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Abstract

Deep learning has recently come to dominate computational linguistics,
leading to claims of human-level performance in a range of language pro-
cessing tasks. Like much previous computational work, deep learning–based
linguistic representations adhere to the distributional meaning-in-use
hypothesis, deriving semantic representations from word co-occurrence
statistics. However, current deep learning methods entail fundamentally
new models of lexical and compositional meaning that are ripe for theo-
retical analysis. Whereas traditional distributional semantics models take
a bottom-up approach in which sentence meaning is characterized by
explicit composition functions applied to word meanings, new approaches
take a top-down approach in which sentence representations are treated as
primary and representations of words and syntax are viewed as emergent.
This article summarizes our current understanding of how well such rep-
resentations capture lexical semantics, world knowledge, and composition.
The goal is to foster increased collaboration on testing the implications of
such representations as general-purpose models of semantics.
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1. INTRODUCTION

Distributional semantics models (DSMs), which define the meanings of words in terms of the
contexts in which they are used (Harris 1954, Firth 1957), have received significant attention
in computational linguistics and natural language processing (NLP) (Erk 2012, Boleda 2020).
Recently, traditional DSMs have fallen to the wayside in favor of linguistic representations derived
from deep learning (LeCun et al. 2015). This shift has been associated with dramatic advances in
the empirical performance of language processing systems, including claims of human perfor-
mance on answering questions (Rajpurkar et al. 2016a) and engaging in dialogue (Adiwardana
et al. 2020).

Like traditional DSMs, these new deep learning representations are derived from word co-
occurrences in text corpora. However, unlike traditional DSMs, which construct sentence repre-
sentations bottom-up via explicit composition of lexical representations, new deep learningmodels
take a top-down approach in which the primary goal is to represent sentences in a way that sup-
ports commercial applications, and representations of words and their composition are viewed as
emergent. Thus, while they build on the same fundamental idea of meaning-from-use as tradi-
tional DSMs, new deep learning representations entail fundamentally new models of lexical and
compositional meaning, which are ripe for theoretical analysis.

So far, however, deep learning–based representations have not engaged rigorously with seman-
tic theory, making it hard to differentiate genuine progress in modeling semantics from merely
an increase in models’ ability to memorize corpus statistics. This article summarizes our current
understanding of how well representations derived from deep learning capture “semantics,”
broadly construed, with the goal of fostering increased collaboration on formalizing and testing
the implications of such representations as general-purpose models of semantics. After some
preliminaries (Sections 2 and 3), the review focuses on experiments in the areas of lexical seman-
tics (Section 4.1), world knowledge (Section 4.2), and composition (Section 4.3), highlighting
evidence for and against deep learning’s ability to account for key phenomena within each.

2. DISTRIBUTIONAL SEMANTICS VERSUS DEEP LEARNING

This section briefly contrasts traditional DSMs with newer deep learning models. For discussions
of DSMs in the context of linguistic theory, readers are referred to Lenci (2008, 2018), Boleda &
Herbelot (2016), and Boleda (2020). For overviews of empirical methods and results, readers are
referred to Turney & Pantel (2010) and Erk (2012).

2.1. Distributional Semantics Models

The distributional hypothesis (Harris 1954, Firth 1957) states that the meaning of a word is de-
fined by the contexts in which it is used. In NLP, “contexts” is typically taken to mean linguistic
contexts—that is, the other words with which a word co-occurs. Distributional semantics as a the-
ory does not require this formulation; for instance, distributions could in principle be defined over
representations of visual or emotional contexts instead. However, linguistic contexts are readily
observable via text corpora, and modeling word meanings in this way has proven effective at ex-
plaining human similarity judgments (Landauer & Dumais 1997), priming effects (Lund et al.
1995), and selectional preferences (Erk 2007). Thus, in practice, many authors use the phrase
“distributional semantics” to refer specifically to this formulation (Emerson 2020).

DSMs are almost always instantiated as vector space models—that is, models that represent
words as points in space. Research on DSMs has focused on both lexical and compositional
semantics.
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Focusing on lexical representations, the simplest DSMs use count-based vectors and represent
words as points in a sparse, very high-dimensional space. In suchmodels, a wordwi in a vocabulary
of size V can be represented by a V-dimensional vector in which the jth component reflects the
number of times wi occurs in the context of wj. Typically, the context is a small window (e.g., ±2
words), thoughmany variations exist (Turney&Pantel 2010).An alternative to count-basedDSMs
is prediction-based DSMs, often called word embeddings, which represent words as dense, low-
dimensional approximations of the explicit count distributions. Word embeddings are produced
either by applying dimensionality reduction to the count matrices (Dumais et al. 1988, Landauer
& Dumais 1997, Dhillon et al. 2011) or by using neural networks (Bengio et al. 2003, Mikolov
et al. 2013, Pennington et al. 2014). Unlike count-based vectors, dimensions of word embeddings
correspond to subsymbolic dimensions that yield good predictions and are not immediately in-
terpretable. However, prediction-based embeddings have been associated with better explanatory
power across many tasks (Baroni et al. 2014).

Work on compositional DSMs seeks to provide a story of how the above-described word
representations combine to produce sentence representations. For example, Smolensky (1990),
Baroni & Zamparelli (2010), and Grefenstette & Sadrzadeh (2011) use dimensionality to encode
semantic type—for instance, representing nouns as N-dimensional vectors and adjectives as N ×
N-dimensional matrices, thus mirroring the idea of predicate-argument structure mathematically.
However, such approaches result in sentence representations that vary in size and shape based on
their length and syntactic structure, and in practice, they are outperformed by simple composition
methods (e.g., order-insensitive vector addition) (Mitchell & Lapata 2010, Hartung et al. 2017).
As a result, compositional DSMs have not produced viable systems for processing language
outside of a toy setting.

2.2. Sentence Encodings from Deep Learning

Recent years have seen a shift away from traditional DSMs in favor of using larger, more
complex deep learning models. Unlike traditional DSMs, these newer models at least give the
appearance of processing complex language (e.g., performing impressively well at real-world tasks
like reading comprehension; Rajpurkar et al. 2016b). Many technical and scientific advances have
accompanied this transition. This article draws the line between “old” and “new” models at the
shift in priority from representing words to representing sentences. That is, while traditional
DSMs seek a bottom-up story of semantics, which characterizes the lexicon and the composition
functions that allow the lexical meanings to combine, newer methods favor a top-down approach,
in which the goal is primarily to build systems capable of processing sentences, and lexical
representations are viewed as emergent. This article refers to the relevant set of new models
broadly as sentence encodings (SEs).

