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Abstract

Distributional semantics is a usage-based model of meaning, based on the
assumption that the statistical distribution of linguistic items in context plays
a key role in characterizing their semantic behavior. Distributional models
build semantic representations by extracting co-occurrences from corpora
and have become a mainstream research paradigm in computational linguis-
tics. In this review, I present the state of the art in distributional semantics,
focusing on its assets and limits as a model of meaning and as a method for
semantic analysis.
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1. DISTRIBUTIONAL SEMANTICS: FROM USAGE TO MEANING

Distributional semantics (DS), also known as vector space semantics, is a usage-based model of
meaning, based on the assumption that the statistical distribution of linguistic items in context plays
a key role in characterizing their semantic behavior. Its main focus is the lexicon: DS is primarily an
empirical method for the analysis of lexical meaning (but see Section 5.2 for distributional models
of compositional semantics). DS offers both a model to represent meaning and computational
methods to learn such representations from language data. Given the ever-increasing availability of
digital texts, distributional models can rely on huge amounts of empirical evidence to characterize
the semantic properties of lexemes. Distributional representations are built from text corpora as
samples of language usage and offer new ways to investigate the interplay between meaning and
contexts, and to tackle the dynamicity and plasticity of meaning.

In this review, I present the state of the art in DS mainly from a linguistic perspective. Therefore,
I focus on its assets (and limits) as a model of meaning and as a method for semantic analysis, leaving
aside its applications in natural language processing (NLP). Jurafsky & Martin (2008) and Turney
& Pantel (2010) offer surveys on DS from a more computational perspective; for other general
introductions to DS, see Lenci (2008), Erk (2012), and Clark (2015).

2. THE DISTRIBUTIONAL HYPOTHESIS

The theoretical foundation of DS has become known as the distributional hypothesis (DH):
Lexemes with similar linguistic contexts have similar meanings. The root of the DH lies in the
distributionalism advocated by American structural linguists, in particular by Harris (1954, p. 156),
who argued that “difference of meaning correlates with difference of distribution.”

Distributional models of meaning have also been explored in psychology and cognitive science.
A strenuous supporter of the importance of linguistic distributions in shaping semantic represen-
tations was Miller (1967), who considered Harris’s distributional analysis a method to provide an
empirical foundation for the notion of semantic similarity (see the sidebar titled Historical Notes).
A definition of semantic similarity in distributional terms was more explicitly theorized by Miller
& Charles (1991, p. 3), who conceived it as a “function of the contexts in which words are used.”
DS is not only a method for lexical analysis but also a theoretical framework to build computational
models of semantic memory (McRae & Jones 2013) that assume “a formal cognitive mechanism
to learn semantics from repeated episodic experience in the linguistic environment (typically a
text corpus)” ( Jones et al. 2015, p. 239).

An essential contribution to the development of distributional semantics has come from the
vector space model in information retrieval (Salton et al. 1975), which represents a collection of
documents with a matrix whose rows are vectors corresponding to lexical items and whose columns

HISTORICAL NOTES

One of the first appearances of the term “distributional semantics” is by Garvin (1962), who used it to refer to
a research program in machine translation inspired by Harris’s distributionalism. The development of DS was
also indirectly but strongly influenced by the later writings of Wittgenstein (1953) and by the contextual view of
meaning advocated by Firth (1957), which prompted research on collocations in corpus linguistics. Vector-based
representations of meaning, like those later adopted in DS, were pioneered in psychology by Osgood (1952), who
defined the semantic system as a semantic space of n-dimensional feature vectors representing concepts (however,
the dimensions of Osgood’s semantic spaces were not corpus based).
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Figure 1
Distributional vectors of the lexemes car, cat, dog, and van.

are vectors corresponding to documents, and each matrix entry records the occurrences of a lexical
item in a document. Since its conception, the vector space model has also been used to identify
semantically associated words by measuring the similarity of their corresponding vectors. While
DS continued to be pursued in information retrieval, it was virtually ignored in computational
linguistics until the early 1990s, because of the dominance of formal and logic methods. The
new empiricist turn and the emergence of statistical NLP, together with the availability of larger
corpora and faster computers, favored a growing interest in DS, which has become a mainstream
research paradigm in computational linguistics.

3. DISTRIBUTIONAL REPRESENTATIONS

The DH states that the semantic similarity of lexical items is a function of their distribution in
linguistic contexts. Distributional representations operationalize this assumption by providing a
mathematical encoding of the distributional properties of lexemes. The distributional represen-
tation of a lexical item is typically a distributional vector representing its co-occurrences with
linguistic contexts—hence the name vector space semantics.

Vectors have geometrical interpretations: Vectors with n components define points (or arrows)
in n-dimensional spaces. Therefore, distributional representations are geometrical representations
of the lexicon in the form of a distributional vector space. The positions of lexemes in a distribu-
tional semantic space depend on their co-occurrences with linguistic contexts. Figure 1 represents
the lexemes car, cat, dog, and van in a three-dimensional vector space (vectors are marked in bold).
Semantic representations are typically couched in symbolic terms and meanings are represented
with symbols of some formal metalanguage (e.g., first-order logic, semantic networks, frames,
feature structures). Symbolic semantic representations are therefore discrete and categorical. Dis-
tributional representations are instead graded and distributed, because information is encoded in
the continuous values of vector dimensions.

