of the two
members of the committee is represented as j ⊕b , but the committee itself is modeled as the group
↑( j ⊕ b), where ↑ is taken to be a function that maps sums to atoms; thus, the atom ↑( j ⊕ b) is
distinct from the sum j ⊕ b (see also Moltmann 1997 for a related theory based on a nontransitive
parthood relation; for a criticism of that theory, see Pianesi 2002).

Landman uses the sum–group distinction to model distinctions between collective and cumu-
lative readings and other phenomena. Groups essentially introduce into mereology the structure
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that is available in set theory. In a scenario where John and Bill jointly bought a winning ticket
and Mary bought another one, one might think of the winners as a plurality in which John and
Bill are more tightly connected to each other than any other pair. Because the sum operation is
associative, in the absence of group formation it is not possible to express this type of plurality. For
example, m ⊕ ( j ⊕ b) is the same entity as (m ⊕ j ) ⊕ b , which is why we write it as m ⊕ j ⊕ b . The
group formation operator breaks associativity: m ⊕ ↑( j ⊕ b) is not the same entity as m ⊕ j ⊕ b .

The use of mereology and groups has been influential in formal semantics, which is reflected
in the following exposition. But as noted in Section 2.1, one can express many of the relevant
ideas in set theory as well, where the difference between the “flat” set {m, j , b} and the “nested”
set {m, { j , b}} makes it possible to capture the “tight connection” between John and Bill. While I
keep to sums and groups throughout, not much changes in the following exposition if we mentally
replace terms such as j ⊕ b and m ⊕ ↑( j ⊕ b) by { j , b} and {m, { j , b}}, and the symbol ≤ by ∈ or
⊆ (for details on this last point, see Schwarzschild 1996, section 1.1). Landman (1989a, p. 568f.)
contrasts this set-theoretic view, which he labels “ontological,” with a view he calls “structural,”
on which the lattice structures that are the models of mereology are isomorphic to collections of
sets but do not actually consist of sets (see also Link 1987 and Winter 2001, chapter 2).

With the sum–group distinction in hand, Landman proposes that if John and Bill won the
lottery together, the winner should be thought of as the group of John and Bill, not as their sum.
More generally, Landman proposes that basic predicates—that is, those to which no operators
have applied—never take sums in their extension; only the output of the star operator can produce
such predicates. Verbal predicates may apply to singular individuals and to groups, but not to
sums. For example, the predicate win, before any operators apply to it, has the extension in set
21a, rather than the one in set 17a. Since ↑( j ⊕b) is an atom, it is treated by the D operator exactly
like other atoms; as a result, when applied to set 21a, the D and star operators return the same
result, as shown in set 21b. This assumes that the members of a group, unlike the parts of a sum,
are not accessible for distribution (but see de Vries 2015):

(21a) [[win]] = {m, s, ↑( j ⊕ b)}
(21b) [[∗win]] = [[D(win)]]

= {m, s, ↑( j ⊕ b), m ⊕ s, m ⊕ ↑( j ⊕ b), s ⊕ ↑( j ⊕ b), m ⊕ s ⊕ ↑( j ⊕ b)}
On the basis of this observation, Landman (1989a) argues that the D operator is superfluous

and that the star operator can take over its function. As Landman (2000, p. 152) puts it, we can
reduce distributivity to semantic plurality. This refers to the fact that Landman, following Link
(1983), uses the star operator not only in the verbal domain to create distributive interpretations
but also in the nominal domain to capture the semantic contribution of the plural morpheme.

Although Landman does not discuss it explicitly, in some of his examples the star operator is
applied to predicates denoted by entire VPs that contain an indefinite, such as carry a piano upstairs.
This means that in his system the star operator cannot be regarded as a property of verbs. As
discussed in Section 4.2, applying the star operator to VPs overgenerates, which arguably means
that Landman’s (1989a) project of reducing distributivity to plurality is only partly successful.
Furthermore, the reliance on groups to model the meaning of plural definites has been called into
question (Barker 1992, Schwarzschild 1996). It is therefore doubtful whether the D operator can
be replaced by the star operator.