The top-down versus bottom-up distinction is not the only thing that differentiates modern
SEs from traditional DSMs. Most notably, there has been a massive increase in model size; new
SEs are often on the order of billions of parameters. As a result, it is debatable whether the ob-
served successes of SEs are due to an improved ability to learn good linguistic representations
or rather simply to their increased capacity to memorize co-occurrence patterns. Differentiating
these two alternatives is challenging and often results in ambiguity about how exactly to interpret
the empirical data on models’ linguistic abilities (Section 4).

While a comprehensive review of SEs is impossible, several important variants, which are fea-
tured in the semantic analyses reviewed in Section 4, are summarized below.

2.2.1. Fixed-length sentence embeddings. The first SEs sought to directly extend word-
embedding methods by treating a given sentence as a semantic unit, the meaning of which could
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be defined by the context. A straightforward example is the SkipThought method (Kiros et al.
2015), which produces sentence embeddings using a neural network trained to predict a target
sentence given a context sentence. Another notable method is InferSent (Conneau et al. 2017), in
which representations are produced by a neural network optimized to perform natural language
inference (NLI)—a task also known as recognizing textual entailment (Dagan et al. 2006), which
requires predicting whether a premise p entails a hypothesis h.

Such embeddings have many advantages over the compositional DSMs described in
Section 2.1. Since they are of fixed length, sentences of arbitrary syntactic structures can be easily
compared with one another. And although such methods do not invoke explicit theories of syntac-
tic composition, they do leverage order-aware neural networks (e.g., recurrent neural networks;
Elman 1990), making them more syntax-aware than, for instance, naive vector addition.

2.2.2. Variable-length sentence representations. A massive paradigm shift occurred when
fixed-length sentence embeddings were replaced by pretrained language models (LMs). LMs are
artificial neural networks trained for the task of predicting the missing words in a sentence. For
example, a basic LM is trained to predict the probability of the word wt given all previous words
w0, w1, . . . , wt−1. Pretraining refers to the process in which the parameters of a neural network
are initialized by training on a task other than the eventual task of interest. In NLP, where tasks
of interest include question answering, machine translation, and dialogue, language modeling has
proven an effective pretraining task.

The first model to popularize pretrained LMs as a means of building SEs was Embeddings
from Language Modeling (ELMo) (Peters et al. 2018a). ELMo is a two-layer recurrent neural
network that, rather than learning a single vector to represent a sentence, produces two embed-
dings per word (one per layer) and considers the entire trained network to be a representation
of the sentence. ELMo contrasts with earlier approaches in that it produces contextualized word
representations—that is, word embeddings for each token rather than for each type. (Traditional
embeddings as described in Section 2.1 are now often referred to as static embeddings to high-
light this contrast.) ELMo’s combination of LM pretraining and contextualized word embeddings
resulted in unprecedented performance gains across a range of language processing tasks (Peters
et al. 2018a).

The success of ELMo led to a flurry of research on similar pretrained LMs. Of these, the Bidi-
rectional Encoder Representations from Transformers (BERT) model (Devlin et al. 2018) has
been the most extensively analyzed by those interested in syntactic and semantic representations.
BERT differs from ELMo in two important ways. First, while ELMo uses a well-known recur-
rent neural network architecture, BERT uses a new architecture called the transformer (Vaswani
et al. 2017). While recurrent models process their input in left-to-right order, transformers have
no inherent inductive bias for linear order; instead, they process their input using a mechanism
called “self-attention” (Vaswani et al. 2017), which effectively enables the model to induce arbi-
trary graph-like structures (not just before–after relations) over the input. Second, rather than
standard language modeling, BERT uses two learning objectives: a masked language modeling
(MLM) objective and a next sentence prediction (NSP) objective. MLM is essentially a cloze task
in which the goal is to predict a word given its left and right context—for instance, The [MASK]
purred loudly → cat. The NSP task aims to predict the next sentence given the current one.

Other noteworthy model variants are the Generative Pretrained Transformers (GPT2 and
GPT3) (Radford et al. 2019, Brown et al. 2020). The GPT models, like ELMo, are trained on
the task of left-to-right language modeling, but like BERT, they are based on the transformer
architecture. The models have received attention largely due to their comparatively large size
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(e.g., GPT3 has 175B parameters) and the impressive quality of text they are able to generate
(Radford et al. 2020).

2.2.3. Training procedure andmodel size. There are several open questions about how train-
ing procedures influence the types of representations that models learn, and these issues poten-
tially influence how we interpret the results reviewed in Section 4.

The first question concerns model size. Empirically, increased model size is associated with
improved performance (Radford et al. 2019, Zhang et al. 2021). For example, Hu et al. (2020) and
Warstadt et al. (2020) show that larger LMs better encode syntactic structures such as constituency
and long-range agreements, and Peters et al. (2018a,b) and Tenney et al. (2019a) show that lower
layers of networks appear to capture more syntactic information while higher layers capture more
semantic information. Thus, the conventional wisdom is generally that models improve with size
and depth and that results observed in small models are not necessarily indicative of how results
would look if the model were scaled up. That said, the question is still wide open.We simply have
not run the controlled experiments required to say whether large models’ representations differ
fundamentally from those of smaller models.

A second issue concerns the relationship between pretraining and fine-tuning—that is, the
task-specific training that happens after pretraining when the model is optimized for a specific
application, such as question answering. In general, fine-tuning after pretraining leads to better
task performance than does training from scratch (i.e., training only on the target task without
any pretraining) (Wang et al. 2019a). However, analysis also indicates that, after fine-tuning, the
top layers of a network become specialized for the application and thus contain less linguistic
information (Liu et al. 2019,Merchant et al. 2020,Mosbach et al. 2020). Such findings suggest that
the conclusions (positive or negative) we draw from current experiments may differ from those we
would draw if the same experiments were run using different fine-tuning regimens. Thus, again, it
is best to consider current conclusions to be revisable: Future experiments may well provide new
insights that force us to reinterpret the present data on syntactic and semantic representations.

3. EVALUATION METHODS

The question of how well deep learning models encode semantic structure presupposes a defini-
tion of semantic structure. Unfortunately, linguists, philosophers, and cognitive scientists have yet
to reach a consensus. Thus, studies in NLP differ substantially in what they take to be evidence
of semantics. Three broad categories of evaluation methods are summarized below.

