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Abstract

I analyze the biological underpinnings of human speech from a comparative
perspective. By first identifying mechanisms that are evolutionarily derived
relative to other primates, we obtain members of the faculty of language,
derived components (FLD). Understanding when and why these evolved is
central to understanding the evolution of speech. There is little evidence
for human-specific mechanisms in auditory perception, and the hypothesis
that speech perception is “special” is poorly supported by comparative data.
Regarding speech production, human peripheral vocal anatomy includes sev-
eral derived characteristics (permanently descended larynx, loss of air sacs),
but their importance has been overestimated. In contrast, the central neural
mechanisms underlying speech production involve crucial derived charac-
teristics (direct monosynaptic connections from motor cortex to laryngeal
motor neurons, derived intracortical dorsal circuitry between auditory and
motor regions). Paleo-DNA from fossil hominins provides an exciting new
opportunity to determine when these derived speech production mecha-
nisms arose during evolution.
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Faculty of language,
broad sense (FLB):
the set of all
mechanisms involved
in acquiring,
processing, producing,
and/or perceiving
language

Faculty of language,
derived components
(FLD): the subset of
FLB mechanisms
acquired subsequent to
our evolutionary
divergence from
chimpanzees

Faculty of language,
narrow sense (FLN):
the subset of FLB
mechanisms that are
both unique to
humans, and specific
to language within
human cognition

1. INTRODUCTION

Speech, as the preferred output modality for human language, is an unusual feature of our species
that depends upon a complex but well-understood set of mechanisms, including vocal/motor,
auditory/perceptual, and central neural mechanisms. The capacity for speech clearly differentiates
humans from other primates, indicating that some of these mechanisms have diverged, in recent
human evolution, from those of our prelinguistic ancestors. However, the capacity to vocally
imitate sounds is not uniquely human and is shared with a surprisingly diverse group of organisms,
including many bird species, most marine mammals, elephants, and some bats. This means that
this capacity has evolved, convergently, many times in vertebrate evolution. These facts conspire
to make the evolution of speech better suited for comparative evolutionary analyses than most
other components of human language.

Although scientific attention to the evolution of speech predates Darwin, the last two decades
have witnessed fundamental progress, on the basis of both an improved understanding of the vocal
and auditory periphery (particularly in nonhuman animals) and advances in our understanding of
central processing (due largely to various noninvasive imaging methods). These advances place
the evolution of speech on a firm empirical foundation, and have led to a slow reorientation of
attention away from the periphery toward central neural control mechanisms. This reorientation
implies, unfortunately, that cues to peripheral anatomy gleaned from fossils tell us much less than
traditionally hoped about the evolution of speech. However, the silver lining is that DNA recovered
from fossil hominins can potentially be used to determine the evolutionary timing of novel human
capacities including neural circuitry. Over the coming decades this development promises to
revolutionize our understanding not only of speech but also of the biology and evolution of
language more generally.

In this review, I analyze the evolution of speech from a comparative and phylogenetic per-
spective, using comparisons with other living animals to draw inferences about the abilities of
extinct organisms. My focus is on characteristics where the data are solid enough to warrant clear
conclusions. The picture painted by these comparisons may be surprising to many readers, as it
indicates that most of the mechanisms involved in human speech—the mechanisms comprising
part of the faculty of language in a broad sense (FLB)—have very deep evolutionary roots. This
suggests that the evolution of speech in humans required only a few changes, most of them neural,
resulting in a short list of derived characteristics that should be the focus of future evolutionary
research.

I term these few crucial changes the “faculty of language, derived components,” or FLD. This
term differs from the faculty of language in the narrow sense (FLN), defined previously by my
colleagues and me (Fitch et al. 2005, Hauser et al. 2002), which excluded traits shared with any
other species (e.g., with birds—thus excluding vocal learning) or with other cognitive domains
(e.g., music). I now consider these criteria too stringent regarding speech, and propose that the
more biologically meaningful set consists of those language-relevant mechanisms that are derived
relative to our nonlinguistic primate ancestors, irrespective of whether these are language specific
or not: the FLD.

My focus in this review is on the biological evolution of the human capacity for speech, not
the cultural history of linguistic word forms investigated by comparative and historical linguists.
The comparative method as practiced in modern biology has many similarities with the methods
of comparative linguistics familiar to most linguist readers, but it also differs in important ways.
By adopting the cladistic terminology of modern phylogenetics, I try to keep these differences
clear.
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Homologous traits:
characteristics shared
in a set of species due
to inheritance from
the common ancestor
of those species

Analogous traits:
characteristics
acquired
independently in two
lineages by convergent
evolution

Plesiomorphy:
a characteristic or
mechanism retaining
the ancestral
“primitive” state,
typically shared by
most members of a
clade

Autapomorphy:
an apomorphic trait
uniquely defining a
particular clade within
some specific context
(e.g., in humans
relative to other apes)

Apomorphy:
a characteristic or
mechanism displaying
a derived state, specific
to some clade with a
larger plesiomorphic
context

Synapomorphy:
an apomorphic trait
shared throughout a
clade, which defines
that clade relative to a
larger phylogenetic
context

Last common
ancestor (LCA): the
most recent ancestor
shared by two specific
clades (e.g., apes and
humans, or
Neanderthals and
modern humans)

1.1. The Comparative Method in Biology

Comparative biological analysis starts with a breakdown of a complex trait (such as vision or
language) into multiple subcomponent mechanisms or traits, which are then arrayed on a phylo-
genetic tree. To avoid circularity, the phylogenetic tree is derived from independent data, today
using genomic data. When this approach is taken with cognitive traits it can be termed “cognitive
phylogenetics” (Fitch et al. 2010).

Examination of patterns of similarity and difference relative to this phylogenetic tree allows
us to distinguish examples of homology, in which a trait is shared by multiple species due to
inheritance from a common ancestor, from analogy, in which the trait was derived independently
in different clades (akin to distinguishing cognates from accidental similarity or borrowing in
historical linguistics). Homologies can be used, like cognates, to reconstruct ancestral states: The
more broadly shared a homologous trait is, the further in the past the ancestral form must have
existed. Sets of homologous traits thus provide the equivalent of a time machine allowing us to
reconstruct an evolutionary sequence of ancestral forms.

Analogies (convergently evolved traits) play a different role. When there are multiple instances
of convergent evolution, analogies provide independent samples to test evolutionary hypotheses,
with each instance providing an independent data point. Throughout this review I emphasize the
importance of distinguishing derived from shared characteristics, and homology from analogy,
when analyzing comparative data.

1.2. Shared and Derived Traits

The two types of homologous traits most relevant in the context of this review are shared ancestral
states (plesiomorphies) and derived traits that typify a species or group of species (autapomorphies)
(Figure 1a). A shared ancestral or “primitive” trait is termed a plesiomorphy, and a derived trait,
in general, is termed an apomorphy. A less useful term, homoplasy, denotes all nonhomologous
traits, lumping together traits evolved via convergence, parallelism, and reversals; I avoid it and
use the more precise terms analogy and convergence.

Of particular interest are those derived homologous traits shared by an entire clade, termed
synapomorphies. These indicate the presence of that derived trait in the last common ancestor
(LCA) of that clade. For example, lactation, hair, and three middle ear bones are synapomor-
phies of living mammals, allowing us to infer that these traits were all present in the ancestral
mammal. Also crucial are autapomorphies: derived characters specific to a species or clade, for
example, fully bipedal locomotion in humans relative to other apes. It is this class of derived hu-
man traits relevant to speech—speech-related autapomorphies—that are my focus here, because
these make up crucial components of the FLD that evolved since our divergence from other
apes.