3.2. Winter: No Star Operator

Winter (2001) takes the opposite approach. In this system, it is the star operator that is removed;
the D operator (which Winter calls pdist, for predicate distributivity) takes its place, and is used
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both as a means to analyze distributive readings and as a way to capture the semantic contribution
of the plural morpheme. Here, for ease of comparison I recast the relevant parts of Winter’s theory
in terms of mereology and group formation; Winter’s actual system is largely set based.

If one assumes that all singular nouns have only atoms (of which some may be groups) in
their extension, the two operators return the same result whenever they are applied to sets of
atoms, as shown above. On this view, sentence 8c (Mary and Sue and John and Bill won) can be
analyzed as in formula 22a, which is equivalent to formula 22b. Since ↑( j ⊕ b) is an atomic part
of m ⊕ s ⊕ ↑( j ⊕ b), but neither j nor b is, the result entails that that Mary won, that Sue won,
and that John and Bill as a group won:

(22a) D(win)(m ⊕ s ⊕ ↑( j ⊕ b))
(22b) ∀x [atom(x) ∧ x ≤ m ⊕ s ⊕ ↑( j ⊕ b)] → win(x)]

Whether sentences like 8c have readings such as the one captured by formula 22b is a critical factor
in the question of whether the D operator can be removed from the grammar.

In the remainder of this article, I use the term structured plurality for pluralities that involve
the ↑ operator as well as for sets that are nested rather than flat, and I use the term unstructured
plurality for ↑-less pluralities and their corresponding flat sets. The analyses by Landman (1989a)
and Winter (2001) require the subject of sentence 8c to denote a structured plurality akin to
m ⊕ s ⊕ ↑( j ⊕ b), as opposed to the unstructured plurality m ⊕ s ⊕ j ⊕ b .

To be clear, analyzing coordinated noun phrases as structured pluralities does not by itself
entail a commitment to the use of sets versus sums; nor does it entail a specific analysis of the word
and. For example, Winter (2001) shows that through the use of sets and various silent operators,
structured pluralities arise naturally within the framework of generalized quantifier theory (Partee
& Rooth 1983, Keenan & Faltz 1985). He argues that the word and denotes neither mereological
sum or set union nor set formation, but rather intersection of generalized quantifiers. Structured
pluralities are possible referents of coordinated noun phrases in Winter’s system, but only in their
incarnation as nested sets; the structure of these nested sets, in effect, mirrors some or all of the
syntactic structure of the coordinated noun phrases that denote them.

4. THE STATUS OF NONATOMIC DISTRIBUTIVITY

As noted in Section 1, there are open questions concerning the status of nonatomic distributivity,
its relation to atomic distributivity, and the way it arises in the formal system. Part of what makes
these questions hard to answer is that the use of devices such as the group-forming ↑ operator
makes it possible to represent pluralities as atoms. This raises the question of whether all Keys
can denote structured pluralities.

4.1. Can Definite Plurals Denote Structured Pluralities?

Positing structured pluralities as possible referents of Keys can help account for certain instances
of nonatomic distributivity, particularly in the case of coordinated noun phrases, as in sentence 8c.
However, the standard examples of Keys are definite plurals, which do not provide as much internal
syntactic structure as coordinated noun phrases. Consider the following sentence in a situation
similar to that described above, and assume that John, Bill, Mary, and Sue are the children:

(23) The children won.

In this situation, the standard analysis of the definite plural the children is that it refers to the
unstructured plurality m ⊕ s ⊕ j ⊕ b , the sum of the four children (e.g., Link 1983). Could the
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same noun phrase the children also refer to the structured plurality m ⊕ s ⊕ ↑ ( j ⊕ b) instead?
If we want to remove the star operator from the grammar and replace it by the D operator, as
Winter (2001) proposes, it is crucial for the answer to be yes; otherwise, the D operator would
force distribution down to John and Bill individually. At the same time, the same definite plural
would also have to be able to refer to the unstructured plurality, in order to model sentences such
as The children took a deep breath, where the predicate distributes down to each of the children.

That definite plurals are ambiguous between structured and unstructured pluralities had previ-
ously been proposed by Gillon (1987, 1990). The sentence which motivated this proposal, sentence
10a (The men wrote operas), is structurally similar to sentence 23, except that it contains a transitive
verb. Its subject is to be understood as referring to Mozart, Handel, and Gilbert and Sullivan, like
the subject of sentence 6.