3.1. Extrinsic Task-Based Evaluations

Since NLP’s statistical revolution in the 1990s, the field has tended to prioritize standardized
evaluations on benchmark tasks ( Jurafsky & Martin 2009). This tradition extends to evaluations
of semantic understanding in general. For example, Potts (2020) reframes the question of under-
standing as one of whether models can “achieve truly robust and general capabilities to answer
questions, reason with language, and translate between languages.” Few claim that performance
on such tasks (question answering, NLI, machine translation) alone is sufficient to establish un-
derstanding, but many share the sentiment that if models are getting better at these challenging
tasks, something about their semantic representations must be improving. As models have become
more powerful, the trend has been away from single-task evaluations in favor of multitask evalu-
ations (Nayak et al. 2016; Wang et al. 2019b,c), which require a single model to simultaneously
perform well on a range of language tasks.
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3.2. Targeted Task-Based Evaluations

In standard benchmarks, models are evaluated on samples that are drawn from the same distri-
bution as the data on which the models are trained. As a result, such evaluations are likely to be
gameable by models that memorize superficial statistical correlations, such as whether the word
sleeping is more likely to occur in false sentences than in true ones (Poliak et al. 2018b). Such find-
ings have turned many off of benchmark evaluations altogether (Linzen 2020, Bowman & Dahl
2021). Thus, increasingly, NLP research has turned to controlled (“targeted”) evaluations, which
are designed with the goal of testing whether models have encoded specific linguistic features
(Linzen et al. 2016, Futrell et al. 2019, Linzen & Baroni 2020).

Most targeted semantic evaluations follow one of two formats. Those based on language mod-
eling compare the probabilities that models assign to words given minimally differing contexts.
For example, Ettinger (2020) evaluates models’ understanding of lexical entailment by comparing
the probabilities assigned to bird versus tree in the context a robin is {not} a [MASK]. This for-
mat allows pretrained LMs to be evaluated without any task-specific fine-tuning.However, not all
SEs are LMs (see Section 2.2), and not all interesting semantic phenomena fit into the LM format.
Thus,many semantic evaluations are instead based onNLI (Cooper et al. 1996, Poliak et al. 2018a,
Rudinger et al. 2018,Kim et al. 2019). Such evaluations involve curated sets of premise/hypothesis
pairs in which the inference hinges on the semantic phenomena of interest. For example,Dasgupta
et al. (2018) use minimal pairs such as the man is {not} taller than the woman/the woman is shorter
than the man to test models’ understanding of negation.

3.3. Representational (Probing) Evaluations

Both extrinsic and targeted evaluations are cast in terms of model behavior—that is, what outputs
do models produce for given inputs? Recently, there has been an increased interest in understand-
ing and evaluating models directly in terms of the form of the model’s internal representations
(for a general review, see Belinkov & Glass 2019). Such evaluations seek evidence that the vector
spaces underlying a model’s inferences align to some predefined linguistic features. For example,
the evaluations might ask whether the representations encode semantic roles, meaning that the
model’s representation of a given token (man) should differentiate whether it occurred as the agent
(The man saw the elephant) or as the patient (The man was seen by the elephant) of a given verb (to see).

Among the most widely used techniques for inspecting representations is the probing classifier
(Ettinger et al. 2016, Veldhoen et al. 2016, Adi et al. 2017, Conneau et al. 2018, Hupkes et al.
2018b), which attempts to predict a target linguistic feature given a representation. For example,
given ELMo’s vector representations of the words man and to see in the above sentences, the
model would have to predict whether the word pair is an instance of the agent (arg0) semantic
relation. If the classifier performs well on held-out words and sentences, then the representation
is said to “encode” the notion of semantic agent. This method has been used to test whether
fixed-length sentence embeddings encode information about word order and sentence length
(Adi et al. 2017, Conneau et al. 2018) and whether contextualized word embeddings encode the
range of syntactic and semantic features (Hewitt & Manning 2019; Tenney et al. 2019a,b). Note
that, although widely used, probing classifiers are prone to false-positive results (Hewitt & Liang
2019, Voita & Titov 2020).

4. SEMANTIC STRUCTURE FROM DEEP LEARNING

This article focuses on three broad areas of semantic analysis: lexical semantics (Section 4.1),world
knowledge (Section 4.2), and compositional semantics (Section 4.3). This is not an exhaustive
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review but rather a distillation of the most salient evidence for and against claims that current
deep learning representations perform well in each area. Notably absent is work on grounding
and reference.While there exists work on multimodal variants of the models discussed here (Sun
et al. 2019, Radford et al. 2021), such models have not undergone the same semantic analysis
as text-only models. The lack of attention to grounding has attracted vocal criticism (Bender &
Koller 2020), and future work in this direction should be a priority for computational semantics.

4.1. Lexicon and Lexical Semantics

Both traditional DSMs and early (fixed-length) SEs assume a fixed inventory of word representa-
tions that does not change from one sentence to the next. With the shift to contextualized word
representations (ELMo, BERT), many have questioned whether newer models encode a recog-
nizable lexicon at all—that is, a context-independent, type-level representation of the units from
which sentences are composed. Attempts to answer this question have focused on two dimensions:
the unit of representation within the lexicon (Section 4.1.1) and the syntactic-semantic structure
of those units (Section 4.1.2).Work on lexical entailment and ontology is reviewed in Section 4.2.

4.1.1. Type representations. In this section, “type” refers to the token-type distinction for
lexical items; for instance, in the sentence The black cat chased the brown cat, there are two tokens of
a single cat type.

4.1.1.1. Evidence in favor. Vulić et al. (2020) are among the first to systematically explore
how contextualized word embeddings (specifically, BERT) compare to static type-level DSMs
[specifically, FastText (Bojanowski et al. 2017)] in terms of traditional lexical semantic evaluations.
Such evaluations include word similarity (i.e., predicting a real-valued score for how “similar” two
words are, which can be correlated with analogous human judgments), word analogies (e.g., filling
in the blank given a pattern such as king:man::queen: ), and lexical relation prediction [e.g., dif-
ferentiating synonymy versus hypernymy,where such relations are defined using resources such as
WordNet (Fellbaum 2010)]. Vulić et al. (2020) estimate type representations from token represen-
tations by sampling word instances from the corpus at random and averaging their contextualized
representations. Their results show that, in general, the best-performing contextualized models
outperform the static embedding baselines, though there is high variance across languages. Par-
allel work by Chronis & Erk (2020) reports similar findings when using a different approach to
estimate type representations, which directly accounts for words’ multiple senses (e.g., the fact
that bank may refer to either a riverside or a financial institution).

Looking specifically at word sense, a traditionally hard problem for static DSMs (Erk 2012),
Peters et al. (2018a) and Reif et al. (2019) demonstrate that contextualized token embeddings
encode sense naturally, performing competitively with prior state-of-the-art word sense disam-
biguation models despite no explicit training. Nair et al. (2020) further argue that the continuous
notion of word sense captured by token embeddings is an improvement over that found in tra-
ditional lexical semantic resources; they use human studies to show that similarities generated by
contextualized token embeddings have a high correlation with human judgments—for instance,
treating homonyms (river bank versus financial bank) as less similar than polysemes (chicken animal
versus chicken meat).