3.1. Context Types

Distributional representations differ with respect to the way linguistic contexts are defined
(Table 1). The arguably most common type of context is the set of collocates of a target
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Table 1 Examples of co-occurrences extracted from the same text fragment for the target know
with different context types

Firth (1957): [You shall know a word] by the company it keeps!a

Context types Co-occurrences

Undirected window-based collocate word

Directed window-based collocate 〈R, word〉b
Dependency-filtered syntactic collocate word

Dependency-typed syntactic collocate 〈obj, word〉c
Text region Firth (1957)

aYou, shall, and a are treated as stop words and not listed as collocates.
bR indicates that the context lexeme appears to the right of the target.
cThe context lexeme is typed with the syntactic dependency (e.g., direct object) linking it to the target.

lexeme, that is, the “company” of context lexemes co-occurring with the targets (Firth 1957).
The context lexemes are a subset of the corpus vocabulary, possibly coinciding with the targets.
It is also customary to filter out words that are not informative from the semantic point of view.
These so-called stop words include the most frequent lexemes in any corpus, such as grammatical
function words.

The kind of co-occurrence relation between target and context lexemes determines different
types of collocates and distributional representations. The window-based collocates of a target t are
context lexemes that occur within a certain linear distance from t specified by a context window.
This is the most common way to characterize lexical collocates and is directly derived from
the Firthian tradition of collocation analysis. Undirected collocates do not distinguish between
context lexemes appearing to the left and to the right of the target, whereas directed collocates
treat lexemes appearing to the left and to the right of the target as different contexts. The size
of the context window significantly affects the type of collocates that are extracted for a given
target. No theoretical principle exists to determine the best context window, which is therefore a
parameter to be fixed empirically. Window-based collocates are the most popular kind of linguistic
contexts in DS, because they are extremely simple and fast to extract and do not require deep
linguistic processing of the training corpus (even a simply tokenized text may suffice). By contrast,
window-based collocates do not take into account linguistic structure, because context windows
are viewed as sums of independent words, ignoring syntactic information. This characterization
of linguistic contexts, known in the literature as the bag of words model, provides a shallow
representation of their content. In Harris’s (1954, p. 156) words, “language is not merely a bag of
words.”

The syntactic collocates of a target t are lexemes that have a syntactic relation with t. The stan-
dard way to identify syntactic collocates in DS is in terms of dependency relations. In dependency-
filtered collocates, syntactic dependencies are used only to define the syntactic collocates, without
entering into the specification of the contexts themselves: Identical lexemes linked to the target by
different dependency relations are mapped onto the same context. In dependency-typed collocates,
syntactic dependencies are instead encoded in the contexts. On one hand, syntactic collocates are
attractive because they take into account the linguistic structure of contexts; on the other hand,
they need to be extracted from dependency-parsed corpora. In general, the question of whether
syntactic information provides a real advantage over bag-of-words representations of contexts is
still open and highly dependent on the semantic task (Kiela & Clark 2014, Lapesa & Evert 2017).

The distributional properties of lexical items are also represented with the texts in which they
occur. A (text) region is any uniquely identifiable text sample: book chapters, web pages, or simply
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entry in the ith row
and j th column of A

Zipf ’s law: the
frequency of a word,
F (w), is inversely
proportional to its
rank, r(w), given the
constants C and a :

F (w) = C
r(w)a

text portions of any fixed size (Table 1). This approach stems directly from the vector space model
in information retrieval (see Section 2). Texts can be regarded as episodes (Landauer & Dumais
1997) that become associated with the words encountered therein. Lexemes are thus similar to
the extent that they appear in the same episodes.

3.2. Building Distributional Representations

The basic method of building distributional vectors consists of the following procedure:

� co-occurrences between lexical items and linguistic contexts are extracted from a corpus and
counted;

� the distribution of lexical items is represented with a co-occurrence matrix, whose rows
correspond to target lexical items, columns to contexts, and the entries to their co-occurrence
frequency;

� raw frequencies are then usually transformed into significance weights to reflect the impor-
tance of the contexts; and

� the semantic similarity between lexemes is measured with the similarity between their row
vectors in the co-occurrence matrix.

Suppose we have extracted and counted the co-occurrences of the targets T = {bike, car, dog,
lion} with the context lexemes C = {bite, buy, drive, eat, get, live, park, ride, tell} in a corpus. Their
distribution is represented with the following co-occurrence matrix MT ×C , in which mt,c is the
co-occurrence frequency of t with c:

bite buy drive eat get live park ride tell

(1)

bike
c ar
dog
lion

⎛
⎜⎜⎜⎝

0 9 0 0 12 0 8 6 0
0 13 8 0 15 0 5 0 0
0 0 0 9 10 7 0 0 1
6 0 0 1 8 3 0 0 0

⎞
⎟⎟⎟⎠

Matrix 1, with rows labeled with target lexemes and columns with context lexemes, is called a
word-by-word co-occurrence matrix. A co-occurrence matrix whose columns are labeled with
text regions is referred to as a word-by-region matrix.

One of the main tenets of DS is that co-occurrence frequency is a crucial clue to estimate the
importance of distributional data in characterizing a target lexeme. However, weighting distri-
butional pairs with their raw frequency is not the optimal solution. The problem lies in the fact
that frequency distributions of lexemes follow Zipf ’s law and are highly skewed, with few very
frequent lexical items and a large number of extremely rare ones. Distributional representations
use various forms of weighting functions to overcome the problems of raw frequencies and to
assign higher weights to co-occurrences that are more informative about the content of the target
lexemes. The most common weighting function in DS is positive pointwise mutual information
(PPMI) (Bullinaria & Levy 2007):

(2) PPMI(t, c ) = max
(

0, log2
p(t, c )

p(t)p(c )

)
.