Note that the interpretation of these cladistics terms—plesiomorphy, synapomorphy, and
autapomorphy—is context dependent, and depends upon the specific clades under discussion.
Thus, lactation is plesiomorphic for humans as mammals (a shared ancestral trait) but synapo-
morphic for mammals as vertebrates (a derived trait in this broader context).

A group of species related by common descent is called a clade, a generic term that makes no
commitments about what traditional phylogenetic level (e.g., genus, family, order, or phylum) the
grouping represents. The names of particular clades thus constitute further important terminol-
ogy. Many of these clade names, such as vertebrate, mammal, or bird, will be familiar; others, like
amniote or tetrapod, may not. Given my focus on speech, I anthropocentrically discuss only those
clades most relevant to human phylogeny (Figure 1b), starting with the most inclusive clades and
becoming increasingly specific.
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Figure 1
Human cladistics in a nutshell. (a) Graphic depiction of key cladistic terms. Plesiomorphies are ancestral or
“primitive” traits, shared by most members of a clade, whereas autapomorphies are derived features that are
unique to a particular species or clade (left). Synapomorphies are derived traits that are shared by a number
of living species; their existence supports the inference that the trait was present in the last common ancestor
of those species (right). (b) Illustration of some clades crucial for understanding human evolution (some
important but well-known clades, including mammals and primates, are omitted to save space).

1.3. Clades Relevant to the Evolution of Speech

The broadest relevant clade for us is the eukaryotes, which all have cells with a nucleus and
mitochondria. Multicellular eukaryote species include plants, animals, and fungi. Most of the basic
intracellular biochemical machinery of our bodies, from the genetic code to sugar metabolism or
cell division, is shared with this vast clade. Among the animals, a large and important clade is the
Bilateria, a broad grouping that includes us vertebrates along with arthropods (e.g., crabs, flies)
and mollusks (e.g., squid, snails). The last few decades have revealed surprisingly deep shared traits
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Hominid: in current
systematic parlance,
the clade including
humans and the other
great apes (previously
termed “hominoid”)

Hominin: in current
systematic parlance,
the clade comprising
humans and all of their
extinct non-ape
ancestors and relatives
(previously “hominid”)

Exaptation: the
evolutionary process
by which mechanisms
change their function,
before they are
adaptively tuned to
their new function

Deep homology:
a situation in which a
trait, despite being
phenotypically
convergent, is based
on homologous
genetic and/or
developmental causes

among bilaterians; for example, the same genes often serve the same developmental functions in
humans and fruit flies.

My main comparative focus here is on the vertebrates, in particular the mostly terrestrial
vertebrates termed tetrapods (mammals, birds, amphibians, and the diverse group traditionally
called reptiles, more correctly termed nonavian reptiles). Humans share a significant proportion of
our basic machinery of hearing and vocal production with other tetrapods (e.g., frogs or alligators).
Within tetrapods, the amniotes are the vertebrates that thoroughly conquered land by evolving
eggs that can develop on dry land. Amniotes include mammals, birds, and “reptiles.” Mammals
are distinguished from other amniotes by fur and lactation; a six-layered neocortex; three middle
ear bones; and, for all mammals except the egg-laying platypuses and echidnas, internal fetal
development.

Within mammals, humans are, of course, primates. Within the primates, we form with our
closest relatives, the lesser apes (gibbons and siamangs) and the great apes (chimpanzees, bonobos,
gorillas, and orangutans), the hominoids. Traditionally, taxonomists split the apes into two groups,
the hominids (humans and our extinct ancestors and relatives such as Neanderthals) and the
pongids (all other apes). But the revelation that we are more closely related to chimpanzees than
chimpanzees are to orangutans rendered the term “pongid” phylogenetically incorrect, and most
paleoanthropologists today use “hominin” to denote humans and our extinct non-ape relatives
(Figure 1b), and “hominid” to include the great apes.

2. THE AUDITORY PERIPHERY

The capacity to sense airborne pressure signals—hearing—has a truly ancient pedigree that can
be reconstructed using the comparative method and nicely illustrates several recurring themes
in human evolution. One is exaptation: the evolutionary reuse of existing mechanisms for new
purposes (e.g., transforming gills into jawbones or ear ossicles). Another is deep homology, in
which homologous genetic mechanisms are used to build convergently evolved structures (Fitch
2009a, Shubin et al. 2009).

At the core of vertebrate audition are the sensory hair cells in the inner ear, specialized to
convert sonic energy into neural signals. These are homologous to mechanosensory cells that are
found in all animals with a nervous system, including cnidarians like jellyfish (Fritzsch et al. 2006).
Because the same cell type is used for hearing in insects, via the antennae, hearing via hair cells
is shared with a vast array of bilaterian species. In all vertebrates, hair cells are also found within
the fluid-filled cavities of the vestibular system, which senses head orientation and rotation, and
in most aquatic vertebrates hair cells also detect water movements in the lateral line system on
the body surface. Specialized hearing organs have been convergently derived from the vestibular
system in many fish species and all tetrapods (Manley 2000).

Among amniotes, the fluid-filled cochlea is the primary organ for sensing airborne sound and
develops as an outpouching of the vestibular organ (Fritzsch et al. 2006). Compared with other am-
niotes, mammals are hearing specialists, sensitive to a much wider frequency range extending well
above the 10-kHz limit typical of birds and reptiles. This limit is surpassed via the elongation of the
mammalian cochlea, which allows more hair cells to be packed within this organ. To accommodate
its increased length, the mammalian cochlea coils into a snail shape different from the bean-shaped
cochlea of other amniotes. The length of the basilar membrane is the main determinant of hearing
sensitivity and range in mammals, and is greatest in echolocating bats (Manley 2000).

The mammalian cochlea is also unusual in possessing two types of hair cells: the standard
mechanosensory inner hair cells, shared with birds or lizards, and a novel class termed outer hair
cells, which act as tiny motors to actively tune and amplify vibrations of the basilar membrane
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Transcription factor:
a gene whose protein
product binds to DNA
to regulate the
expression of other
genes

within the cochlea. This mammalian synapomorphy plays an important role in auditory sensitivity
and acuity.

The gene regulatory network underlying differentiation of the vertebrate auditory periphery
centers on atonal1, a transcription factor first discovered in fruit flies. Transcription factors gener-
ate a protein that binds to DNA elsewhere in the genome, thus regulating the expression of other
genes. Transcription factors thus act as “molecular switches” that activate or suppress expression
of other genes. The vertebrate homolog of atonal1 is called atonal homolog 1, or Atoh1 (Fritzsch
et al. 2006). Atoh1 is the master control gene for audition, and its expression leads to differentiation
of hair cells, cochlea, and much of the brainstem circuitry involved in relaying auditory signals to
cortex. The atonal1 gene plays a similar role in fly hearing, and indeed hearing in deaf mutant mice
can be restored by inserting the homologous fruit fly gene (Wang et al. 2002). Because hearing
evolved independently in insects and humans, this is an excellent example of deep homology.