4.1.1.2. Evidence against. Mickus et al. (2020), like Chronis & Erk (2020) and Vulić et al.
(2020), investigate whether BERT embeddings yield convincing type representations. Although
they report similarly positive results on lexical similarity benchmarks, their overall conclusions

www.annualreviews.org • Semantic Structure in Deep Learning 453



are far less optimistic. Using clustering analyses, the study finds that tokens of the same type
do not cluster cohesively: 25% of tokens cluster as though they belonged to a different type
than they do. While some of the effect can be explained by word sense, much is due to undesir-
able artifacts of training—for example, differentiating word tokens that appear in the first versus
the second sentence of BERT’s NSP objective (see Section 2.2.2). Yenicelik et al. (2020) find ev-
idence of similar overdifferentiation within word senses. Using a combination of probing clas-
sifiers and visualization techniques, the study measures how well BERT embeddings align with
WordNet’s (Fellbaum 2010) sense inventory, showing that although accuracy is high, the space’s
organization is “not purely determined by semantics. . .[but is] intertwined with concepts such as
syntax and sentiment” (Yenicelik et al. 2020, p. 160)—for instance, forming distinct clusters for
the same sense of the word arms, one with positive sentiment (swooped up into her arms. . .) and
one with negative (. . .handcuffed arms. . .). Giulianelli et al. (2020) observe similar results. How-
ever, both Yenicelik et al. (2020) and Giulianelli et al. (2020) are ultimately positive, arguing (as
in Nair et al. 2020) that BERT’s representations are an improvement over the hard-coded senses
developed by linguists (see Section 4.1.3).

4.1.2. Argument structure. In this section, “argument structure” refers generally to models’
ability to encode information about the semantic role of a noun (e.g., whether it is the argument
of a verb, whether it is agent versus patient) and/or the syntactic-semantic constraints on a verb’s
use.

4.1.2.1. Evidence in favor. Ettinger (2020) uses psycholinguistic stimuli to test whether BERT
recognizes anomalous reversals of semantic roles—for instance, differentiating minimally differ-
ing sentences such as the restaurant owner forgot which customer/waitress the waitress/customer had
served. BERT performs well, ranking expected completions over unlikely ones 86% of the time
(although it is worth noting that BERT’s top-ranked prediction rarely matches the human’s top-
ranked choice). Studies that use probing classifiers also conclude that models like ELMo and
BERT capture information about event and argument structure. Tenney et al. (2019a,b) show that
such models capture semantic roles significantly better than a static word embeddings baseline. Li
et al. (2021) show that entity representations are updated with state information as a consequence
of the verbs with which they appear; for instance, the representation of chest in the context you
remove the key from the chest contains information about whether empty(chest) is true.

Thrush et al. (2020) provide a thorough analysis of BERT’s ability to represent semantic verb
classes, focusing on selectional preferences and subcategorization frames. The authors use nonce
words to control for confounds and then test the model’s ability to generalize across an alterna-
tion pair. For example, during training, the model will see verbs from the same class (spray/load),
some of which appear in only one alternation (e.g., she will spray the wall with paint). At test time,
verbs appear in the unseen alternation (she will spray paint onto the wall). The study finds that, in
aggregate, BERT assigns significantly higher probability to valid verb alternations than to invalid
ones, suggesting that it generalizes syntactic behavior to words within the same class.

4.1.2.2. Evidence against. The strongest arguments thatmodels do not encode argument struc-
ture rely on the fact that models do not seem to use such features during inference. McCoy et al.
(2019), for example, show that BERT-based NLI models rely on naive heuristics such as whether
sentences exhibit high lexical overlap, and Sinha et al. (2021) show that such models perform per-
fectly well even when words in a sentence are scrambled; both studies suggest that models ignore
the argument structure that they purportedly encode.
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Other arguments stem from the instability of results across experimental setups. For example,
the above positive results are mostly based on pretrained LMs (in particular, BERT), but earlier
studies of fixed-length sentence embeddings (Section 2.2.1) produce more negative findings. For
example, Ettinger et al. (2016, 2018) use probing classifiers to evaluate whether fixed-length sen-
tence embeddings can differentiate agents and patients of a given verb. They find that none of the
models tested perform well: Accuracies are in the mid-60s compared with a 50% baseline. Even
work on pretrained LMs is not consistently positive. Kann et al. (2019), like Thrush et al. (2020),
investigate how well models capture verb alternations, but overall they are more negative in their
interpretation, reporting at-chance performance for several verb classes.Their experimental setup
uses a less standard sentence encoder and a different task design, making it difficult to compare
with Thrush et al.’s (2020) positive findings.

4.1.3. Summary and discussion. With the shift to contextualized word representations
(Section 2.2), many have asked, Do these modern SEs encode a lexicon at all? Taking the results
discussed in Sections 4.1.1 and 4.1.2 together, this article views the answer as more positive than
negative. Multiple independent studies confirm that contextualized representations outperform
context-invariant ones on traditional metrics such as word similarity, analogies, and lexical
entailment. There is also converging evidence from targeted evaluations and probing classifiers
that contextualized word embeddings account for word sense and argument structure better than
do traditional type-level DSMs.

Several important negative results must be accounted for. However, these should not necessar-
ily be taken as evidence against the quality of SEs’ lexical representations but rather as indicators
of related theoretical and methodological gaps in need of further work.

The first major criticism is overdifferentiation: Type representations often map one-to-many
or many-to-one onto the notions of word meanings defined by linguistic resources. While this
clearly indicates that contextualized word embeddings induce a different lexicon than that encoded
by existing resources, we cannot say yet whether this is a feature or a bug; that is, it remains to be
determined whether contextualized embedding spaces provide a better or worse model of human
lexical representations compared with static DSMs or explicit ontologies. Contextualized LMs
generate predictions—for instance, about the roles that sentiment and discourse play in a token’s
representation—that could be formalized and validated in humans. Conducting such studies will
require deeper collaboration between those analyzing SEs and those in theoretical and experimen-
tal semantics but will likely yield valuable insights. Frege himself argues that “it is enough if the
sentence as whole has meaning; thereby also its parts obtain their meanings” (Frege 1884, quoted
in Szabó 2020).Contextualized embeddings provide a concrete computationalmodel within which
to test such ideas.