PPMI measures how much the probability of a target–context pair estimated in the training
corpus is higher than the probability we should expect if the target and the context occurred
independently of one another. Matrix 3 contains the PPMI weights computed from the raw co-
occurrence frequencies in matrix 1:
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bite buy drive eat get live park ride tell

(3)

bike
c ar
dog
lion

⎛
⎜⎜⎜⎝

0 0.50 0 0 0 0 1.09 1.79 0
0 0.80 1.56 0 0 0 0.18 0 0
0 0 0 2.01 0 1.65 0 0 2.16

2.75 0 0 0 0.26 1.01 0 0 0

⎞
⎟⎟⎟⎠

For other types of weighting functions used in DS, see Curran (2003), Evert (2008), Turney &
Pantel (2010), and Kiela & Clark (2014).

The distributional similarity between two lexemes u and v is measured with the similarity
between their distributional vectors u and v. Once we have computed the pairwise distributional
similarity between the targets, we can identify the k nearest neighbors of each target t, that is, the
k lexical items with the highest similarity score with t. The cosine is the most popular measure of
vector similarity in DS:

(4) cos(u, v) = u · v
||u||||v|| =

∑n
i=1 uivi√∑n

i=1 u2
i

√∑n
i=1 v2

i

.

The cosine ranges from 1 for identical vectors to −1 (0, if the vectors do not contain negative
values): The lower the cosine is, the lower the vector similarity will be. The following similarity
matrix reports the cosines between the row vectors in matrix 3:

(5)

bike 1
car 0.16 1
dog 0 0 1
lion 0 0 0.17 1

bike car dog lion

For other types of vector (dis)similarity measures, see Manning & Schütze (1999), Curran (2003),
Bullinaria & Levy (2007), and Kiela & Clark (2014). Weeds et al. (2004) evaluated the effects of
various measures on a word’s distributional neighbors.

3.3. Explicit and Implicit Distributional Vectors

The distributional representations produced by co-occurrence matrices have three main proper-
ties: (a) Each vector dimension represents a (weighted) count of the co-occurrence of lexemes with
a specific context, (b) vectors are high dimensional, as the number of contexts in language data
tend to be very large, and (c) because of the Zipfian distribution of co-occurrence data, vectors are
sparse, which means that most of their dimensions are zero. Following Levy & Goldberg (2014b),
I refer to this kind of representation as an explicit distributional vector.

High-dimensional explicit vectors miss important generalizations in distributional data. Be-
cause they regard each context as a distinct feature, they do not take into account the fact that
contexts may be very similar and strongly correlated with one another. Moreover, explicit vectors
suffer from the fact that many possible co-occurrences remain unobserved in corpora regardless
of their size, simply because of the skewed data distribution. In order to overcome these prob-
lems, lexemes can be represented with a different kind of distributional vector such that (a) the
dimensions correspond to k latent features extracted from co-occurrences, (b) the number of latent
features, typically on the order of a few hundreds, is much smaller than the original number of
linguistic contexts, and (c) the vectors are dense, because most of the components are nonzero.
Because there is no direct correspondence between vector features and linguistic contexts, I refer
to such a representation as an implicit distributional vector.
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SINGULAR VALUE DECOMPOSITION

The most popular feature extraction algorithm in distributional semantics is singular value decomposition (SVD),
which factorizes an m× n co-occurrence matrix M into the product of three other matrices, where z = min(m, n):

M m×n = U m×z�z×z(V n×z)T .

The row vectors of U are called left singular vectors; the row vectors of V , right singular vectors. �z×z is a square
diagonal matrix containing singular values, sorted in descending order. The columns of the matrices U and V
represent latent dimensions in the original data, ordered by the amount of variance they account for. By deleting
all but the first k singular values and singular vectors (with k typically ranging between 100 and 300), we arrive at a
new matrix M̂ that is the best approximation of M in a reduced k-dimensional space, while retaining the majority
of the variation in the data. This reduction is known as truncated SVD. To compute similarities between lexemes in
the reduced space, we discard the V matrix and retain only the U and � matrices. Their product yields a reduced
matrix M ′

T ×D with size m× k:

M ′
T ×D = U m×k�k×k.

The row vectors of M ′ are implicit distributional vectors with latent semantic dimensions D = {d1, . . . , dk}. Alter-
natively, � can be dropped and the row vectors of U directly used to represent the targets. Levy et al. (2015a) show
that the latter solution improves the quality of semantic representations.

Implicit vectors are created with dimensionality-reduction techniques that map the data in
the high-dimensional space of linguistic contexts to a space of fewer latent dimensions. This
process is also called feature extraction, because the dimensions of the reduced space are new
features extracted from the original data. The main assumption is that co-occurrences collected
from corpora are noisy data that hide more abstract semantic structures. Feature extraction aims
to uncover such a latent structure and to eliminate the surface noise (Deerwester et al. 1990).
Thus, instead of representing target lexemes using the linguistic contexts they co-occur with, we
represent them in a latent semantic space of implicit vectors with a much smaller set of abstract
features discovered in distributional data. The most common way to create implicit distributional
representations is to map the co-occurrence matrix onto a reduced latent semantic space with a
matrix reduction algorithm, such as singular value decomposition (SVD) (see the sidebar titled
Singular Value Decomposition), principal components analysis (PCA), and nonnegative matrix
factorization (NMF). For other ways to build implicit distributional vectors, see Section 4.

An important difference between explicit and implicit representations is the interpretability of
their components. In explicit vectors, dimensions have a straightforward interpretation because
there is a one-to-one correspondence between features and linguistic contexts. By contrast, it is
usually difficult (if not impossible) to assign to each latent feature a clear semantic value.