Lasersohn (1989, 1995) argues, contra Gillon, that definite plurals cannot refer to structured
pluralities, as this would overgenerate nonatomic distributive readings. Consider again the scenario
described in Section 1, where Mary, Sue, John, and Bill are the TAs and each of them was paid
$7,000. Sentences 9a–c are repeated below, along with the judgments associated with them:

(24a) The TAs were paid exactly $7,000. True
(24b) The TAs were paid exactly $28,000. True
(24c) The TAs were paid exactly $14,000. False

If the definite plural The TAs could refer to structured pluralities, the contrast between these three
sentences would be unexpected; all three would be predicted to be true. The reason is that there are
ways to structure the plurality in question—for example, ↑(m⊕ s) ⊕ ↑( j ⊕b)—which, when used as
referents of the subject of sentence 24c, would make it true no matter whether it is the D operator
or the star operator that applies to the VP. Lasersohn (1989) concludes from this type of example
that, in this situation, The TAs can refer only to the unstructured plurality m⊕ s ⊕ j ⊕b , and not to
the structured plurality ↑(m⊕ s) ⊕ ↑( j ⊕b), contrary to Gillon (1987). This also means that the VP
were paid exactly $28,000 in sentence 24b applies to a sum without applying to its parts, contrary to
Landman (1989a). Schwarzschild (1996) develops a more extensive argument that definite plurals
cannot in general denote structured pluralities (see also Lasersohn 1995, chapter 9; Moltmann
1997, 2005; and Winter 2001 for discussion).

4.2. Applying the Star Operator to VPs Overgenerates

With structured pluralities taken off the table again as possible referents of definite plurals, a
question arises as to how the nonatomic distributive readings of sentences 6 and 23 should be
modeled. The D operator is clearly of no use: In the absence of structured pluralities, it will
distribute the VP down to individual children and composers. In the case of sentence 23, the star
operator fares better: Since the subject denotes m ⊕ s ⊕ j ⊕ b , the sentence is analyzed in the
same way as formula 20c and is correctly predicted to be true. In the case of sentence 6, one might
be tempted to follow a similar route. First, assume that the predicate write operas applies to Mozart,
to Handel, and to the sum of Gilbert and Sullivan:

(25) [[write operas]] = {m, h, g ⊕ s }
Next, assume that the star operator applies to the predicate write operas:

(26) [[∗(write operas)]] = {m, h, g ⊕ s, m ⊕ h, m ⊕ g ⊕ s, h ⊕ g ⊕ s, m ⊕ h ⊕ g ⊕ s }
Finally, apply this starred predicate to the men, which we now take to denote the unstructured
plurality m ⊕ h ⊕ g ⊕ s . Since the predicate applies to this plurality, we correctly predict that
sentence 6 is true.
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But there is a problem. In the model considered above, under the assumption that Mary and
Sue are female and John and Bill are male, the following sentences are true:

(27a) The female TAs were paid $14,000.
(27b) The male TAs were paid $14,000.

Assuming that the subjects of these two sentences refer to m ⊕ s and to j ⊕ b , their VP were
paid $14,000 must denote a predicate that has at least these two pluralities in its extension. Now
suppose that the star operator can apply to this predicate. Then the plurality m ⊕ s ⊕ j ⊕ b should
be in the extension of the result as well. But then, given that the subject of sentence 24c refers to
m ⊕ s ⊕ j ⊕ b , we would predict that sentence to be true after all, contrary to fact.

The problem becomes even more severe when we compare sentence 10a with its counterpart
10b, both repeated here:

(28a) The men wrote operas.
(28b) The men wrote an opera.

When The men is taken to refer to Mozart, Handel, and Gilbert and Sullivan, sentence 28b is not
judged to be true in the scenario described in Section 1, even though sentence 28a is. In particular,
sentence 28b lacks the nonatomic distributive interpretation that sentence 28a has. Heim (1994,
p. 12) describes this situation as follows:

So we are in a bit of a dilemma: We do seem to need representations in terms of the star operator to
treat the cases of apparent intermediate readings that are attested, but if we freely generate them, this
has all sorts of undesirable consequences.