The secondmajor criticism is models’ failures at inference time: Lexicosemantic structure (e.g.,
semantic roles) does not influencemodels’ inferences in practice (e.g., inNLI) in the way it should.
However, the relationship between the models’ internal representations and their downstream
behavior is not yet well understood within machine learning. Intuitively, training SEs involves
training two subprocesses in tandem: (a) converting raw input (text) into representations and
(b) converting representations into behavior (e.g., inferences). To a large extent, semantic anal-
yses of SEs can treat these subprocesses as distinct. The positive results summarized above sug-
gest that subprocess a is functioning comparably well. Given subprocess a, the observation that
models often fail at inference time suggests a problem in subprocess b. Diagnosing and fixing
problems in subprocess b is necessary if SEs are ever to be proposed as a complete model of se-
mantic understanding.However, failing to have done so (yet) need not prevent us in the meantime
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from using subprocess a to generate interesting insights about the structure of lexical semantic
representations.

4.2. World Knowledge

Work in NLP often differentiates between linguistic knowledge and world knowledge. For ex-
ample, one might falsely state that the capital of Michigan is Detroit, not because they do not
understand lexical and compositional semantics but because they are simply misinformed about
the world. Although the line between linguistic and world knowledge is difficult to draw rigor-
ously (Hagoort & van Berkum 2007), NLP analyses are often framed in terms of this intuitive
distinction. This section covers three categories of world knowledge: Section 4.2.1 covers ency-
clopedic knowledge (i.e., factoids such as that Obama was the 44th president of the United States)
and commonsense knowledge (i.e., properties of common nouns, such as that robins are birds);
Section 4.2.2 covers numeric reasoning.

4.2.1. Commonsense and encyclopedic knowledge. Although work focusing on world
knowledge often further differentiates between encyclopedic and commonsense knowledge, the
methods used to study both types of knowledge, and the conclusions drawn, have largely con-
verged. Thus, this article discusses them together.

4.2.1.1. Evidence in favor. The seminal work investigating encyclopedic knowledge in SEs is
by Petroni et al. (2019), who argue that pretrained LMs are on par with prior state-of-the-art
knowledge bases at recalling facts about the world. The study uses prompts such asDante was born
in [MASK] to solicit answers from LMs and compares them with traditional knowledge bases of
explicit tuples (e.g., 〈Dante, born in, Italy〉) extracted automatically from text (Etzioni et al. 2008).
Petroni et al. (2019) do not claim that LMs are at human level—overall performance is in fact
quite low, with the accuracy of the top-ranked prediction often below 20%—but rather that such
performance is competitive with the best automatically constructed knowledge bases despite the
fact that LMs have not been explicitly designed for this task.

On commonsense knowledge, Ettinger (2020) analyzes how well BERT encodes hyponym–
hypernym relations using prompts such as a robin is a [MASK]. On prompts involving prototypical
hypernyms, BERT performs well (e.g., ranking bird over alternatives like tree 100% of the time).
Da &Kasai (2019) obtain similarly strong results using a different data set and probing design, but
they still report a median of 100% accuracy when associating nouns with taxonomic relations (e.g.,
is a fruit, is a toy) compared with 89% for static (GLoVE) vectors (Pennington et al. 2014). Da &
Kasai (2019) look beyond prototypical properties, using objects such as zebra and properties such as
is upright. They use probing classifiers to measure whether contextualized embeddings of object
names capture those objects’ properties, and they find that BERT achieves median accuracies
around 80%, nearly twice that of static embeddings.

Forbes et al. (2019) conduct a similar investigation using probing classifiers but focusing specif-
ically on physical common sense about object attributes and affordances. The authors find that
BERT performs consistently well at associating objects with attributes (e.g., that apples are edi-
ble) and attributes with affordances (e.g., that edible objects afford eating), often within 10 points
(F measure) of human performance and in some cases exceeding it. BERT performs significantly
less well at associating objects with affordances (e.g., that apples afford eating), though human per-
formance on this task is also slightly lower. A related line of work uses pretrained LMs to augment
human-interpretable resources like ConceptNet (Liu & Singh 2004), either by scoring (Li et al.
2016) or generating (Bosselut et al. 2019) novel commonsense tuples (e.g., that mango is a fruit).
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Hwang et al. (2020) report that GPT3 produces such tuples with 73% accuracy, suggesting that
pretrained LMs not only recognize that entities are related but can differentiate how they are
related (e.g., is a versus has a).

4.2.1.2. Evidence against. One of the strongest pieces of evidence that SEs do not capture
world knowledge is the fact that they can readily be made to generate false statements. Kassner &
Schütze (2020) andEttinger (2020), for example, show thatmodels are insensitive to negation—for
instance, readily producing birdwhen given the prompt a robin is not a [MASK]. Kassner & Schütze
(2020) further show BERT to be overly sensitive to “misprimes.” For example, a sentence such
as Talk? Birds can [MASK] leads models to produce talk rather than the more acceptable response
fly. Ravichander et al. (2020) report similar oversensitivity when changing from singular (a robin
is a [MASK]) to plural (robins are [MASK]). Others simply point to embarrassing model failures as
proofs-of-concept. For example, Ettinger (2020) prompts BERT with The snow had piled up on the
drive so high that they couldn’t get the car out. When Albert woke up, his father handed him a [MASK],
to which BERT offers the options note, letter, and gun.

Another primary criticism of prompt-based evaluation of LMs’ knowledge is variability; for
instance, a model might produce the correct answer when given [MASK] is the capital of Rhode
Island but not when given Rhode Island’s capital is [MASK]. Cao et al. (2021) conduct extensive
experiments to show that models’ predictions at test time closely track the distribution of answers
in training regardless of test distribution and that predictions are by-and-large unchanged even
when the relevant entities are masked out, suggesting that models’ predictions are based more on
the artifacts of the prompt than on the specific entities in question.

4.2.2. Numeric reasoning. A parallel line of work on world knowledge has asked whether LMs
encode basic knowledge of numericity.

4.2.2.1. Evidence in favor. Johnson et al. (2020), studying a range of languages, find that mod-
els are generally able to differentiate grammatical numbers from ungrammatical ones (e.g., two
hundred three and fifty). Wallace et al. (2019b) use probing classifiers trained for tasks such as pre-
dicting the largest number in a list to analyze how well embeddings of number tokens (e.g., 53)
capture information about magnitude and order. They report that static word embeddings often
outperform BERT and in many cases perform close to an estimated upper bound. However, they
note that models cannot extrapolate beyond the numeric range seen in training, a limitation well
documented elsewhere (Saxton et al. 2019).

4.2.2.2. Evidence against. Subsequent studies, which use slightly different experimental de-
signs, have failed to reproduce Wallace et al.’s (2019b) conclusions. For example, Johnson et al.
(2020) use spelled-out words (two instead of 2) and numbers greater than 100 and do not find
that embeddings support value comparisons. Naik et al. (2019) consider yet another variation in
design, which uses contrastive tuples of the form (A, B, C) such that a model must predict “true”
if A is closer to B than A is to C. They find that embeddings are able to capture rough orders of
magnitude (three versus one thousand) but not finer-grained distinctions (three versus four). Lin
et al. (2020) show that BERT performs poorly on numeric MLM prompts (e.g., a bird usually has
[MASK] legs → two).