Hair cells convert vibrations in the fluid-filled cochlea to a neural signal transmitted by sensory
neurons in the cochlea, via the auditory nerve, to the cochlear nucleus in the brainstem. These
auditory signals then pass through a series of further specialized brainstem and thalamic nuclei up
to the auditory cortex. Atoh1 also plays a developmental role in all of these auditory nuclei, and this
basic layout of the entire auditory system, from cochlea to cortex, is plesiomorphic to all mammals.

In contrast to the inner ear, the middle and outer ears have independent evolutionary histories
in different tetrapod clades, and both the tympanum (eardrum) and middle ear ossicles evolved in-
dependently in mammals and other tetrapods (Lombard & Bolt 1979). The emergence of tetrapods
onto land posed the physical problem of converting weak pressure signals in air into fluid move-
ment in the cochlea: The impedance mismatch between air and liquid means that almost all energy
is reflected away from, rather than into, the fluid-filled inner ear. To compensate, most tetrapods
possess a light membrane, the tympanum, which connects via one or more bones to the cochlea and
mechanically amplifies airborne vibrations. Intriguingly, this system appears to have evolved inde-
pendently at least three times in tetrapods—in frogs, in mammals, and in birds and other reptiles—
but in all cases, components of the jaw have been miniaturized and repurposed as ear ossicles
(Tucker 2017). This provides an unusual example of convergent exaptation of the same precursor
for the same novel function. In nonmammals a single bone called the columella serves this purpose,
whereas in mammals three different jawbones were enlisted (the malleus, incus, and stapes).

Although three ossicles are synapomorphic in mammals, middle ear bone morphology varies
considerably among species, and there are fine differences between human ossicles and those of
chimpanzees or fossil hominins, which have led to attempts to use ossicle anatomy to recon-
struct the hearing abilities of extinct hominins (e.g., Martı́nez et al. 2013). Based on apparent
differences in chimpanzee and human audition, the argument is that human hearing has become
specialized for speech sensitivity—a putative auditory autapomorphy. There are two bases for
skepticism about these attempts, however. First, as mentioned above, the primary determinant
of frequency sensitivity range is the length of the basilar membrane and the cochlea, not middle
ear bone morphology (Hemilä et al. 1995, Manley 2000). Second, existing data on chimpanzee
hearing are sparse and contradictory. Because some chimpanzees show a W-shaped audiogram,
it has been argued that the chevron shape of the normal human audiogram is somehow spe-
cial, requiring special ear anatomy (Elder 1934, Kojima 1990). But, in fact, most mammals show
chevron-shaped audiograms, shifted up or down in frequency (Heffner 2004), and it is the chim-
panzee audiogram that is peculiar among mammals, not that of humans. Although it remains
possible that this represents a derived trait in chimpanzees, noise-induced hearing loss in humans
also leads to a W-shaped audiogram, with a divot around 3 kHz, strikingly similar to that observed
in some chimpanzees. This putative specialization may thus simply reflect noise-induced hearing
loss in some subjects (the reverberant concrete housing environment of many captive chimpanzees,
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combined with their frequent loud vocalizations, produces a truly deafening environment). More
data, particularly from young chimpanzees housed in more natural and acoustically friendly con-
ditions, would be needed to resolve this issue.

In summary, the comparative data demonstrate that the human auditory periphery has an an-
cient pedigree, sharing its sensory elements with jellyfish, genetic determinants with flies, inner ear
sense organ with all other tetrapods, and virtually all of its complex sensory and brainstem hardware
with other mammals. There is nothing about the human ear that is strikingly different from that
of other primates and no convincing evidence of any autapomorphic human characteristics in the
auditory periphery. Thus, our peripheral hearing apparatus was in place, in our primate ancestors,
in essentially modern form long before we evolved the capacity for speech. Our search for human
auditory autapomorphies must therefore turn to central processing mechanisms and the cortex.

3. A BEHAVIORAL INTERLUDE: HOW SPECIAL IS SPEECH
PERCEPTION?

A long tradition in psychology holds that speech perception is “special”—both distinct from other
auditory perception (“modular”) and biologically specialized in our species. This belief dates
back to early attempts at Haskins Laboratories to create reading machines for the blind, where
phonemes were represented by mechanical sounds like buzzes or bells instead of speech sounds.
These attempts failed utterly—such sounds merge into an indiscriminable auditory soup when
played at rates as fast as those of speech. This early work led to the conclusion that the speech
signal, rather than a sequential stream of phoneme-sized signals, involves a complex encoding of
motor gestures (e.g., opening the lips or tapping the tongue against the palate) into the acoustic
signal (Liberman & Mattingly 1985). Humans are able to somehow decode this complex auditory
signal back into motor commands, as demonstrated by our ability to correctly repeat novel words
on first attempt. This capacity to solve this complex decoding problem is central to both speech
perception and production.

The creation of electronic speech synthesis at Haskins overcame some of the problems en-
countered in the earlier attempts, and also opened the door to controlled experiments on speech
perception (Liberman 1957). One of the first results was the discovery of categorical perception
(CP) of speech—the finding that the discriminability of pairs of speech sounds chosen from a con-
tinuum varies nonlinearly, with best discrimination observed across category boundaries, rather
than varying as a linear function of physical similarity. This result suggested that our perceptual
system is specialized to fit the details of speech production, and led to the hypothesis that “speech is
special”—both modular to language and human specific (Liberman 1957, Liberman & Mattingly
1985).

Both aspects of this claim were soon questioned. First, Cutting & Rosner (1974) showed that
certain musical sounds were also perceived categorically, although these results were later called
into question (Cutting 1982, Rosen & Howell 1981). More convincing were demonstrations by
Kuhl & Miller (1975) that animals including rhesus macaques and chinchillas also perceive human
speech sounds categorically, and parallel findings that a variety of species perceive their own con-
specifics’ vocalizations categorically as well (Fischer 2006, Nelson & Marler 1989). Moreover, CP
is not universal in speech; although stop consonants are perceived quite categorically, vowel per-
ception is more continuous (Kuhl et al. 1992)—an effect also observed in other animals (Kluender
et al. 1998). It now seems clear that CP is not special to speech, and more likely reflects a style of
processing available in both auditory and visual domains and to a wide range of species (Harnad
1987). Combined with parallel research showing robust perception of vowels and consonants in a
wide variety of birds and mammals (Baru 1975, Dooling 1992, Hienz et al. 2004), the comparative
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data suggest instead that the perceptual apparatus underlying speech is simply the human version
of a general voice-perception system shared with other species (see Section 4, below).

The demise of the special status of CP did not, however, eliminate enthusiasm for the “speech is
special” hypothesis, and new phenomena arose as supporting evidence. One was lateralization—it
has long been known that there is a left-hemisphere bias for both production and perception of
speech, initially thought to be uniquely human (Geschwind 1970). Early research demonstrating
lateralization in birdsong production called this assumption into question (Nottebohm 1971),
and since then abundant data have clarified that perceptual lateralization is a typical feature of
vertebrates, from fish to birds to primates (Rogers & Andrew 2002, Vallortigara & Rogers 2005).
Although a precise characterization of this functional asymmetry remains elusive, one compelling
hypothesis is for a right-hemisphere (left-eye) bias in perceiving conspecifics that would constitute
a vertebrate plesiomorphy. Unfortunately, the comparative data are clearest in the visual domain,
and hemispheric asymmetry in the auditory domain (typically measured via head-turn responses)
remains less clear and may vary between species (Fischer et al. 2009, Gil-da-Costa & Hauser 2006).
Nonetheless, the hypothesis that perceptual lateralization is unique to humans is no longer tenable.

