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Abstract

Ocean temperature variability is a fundamental component of the Earth’s
climate system, and extremes in this variability affect the health of marine
ecosystems around the world. The study of marine heatwaves has emerged
as a rapidly growing field of research, given notable extreme warm-water
events that have occurred against a background trend of global ocean warm-
ing. This review summarizes the latest physical and statistical understand-
ing of marine heatwaves based on how they are identified, defined, charac-
terized, and monitored through remotely sensed and in situ data sets. We
describe the physical mechanisms that cause marine heatwaves, along with
their global distribution, variability, and trends. Finally,we discuss current is-
sues in this developing research area, including considerations related to the
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Marine heatwave
(MHW): a discrete
period of prolonged
anomalously warm
water at a particular
location

Threshold:
a temperature value,
which may be fixed or
vary over time and/or
space, above which
temperatures are
considered
anomalously warm in
defining MHWs

Air–sea heat flux:
turbulent (sensible and
latent) and radiative
(longwave and
shortwave) exchanges
of heat between the
ocean and atmosphere

Temperature
advection: a local
temperature change
due to the action of
ocean currents in the
presence of a spatial
gradient in
temperature, which
may act in the
horizontal (e.g.,
geostrophic boundary
currents, wind-driven
Ekman flows) or the
vertical (e.g., up-
welling/downwelling)

MHW duration:
the time from the start
date to the end date of
an MHW

choice of climatological baseline periods in defining extremes and how to communicate findings
in the context of societal needs.

1. INTRODUCTION

Marine heatwaves (MHWs)—a term first used by Pearce et al. (2011)—are anomalous warm sea-
water events that can substantially affect marine ecosystems. An MHW is qualitatively defined as
a discrete period of prolonged anomalously warm water at a particular location, and quantitative
definitions are based on ocean temperatures exceeding a fixed (Frölicher et al. 2018), seasonally
varying (Hobday et al. 2016), or cumulative (Eakin et al. 2010) threshold. MHWs are caused by
a combination of local oceanic and atmospheric processes, including air–sea heat flux and hori-
zontal temperature advection, and may be modulated by large-scale climate variability, including
remote sources via teleconnections (Holbrook et al. 2019). MHWs have been identified primar-
ily using ocean surface temperatures, although they may also extend below the surface (Schaeffer
& Roughan 2017). The global count of MHW days per year has risen over the historical record
due to increases in MHW duration and frequency (Oliver et al. 2018a). This trend is projected to
increase further under climate change (Frölicher et al. 2018, Oliver et al. 2019) as a consequence
of long-term ocean warming.

The study of MHWs as discrete events is motivated largely by their ecological and socioe-
conomic impacts. The study of sea surface temperature (SST) variability has a long history in
physical oceanography and climate science (Philander 1983, Deser et al. 2010), and understand-
ing the effects of warm ocean temperature extremes on marine ecosystems is vitally important
(Garrabou et al. 2009, Mills et al. 2013,Wernberg et al. 2013, Smale et al. 2019, Benthuysen et al.
2020). Specifically, studies of MHWs are set apart from studies of SST variability more broadly
in that they examine the aspects of SST variability that affect marine ecosystems, rather than just
the physical and climatic properties of ocean temperature variability.

Here, we critically review our current understanding of MHWs from a physical and climato-
logical perspective. We review the definitions of MHWs, data sets useful for monitoring them,
the physical processes causing MHWs, and their statistical properties. We examine the global
distribution of MHWs, including characteristics of their variability and trends, and the role of an-
thropogenic change. The field of MHWs has grown as events continue to occur that have broad
impacts across marine ecosystems and socioeconomic systems, raising issues of how best to com-
municate about MHWs and the most appropriate way to define MHWs in a warming ocean.