4. DISTRIBUTIONAL SEMANTIC MODELS

The parameters to be determined when building distributional representations include the se-
lection of target lexemes, the definition of context type, the choice of weighting scheme, the
application of dimensionality reduction, and the choice of a vector similarity metric. A distri-
butional semantic model (DSM) is a particular configuration of the parameters used to build
distributional representations. The two major dimensions of separation between the various exist-
ing (and possible) models are (a) the type of context and (b) the method of learning distributional
vectors (Figure 2).
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Figure 2
A classification of distributional semantic models based on (a) context types and (b) methods to build distributional vectors.

The choice of context is one of the most important parameters of DSMs, and it strongly affects
the similarity relations they identify. A major contrast is between word models and region models,
as they represent two radically different approaches to determining semantic similarity. Word
models assume that two lexemes are similar if they tend to co-occur with the same collocates. By
contrast, region models assume that two lexemes are similar if they tend to co-occur in the same
texts. Region models therefore tend to identify semantic neighbors that are topically similar (i.e.,
belong to the same semantic domain or topic, like car and race) because they appear in documents
about the same arguments. Word models tend to emphasize neighbors that are attributionally sim-
ilar (i.e., share a number of common attributes, like car and van). The type of collocates can also
affect the shape of the semantic space. For instance, experiments have shown that narrow context
windows and syntactic collocates are best suited to capturing lexemes that are related by paradig-
matic semantic relations (e.g., synonyms and antonyms) or that belong to the same taxonomic
category (e.g., violin and guitar), because they share very close collocates (Sahlgren 2006, Bullinaria
& Levy 2007, Van de Cruys 2008, Baroni & Lenci 2011, Bullinaria & Levy 2012, Kiela & Clark
2014, Levy & Goldberg 2014a). Conversely, collocates extracted with larger context windows are
biased toward more associative semantic relations (e.g., violin and music), like region models.

The second dimension of variation among DSMs is the method to learn distributional represen-
tations. Matrix models (Table 2) are a rich family of DSMs that generalize the vector space model
in information retrieval (see Section 2). They are a subtype of so-called count models (Baroni
et al. 2014b), which learn the representation of a target lexeme by recording and counting its co-
occurrences in linguistic contexts. Matrix models arrange distributional data into co-occurrence
matrices. The matrix is a formal representation of the global distributional statistics extracted
from the corpus. The weighting functions use such global statistics to estimate the importance of
co-occurrences to characterize target lexemes. Matrix DSMs can represent lexemes with explicit
or implicit distributional vectors. The latter are learned by mapping the co-occurrence matrix onto
a new reduced space, typically using matrix factorization techniques such as SVD. Comparative
evaluations of the effects of various parameter settings in matrix DSMs have been reported by
Bullinaria & Levy (2007, 2012), Kiela & Clark (2014), and Lapesa & Evert (2014).
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Table 2 The most common matrix distributional semantic models

Model Description Reference

Latent Semantic Analysis (LSA) Word-by-region matrix, weighted with
entropy and reduced with SVD

Landauer & Dumais (1997)

Hyperspace Analogue of Language (HAL) Window-based model with directed collocates Burgess (1998)

Dependency vectors (DV) Syntactic model with dependency-filtered
collocates

Padó & Lapata (2007)

Latent relational analysis (LRA) Pair-by-pattern matrix reduced with SVD to
measure relational similarity

Turney (2006)

Distributional memory (DM) Target–link–context tuples formalized with a
high-order tensor

Baroni & Lenci (2010)

Topic models Word-by-region matrix reduced with
Bayesian inference

Griffiths et al. (2007)

High-dimensional explorer (HiDEx) Generalization of HAL with a larger range of
parameter settings

Shaoul & Westbury (2010)

Global vectors (GloVe) Word-by-word matrix reduced with weighted
least-squares regression

Pennington et al. (2014)

Abbreviation: SVD, singular value decomposition.

Tensor: a multiway
array whose order is
the number of indices
needed to identify its
elements; tensors
generalize vectors
(first-order tensors)
and matrices
(second-order tensors)

Matrix models such as latent semantic analysis (LSA), hyperspace analogue of language (HAL),
and dependency vectors (DV) directly implement the basic procedure to build distributional rep-
resentations described in Section 3.2. Other DSMs, by contrast, introduce extensions and variants
to the classical method. In order to measure relational similarity (i.e., word pairs linked by similar
semantic relations, like tulip–flower and dog–animal sharing the hypernymy relation), latent rela-
tional analysis (LRA) uses a pair-by-pattern co-occurrence matrix, with rows corresponding to
pairs of lexical items and columns to lexico-syntactic patterns linking them. Distributional mem-
ory (DM) is a generalized framework for DS that represents corpus data as ternary tuples (e.g.,
boy–drink–milk) formalized with a high-order tensor, from which different types of co-occurrence
matrices are derived to address a wide range of semantic tasks. Topic models and global vectors
(GloVe) introduce new methods to reduce the dimensionality of the co-occurrence matrix: Topic
models use latent Dirichlet allocation (Blei et al. 2003), a Bayesian probabilistic model, and GloVe
use weighted least-squares regression. Despite their popularity, matrix models have some draw-
backs. Dimensional reduction can be computationally quite onerous when applied to very large
matrices. Moreover, matrix DSMs lack incrementality because they rely on the global statistics
collected in the co-occurrence matrix. If new distributional data are added, the whole semantic
space must be rebuilt from scratch.