Four other oft-cited potentially “special” speech-perceptual phenomena are sine-wave speech,
duplex perception, the McGurk effect, and vocal tract normalization. Sine-wave speech replaces
complex, multiharmonic formants with single sine waves varying in time—akin to substituting an
ink-sketch caricature for a color photo. Most adults perceive these sounds as bizarre but intelligible
speech (Remez et al. 1981), suggesting another human-specific perceptual specialization. However,
recent perceptual experiments with a chimpanzee exposed intensively to human speech showed
that she, too, immediately perceived sine-wave analogs as intelligible words, without training
(Heimbauer et al. 2011). This finding suggests that, at least given appropriate developmental
exposure, the capacity to parse sine-wave speech is shared with other apes.

Duplex perception is a laboratory phenomenon in which the formant transitions corresponding
to a particular stop consonant are played to one ear while the vocalic “base” is played to the
other. Under these circumstances, subjects report hearing both a fused normal stop consonant
and a high-frequency “chirp” corresponding to the transition (Liberman et al. 1981). Like CP,
this phenomenon was initially proposed as an indicator of an independent phonetic module, but
later research showed that duplex perception occurs both for musical stimuli (chords) and for
environmental sounds (slamming doors), suggesting that this, too, reflects more general auditory
processing (Fowler & Rosenblum 1990, Pastore et al. 1983). To my knowledge, no experiments
investigating duplex perception in animals have been conducted.

The McGurk effect (McGurk & MacDonald 1976) is a fascinating interaction between auditory
and visual perception. When a video image of a mouth saying /g/ is played synchronously with
playback of the sound /b/, what is perceived is /d/—a sound intermediate in articulation. I know of
no study investigating this specific effect in animals, but recent research on audiovisual interactions
in macaques suggests that monkeys also spontaneously link the auditory and visual components
of conspecific calls, preferentially looking at video displays whose mouth shape matches a played
call (Ghazanfar et al. 2005). Thus, integration of audiovocal information in vocal perception is
not unique to humans.

A final phenomenon once thought to represent a human autapomorphy is vocal tract
normalization—the temporary adjustment of speech-perceptual processes to reflect the vocal
characteristics of the current speaker. This is crucial because the different vocal tract dimen-
sions of men, women, and children mean that the “same” speech sounds have quite different
absolute formant and fundamental frequencies depending on the speaker. Again, however, abun-
dant comparative data suggest that normalization is not uniquely human. All mammals tested
to date perceive formants in conspecific calls, and in many cases use them as cues to the body
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size of the caller (Charlton et al. 2012, Fitch & Fritz 2006, Ghazanfar et al. 2007, Reby et al.
2005), suggesting that formant-based normalization is plesiomorphic to mammals. Furthermore,
recent data indicate that zebra finches trained on a subtle vowel discrimination with men’s voices
can generalize without training to a woman’s vowels (Ohms et al. 2009). Again, human speech
perception seems to reflect broadly shared amniote perceptual mechanisms for conspecific voice
perception rather than specializations for speech.

In summary, 50 years of comparative speech research reveals a broadly shared set of perceptual
mechanisms that, although potentially evolved for conspecific voice perception in amniotes, are in
no sense unique to human speech. Some phenomena such as categorical perception may represent
domain-general processing mechanisms, whereas others such as vocal tract normalization may
be specific to vocal sounds. Certain perceptual phenomena deemed special to speech, such as
duplex perception, remain uninvestigated in other species (Repp 1982), and some rather subtle
differences in speech perception have been found between humans and other primates (Sinnott &
Adams 1987, Sinnott & Williamson 1999). But it seems clear that most of the phenomena initially
suggested as human-specific mechanisms turn out, upon comparative investigation, to be broadly
shared among primates, mammals, or amniotes.

4. CENTRAL CORTICAL PROCESSING OF VOCALIZATIONS

I now turn to the central cortical processing of vocal signals. Here, our general knowledge for
humans greatly outstrips that for nonhuman animals, except at the level of direct neuronal record-
ing, where nonhuman research dominates. This discrepancy makes firm conclusions difficult and
highlights the need for more work comparing different species using the same methods (Andics
et al. 2016, Petkov et al. 2008).

In general, the basic layout of auditory cortex in the temporal lobe is the same across mam-
mals (where the best-studied species are cats and various bat and monkey species; Clarey et al.
1992, Rauschecker & Tian 2000, Suga 1990). In primates, the primary auditory cortex is locally
surrounded by concentric belt and para-belt regions, which then project elsewhere in cortex via
two routes. The ventral route, through the anterior temporal lobe and thence to the prefrontal
cortex, appears to play a role in sound identification. The functional role of the dorsal route,
which travels back through the posterior temporal cortex and then up through the parietal cortex,
was originally considered a “where” pathway (Tian et al. 2001), by analogy to the “what/where”
pathway in vision (Goodale & Milner 1992), because the same sound played back from different
locations activates different cells. However, in humans this dorsal pathway appears closely linked
to motor representations for speech production—more of a “how” function—and some data sug-
gest a similar role in self-monitoring in monkeys (Eliades & Wang 2008). This dorsal route is
discussed further below, in connection with vocal control.

Although the auditory regions discussed above are responsive to all sounds, there is abundant
evidence for voice-specific neural circuitry in multiple species (Belin 2006) in roughly comparable
cortical areas. Here, a distinction between voice-specific and speech-specific regions is important,
because speech represents only one class of human vocal sounds, and speech contains abundant
nonlinguistic information concerning speaker sex, age, size, and identity. Belin et al. (2000) con-
trasted blocks of human vocalizations including speech, laughs, cries, and so forth with blocks
containing nonvocal sounds. They found consistent preferential activation of the anterior supe-
rior temporal sulcus (STS), bilaterally but with a bias toward the right hemisphere (Belin et al.
2000). A later study showed that these activations were specific to human vocalizations, and not
elicited by cats’ or other species’ vocalizations (Fecteau et al. 2004), suggesting that voice-specific
circuitry is also species specific.
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Similar circuitry exists in macaques. Perrodin et al. (2011) used functional magnetic resonance
imaging (fMRI) to isolate voice-specific regions in rhesus macaques, and then used electrodes
to record from individual neurons in this region. They found a considerable proportion of cells
that responded much more to macaque voices than to environmental sounds or nonconspecific
vocalizations, localized mainly in the anterior superior temporal plane, just above the STS. Similar
studies in other primate species also reveal cells and regions apparently specialized for conspecific
vocalizations (Poremba et al. 2004, Wang & Kadia 2001). It thus seems likely that human voice-
specific regions have direct homologs in other primates, and had already evolved in our LCA with
other primates.

Voice-selective regions, in both humans and other primates, appear to be biased toward the
right hemisphere, whereas speech phonetic processing exhibits a left-hemisphere bias (Zatorre
et al. 1992). In animals we typically have little understanding of what would constitute “phonetic,”
meaning-changing cues in different vocalization types. One exception is a classic series of studies
examining call variants in Japanese macaques, Macaca fuscata. Two types of “smooth” coos are
distinguished by whether their peak frequency is early or late in the call, and Japanese macaques are
more sensitive to this relatively fine distinction than are other macaque species (Zoloth et al. 1979)
and show a right-ear (left-hemisphere) advantage for it that is absent in other species (Petersen
et al. 1984). To verify that this ear advantage truly reflects a cerebral asymmetry, Heffner & Heffner
(1986) made unilateral lesions to the right versus left auditory cortex, finding that only after left
lesions was the early/late distinction impaired. Thus, in this case of a relatively fine “phonetic”
distinction, macaque vocal perception also appears to be left-biased as for humans with speech.