2. A BRIEF HISTORY OF RECENT HIGH-IMPACT EVENTS

While anomalously warm seawater events are not a new phenomenon, they have occurred with in-
creasing frequency and duration over the past century (Oliver et al. 2018a) and have had significant
impacts on marine ecosystems. The global-scale coral bleaching events of 1998, 2010, and most
recently 2014–2017 occurred with El Niño conditions and globally elevated ocean temperatures
(Eakin et al. 2019). The increased occurrence of extreme warm-water events across the globe has
focused efforts toward examining events within a common framework. Over the past two decades,
analyses of prominent MHW events (Figure 1) have revealed that they are often caused by com-
pounding influences of atmospheric forcing and/or oceanic processes. Furthermore, the phase of
climate modes of variability can act to increase or decrease the likelihood of MHW occurrence
regionally (Holbrook et al. 2019). Here, we highlight notable events that have been attributed to
local changes in air–sea heat fluxes, ocean heat transport, or remote forcing via teleconnections.
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Figure 1

Key historical MHWs. (a) SST anomalies on the day of peak MHW intensity. MHW intensity was defined based on the time series of
SST averaged over the regions indicated by the black boxes. Light gray indicates areas of sea ice influence. (b) MHW properties for key
historical events. The MHW intensity (y axis), MHW duration (x axis), and category (color; see Hobday et al. 2018a) were determined
from the spatially averaged time series, as in panel a. The MHW area (circle size) is the total contiguous area reaching at least category 2
(strong). All events shown in panel b are referenced in Section 2. Abbreviations: AL, Gulf of Alaska and Bering Sea; Beng., Benguela;
ECS, East China Sea; Med., Mediterranean; NA, northern Australia; MHW, marine heatwave; NEP, northeast Pacific; NWA,
northwest Atlantic; SST, sea surface temperature; Tas., Tasman Sea; WA,Western Australia; WSA, western South Atlantic. Panel a
inspired by a schematic from Frölicher & Laufkötter (2018).

Record-breaking MHWs have been documented where the atmospheric state played a central
role in their development andmaintenance. Examples of such events include those in theMediter-
ranean Sea during the summers of 2003 (Olita et al. 2007) and 2006 (Bensoussan et al. 2010), off
the northeast coast of the United States in 2012 (Chen et al. 2014, 2015), from the southeast tropi-
cal Indian Ocean to the Coral Sea in 2015–2016 (Benthuysen et al. 2018), in the East China Sea in
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Climate modes of
variability: recurrent
spatial patterns of
specific climate
variables, often
quasi-periodic or
broad-banded and
occurring on
subseasonal,
interannual, decadal,
multidecadal,
centennial, millennial,
or longer timescales

MHW intensity: the
temperature anomaly
(based on the
maximum or mean
value) during an
MHW

Anomaly: a deviation
of temperature from
the climatological
mean

2016 (Tan & Cai 2018), along the southwest Atlantic shelf in 2017 (Manta et al. 2018), off coastal
Peru in 2017 (Echevin et al. 2018), and in the Tasman Sea in 2017–2018 (Perkins-Kirkpatrick et al.
2019, Salinger et al. 2019). In these cases, the anomalously warm ocean temperatures were related
to abnormally high air–sea heat fluxes into the ocean.

Other MHWs have been found to be caused primarily by anomalous ocean heat transport,
such as the MHWs in the Angola Benguela Upwelling System in 2001 (Rouault et al. 2007), off
Western Australia in early 2011 (Feng et al. 2013, Benthuysen et al. 2014), in the Tasman Sea
in 2015–2016 (Oliver et al. 2017), and in the Middle Atlantic Bight (Gawarkiewicz et al. 2019)
and off Japan (Sugimoto et al. 2020) in 2017. In addition, large-scale MHWs have developed
through a combination of multiple interacting mechanisms. Most notably, the 2014–2016 MHW
affected the Pacific and was linked to tropical–extratropical teleconnections (Bond et al. 2015, Di
Lorenzo & Mantua 2016, Hu et al. 2017, Tseng et al. 2017). Other events have been associated
with substantial retreat in Arctic sea ice (e.g., the Gulf of Alaska and the Bering Sea in 2016;
Walsh et al. 2018, Oliver et al. 2018b). There is an increasing interest in such events that span
across systems, including the ocean, atmosphere, land, and cryosphere (e.g., Ruthrof et al. 2018).

While these recent MHWs had varying intensities, durations, and spatial extents (Figure 1b),
they have all been linked with disruptive changes in marine ecosystems (Wernberg et al. 2016,
Hughes et al. 2017, Smale et al. 2019) and commercial fisheries (Mills et al. 2013,Caputi et al. 2016,
Jacox et al. 2019). It should be noted that MHWs are distinct from otherwise anomalously warm
years. Smale et al. (2019) pointed out that, while most recent research has been on the ecological
effects of mean climate variables, discrete events have emerged as critical factors driving rapid
shifts in ecosystems. These issues highlight the need for consistent MHW detection methods,
frameworks for understanding their physical drivers, and accurate dynamical and statistical models
for predicting future events.