4.3. Generalizing the Star Operator to Transitive Verbs

On the basis of examples such as sentences 24b and 28b, Lasersohn (1989) and others conclude
that, unlike the D operator, the star operator cannot apply to entire VPs. This accounts for the lack
of a nonatomic distributive interpretation of sentence 28b, but it does not explain why sentence
28a is true. For this purpose, Lasersohn (1989) proposes the use of lexical meaning postulates to
the effect that whenever a writes x and b writes y , it is also the case that a ⊕ b writes x ⊕ y (Krifka
1989, Kratzer 2008). Let o1 be the sum of all the operas that Mozart wrote, and similarly for o2

(Handel) and o3 (Gilbert and Sullivan). It follows that m ⊕ h ⊕ g ⊕ s wrote o1 ⊕ o2 ⊕ o3. The effect
of this type of meaning postulate can be captured by a generalization of the star operator to binary
relations, which is often expressed through the double-star operator ∗∗ (e.g., Beck & Sauerland
2000, Beck 2012). Here is one way to define this operator (Sternefeld 1998):

Double-star operator
For any two-place relation R, let ∗∗ R be the smallest relation such that

(29a) R ⊆ ∗∗ R, and
(29b) if 〈a , x〉 ∈ ∗∗ R and 〈b , y〉 ∈ ∗∗ R, then 〈a ⊕ b , x ⊕ y〉 ∈ ∗∗ R.

As in the case of the star operator, alternative definitions of the double-star operator exist (e.g.,
Vaillette 2001, Champollion 2017).

For example, let the denotation of write be the two-place relation 30a. To avoid clutter, I omit
the individual operas that make up o1, o2, and o3. This two-place relation could equivalently be
represented as a function that takes two arguments one at a time, corresponding to the object and
subject of the verb write, and returns a truth value. I ignore this point since it does not affect the
discussion (for details, see Heim & Kratzer 1998, section 2.4). The double-star operator maps
relation 30a to relation 30b:
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(30a) [[write]] = {〈m, o1〉, 〈h, o2〉, 〈g ⊕ s, o3〉}
(30b) [[∗∗write]] = {〈m, o1〉, 〈h, o2〉, 〈g ⊕ s, o3〉, 〈m ⊕ h, o1 ⊕ o2〉, 〈m ⊕ g ⊕ s, o1 ⊕ o3〉,

〈h ⊕ g ⊕ s, o2 ⊕ o3〉, 〈m ⊕ h ⊕ g ⊕ s, o1 ⊕ o2 ⊕ o3〉}
The double-star operator can be used to model the difference between sentences 28a and 28b as

follows. Sentence 28a is represented by existentially quantifying over an entity in the denotation
of operas. The meaning of operas, in turn, is represented by applying the star operator to the
denotation of opera, and it holds of the sum entity o1 ⊕ o2 ⊕ o3:

(31a) The men ∗∗wrote operas.
(31b) ∃x [∗opera(x) ∧ ∗∗write(m ⊕ h ⊕ g ⊕ s, x)]

As for sentence 28b, it is represented in the same way except that the existential quantifier ranges
only over entities in the denotation of opera:

(32a) The men ∗∗wrote an opera.
(32b) ∃x [opera(x) ∧ ∗∗write(m ⊕ h ⊕ g ⊕ s, x)]

These entities are individual operas but not sums of operas; therefore, o1 ⊕ o2 ⊕ o3 is not in
the denotation of opera. As for individual operas, such as the atomic parts of o1, while they are
in the denotation of opera, neither relation 30a nor relation 30b relates any of them to the sum
m ⊕ h ⊕ g ⊕ s denoted by the men. Thus, sentence 32a is correctly predicted to be false on its
nondistributive reading. As for its distributive reading, resulting from applying the D operator to
wrote an opera, it is also correctly predicted to be false: This operator distributes down to atoms,
but neither the atom g nor the atom s stands in either relation 30a or relation 30b to anything.