Random encoding models are another type of count DSMs: Rather than collect global co-
occurrence statistics into a matrix and then optionally reduce them to a dense vector, such models
directly learn low-dimensional implicit vectors by assigning each lexical item a random vector
that is incrementally updated depending on the co-occurring contexts. The most famous DSM
of this kind is random indexing (RI) (Kanerva et al. 2000, Sahlgren 2006), which accumulates
distributional vectors in an online fashion. If we use lexemes as contexts, RI assigns random index
vectors to the lexemes in the data, and adds the random index vectors of the neighboring lexemes
to the distributional vector for the target:

(6) ti ← ti−1 +
∑n

j=−n, j �=0 c j ,
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Embedding: in the
neural network
literature, any
information
“embedded” in a
low-dimensional
vector space. Broadly
speaking, all implicit
distributional vectors
are embeddings; in a
narrow sense, word
embeddings are
distributional vectors
built with neural
networks

where ti is the target distributional vector at step i , n is the extension of the context window, and
c j is a sparse k-dimensional random index vector (with δ randomly placed +1s and −1s) that acts
as a fingerprint of context term c j . The bound encoding of the aggregate language environment
(BEAGLE) model created by Jones & Mewhort (2007) is also based on random vectors, but
it encodes sequence information with circular convolution and auxiliary random vectors that
represent the position of the target word. Recchia et al. (2015) propose a simpler method to
encode linear order that extends RI with random permutations of the random index vectors to
reflect the position of context items.

Prediction models are a new family of DSMs that take a radically different approach to learning
distributional vectors. Instead of counting co-occurrences, prediction DSMs are neural network
algorithms that directly create low-dimensional implicit distributional representations by learning
to optimally predict the contexts of a target word. These representations are also commonly
referred to as (neural) word embeddings. There are many variations of DSMs that use neural
networks as processing models, ranging from simple recurrent networks (Elman 1990) to more
complex deep architectures (Collobert & Weston 2008). The most popular neural DSM is the
one implemented in the word2vec library, which uses the softmax function for predicting b given
a (Mikolov et al. 2013a,b):

(7) p(b |a) = exp(b · a)∑
b ′∈C exp(b′ · a)

,

where C is the set of context words and b and a are the vector representations for the context
and target words, respectively. This general model has two versions: continuous bag of words
(CBOW), which predicts a target word based on the context, and skip-gram with negative sam-
pling (SGNS), which predicts the context on the basis of the current word. Various types of
“linguistic regularities” have been claimed to be identifiable by neural embeddings (Mikolov et al.
2013c). For instance, the fact that king and queen have the same gender relation as man and woman is
represented in their embeddings’ offsets, so that the vector of one word (e.g., queen) can be recov-
ered from the representations of the other words by simple vector arithmetics (i.e., king−man+
woman).

Despite the increasing popularity of neural embeddings, the question of whether they are really
a breakthrough with respect to more traditional DSMs is far from resolved. The same linguistic
regularities captured by embeddings are also captured by matrix models with explicit distributional
vectors (Levy & Goldberg 2014b). Baroni et al. (2014b) report that prediction models outperform
count models in various semantic tests. However, when the parameters of the latter are carefully
tuned, no significant difference is observed between the two kinds of models (Levy et al. 2015a).
Mandera et al. (2017) also show that count and prediction models produce very similar results.
Moreover, when trained on smaller data sets some matrix models are even superior to neural
embeddings, which become competitive only when trained on many more data (Sahlgren & Lenci
2016). Future research might reveal a clear advantage of neural models, but at present the two
approaches do not substantially differ for the semantic aspects they are able to address. They are
simply alternative ways to build distributional representations.

5. RESEARCH QUESTIONS IN DISTRIBUTIONAL SEMANTICS

DS is based on a simple assumption: Semantic representations of lexical items can be built by
recording their distribution in linguistic contexts. However, whether statistical co-occurrences
alone are enough to address deep semantic questions, or whether they merely provide a shallow
proxy of lexical meaning, remains an open question. In other words, what is the real descriptive
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and explanatory adequacy of distributional representations of meaning? I explore this issue by
presenting some research themes that shed light on the potentialities and the current limits of
distributional models of meaning.

5.1. Semantic Similarity and Relatedness

Modeling semantic similarity is one of the main success stories of distributional models. This is
hardly surprising, because the DH itself is a claim about semantic similarity, which is inherently a
graded notion and therefore an ideal benchmark for distributional representations. The primary
outcome of DSMs is a continuous semantic space defined by mutual proximity relations among
lexical items.

Semantic similarity is the most common and basic means of testing the performance of distri-
butional models. DSMs are typically evaluated for (a) accuracy in multiple-choice synonym detec-
tion tasks like the one used in the Test of English as a Foreign Language (TOEFL) (Landauer &
Dumais 1997) and (b) correlation with human similarity ratings collected in data sets such as the
small RG65, used in the seminal study by Rubenstein & Goodenough (1965), and the much larger
and more recent WordSim-353 (Finkelstein et al. 2001), MEN (Bruni et al. 2014), and SimLex-
999 (Hill et al. 2015). Performance greatly varies depending on the data set and the model, but
DSMs can achieve perfect accuracy on the TOEFL (Bullinaria & Levy 2012) and a Spearman
correlation of 0.8 or better with similarity ratings. The performance of DSMs is often better than
that obtained with measures based on manually designed lexical resources like WordNet (Agirre
et al. 2009, Lofi 2015). DSMs also obtain very good results in semantic tasks that indirectly involve
semantic similarity, such as categorizing nouns (Baroni & Lenci 2010, Riordan & Jones 2011),
modeling semantic priming ( Jones et al. 2006, Mandera et al. 2017), and predicting patterns of
functional magnetic resonance imaging (fMRI) activation (Mitchell et al. 2008, Anderson et al.
2017). DS is routinely used in cognitive science to estimate semantic similarity, as an alternative to
the direct elicitation of humans’ ratings or to lexical resources (Keuleers & Balota 2015, Mandera
et al. 2015).