4.2.3. Summary and discussion. In aggregate, the results on world knowledge are mixed. Re-
sults on numeric reasoning are more positive than perhaps would have been expected but are
still negative overall. The more interesting discussion is about commonsense and encyclopedic
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knowledge. On this topic, this article views the results as mostly positive, with a rationale echo-
ing that in Section 4.1.3 on lexical semantics: Again, the strongest negative evidence presents a
valid case against SEs as complete models of semantics, but it does not necessarily suggest that the
conceptual structures themselves are incorrectly encoded by SEs.

The first major criticism is models’ sensitivity to input: Models are just as likely to assert false
facts as they are to assert truthful ones (e.g., ignoring negations and being distracted bymisprimes).
While models indeed make these errors, studies of semantics have long assumed a separation be-
tween the system that assigns meanings to words and the system that composes those meanings in
order to process sentences. Before SEs, representing world knowledge entailed the use of explicit
datastores (Liu & Singh 2004, Carlson et al. 2010, Fellbaum 2010), which were evaluated based
on whether they connected entities via the correct semantically typed relations (Berant et al. 2011,
Hosseini et al. 2018).While SEs clearly fail to process conceptual relations compositionally, there
is little evidence to suggest that the SEs are failing to correctly encode the conceptual relations
themselves. Rather, SEs appear not only to relate entities but also to differentiate between types
of relations (e.g., is-a versus has-a). Debates about howmuch we can isolate conceptual knowledge
from compositional semantics are worthwhile, but such debates concern the semantic processing
pipeline in general, not the quality of SEs specifically.

As in Section 4.1.3, a second criticism concerns failures at inference time: There are just too
many examples of SEs generating nonsensical narratives. Again, such criticisms get at the under-
lying question of how deep learning models convert internal conceptual representations into be-
havior. The importance of this question should not be minimized. Our inability to answer this
is at the heart of why current SEs are simply language processing systems rather than mod-
els of semantics. However, when trying to understand which aspects of semantic structure SEs
potentially account for, it is important to differentiate the representations models learn from
the tasks they are optimized to perform. Ettinger (2020, p. 46) summarizes the problem well:
“Whereas the function of language processing for humans is to compute meaning and make judg-
ments of truth, language models. . .simply leverage the most reliable cues in order to optimize
their predictive capacity.” It is in principle possible that SEs could encode correct conceptual rela-
tions and nonetheless produce nonsense output, if the most salient features of the nonsense better
matched sentences found in corpora than did the most salient features of true sentences. Thus, fo-
cusing primarily on behavior at inference time arguably amounts to conflating performance with
competence and can distract from models’ progress at encoding conceptual structure under the
hood.

4.3. Compositionality

Among the most central tenets of formal semantics is the principle of compositionality: that the
meaning of a sentence should be a function of the meaning of the words and the way in which they
are combined (Partee 1995).Unlike traditional DSMs, in which composition functions are defined
explicitly, SEs learn to combine words implicitly while performing tasks like language modeling.
Thus, it is debatable whether SEs have the type of composition functions often assumed in formal
linguistics. There is no standard test for compositional behavior, and existing analysis work makes
use of a variety of definitions. This article summarizes work focusing on three criteria that have
received particular attention: systematicity (Section 4.3.1), negation (Section 4.3.2), and phrase
representations (Section 4.3.3).

4.3.1. Systematicity. In Fodor & Pylyshyn’s (1988, p. 37) words, systematicity is the prop-
erty that guarantees that “the ability to produce/understand some utterances is intrinsically
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connected to the ability to produce/understand certain others”; for instance, a system capable
of understanding the sentence John loves Mary should by definition be capable of understanding
Mary loves John. While it is a matter of debate how systematic human language processing is, it
is generally agreed that language requires some degree of systematic generalization and that SEs
should exhibit the capacity for such.

4.3.1.1. Evidence against. Most sections in this article lead with positive results. However, as
the consensus is that SEs do not behave systematically, it makes sense to lead here with the negative
results.

In one of the first studies to investigate systematicity, Lake & Baroni (2018) define a toy task
in which models receive natural language instructions as input (turn left then jump twice) and are
required to produce corresponding sequences of symbolic actions as output (“LTURN JUMP
JUMP”). They train a recurrent model from scratch to perform this task, and they evaluate it on
a test set defined such that good performance cannot be achieved by pure memorization (e.g., a
model might be trained on {jump twice, walk then turn left} and then tested on {turn left twice}).
The study finds that test sets that require generalizing to significantly longer sequences than have
been seen in training lead models to “fail spectacularly” (Lake & Baroni 2018, p. 2880). Kim
& Linzen (2020) report similar findings when using a simple semantic parsing task—for instance,
a cat smiled→cat(x1)� smile(x2)� agent(x1, x2)—showing (again) that models trained from scratch
fail to extrapolate to longer sentences/deeper trees and that they generalize poorly when known
words appear in previously unseen roles (e.g., cat appearing as a patient having previously been
observed only as an agent). Goodwin et al. (2020) draw similarly negative conclusions in yet a
third study design, which uses jabberwocky sentences to test whether SEs learn context-invariant
inference patterns that generalize to arbitrary content words (all blickets dax→ ¬some blickets don’t
dax). They find comparably low performance and high variance when tested on sentence pairs
that require reasoning about function words in the context of novel content words, suggesting
that the models do not generalize as desired. Finally, while the three preceding studies use toy
task settings and examine the behavior of models trained from scratch on the task of interest,
Yanaka et al. (2019) document a similar lack of systematicity in pretrained LMs (BERT), using an
NLI test set that requires systematic application of monotonicity rules.

A separate set of evidence that pretrained LMs behave unsystematically comes not from lin-
guistically motivated research but rather from related research on robustness and trustworthiness
in AI. Such work shows that even state-of-the-art models often change their predictions as a re-
sult of seemingly meaningless changes, such as replacing a word with a synonym (movie→film)
(Ribeiro et al. 2018, 2020) or appending nonsense sequences of words to the input (Wallace et al.
2019a).