In summary, the comparative neural data available regarding central auditory processing of
vocalizations paint a similar picture to the behavioral and peripheral data. The human auditory
system shares its fundamental structure and functional organization with that of other mammals.
Regarding voice-specific processing, we have solid data only for primates, but again, voice-selective
regions exist, suggesting that such regions constitute a primate synapomorphy at least. One recent
study on dogs suggests that the existence of voice-selective regions may extend more broadly
among mammals (Andics et al. 2014).

Despite a long tradition of argument holding that speech perception is special to humans,
putative specializations have been repeatedly rejected by comparative data, and there is little
empirical evidence supporting this hypothesis (despite continuing rear-guard defense; e.g., Trout
2003). Instead, the data lead to the conclusion that the primate auditory system had already evolved
to a “speech-ready” level of sophistication long before spoken language evolved in our species,
and that modern human speech perception relies on processing circuitry that in most relevant
essentials is shared with other primates, or with mammals more widely.

5. PERIPHERAL COMPONENTS OF SPEECH PRODUCTION

Despite excellent speech-perceptual abilities (Heimbauer et al. 2011, Savage-Rumbaugh et al.
1993) and good manual imitation abilities, apes are unable to learn to produce novel vocalizations
based on an auditory model, and no nonhuman primate has ever learned to speak (Kellogg 1968,
Yerkes & Yerkes 1929). Even with intensive training, a human-reared chimpanzee was able to
produce only three poorly intelligible approximations of human words (Hayes 1951). This con-
trasts sharply with the vocal learning capacity of humans (and some other nonprimate species).
What are the key determinants of this evident human autapomorphic ability?

Although humans possess several derived traits relevant to vocal production, the basic anatomy
and physiology of the human larynx and vocal tract are shared with other mammals. It has become
clear in the last two decades that the essential principles of the source-filter theory of speech
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production apply to vertebrate vocal production as well (Fant 1960, Taylor & Reby 2010). Vocal-
izations represent a “source” signal, typically generated in the larynx, that is subsequently filtered
by multiple vocal tract formants. Furthermore, the myoelastic aerodynamic theory of the laryngeal
source (Titze 2006, van den Berg 1958) applies to laryngeal mechanics in most other mammals
(e.g., Herbst et al. 2012) and also to the avian syrinx (Elemans et al. 2014), despite this avian
source organ representing a novel synapomorphy in birds. Thus, the essential physical princi-
ples of speech production familiar to phoneticians apply equally well to most other tetrapods (cf.
Suthers et al. 2016).

Beginning with the source, the larynx represents a tetrapod synapomorphy, with both its basic
anatomy and neural control shared among terrestrial vertebrates. However, the mammalian larynx
is unique in possessing a thyroid cartilage and a thyroarytenoid muscle contained within the vocal
folds. These mammalian synapomorphies give mammals a greater degree of control over vocal
fold dynamics than other tetrapods. Similarly, the possession of a fleshy tongue, lips, and a velum
is a mammalian synapomorphy. Also shared among mammals are the details of innervation and
the location of the brainstem motor nuclei controlling the larynx and articulators (Wall & Smith
2001). Thus, the ground plan of the human vocal tract was already laid out, in detail, in the
LCA of living placental mammals some 70 Mya, and we should consider any potential human
autapomorphies relative to this shared context (cf. Fitch 2010).

The best-known human autapomorphy is our lowered larynx. In most mammals, and human
newborns, the larynx is positioned in the back of the mouth directly beneath the velar port, enabling
them to raise the larynx into the nasal cavity, creating a sealed respiratory pathway from nostrils to
lungs. In the first year of life, the human larynx begins to retract from this plesiomorphic position,
and by adulthood we can no longer create such a seal (Sasaki et al. 1977). Thus, whereas newborn
mammals can breathe nasally while swallowing milk orally, human adults cannot breathe and
swallow simultaneously without choking. It is often stated that adult humans are unique in this
respect, but this appears to be a myth: Many vertebrates, including fish, birds, and mammals, can
choke to death on food (e.g., Rao et al. 1984, Skead 1980), and mammals must typically separate
the larynx from the velum when swallowing a bolus of solid food (Thexton & Crompton 1998),
putting them in danger of choking. I know of no empirical data indicating that humans suffer from
a higher risk of choking than any other meat-eating species (cf. Clegg & Aiello 2000).

Furthermore, X-ray videos show that the larynx is typically lowered away from the velum
during vocal production in mammals, including primates, ungulates, and carnivores (Fitch 2000b,
Fitch et al. 2016). These data indicate that the capacity to dynamically reposition the larynx lower
in the vocal tract is a mammalian plesiomorphy.

Nonetheless, the permanently descended larynx of adult humans is a derived feature of our
species, and the accompanying reconfiguration of vocal tract geometry has long been thought
to provide a greatly expanded phonetic range relative to other primates (Lieberman et al. 1969,
1972). These early estimates were inferred from dead animals, before the possibility of dynamic
vocal reconfiguration was appreciated. To address this shortcoming, my colleagues and I recently
made X-ray videos of long-tailed macaques performing a variety of vocal tract maneuvers including
vocalization, facial displays, chewing, and swallowing (Fitch et al. 2016). We used these radio-
graphic images to create a vocal tract model, strictly limited to empirically observed vocal tract
configurations, and then calculated the corresponding formant frequencies. The potential vowel
space of this new model, although slightly smaller than that of an adult human, was eight times
larger than previously estimated. Perceptual experiments showed that this extended vocal range
could generate at least five clearly distinguishable vowels, and intelligible speech. Thus, previous
estimates of nonhuman primate vocal potential were drastic underestimates, because they ignored
the dynamic flexibility of the mammalian vocal tract. This observation refutes the pervasive idea
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that the lowered human larynx is a necessary precondition for distinct speech, and clearly contra-
dicts the widespread belief that larynx position explains the inability of chimpanzees or other apes
to speak (e.g., Crystal 2003, Harley 2014).

Another relatively recent discovery is that a permanently descended larynx is not uniquely hu-
man. Although first discovered in two deer species (Fitch & Reby 2001), a permanently descended
larynx has now been observed in various other mammals, including lions and other Panthera cats,
koalas, and some ungulates (Charlton et al. 2011, Frey & Riede 2003, Weissengruber et al. 2002).
This repeated convergent evolution of a descended larynx suggests some consistent selective force,
and none of these other mammals produce speechlike variation in formant patterns. The current
leading hypothesis is that a descended larynx, by elongating the vocal tract and lowering all for-
mant frequencies, enables callers to mimic the formants of a larger animal and thus to acoustically
exaggerate their size (Charlton & Reby 2016, Fitch & Reby 2001). Playback experiments, using
resynthesized vocalizations, have verified this “size exaggeration” hypothesis in several species
(Charlton et al. 2012, Reby et al. 2005). Also consistent with this hypothesis is the finding that
human males, at puberty, undergo a secondary descent of the larynx (Fitch & Giedd 1999). Al-
though this does not increase phonetic range or intelligibility (de Boer 2010), it lowers formants,
which provide a key cue to body size (Pisanski et al. 2016). Thus, size exaggeration provides a
clear alternative hypothesis to phonetic range expansion as an adaptive function of laryngeal de-
scent. Finally, imaging studies of developing chimpanzees show that they too undergo a small but
significant descent of the larynx and hyoid during the first years of life, so early laryngeal descent
itself is not autapomorphic to humans (Nishimura et al. 2006).