These positive results notwithstanding, the relationship between semantic similarity and DSMs
is much more complex and problematic than it appears prima facie. First, semantic similarity is itself
a very vague notion. We must distinguish semantic similarity, sensu stricto, as a relation between
words sharing similar semantic features, such as as car and van, from the broader notion of semantic
relatedness between words that are strongly associated, like car and driver (Budanitsky & Hirst
2006). These two types of relations have very different properties. Yet they are barely distinguished
by DSMs. Except for SimLex-999, the other data sets typically used for DSM evaluation contain
ratings about semantic relatedness, rather than genuine semantic similarity. Hill et al. (2015) show
that the performance of all DSMs significantly decreases when evaluated on SimLex-999, meaning
that DSMs tend to identify broadly related neighbors, rather than similar ones.

Most of DSM evaluation has focused on nouns. SimVerb-3500 is a large data set with similarity
ratings between verbs: Both count and prediction models achieve a very low correlation with human
ratings (not exceeding 0.4), and are often outperformed by nondistributional similarity measures
(Gerz et al. 2016). This finding reveals that DSMs show very uneven behavior depending on the
area of the lexicon, and that current distributional representations might be inadequate to deal
with the complexity of verb semantics.

An additional problem is that both semantic similarity and semantic relatedness are cover
terms for various types of lexical relations: hypernymy, antonymy, meronymy, locative relations,
and topical and other nonclassical relations (Morris & Hirst 2004). Moreover, these semantic
relations have very different inferential properties (Murphy 2003). For instance, John has a dog
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Table 3 Nearest neighbors in a CBOW ordered from left to right by similarity

Target Neighborsa

car truck, vehicle, driving, garage, drive, jeep, windshield, driver, drove, bike

smart dumb, clever, stupid, intelligent, pretty, enough, tough, you, think, cute

eat hungry, eating, ate, eaten, eats, food, meal, starving, lunch, delicious

aSee http://meshugga.ugent.be/snaut-english/ (Mandera et al. 2017).
Abbreviation: CBOW, continuous bag of words.

entails that John has an animal, because animal is a hypernym of dog, but does not entail that
John has a cat, because cat is a cohyponym of dog. In general, the semantic neighbors identified
by DSMs have multifarious relations with the target (Table 3), suggesting that DSMs provide
a quite coarse-grained representation of lexical meaning. Semantic relation discrimination is an
important area of research in DS, and some data sets, like BLESS (Baroni & Lenci 2011) and
EVALution (Santus et al. 2015), were designed specifically to test DSMs on this task.

Most research in this area has focused on hypernym identification (Shwartz et al. 2017). Un-
supervised approaches compute a score that is expected to be higher for hypernym pairs than for
negative instances. Each measure exploits some variation of the DH on the basis of either fea-
ture inclusion (Kotlerman et al. 2010, Lenci & Benotto 2012) or feature informativeness (Rimell
2014, Santus et al. 2014a), aiming to capture the fact that hypernyms are semantically broader
than hyponyms. Supervised models, by contrast, represent word pairs with a combination (e.g.,
concatenation or difference) of their distributional vectors, and train a classifier on the combined
vectors to identify hypernyms (Baroni et al. 2012, Roller et al. 2014, Weeds et al. 2014). Super-
vised models typically achieve better results, but Levy et al. (2015b) cast doubts on the explanatory
adequacy of such approaches.

Antonymy also represents a significant challenge for DSMs. Mohammad et al. (2013) have
shown that synonyms and antonyms are indistinguishable in terms of their degree of distributional
similarity (see the neighbors of smart in Table 3), because both tend to occur in similar contexts
(Miller & Charles 1991). Current approaches to determining antonymy range from identifying
contexts that are expected to be more discriminative of contrast (Turney 2008, Santus et al.
2014b) to using hybrid models in which DSMs are enriched with information extracted from
lexical resources (Yih et al. 2012). The results are promising, but still not fully satisfactory.

In summary, although the DH is couched in terms of similarity, DSMs are actually more
biased toward the much vaguer notion of semantic relatedness. The outcome of DSMs resembles a
network of word associations, rather than a semantically structured space—an important weakness.
Although these DSMs have proven useful in capturing various aspects of the mental lexicon, their
limitations in properly distinguishing different semantic relations greatly impair the utility of DS
in modeling logical inferences (Erk 2016). Whether more fine-grained semantic relations can be
identified with purely distributional methods is an open research issue.

5.2. Beyond the Lexicon: Compositional Distributional Semantics

A central aspect of human semantic competence is the ability to compose lexical meanings to
form the interpretation of a potentially unlimited number of complex linguistic expressions. For-
mal semantics provides a rigorous logico-mathematical model for semantic compositionality that
computes the truth conditions of a sentence as a function of (a) the interpretation of its lexical
items and (b) their structural relation with one another. DS has focused mainly on lexical similarity
relations, but semantic compositionality has attracted increasing attention in this area. In fact, DS
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could not be regarded as a general model of meaning unless it were able to provide a satisfactory
account of issues related to semantic compositionality.