4.3.1.2. Evidence in favor. Given the above, it is hard to argue that SEs are systematic learners
in the way symbolic models of logical reasoning are. However, it is important not to oversimplify
the picture. While all of the authors above are ultimately negative about models’ generalization
abilities, it is only in some experiments that models “fail spectacularly.” In many other cases, the
results are open to more charitable interpretations. For example, Goodwin et al.’s (2020) primary
conclusion is based on the observation that performance on inferences involving unseen content
words is lower than performance on inferences involving seen words. However, performance
on the generalization test set is only slightly below that on the in-distribution set (accuracy in
the 80s versus the 90s), meaning that models still behave correctly more often than not. Results
are also stronger when models are trained with more data and when both sentences contain
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identical content words (as in the all blickets dax→ ¬some blickets don’t dax example), suggesting
that the negative results could be explained by a failure to learn lexical categories rather than
by a failure to apply rules systematically. Similarly, neither Lake & Baroni’s (2018) nor Kim &
Linzen’s (2020) results are uniformly negative. Lake & Baroni (2018) report that when novel
inputs can be understood using mix-and-match strategies, simple recurrent models are able to
perform quite well. When Kim & Linzen (2020) break down performance by model and type of
generalization, they find that transformers in particular (as opposed to recurrent models) perform
well on active–passive transformations and decently on subject–object translations (e.g., John loves
Mary → Mary loves John), though admittedly with high variation across configurations.

Finally, some authors are overtly positive about the potential of such models to behave sys-
tematically, especially if one considers hybrid neurosymbolic variants. For example, Hupkes et al.
(2018a), like Lake & Baroni (2018), study the performance of recurrent neural models using a
toy compositionality task. The study finds that simple changes to training (specifically, intro-
ducing supervision on the attention layer) can significantly improve the models’ generalization
performance. Conklin et al. (2021) show that meta-learning (i.e., optimizing training for out-of-
distribution generalization) yields significant improvements on the tasks from the studies of both
Lake & Baroni (2018) and Kim & Linzen (2020).

4.3.2. Negation. Negation is arguably the most frequently cited phenomenon in discussions of
models’ need to process language compositionally.

4.3.2.1. Evidence in favor. Early work on negation in SEs (Ettinger et al. 2018) uses probing
classifiers to test whether models trained on semantic tasks (e.g., NLI) yield representations dis-
tinguishing verbs that appear within the scope of a negation from verbs that appear in a negated
sentence but outside of the negation scope (e.g., professor versus student in the professor is not helping
the student). Ettinger et al. (2018) find that most of the SEs tested perform quite well (accuracy in
the high 90s), though they acknowledge that the test set is not free of confounds.

Other studies have investigated models’ sensitivity to negation via their treatment of nega-
tive polarity items (NPIs)—that is, lexical items like any, which are grammatical only when used
in downward entailing contexts, such as under the scope of negation. Jumelet & Hupkes (2018)
find that a simple recurrent model trained from scratch is consistently less surprised by sentences
containing grammatical NPI uses than by those containing ungrammatical uses. Warstadt et al.
(2019) perform a similar study and find that BERT performs close to perfectly. Slight variations
on the task, however, weaken the results significantly—for instance, if BERT is asked to make an
absolute binary prediction (grammatical/ungrammatical) rather than relative ranking (more/less
grammatical).

4.3.2.2. Evidence against. The task of negation scope detection, on which all of the above eval-
uations rely, has been argued to be more syntactic than semantic (McKenna & Steedman 2020).
Thus,many who are interested in negation focus instead on the question of whether models’ infer-
ences are influenced by negation in the correct way. One of the earliest such studies, by Dasgupta
et al. (2018), focuses on the InferSent model (Section 2.2.1). The study uses a targeted NLI test
set consisting of simple sentence pairs (the woman is more cheerful than the man/the man is not more
cheerful than the woman) that are balanced such that simple word-level heuristics would perform
at chance. Off the shelf, InferSent performs poorly but better than random (50% accuracy over
a 33% random baseline). The authors interpret this result as evidence that the model can exploit
signal beyond naive unigrams but that it falls short of real compositional reasoning.
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Work on pretrained LMs has shown a similar lack of sensitivity to negation. For example,
Kassner & Schütze (2020) and Ettinger (2020) find that while LMs recall basic facts with high
precision (birds can fly), they are equally likely to generate the complete opposite “fact” (birds cannot
fly), seemingly ignoring the presence of the negation entirely.

4.3.3. Phrase representations. Another line of work has explored compositionality by look-
ing at representations of short phrases, in a manner reminiscent of earlier work on DSMs
(Section 2.1)—for instance, coffee cake, hit ball.

4.3.3.1. Evidence in favor. Shwartz &Dagan (2019) perform a comprehensive analysis to com-
pare contextualized word embeddings with static ones in terms of their ability to represent short
phrases. The study uses six different lexical composition tasks (e.g., detecting verb-particle con-
structions, detecting nonliteral noun compounds) and finds that, on average, contextualized repre-
sentations perform better at “detecting meaning shift,” in particular on tasks involving light verb
constructions (e.g., differentiating carry it from carry on) (Shwartz & Dagan 2019, p. 403).

4.3.3.2. Evidence against. Most studies yield negative results about SEs’ ability to model
phrases. Early analyses, predating pretrained LMs, report that networks trained on NLI from
scratch fail to reason about adjective–noun compounds (e.g., little baby) (Pavlick & Callison-Burch
2016) and simple lexical alternations (e.g., playing a guitar versus playing a flute) (Glockner et al.
2018).More recently, Yu&Ettinger (2020, 2021) have used BERT and similar models to score the
similarity of phrase pairs (e.g., average person/ordinary citizen); they find that, after controlling for
naive word overlap, correlations with human similarity judgments are very low, suggesting “little
evidence of nuanced composition” (Yu & Ettinger 2020, p. 4896).Nandakumar et al. (2019) evalu-
ate multiple SEs on the task of scoring the degree of compositionality for a given noun phrase (e.g.,
application form versus sitting duck). Across all evaluations, ELMo and BERT embedding models
perform worse than a static word-embedding baseline that treats phrases as atomic units (e.g.,
sitting_duck). Garcia et al. (2021) draw similar conclusions. Finally, Shwartz & Dagan (2019) find
that contextualized word embeddings struggle to infer implicit meaning in phrases—for instance,
failing to correctly paraphrase noun compounds such as olive oil → oil made from olives.

4.3.4. Summary and discussion. In general, the consensus is that models are not compositional
(or at least not compositional enough). Thus, while modern SEs appear to be good at modeling
word meaning (Sections 4.1.3 and 4.2.3), they struggle with composition. Such a one-line sum-
mary could have been made of the DSMs of 10 years ago, but it would be wrong to say that no
progress has been made.The question of whether models behave compositionally has come to the
fore and has sustained interest because, despite the negative results above, SEs simply do not fail
spectacularly enough to close the book on the issue. Perhaps the strongest positive evidence is the
existence proof of models performing well on so many classically hard language tasks (question
answering, NLI, machine translation), on which traditional DSMs were never even viable com-
petitors. Even granting issues with extrinsic evaluations (Section 3), it is hard to deny that SEs are
doing something that is new and exciting.