In summary, the relevance of a descended larynx to human speech has been greatly overempha-
sized, and an unmodified primate or mammal vocal tract would be perfectly adequate to produce
intelligible spoken language. Although the early and marked descent of the human larynx remains
a derived human trait, relative to other primates, and undoubtedly has an influence on our species’
vocal range, it is not the Rubicon it is often suggested to be.

A second derived trait of the human vocal tract has received much less attention—our loss of
laryngeal air sacs (Fitch 2000a). All nonhuman great apes have large air sacs opening out of the
larynx and extending down into the chest (Hewitt et al. 2002). This great ape synapomorphy indi-
cates that our LCA with chimpanzees possessed laryngeal air sacs, which were lost in subsequent
hominin evolution—a human autapomorphy. Indeed, the recent discovery of a bullate hyoid in
Australopithecus, closely resembling that of chimpanzees, strongly suggests that early hominins
retained air sacs (Figure 2). Later fossil hyoids from, for example, Neanderthals closely resemble
those of modern humans, suggesting that the loss of air sacs is synapomorphic for the genus Homo
(cf. Fitch 2010).

Understanding why we lost air sacs requires a clear understanding of their function in other
apes, which remains elusive. Although multiple hypotheses are tenable (cf. Hewitt et al. 2002),
both modeling (de Boer 2009) and empirical (Harris et al. 2006) analyses suggest that one function
of air sacs is to lower formant frequencies, paralleling the acoustic effect of a descended larynx.
Air sacs could thus also have a size-exaggerating vocal function (de Boer 2009). It is therefore
plausible that the loss of air sacs in Homo was acoustically compensated for by a lowered larynx.
Because air sacs can harbor life-threatening infections (Guilloud & McClure 1969), their loss in
the Homo lineage may have been a preadaptation for, or response to, the emigration of our genus
from warmer African regions into the temperate Old World.

In summary, the peripheral vocal anatomy of our species, although following a basic ground
plan shared with other mammals, is autapomorphic relative to other primates in two respects: We
have lost laryngeal air sacs and gained a permanently descended larynx. Although both traits affect
vocal acoustics, neither is responsible for the inability of nonhuman primates to produce novel,
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Figure 2
Loss of laryngeal air sacs as inferred from fossil hyoid bones. Air sacs are balloon-like outpouchings extending
from the laryngeal vestibule out into the neck and chest region. Chimpanzees have large laryngeal air sacs
that invaginate into the swollen, concave “bulla” of the basihyoid bone (illustrated below each species). The
Dikika australopithecine’s hyoid bone also has such a bulla, implying that these hominids still possessed air
sacs. The bulla is lost in known hyoid bones from the genus Homo, including the Kebara Neanderthal,
implying that the common ancestor of Neanderthals and modern humans had already lost air sacs.
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learned vocalizations. To understand this core difference, we must turn to the neural control of
vocalization.

6. CENTRAL CONTROL OF VOCAL PRODUCTION

In contrast to the vocal periphery, where the two well-attested human autapomorphies are of
limited relevance to the human capacity to produce learned speech sounds, there are at least two
autapomorphies regarding the neural control of this apparatus that are of central significance:
(a) direct (monosynaptic) connections between cortex and vocal motor neurons and (b) extensive
novel, dorsal intracortical connections between motor and auditory cortices. I discuss each in turn,
arguing that together they underpin the rich capacity for vocal production learning characterizing
humans but not other primates ( Janik & Slater 2000).

The primary motor neurons that control the larynx and vocal articulators are located in the
brainstem, and send their axons to the muscles in these organs via cranial nerves shared with
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other mammals—the shared “brainstem chassis” for vocal motor output (Fitch 2010, Jürgens
2002). In all mammals, unlearned species-typical vocalizations (“innate calls”) are produced by a
subcortical neural network that feeds these motor neurons, centered on the periaqueductal gray
(PAG) ( Jürgens 1994). Stimulation of PAG neurons elicits natural-sounding innate calls in many
species, and humans born without cortex can still produce laughter, screams, and cries (the innate
calls of our own species). This core vocal circuitry receives only indirect input from the cortex,
especially the anterior cingulate and motor cortex. These indirect connections are presumably
responsible for the ability of all mammals to voluntarily inhibit or produce innate vocalizations.
Consequently, and contrary to widespread belief, all primates tested can be trained to voluntarily
produce or withhold vocalizations, albeit with difficulty (Adret 1992, Hage et al. 2016, Larson
et al. 1973)—a basic form of vocal learning (termed “call usage learning”; Janik & Slater 2000),
supported by this plesiomorphic neural circuitry.

What makes humans unusual is our capacity to produce novel, learned vocalizations beyond
the innate call repertoire. The current dominant hypothesis explaining this ability is that humans,
uniquely among primates, have an additional category of neural connections: direct monosynaptic
connections between neurons in the motor cortex and the primary motor neurons controlling
laryngeal musculature ( Jürgens 2002, Ploog 1988). This class of direct cortico-motor connections
is similar to those that monosynaptically connect the cortex to the motor neurons controlling the
fingers in apes and some monkey species, providing them with voluntary control over individual
finger movements (Lemon & Griffiths 2005). In addition, apes and some monkeys have direct
connections to the facial motor neurons controlling the lips and hypoglossal neurons controlling
the tongue ( Jürgens & Alipour 2002, Simonyan 2014). Consistent with this, apes have good
voluntary control and learning abilities over their lips and tongues (Marshall et al. 1999, Reynolds
Losin et al. 2008, Wich et al. 2009).

Thus, it is specifically direct connections to the laryngeal motor neurons controlling phonation,
in the posterior nucleus ambiguus of the medulla, that appear to be missing in other primates
( Jürgens 2002). The absence of these connections in nonhuman primates is demonstrated by
direct tracing studies in many primate species (Simonyan & Jürgens 2003). Their absence in great
apes is less clear, because apes are rarely subjected to such invasive neural tracing procedures.
The single tracing study on chimpanzees (Kuypers 1958b) reported direct connections to the
anterior nucleus ambiguus (from whence the cricothyroid muscle, involved in pitch control, is
innervated) but not the posterior portion controlling the phonatory muscles (cricoarytenoids).
Thus, the key neural connections mediating human voluntary laryngeal control appear to be
missing in chimpanzees.

Experimental tracing data are not available for humans, where we must rely on sponta-
neously occurring lesions, and the resulting axonal deterioration, for evidence, but two such
patient-based studies are consistent with the existence of direct monosynaptic connections in hu-
mans (Iwatsubo et al. 1990, Kuypers 1958a). Also consistent are the short delay times (∼10 ms)
from cortical stimulation to laryngeal muscular contraction in humans, which are comparable
to those characterizing known monosynaptic motor targets like the tongue (Rödel et al. 2003,
2004).