The most common approach to compositionality in DS assumes that the distributional repre-
sentation of a complex expression is a vector, and uses linear-algebraic operations to project lexical
vectors to phrase vectors. The simplest form of vector combination is vector addition (Landauer
& Dumais 1997) or some extension thereof (Kintsch 2001). Mitchell & Lapata (2010) compare
several models based on vector addition and multiplication on a phrase similarity task, using
ratings elicited from native speakers about adjective–noun, noun–noun, and verb–object combi-
nations. Other models carry out composition in DS by representing lexemes and phrases with
matrices and tensors, rather than with vectors alone (Zanzotto et al. 2010, Socher et al. 2012).
In particular, the lexical function model aims to establish a direct link with Montague gram-
mar by proposing a linear-algebraic representation of type-theoretic objects (Coecke et al. 2011,
Baroni et al. 2014a, Grefenstette & Sadrzadeh 2015, Rimell et al. 2016). Arguments are vectors
and functions taking arguments (e.g., verbs) are tensors; the number of arguments determines
the order of tensors. Tensor-by-vector multiplication is the general composition method, as the
distributional equivalent of function–argument application in formal semantics. Adopting Mon-
tague’s idea that adjectives denote functions from the meaning of a noun onto the meaning of a
modified noun, Baroni & Zamparelli (2010) build the vector p of an adjective–noun phrase like
interesting book by multiplying a weight matrix B representing the adjective interesting by the noun
vector book. Their model learns a separate matrix for each adjective with partial least-squares
regression, using the dimensions of the vectors of the component nouns as independent variables
and the adjective–noun vectors as the dependent variables.

The lexical function model is an attempt to represent formal semantic operations with DS; it
produces interesting results when applied to adjective–noun modification (Vecchi et al. 2016, Asher
et al. 2016), but has great difficulties in scaling up to multiargument sentences. Estimating the
matrices and tensors for complex functional types such as transitive verbs can be very complex and
may encounter data-sparseness problems. Paperno et al. (2014) propose a practical approximation
of the lexical function model to address these limits, but it is hardly competitive with the much
simpler additive models (Rimell et al. 2016). Vector addition is not fully adequate as a compositional
operation, because it is commutative: If a sentence vector is the sum of its word vectors, A dog
bites a man has exactly the same interpretation as A man bites a dog. Still, simple additive or
multiplicative methods are very hard to beat by more complex distributional methods for semantic
compositionality (Blacoe & Lapata 2012).

Representing complex expressions with vectors has the advantage of making lexical items and
phrases directly comparable within the same vector space. The similarity between carnivore and the
phrase animal who eats meat (Rimell et al. 2016) can be measured by computing the cosine between
the respective vectors. Thus, the distributional approach to semantic similarity can be projected
from the lexical level up to the level of the sentence and text similarity (Bentivogli et al. 2016).
By contrast, it is doubtful whether representing the meaning of a sentence as a vector can capture
complex inferences like those accounted for by symbolic representations. Sentence similarity is
too shallow a task to test the adequacy of compositional semantic representations: Understanding
the meaning of a sentence entails understanding a whole range of inferences that are licensed
by it.

An alternative approach to compositional DS assumes that the representation of a sentence
is not a vector but rather a logical form containing distributional vectors of the content words
(Garrette et al. 2014, Asher et al. 2016, Beltagy et al. 2016). The aim is to exploit the complementary
strengths of formal semantics and DS. The former has notorious difficulties in dealing with the
richness, variability, vagueness, and gradience of lexical meaning (Boleda & Erk 2015, Boleda &
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Herbelot 2016), but comes with a mathematically well-defined inferential system. Conversely, DS
has very limited capabilities (if any) to account for inferences, but robust methods to learn fine-
grained lexical representations. Formal structures can therefore provide the logical scaffolding to
integrate lexical distributional representations into a full-fledged inferential model. Beltagy et al.
(2016) present a system in which sentences are represented with first-order logical forms that are
then used to perform inference with Markov logic, and DS is added to tackle near synonymy and
lexical entailment. Chersoni et al. (2016) represent a sentence interpretation with a complex feature
structure that formalizes a semantic frame including the distributional vectors of an event and its
arguments. Semantic composition is modeled as an incremental process of feature unification to
build the event represented by the sentence.

Research in compositional DS also deals with a broad range of phenomena that are especially
challenging for formal semantics, such as meaning variation in context, selectional preferences,
and coercion. Erk & Padó (2008) address the fact that, when words are composed, they tend to
affect one another’s meanings. The meaning of run in The horse runs is in fact different from its
meaning in The water runs (Kintsch 2001). Erk & Padó (2008) claim that words are associated with
various kinds of expectations (McRae et al. 2005), typical events for nouns and typical arguments
for verbs that influence one another when words are combined, thereby altering their meaning.
They model this context-sensitive compositionality by distinguishing the out-of-context vector
of a word w1 from its vector in the context of another word w2. The vector-in-context for w1 is
obtained by combining (via addition or multiplication) the vector of w1 with the vectors of the
expectations activated by w2. For instance, the vector-in-context assigned to run in The horse runs
is obtained by combining the vector of run with the vectors of the most typical verbs in which
horse appears as a subject (e.g., gallop, trot).