3. DEFINING AND MONITORING MARINE HEATWAVES

3.1. Defining a Marine Heatwave

Extreme events are climate anomalies that are rare and have magnitudes that deviate significantly
from typical conditions in a region. The statistics of extremes, those that describe the tails of a
probability distribution, have traditionally been examined using extreme value theory (Gumbel
1958, Leadbetter et al. 1983, Coles 2001). Extreme value theory examines the distribution of ex-
treme values in a time series by assuming the data are distributed according to certain probability
distributions, such as the generalized extreme value (for block-maxima extremes, e.g., the annual
maxima in Figure 2) or the generalized Pareto distribution (for peak-over-threshold extremes).
The fitted distribution can be used to estimate the return periods or return levels of extreme
events. Extreme value theory has not been widely applied to study temperature extremes in the
ocean (e.g., Oliver et al. 2014a,b).

More recently, methods for detecting ocean temperature extremes have used a threshold
above which any contiguous days of temperature are considered to be a single event. In this
analysis, the important choice is in defining the threshold, either fixed in time or allowed to vary
seasonally or on longer timescales. Fixed thresholds can be defined by an absolute temperature
(Figure 2a), informed by marine species’ upper thermal limits (the temperatures above which
biological functions become impaired). For example, cumulative temperatures above an absolute
threshold have been used for coral bleaching studies (e.g., degree heating days, weeks, and
months; Liu et al. 2014). Temporally fixed thresholds can be defined using a relative measure
of the temperature variance (e.g., quantiles). While these thresholds are fixed in time, similar
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Climatology: the
statistical properties of
a time series defined
over an extended
period (e.g., 30 years),
including the mean,
seasonal cycle,
variance, and quantiles

Baseline period:
the time period used to
calculate a climatology,
traditionally taken to
be a 30-year period,
following World
Meteorological
Organization
recommendations

Figure 2 (Figure appears on preceding page)

Different methods of detecting extreme temperatures for the 2011 Western Australia MHW (Pearce &
Feng 2013) (left column) and 2012 northwest Atlantic MHW (Mills et al. 2013) (right column). (a) Fixed
thresholds—defined either by an absolute temperature (here set at 25°C for Western Australia and 17°C for
the northwest Atlantic; dashed green lines) or a fixed percentile threshold (here the 90th percentile; solid green
lines)—and annual maximum temperature values (white circles) work well for detecting events during the
warm season (as in Western Australia in 2011) but are poor indicators of anomalous conditions during other
seasons (as in the northwest Atlantic in 2012). (b) Seasonally varying percentile thresholds, such as the
Hobday et al. (2016) definition using the 90th percentile, allow detection of MHWs as anomalously warm
temperatures during warm and cool seasons (including both the 2011 Western Australia MHW and the 2012
northwest Atlantic MHW). (c) Increasing the threshold—for example, by using the 99th percentile instead of
the 90th—isolates only the most extreme events. (d) The categorization scheme, proposed by Hobday et al.
(2018a), permits the use of a lower percentile threshold while identifying category levels of increasing
intensity. The climatology was calculated using NOAA OI SST V2.0 data with a baseline period of 30 years
(1983–2012). Abbreviations: MHW, marine heatwave; NOAA OI SST V2.0, National Oceanic and
Atmospheric Administration Optimum Interpolation Sea Surface Temperature version 2.0.

to the absolute thresholds, this measure allows the definition of extreme to come from the
time series data distribution itself (Figure 2a). This approach may be less applicable to a single
species, but the results represent a more general quantification of what is extreme in the local
context. Fixed thresholds typically only identify warm-season MHWs (e.g., coral bleaching
thresholds; Fordyce et al. 2019). However, extremely warm temperatures in other seasons may
have important consequences for the life cycle and survival of marine species (e.g., the survival of
invasive warm-water species in winter; Ling et al. 2009). Temperatures below a lower threshold
are known as marine cold spells (see the sidebar titled Marine Cold Spells).