Finally, support for this “direct connections” hypothesis comes from convergent evolution in
those nonhuman species that are capable of vocal production learning, which include numerous
clades of birds and mammals (cf. Fitch & Jarvis 2013, Janik & Slater 2000). In both parrots and
songbirds, which are vocal-learning birds, direct connections to the syringeal motor neurons have
been documented that are not present in non-vocal-learning birds (Striedter 1994, Wild 1997).
Similar studies are possible, but not yet completed, in vocal-learning mammals such as seals or
bats (Knörnschild 2014, Reichmuth & Casey 2014, Vernes 2017).
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Figure 3
Neural autapomorphies associated with vocal motor control. (a) Direct connections. Humans appear to be
unique among primates in possessing direct, monosynaptic connections from motor cortex to the laryngeal
motor neurons in the medulla (black circle) that control the laryngeal muscles controlling phonation.
(b) Intracortical connections. Humans share with other primates a ventral pathway connecting auditory with
premotor cortex (dashed line); but humans have two additional dorsal pathways that are uniquely developed in
our species. The inner pathway is mature early and is hypothesized to play a role in audio–motor mapping
and vocal production learning; the other outer pathway matures later and is hypothesized to play a key role
in syntax processing.

In summary, a considerable amount of comparative data is consistent with the direct connec-
tions hypothesis. Direct monosynaptic connections from the motor cortex onto the primary motor
neurons controlling phonation, absent in other primates, thus constitute a key human autapomor-
phy for vocal control that evolved in hominins sometime after our divergence from chimpanzees
(Figure 3a).

A newly proposed potential neural autapomorphy, based on recent fMRI and comparative data,
is that humans have two laryngeal motor control regions rather than the single region found in
monkeys (Belyk & Brown 2017). The ventral region in humans appears to be homologous to that
of monkeys, but a dorsal region, from which direct cortico-motor connections in humans stem
(Simonyan & Horwitz 2011), may be unique to our species.

Of course, enhanced voluntary motor control alone is not sufficient for vocal production learn-
ing; the ability to map auditory representations onto a motor output is also required. This ability
appears to require dorsal intracortical connections from the auditory cortex via the parietal to mo-
tor cortex that are uniquely well developed in humans—an autapomorphic dorsal circuit (Friederici
2017, Rilling et al. 2008). Macaques, chimpanzees, and humans all possess a robust ventral in-
tracortical “what” pathway connecting the auditory to the prefrontal cortex, so this is a primate
synapomorphy. These connections are believed to support auditory categorization (Rauschecker
& Scott 2009). However, humans have an additional uniquely well-developed dorsal “how” path-
way, involved in speech planning and audio–vocal matching, which is only weakly developed in
other primates, where it seems to support spatial localization or “where” processing (Rauschecker
& Scott 2009).

The autapomorphic human pathway at the heart of the dorsal circuit, the arcuate fascicu-
lus, presumably supports the audio–vocal mapping process required to learn words, and matures
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early in development (Bräuer et al. 2011). Intriguingly, humans also have a second parallel dor-
sal pathway, which matures much later (Friederici 2017), connecting the temporal and parietal
cortex with Broca’s area, the most expanded cortical region known in humans (Schenker et al.
2010). Although Broca’s area appears to support morphology and syntax more than speech, it
is possible that it arose in evolution via an exaptive duplication of the vocal–motor pathway,
which would thus constitute a preadaptation for syntax (cf. Carstairs-McCarthy 1999, Fitch 2011).
Both components of the arcuate fasciculus thus constitute neural autapomorphies in our species,
but only the early-developing inner pathway appears to be directly relevant to speech and vocal
learning.

7. FOSSIL CUES TO SPEECH?

There have been many attempts over the years to draw inferences about speech and/or language
from fossils, but most rest on a weak comparative foundation (Fitch 2009b). The most clearly
cognitively relevant data come from braincase volumes, which demonstrate that brain sizes in
australopithecines, who already walked upright, were still within the ape range (Holloway et al.
2004). A large increase occurred with Homo erectus, and brain size continued to increase in our
genus until reaching a maximum in Neanderthals and some archaic Homo specimens. But any
inferences that can be derived about language abilities from brain size are tenuous because even
microcephalic humans can have normal language; language depends more on specific circuitry
than overall brain size (Lenneberg 1967).

Another potential fossil cue is the size of the thoracic spinal canal, which contains motor neurons
controlling intercostal breathing (but not diaphragmatic breathing). This canal is enlarged in
humans relative to apes (MacLarnon & Hewitt 2004), potentially reflecting superior breath control
in our species (although I know of no behavioral evidence for this superiority). The canal remained
small in australopithecines and Homo ergaster but had enlarged to modern size in Neanderthals,
which is hypothesized to reflect an increase in breath control important for speech (MacLarnon &
Hewitt 2004). It may also be relevant to singing, which requires finer breath control than speech
(cf. Fitch 2009b).

Other proposed fossil cues have fared less well. Basicranial angle was once proposed to provide
a cue to larynx height (George 1978), but this correlation does not exist in developing humans
(Lieberman et al. 2001) or other mammals with descended larynges. Hypoglossal canal volume,
potentially an indicator of tongue control (Kay et al. 1998), turns out not to reflect the size of
the hypoglossal nerve within it, and overlaps considerably between apes and humans ( Jungers
et al. 2003). Hyoid bone anatomy, as discussed above, was chimpanzee-like in Australopithecus but
already modern in Neanderthals, providing an indication of when air sacs were lost, but little
more (Alemseged et al. 2006, Arensburg et al. 1990). Nor do fossilized ear ossicles, also discussed
above, provide convincing evidence of speech-related auditory changes, despite previous claims
(Martı́nez et al. 2004). Thus, despite decades of research and debate, fossil cues remain quite
inconclusive, although when taken together they suggest that the genus Homo contained the first
hominins in which potentially speech-related changes occurred.

8. GENETIC UNDERPINNINGS OF SPEECH

I end with a brief discussion of the genetic basis for speech (for more detail, see Fisher 2017,
Fisher & Vernes 2015, Pääbo 2014). Nothing is currently known about the physiological or
genetic determinants of laryngeal descent or air sac loss, so I focus on the genetic determinants of
neural mechanisms, where exciting progress has been made in the last two decades.
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By far the best-known gene involved in human vocal control is FOXP2, a transcription factor
(see Section 2) that is found in all vertebrates but exists in modified form in humans. The gene
was discovered thanks to a large British family in which this gene is damaged; family members
with a damaged FOXP2 allele show severe developmental speech control deficits as their core
symptom (Vargha-Khadem et al. 2005). Detailed research shows that the problem is quite specific
to oromotor sequencing control, including speech and sequences of nonspeech oral actions (contra
early erroneous claims, based on cursory examination, of a “grammatical” deficit; Gopnik 1990).
Affected family members appear to have normal singing ability (and thus preserved laryngeal
control; Alcock et al. 2000) and other motor abilities (e.g., hand control for signed language;
Watkins et al. 2002a). They also have more-subtle perceptual deficits that may be secondary to
their production problems. Genetic analysis of this family led to the discovery and sequencing of
the FOXP2 gene (Fisher et al. 1998, Lai et al. 2001).

Once the human gene was isolated, it was rapidly sequenced in other species. It quickly became
evident that the protein product of FOXP2 is generally highly conserved among mammals, but
that the human version differs from that of chimpanzees in two amino acids (Enard et al. 2002).
With the exception of clinical cases, this derived human version is shared by all humans around the
world: It is a genetic human autapomorphy showing precisely the comparative pattern expected
of a gene involved in human speech and language.