Selectional preferences are semantic constraints on the possible arguments of a predicate, and
are usually represented with symbolic semantic types. Erk et al. (2010) propose a distributional
model of selectional preferences in which the plausibility (i.e., thematic fit) of a noun n as an
argument of a verb v is measured with the similarity in vector space between n and a set of noun
exemplars occurring in the same argument role of v. Similarly, Baroni & Lenci (2010) measure the
thematic fit of n by comparing its vector with a “prototype” vector obtained by averaging over the
vectors of the most typical arguments of v. In both cases, the distributional measure of thematic
fit is highly correlated with human ratings. Lenci (2011) has extended this model to account for
the dynamic update of the semantic preferences of an argument, depending on how other roles in
the sentence are filled. For example, given the agent butcher, the expected patient of the verb cut
is likely to be meat, whereas given the agent coiffeur, the expected patient is likely to be hair. For
other research on this topic, see Sayeed et al. (2016) and Tilk et al. (2016).

The same type of approach has also been used to model some cases of coercion, in which
a predicate or argument meanings are adjusted to overcome a semantic preference violation
(Pustejovsky 1995, Asher 2015). Chersoni et al. (2017) show that a verb object thematic fit com-
puted with an incremental distributional model of sentence comprehension can reproduce the
reading times of metonymic sentences like The student began the book, in which a type clash be-
tween an event-selecting verb and an entity-denoting object triggers the recovery of an implicit
event, leading to extra processing costs. The same model can also identify the implicit event,
accounting for its dependence on the verb subject (e.g., in The student began the book, the covert
event is likely to be read, whereas in The author began the book, it is likely to be write). For a similar
approach, see Zarcone et al. (2012, 2013).

The lexicon is often regarded as the bottleneck for formal semantics, but compositionality is
surely the bottleneck for DS. How distributional representations can be projected from the lexical
level to the sentence or even discourse level remains an open issue. Formal semantics models
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rely on a clear definition of sentence meaning as truth conditions, but a clear understanding of
a sentence distributional representation is lacking. The straightforward solution is to interpret
sentence meaning as a vector, but doing so might not be sufficient to account for its inferential
potential. A promising research avenue consists of looking for a “division of labor” between
formal semantics and DS, representing sentences with logical forms enriched with distributional
representations of lexical items (Beltagy et al. 2016, McNally 2017). Other interesting synergies
could emerge from investigations of possible links between DS and dynamical formal semantic
models (e.g., Kamp & Reyle 1993, Veltman 1996), which characterize the semantic content of
linguistic expressions in terms of their context-change potential. The close connection between
context and meaning is an important element of commonality between dynamic semantics and
DS.

Most research on compositional DS has focused on providing a distributional model of classical
Fregean compositionality. Still largely unexplored is the possibility of investigating alternative ways
to build both compositional distributional representations, inspired by neuroscientific models
of sentence comprehension (Baggio et al. 2012), and usage-based models of language, such as
construction grammar (e.g., Goldberg 2006), which suggest that sentence meaning is built by
dynamically activating and unifying semantic information associated with linguistic constructions.
New perspectives can be achieved by investigating how to integrate DS, as a usage-based model
of meaning, into the Constructionist framework in order to model behavioral data about sentence
processing. For some preliminary results, see Chersoni et al. (2017) and Lebani & Lenci (2017).

6. CONCLUSIONS AND FUTURE CHALLENGES

DS is an active and lively research area in semantics, addressing a wide range of topics related
to meaning. In addition to those analyzed in this review, further research issues in which DS is
producing very interesting results include (a) the development of multimodal DSMs (Feng &
Lapata 2010, Bruni et al. 2014) that integrate corpus-derived features and features extracted from
images, which are also used to explore the interplay between linguistic and experiential infor-
mation; (b) the study of polysemy, which uses DSMs to induce and represent difference senses
from the distributional properties of lexical items (Schütze 1997, 1998, Heylen et al. 2015); and
(c) the analysis of semantic change, which involves applying DS to diachronic corpora (Hamilton
et al. 2016, Rodda et al. 2017) and investigating the change in productivity of syntactic construc-
tions (Perek 2016). DS is a framework for semantic analysis that can provide new answers to
classical semantic questions, as well as address problems that have often been ignored by other
models of the lexicon.

DS builds semantic representations from co-occurrence statistics extracted from corpora as
samples of language usage. In this way, DSMs are attuned to the large and multidimensional
variability attested in language. By contrast, distributional representations are highly sensitive to
the training corpus, as well as to the various parameters discussed above. Although this sensi-
tivity is often regarded as a serious limitation of DS, it is consistent with the fact that semantic
representations indeed depend strongly on context and vary across subjects and situations (Yee &
Thompson-Schill 2016)—a feature that is often overlooked by traditional semantic models, which
instead conceive lexical meaning as a largely static and invariant entity.

The real explanatory adequacy of DS as a model of meaning is far from clear. As discussed,
DS often provides a quite coarse-grained representation of semantic content. Several aspects of
meaning (e.g., quantification, intensionality, negation) are still unexplored and may lie beyond
its scope. DS relies on continuous distributed representations, whose features are derived from
corpus-based statistics. The limits of DS may arise from either of two factors: Some semantic
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facts might not be handled in terms of nonsymbolic representations, and/or they might not have
a correlate in distributional statistics harvested from corpus data. Both of these issues are worth
exploring in future research.

As a model of the mental lexicon, DS has often been criticized because meaning cannot be
reduced to co-occurrence statistics alone. At the same time, the importance of distributional data
in forming semantic representations has been widely supported by empirical evidence. The con-
tribution of linguistic experience vis-à-vis other kinds of nonlinguistic inputs in shaping concepts
is an empirical question that is widely debated in cognitive science (Dove 2014, Louwerse 2011,
Vigliocco et al. 2009). A fruitful perspective is to pursue a form of representational pluralism of
meaning in which distributional statistics, extralinguistic experiential data, and symbolic aspects
are integrated together in order to explain the richness of human semantic competence.
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