The double-star operator is motivated by sentences like example 33a, which can be analyzed
as in formula 33b, on the assumption that the operator applies directly to the verb. This is an
instance of a summative or cumulative reading (e.g., Scha 1981, Krifka 1989, Sternefeld 1998):

(33a) [[Tom and Dick] ∗∗like [Sue and Jane]].
(33b) ∗∗like(t ⊕ d , s ⊕ j )

With the double-star operator in place, let us consider example 34, a variation of example 20a–c
that replaces intransitive by transitive win, in the same scenario as that sentence. When no operator
applies, as in formula 34a, the sentence is predicted to be false. The same is the case even if the D
operator is applied to the VP, as in formula 34b. Only if the double-star operator applies to the
verb, as in formula 34c, is the sentence predicted to be true:

Mary and Sue and John and Bill won the lottery.
(34a) win(m ⊕ s ⊕ j ⊕ b , l) False
(34b) D(λx.win(x, l))(m ⊕ s ⊕ j ⊕ b) False
(34c) ∗∗win(m ⊕ s ⊕ j ⊕ b , l) True

As this example shows, there are cases in which even the application of a verb-level operator
(such as the double-star operator) can cause an entire VP to appear to exhibit nonatomic dis-
tributivity. This is the case for example 34 because its object, a definite singular, is scopally inert;
therefore, distributing over only the verb or over the entire VP makes no difference to truth
conditions. If the object were replaced by an indefinite such as a lottery, the double-star operator
would be unable to cause that indefinite to covary, and the modified sentence would continue
to require that everyone won the same lottery. This is analogous to sentences like example 28b,
which on its nondistributive reading requires everyone to have written the same opera.
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Winter (2001, p. 255) concludes from similar examples that, as a matter of methodology,
distribution over subparts of a plural individual “is easier to attest when the plural NP in question
is semantically interpreted as a quantifier taking scope over another element in the sentence (an
indefinite, a pronoun, a disjunction etc.).” Winter refers to such cases as “Q-distributivity” (where
Q refers to quantificational), as opposed to “P-distributivity” for those cases of distributivity
which can, in principle, be derived from a property of the lexical item involved. Even unmodified
indefinites should perhaps be avoided; for further details on this test, see de Vries (2015).

Because only VPs but not verbs can contain indefinites, pronouns, or disjunctions, any operator
that is meant to capture Q-distributivity must be able to apply at the VP level. As for cases that
can be handled by application of an operator to the verb, such as examples 20, 28a, and 34, we
can regard these operators as part of the denotation of the verb itself, in the spirit of the meaning-
postulate approach put forward by Scha (1981), Hoeksema (1983), and Lasersohn (1989). This is
also the view taken by Winter (2001), who therefore regards all such cases as P-distributivity (see
also Kratzer 2008).

4.4. Beyond D and Star: The Part Operator

As we have seen, the nonatomic distributive reading of sentence 28a can be analyzed in terms of
P-distributivity. This raises the question of whether cases of genuine nonatomic Q-distributivity
can be found. Such cases could not be modeled by applying any operator at the verb level, because
verb-level operators cannot capture Q-distributivity, nor could they be modeled by applying the
D operator at any level, because the D operator can capture only atomic distributivity. Lasersohn
(1998) offers example 7, repeated below as example 35a, which is understood as stating that each
pair of shoes costs $50. Similarly, example 35b ( J. Bledin, personal communication) can be used
as a clue to solving a magic square, a type of puzzle that involves filling in a grid with natural
numbers. In that context, it states that each row, column, or diagonal in the square sums up to 25:

(35a) The shoes cost $50.
(35b) The numbers sum to 25.

On the assumption that the subject of sentence 35a refers to the sum s1 ⊕ s2 ⊕ s3 ⊕ s4, where each
si is a shoe, this reading cannot be modeled via the double-star operator, as this would merely
capture the fact that the price of the sum of two entities is the sum of their prices. For example,
if the pair of shoes s1 ⊕ s2 costs $50 and the pair of shoes s3 ⊕ s4 also costs $50, then the sum
of these two pairs costs $100. For the sake of the example, I am ignoring the difference between
mereological sum and arithmetic sum.