The full panoply of modern genetic methods is now being utilized to discover the detailed
function of FOXP2. The first steps were to damage or suppress the gene’s expression in animal
models and to insert the humanized version of the gene into genetically engineered mice (Enard
et al. 2009, French et al. 2007, Groszer et al. 2008). These studies demonstrated subtle differences
in motor learning, but little or no effect on vocalizations—not surprisingly, because mice are
not vocal production learners (some subtle potential effects on newborn pup calls do not extend
later in development; Hammerschmidt et al. 2015), although more recent work suggests that Foxp2
knockout may also have an effect on motor development in mice (Castellucci et al 2016). However,
investigations of vocal learning songbirds showed that FOXP2 and its close relative FOXP1 do
play an important role in song learning in zebra finches (Haesler et al. 2007, Wohlgemuth et al.
2014)—another example of deep homology in which a convergently evolved trait (vocal production
learning in birds and humans) depends on a homologous developmental gene, FOXP2 (Fitch 2009a,
Scharff & Petri 2011).

Brain imaging studies in humans suggest that FOXP2 damage has both a general disruptive
effect on the cortical machinery of speech production and more specific effects within the basal
ganglia (Watkins et al. 2002b). Comparisons of humanized and wild-type mice allow a precise
dissection of these effects: The human FOXP2 allele leads to increased complexity in the dendritic
arbors of medium spiny neurons in the striatum in the basal ganglia (Enard et al. 2009). These
changes appear to affect the balance between hippocampal- and striatal-based motor learning,
leading to earlier “proceduralization” of motor knowledge in humanized mice (Schreiweis et al.
2014). Ideally, similar genetic experiments will be carried out in mammalian vocal learners (e.g.,
bats or seals) to investigate what this might mean for vocal learning in particular. Intriguingly, bats
show uniquely extensive interspecific variation in the FOXP2 gene (Li et al. 2007), but the neural
and behavioral significance of this variation remains unknown, providing an important rationale
for investigations of vocal learning in bats (Vernes 2017).

Perhaps the most exciting development concerning FOXP2 came when the gene was sequenced
in Neanderthals, using DNA recovered from fossils (Krause et al. 2007). This research showed
that Neanderthals shared the derived version of the human allele, producing an autapomorphic
protein identical to our own. Given the importance of FOXP2 in vocal development and sequenc-
ing, this finding strongly suggests that the common ancestor of humans and Neanderthals (along
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with Denisovans, another extinct hominin) had already evolved complex vocal learning abilities
comparable to our own, presumably supporting speech in this extinct ancestor who lived about
500,000 years ago (Pääbo 2014). However, in a recent twist, high-coverage sequencing revealed
a human-specific difference in a noncoding regulatory region of the FOXP2 gene, absent in Ne-
anderthals, suggesting that there was further, later refinement of FOXP2 expression unique to
our species (Maricic et al. 2013). In any case, the new possibility of testing hypotheses about the
timing of particular evolutionary changes, using paleo-DNA, is an exciting and promising new
tool in our empirical arsenal for understanding language evolution (cf. Fitch 2017).

Unfortunately, FOXP2 remains the only well-understood gene of the many genetic changes that
presumably underlie the phenotypic changes underlying human speech and language. For example,
the genetic underpinnings of either the direct cortico-motor or intracortical connections involved
in human vocal control are virtually unknown. However, detailed comparisons of neural gene-
expression patterns in songbirds and humans suggest multiple intriguing parallels (cf. Pfenning
et al. 2014). The corresponding connections in birds involve axon-guidance genes in the
SLIT/ROBO family, which has also been implicated in human dyslexia (Paracchini et al. 2007,
Wang et al. 2015). Regarding intracortical connections, studies of songbird brain develop-
ment reveal a central role for cadherin expression during the establishment of analogous con-
nections between song-related brain regions, which may potentially be relevant to human di-
rect connections. Finally, a recent hypothesis that new song nuclei are generated via gene
duplication and divergence provides an attractive, if still speculative, hypothesis for the pro-
cess that generated the two laryngeal motor regions found in humans (Belyk & Brown 2017).
Crucially, as the genetic underpinnings of speech-related traits become better understood, we
can rapidly check, for each candidate gene, whether novel alleles were shared with Nean-
derthals (whose entire genome is already sequenced) and thus derive increasingly strong in-
ferences regarding Neanderthal speech abilities. Thus, genetic data perhaps provide the most
promising and exciting empirical pathway for future research on the biology and evolution of
speech.

9. SUMMARY

Comparative data acquired over the past two decades provide a sharper picture of both the shared
plesiomorphic foundations of speech and key autapomorphic differences of humans relative to
our nearest primate relatives. These human autapomorphies constitute key ingredients of the
FLD—derived features that must have evolved in the last six million years since our divergence
from chimpanzees. Overall, auditory perception appears to be based on mechanisms shared with
other species, and the traditional hypothesis that speech perception is special to humans is not
well supported. Rather, it seems that the basic circuitry required for auditory speech perception
was already present in our mammalian ancestors long before speech evolved.

In contrast, regarding speech production, several clear autapomorphies (derived traits distin-
guishing humans from other apes) have been identified:

1. the loss of laryngeal air sacs;
2. the marked descent, during childhood, of the larynx and tongue base;
3. direct neural connections between the motor cortex and the motor neurons involved in

phonation;
4. a massive expansion of dorsal intracortical connections spanning the auditory and motor

cortices; and
5. a unique, derived form of FOXP2, shared by all nonclinical humans, that differs from that

of chimpanzees.
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A sixth potential autapomorphy remains preliminary: a novel cortical region devoted to laryngeal
motor control (potentially associated with item 3). Similarly, the vast expansion of Broca’s area,
which may be tied to item 4, might be considered an independent human autapomorphy (although
perhaps more concerned with syntax than speech; Friederici 2017).

Since I first reviewed the evolution of speech (Fitch 2000a), there have been several areas of
major progress. The value of an explicitly comparative approach, based on a wide range of species,
has been increasingly recognized. The hypothesis that the principal phenotypic changes required
for the evolution of speech were neural, rather than anatomical components of the periphery, is
becoming more widely accepted.

More specifically, the loss of air sacs can be dated, on the basis of fossil hyoid bones, roughly to
the transition between Australopithecus and the genus Homo. The origin of our derived FOXP2 allele
can be dated, using paleo-DNA, to at latest our common ancestor with Neanderthals, roughly half
a million years ago. Direct monosynaptic cortico-motor neurons have evolved, convergently, in
songbirds and parrots, supporting the hypothesis that such connections are required for complex
vocal learning. A descended larynx has evolved convergently in multiple mammalian species,
demonstrating that this change can serve functions having nothing to do with speech; the leading
hypothesis concerning the adaptive role of a descended larynx in mammals (including adult male
humans) is that it exaggerates acoustic indicators of body size. Genes involved in audition and the
FOXP2 gene involved in vocal control provide examples of deep homology, where homologous
genes have been harnessed to support the development of convergently evolved traits. Finally, the
modern ability to recover DNA from fossils, and to combine these data with genetic studies in
living humans to test hypotheses about when particular abilities or traits evolved, has already been
demonstrated for FOXP2, and we can anticipate further exciting progress in this direction in the
coming years.

In conclusion, in recent decades the evolution of speech has become the best-understood
component of language evolution. Although speech is only one possible output modality for
language (sign and writing are prominent alternatives), it provides a model for how the comparative
approach could fuel progress in more central components of human language, including syntax,
semantics, and pragmatics (cf. Fitch 2017).
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