A more versatile method to identify MHWs uses a seasonally varying climatological thresh-
old (Figure 2b). The climatology is calculated over a chosen baseline period, preferably a 30-
year temperature time series (WMO 2018). The method defined by Hobday et al. (2016) uses
a local daily upper-percentile climatology as the threshold above which MHWs are detected,
consistent with atmospheric heatwave definitions (Perkins & Alexander 2013). A 90th-percentile
threshold results in a relatively large number of MHW events, and some weak, short-lived events
may not result in ecological consequences. One solution is to use a higher threshold, such as the
99th percentile (Frölicher et al. 2018, Collins et al. 2019) (Figure 2c). This method identifies
more intense MHWs but requires a longer observational record to estimate the threshold in a
robust way, which can be problematic given the limitations of many observational records (see
Section 3.2).

MARINE COLD SPELLS

Prolonged ocean temperatures in the lower tail of the temperature distribution are known as marine cold spells
(MCSs) andmay be defined analogously toMHWsby their exceedance of temperatures below a percentile threshold
for a prolonged period (Schlegel et al. 2017). MCSs can be driven by intense upwelling or atmospheric forcing
(e.g., cold-air outbreaks or storm-induced mixing). Severe MCSs can cause fish kills and invertebrate mortality
and can pose risks to coral reefs (Gunter 1951, Roberts et al. 1982, Holt & Holt 1983, Firth et al. 2011, Paz-
García et al. 2012). Higher-latitude systems have some resilience (Tuckett &Wernberg 2018), and MCSs may have
historically inhibited the tropicalization of temperate ecosystems (Leriorato & Nakamura 2019). MCSs have also
been implicated as a controlling factor in ecosystem shifts between salt marshes and mangroves (Cavanaugh et al.
2019).
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Hobday et al. (2018a) provided a refined definition that categorizes the severity of an MHW
and allows for the identification of themore extreme events.Categories are delineated by the num-
ber of times the maximum observed temperature anomaly is greater than the difference between
the climatological mean and the 90th-percentile threshold (Figure 2d). This approach results in
a simple numbered system from category 1 (moderate) to 4 (extreme) that can be used to monitor
an ongoing event or applied retrospectively given the maximum value reached.

Once a definition is chosen, a suite of metrics defines characteristics of each event. These met-
rics include intensity (e.g., temperature anomaly relative to the climatological mean), duration
(time between start and end dates), and cumulative intensity (the intensity integrated over the
duration of the event, analogous to degree heating days).

There are limitations with each type of MHW definition. The research questions and their
application are important factors for selecting a definition, and the availability of long time series
data is important for determining reference periods and thresholds.

3.2. Available Data Sets

Temperature data with daily resolution are ideal to identify and characterizeMHWs in a consistent
way. In addition, the data time period needs to be sufficiently long for estimating a climatology
(ideally a minimum of 30 years; e.g.,WMO 2018). However, Schlegel et al. (2019) showed that as
few as 10 years of data may be sufficient for constraining the climatology, and recent studies have
used fewer data, from short records or those with temporal gaps, to identify MHWs (e.g., Oliver
et al. 2017).

Most studies have characterized MHWs using available SST products (seeTable 1). Satellite-
based SST data sets provide global, continuous, multidecadal, and near-real-time products for the
study of MHWs. On local to regional scales, high-frequency subsurface ocean temperatures can
be used to construct climatologies and analyze MHW characteristics (e.g., Schaeffer & Roughan
2017, Benthuysen et al. 2018, Elzahaby & Schaeffer 2019). However, subsurface measurements
are generally available only in select locations (i.e., long-term moorings) or at a lower temporal
resolution from depth-profiling drifting floats (e.g., Argo) or gliders. In fact, little is known about
the characteristics of MHWs below the ocean surface due to sparsely collected data. Therefore,
despite the notable importance of these events for benthic ecosystems, systematic studies of sub-
surface MHWs are difficult to undertake robustly.

When daily temperature data are not available (e.g., some seasonal forecasts and climatemodels
save only monthly data), the ability to apply the formal MHW definitions is limited, given the
necessity for daily measurements. However, such data have been used to examine longer-lasting
MHWs in order to monitor coral bleaching risk (e.g., Donner et al. 2005) and perform seasonal
forecasting of major events (Doi et al. 2013, Spillman et al. 2013, Jacox et al. 2019). In addition, the
monthly temperature variations offer statistical insight into the frequency of extremes, a property
that has been used to develop centennial-scale proxies of MHW properties globally (Oliver et al.
2018a).