The relevant reading of sentence 35a cannot be modeled using the D operator either, at least
not in the absence of further assumptions such as structured pluralities. This operator, when
applied to the VP cost $50, would take the predicate it denotes and distribute it down to each
atomic part of s1 ⊕ s2 ⊕ s3 ⊕ s4—that is, down to each shoe.

From similar examples, Schwarzschild (1991, 1996) concludes that distributivity over
nonatomic entities is possible when these entities are made salient by context (see also
Moltmann 1997 for a similar proposal). To avoid problems that would result from using groups,
Schwarzschild (1996) proposes modeling this behavior by modifying the D operator to include a
variable over covers, which are generalizations of partitions. In mereological terms, a cover of a
plurality x is a set of entities whose sum is x. Unlike partitions, this definition allows for overlap,
as in the magic square case in example 35b. Schwarzschild (1996) renames the modified operator
Part, to set it apart from Link’s D operator. In definition 36, the cover variable is represented as
a subscripted C :
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Schwarzschild’s nonatomic distributivity operator Part
(36) [[PartC ]] = λPλx∀y [[C(y) ∧ y ≤ x] → P (y)]

To illustrate, the structure of sentence 35a would be taken to be as in example 37a. Here, C is
a free variable that is resolved to a salient cover of the subject, for example {s1 ⊕ s2, s3 ⊕ s4}, which
results in formula 37b:

(37a) The shoes PartC [cost $50].
(37b) ∀y [y ∈ {s1 ⊕ s2, s3 ⊕ s4} → y ∈ [[cost $50]]]

Various authors disagree on whether the fact that C must be a cover of x should be written into
the operator or can be derived from more general considerations. The event semantic version of
the Part operator shown in definition 38, from Champollion (2016a), makes this a moot point,
since the free predicate C can be shown to be a cover of the event e by virtue of appearing in the
scope of a star operator (Vaillette 2001):

Event-based Part operator
(38) [[Partθ ,C]] = λVλe . e ∈ ∗{e ′ | V (e ′) ∧ C(θ (e ′))}

This is a generalization of the event-based D operator shown in definition 13. Champollion
(2016a) recasts the cover variable C as a granularity parameter. The D operator can be thought of as
a special case of the Part operator in which this granularity parameter is hardwired to the predicate
atom, as opposed to being anaphoric on a pragmatically salient predicate. This view forms part
of a more comprehensive theory of distributivity, aspect, and measurement (Champollion 2017;
for an overview of the main ideas of this theory, see also Champollion 2015). When applied
to distributivity, this broader view posits that distributivity always takes place along a certain
dimension θ and down to a certain granularity C . Dimension and granularity are understood as
parameters whose values can vary across constructions and sometimes across instances of one and
the same construction.

4.5. Distributivity at the Intersection of Semantics and Pragmatics

The introduction of a pragmatic component into the analysis of distributivity raises questions that
go beyond formal semantics as such. Moltmann (1997, 1998, 2005) locates it in the part–whole
relation, which she sees as determined by the information content of situations. Malamud (2012)
proposes that the Part operator is anaphoric on a decision problem in the sense of van Rooij (2003).
In Malamud’s approach as well as Schwarzschild’s, the Part operator imposes a stronger restriction
on the identity of the cover than would be achieved by merely existentially quantifying over the
cover variable. This restriction prevents that operator from generating unattested nonatomic
readings for examples 9c and 28b and similar sentences.

In the discussion in connection with the shoes example (sentence 35a), I have assumed that pairs
of shoes are represented as nonatomic entities, and that these are the only kinds of entities in
the extension of the plural noun shoes (perhaps in addition to individual shoes; see Krifka 1989,
Spector 2007, Zweig 2009). But what if pairs of shoes are atoms after all, perhaps derived via ↑? In
that case, what looks like nonatomic distributivity could turn out to be atomic, and the D operator
would suffice. A challenge to this view is that when a question like How many shoes are on display?
is answered with an integer (e.g., four), that number is understood as counting shoes, not pairs.