Thus, the most salient question is less about behavior (what SEs do) and more about evaluation
(what they should do). Without a precise enough definition of what type of composition would
be human-level, we cannot currently make claims, positive or negative, about SEs as models of
compositional semantics. Generating converging evidence in either direction requires agreeing
on priorities along at least two dimensions.
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4.3.4.1. Controlled or realistic? The above studies of compositionality differ significantly in
ecological validity. The strongest negative results rely on idealized data in which there is a fully
transparent relationship between syntax and semantics. Such studies offer good insights about
how neural networks learn, but they are limited in what they can tell us about SEs as models of
semantics in general for two reasons.

First, whether human semantic inferences behave systematically is an open question rather
than something to be taken for granted. Recent work provides numerous examples of humans
making seemingly unsystematic judgments about entailment on both natural (De Marneffe et al.
2019,Ross & Pavlick 2019) and highly controlled (White &Rawlins 2018) stimuli. As such, results
on idealized data frequently fail to predict how well SEs will explain real human judgments. In a
study by Ettinger (2020), models perform poorly on recognizing negation when given templatic
sentences (A robin is not a tree) but much better when given sentences based on real corpora (most
smokers find that quitting isn’t very effective). In a study by Yanaka et al. (2019), models produce
different error patterns depending on whether they are tested on realistic monotonicity inferences
(generated via crowdsourcing) or templatic ones (sourced from linguistics textbooks).

Second, evaluations on simulated languages typically train models from scratch on the tar-
get task. However, general (task-nonspecific) language exposure is an important part of human
language development, and empirical evidence suggests that pretraining endows models with in-
ductive biases above and beyond what is provided by the model architecture alone (Warstadt et al.
2020, Lovering et al. 2021).

Thus, there is reason to be skeptical that the negative results observed in from-scratch models
in simulation are representative of how modern SEs behave on natural language. At best, such
studies tell us that SEs are not implementations of particular existing theories of compositional
semantics. They do not help us assess SEs’ potential as alternative models of compositional se-
mantics. Future work needs to consider both possibilities (Section 5).

4.3.4.2. Representation or behavior? A larger, more philosophical question prevents us from
drawing stronger conclusions from the presented studies. In particular, we lack consensus on
whether compositionality should be understood primarily as a property of a model’s representa-
tions or of its behavior.Work in logic and philosophy frequently defines compositionality in terms
of a model’s representation: It is a property of how semantic representations are structured, such
that the structure of some concepts guarantees something about the structure of others (Fodor &
Pylyshyn 1988). Such definitions say little about how models behave, and supporting arguments
rely minimally on experimental data about human behavior. In contrast, work in experimental
and computational linguistics often defines compositionality using human behavior rather than
any explicit definition. Such work solicits humans’ intuitive judgments about how words combine
(Lapata & Lascarides 2003, De Marneffe et al. 2019) and seeks to provide explicit models that
produce the same judgments.

Evaluative work on SEs has mixed and matched these approaches. For example, much of the
work discussed in Section 4.3.1 cites Fodor & Pylyshyn (1988) but provides experimental re-
sults in terms of model behavior. Work discussed in Section 4.3.3, inspired by human behavioral
data, places comparatively more emphasis on model representations (e.g., probing the embed-
dings themselves). Such cross-cutting evaluations are potentially informative if done deliberately,
but in most current studies, it is difficult to determine which assumptions about compositionality
underlie the interpretation of results.

Future work should bring our evaluations closer in line with the theories we seek to test. Such
work will no doubt require proposing new ways of operationalizing existing theories and new
ways of formalizing SEs’ behavior, but this is worthwhile. Precisely connecting evaluation criteria
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to theories of semantics will enable us to better understand the implications of SEs for the broader
study of semantics.

5. CONCLUSION

Modern deep learning methods yield representations of words and sentences that encode signif-
icantly more conceptual information about lexical semantics (Section 4.1) and the external world
(Section 4.2) than did earlier DSMs. However, they still fall short when reasoning about these
concepts compositionally (Section 4.3). The same general summary—good at lexical semantics,
bad at composition—could have been made of the DSMs of 10 years ago. However, it is an
oversimplification to say that models have not changed. To the contrary, new models invoke
fundamentally new notions of conceptual knowledge—for instance, eschewing explicit type-level
lexicons (Section 4.1.3) and external knowledge bases (Section 4.2.3). Even the way in which new
models struggle with composition is different from how traditional DSMs did (Section 4.3.4).
Traditional compositional DSMs, inspired by formal semantics, showed promise in toy settings
but failed to compete on realistic language-understanding tasks. Modern SEs, in contrast, show
unprecedented, even human-level, performance on complex tasks such as reading comprehension
and machine translation but break when tested in controlled simulations.

New SEs thus deserve to be considered with a fresh perspective. However, linguistic analysis
has only just begun and has yet to yield theoretical insight. If SEs are to transition from being
mere language processing systems to a genuine model of semantics, there are several overarching
barriers that future work must overcome.

Perhaps the most important open question is, What should a computational model of
semantics deliver? There are two obvious perspectives one could take. We can focus on the
implementation level and ask, Can SEs be an implementation of a given, prespecified model of
semantics? Alternatively, we can focus on the computational level and ask, Can we formalize the
behavior of SEs into a new, alternative model of semantics? The former is obligated to specify
a clear theory of semantics within which models are being assessed. The latter is obligated to
generate explicit theories with testable hypotheses that can be validated in human subjects. Both
approaches are valid and valuable; researchers need not commit themselves to one at the exclusion
of the other, but individual studies should. Currently, studies are cast implicitly as one or the
other—for instance, the studies described in Section 4.3.1 exemplify the former while the studies
described in Section 4.1.1 exemplify the latter—but are not overt enough in such commitments
to yield the type of rigorous theoretical contributions needed to propel the field forward.

A related question is, How do we prioritize model representations versus model behavior?
Ultimately, we seek a complete theory of semantics that explains behavior in terms of represen-
tations, and representations in terms of learning. However, we are currently faced with complex
deep learning models within which the precise interfaces between such stages are poorly under-
stood. As a result, conclusions often differ based on the evaluation methods used—for instance,
task performance versus probing analyses. This problem is not new—it echoes the long-known
challenge of differentiating performance from competence.However, debates about SEs’ semantic
abilities are rarely framed as such. Again, casting studies in more explicit theoretical terms,making
clear claims about theories of semantic representations versus models of human behavior, would
make it easier to recognize converging evidence where it exists and to diagnose which aspects of
a proposed model are weakest.

All considered, the opportunities to explore important new theories of semantic repre-
sentations at the word and sentence levels are significant. Semanticists, theoretical as well as
computational, have every reason to be excited and should welcome this new technology as an
opportunity for deep, cross-disciplinary collaboration.
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