How certain should we be that the intended referents of singular and plural definite descriptions
in specific contexts are the singular and plural entities that semantic theories assign to them? Winter
& Scha (2015, p. 97) note that in saying This shoe costs $50 one may speak loosely of the price of
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a pair of shoes, and relate this to fact that short general definite descriptions sometimes stand for
related entities (Nunberg 1979). The definite description in sentence 35a is also short and general.
As Winter & Scha (2015) observe (see also Winter 2000), this raises the question of whether the
right context can still induce a nonatomic distributive interpretation when we replace the short
definite description by a more specific one, as in sentence 39a, or by an explicit enumeration, as
in sentence 39b:

(39a) These four shoes cost $50.
(39b) Shoes A, B, C, and D cost $50.

This empirical question remains open.

5. CONCLUSION

The study of distributivity in formal semantics has yielded a variety of approaches. I have focused
primarily on the tension that arises from the need to constrain nonatomic distributivity without
excluding it entirely. Here, I list a number of related phenomena that this review article does not
discuss in detail.

Within formal semantics, research topics on distributivity include the best way to model dis-
tributivity in dynamic frameworks (e.g., van den Berg 1996, Brasoveanu 2011, Bumford & Barker
2013, Kuhn 2015); the nature of the relationship between distributivity and reciprocals (e.g.,
Roberts 1991; Moltmann 1992; Sternefeld 1998; Filip & Carlson 2001; Dotlačil 2010, 2013;
Winter 2017); the status of “antidistributivity markers” such as together (e.g., Lasersohn 1990,
1995, 1998; Schwarzschild 1994, 1996; Moltmann 2004); the relationship of distributivity to event
plurality and dependent indefinites (e.g., Kratzer 2008, Cabredo Hofherr & Laca 2012, Balusu &
Jayaseelan 2013, Henderson 2014); the connection to homogeneity and nonmaximality in plural
definites (Lasersohn 1999; Brisson 2003; Križ 2015, 2016); and the relationship between each and
all, which raises open questions relating to the status of collective predicates and their relation to
distributivity (e.g., Champollion 2017, chapter 10).

Distributivity can be approached from subfields of linguistics other than formal semantics. In
Section 4.5, I have drawn some connections between formal semantics and pragmatics. These
connections are also helpful in other areas. For example, Rothstein (2010) and Schwarzschild
(2011) discuss distributivity in adjectives from a semantic point of view, while Scontras & Goodman
(2017) and Glass (2018a) exploit the potential of pragmatic reasoning in determining whether a
given adjectival predicate is interpreted as distributive. Other subfields in which distributivity has
been studied include acquisition (e.g., Syrett & Musolino 2013, de Koster et al. 2017), lexical
semantics (e.g., Glass 2018b), and processing (e.g., Frazier et al. 1999). For additional overviews
of distributivity in formal semantics, see Link (1991); Lønning (1997); Lasersohn (2011); Szabolcsi
(2010, chapters 7 and 8); Nouwen (2016); Winter & Scha (2015); and Champollion (forthcoming,
section 2), who reviews empirical and crosslinguistic phenomena and largely steers clear of the
formal details that are the focus of this review.

I close with a personal view on the elusive status of nonatomic Q-distributivity. In this article, I
have followed the literature by focusing largely on distributivity in the domain of individuals. But
in domains that arguably lack atoms, such as time, clearer examples of nonatomic Q-distributivity
can be observed. If we set the value of the dimension parameter θ in the event-based version of the
Part operator given above (operator 38) to a function from events to the time intervals at which
they occur, the operator induces covariation of indefinites with salient time intervals such as days.
Starting from the observation that indefinites normally fail to covary with for-adverbials, as shown
by the oddness of example 40a, taken from Zucchi & White (2001), Champollion (2016a) uses
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this Part operator to explain why the indefinite two pills in example 40b can covary (think of a
hospital context where a patient’s daily intake is salient). This suggests that example 40b involves
nonatomic distributivity:

(40a) ??John found a flea for ten minutes.
(40b) The patient took two pills for a month and then went back to one pill.

Champollion (2016b) argues that the relationship between the D and Part operators is mir-
rored in the relationship between the English word each and its crosslinguistic counterparts. For
example, German jeweils can be interpreted as either each or each time/on each occasion (Zimmermann
2002). If these analyses are on the right track, then the difference between atomic and nonatomic
distributivity accounts for crosslinguistic variation in the meaning of overt distributivity markers,
and is therefore worth maintaining in the grammar.
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