In global ocean and climate models, SSTs and MHW estimates may have biases if subgrid-
scale processes are not represented (e.g., Pilo et al. 2019) or do not include feedback from air–sea
heat coupling (e.g., Frankignoul 1985). While data sets derived from observations, even coarsely
resolved ones, inherently represent the physical processes of the natural world, coarse-resolution
ocean models are challenged in representing ocean temperatures at the local scale. In global cli-
mate models, issues in representing boundary currents, eddies, teleconnections, coastal processes,
and interannual-to-decadal variability will affect SST patterns (e.g., Cai &Cowan 2013,Taschetto
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Table 1 Ocean temperature data types along with their temporal coverage, spatial resolution, general strengths and
weaknesses, and example products

Data set type
Earliest
start date

Spatial
resolution Strengths Weaknesses Examples

Observations

In situ
(stationary)

Around
1900

Local Accurate representa-
tion of local
temperatures; several
long records
available; includes
surface and
subsurface
measurements (in
some cases)

Representation very
spatially restricted;
subject to missing
data or changes in
technology over
time; some records
too short to constrain
a climatology

Scripps Shore
Stations Program
(USA), British
Columbia Shore
Station Oceano-
graphic Program
(Canada), Arendal
Institute of Marine
Research (Norway),
South African
Coastal Tempera-
ture Network

In situ (passive
movement)

Late
twentieth
century

Local to
basin
scale

Large spatial coverage;
includes surface and
subsurface
measurements

Lagrangian in nature,
which complicates
analysis; instruments
cannot be directed to
sample a specific area
of interest

Surface drifting
buoys, Argo floats

In situ (active
movement)

Early
twenty-
first
century

Local to
basin
scale

Missions can target
events as they occur;
includes surface and
subsurface
measurements; other
physical and
biogeochemical
parameters also
typically measured

Data lack the
spatiotemporal
context outside the
mission period and
location; requires
many missions to
build up a time series
for a particular
location

Gliders, ships of
opportunity
(various missions
and groups
worldwide)

Remotely
sensed
(satellite:
infrared,
microwave)

1979 1–25 km Global; continuous;
near real time; high
frequency (daily to
weekly)

May not accurately
resolve coastal
temperatures

NOAA OI SST,
CoralTemp,
CCI-SST,
GHRSST

Statistically
analyzed
observations
(bin averaged)

Late nine-
teenth
century

5° Global; long records;
quantification of
uncertainty

Low frequency
(monthly); missing
data in space and
time

HadSST3, HadSST4

Statistically
analyzed
observations
(interpolated)

Late nine-
teenth
century

1–2° Global; continuous;
long records;
quantification of
uncertainty (in some
cases)

Low frequency
(monthly); data
values in the absence
of observations are
weakly constrained

HadISST, ERSST,
COBE2

Reanalyses

Eddy-resolving
ocean
reanalysis

1993 1/12–1/4° Global; continuous;
quantification of
uncertainty (in some
cases); complete
three-dimensional
ocean state estimated
(temperature,
salinity, and
velocities)

Data values in the
absence of
observations are
weakly constrained

GLORYS, HYCOM,
BRAN

(Continued)
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Table 1 (Continued)

Data set type
Earliest
start date

Spatial
resolution Strengths Weaknesses Examples

Coarse-scale
ocean
reanalyses

Around
1900

1/2–1° Global; continuous;
long records;
quantification of
uncertainty (in some
cases); complete
three-dimensional
ocean state estimated
(temperature,
salinity, and
velocities)

Subgrid-scale physical
processes are not
resolved; data in the
absence of
observations, most
notably in earlier
time periods, are only
very weakly
constrained

SODA, CERA-20C,
GODAS

Numerical models

Eddy-
permitting
and eddy-
resolving
ocean models

Various 1/4° or
finer

Dynamically consistent
data allow for an
accurate exploration
of physical processes;
resolves important
physical processes,
including eddies and
coastal processes

Free running models
are not constrained
to represent the
timing of the
observational record

Many modeling
groups worldwide

Coarse-scale
ocean models

Various Coarser
than 1/4°

Dynamically consistent
data allow for an
accurate exploration
of physical processes

Free running models
are not constrained
to represent the
timing of the
observational record;
subgrid-scale
physical processes are
not resolved

Many modeling
groups worldwide

Global and
regional
climate
models

Various 1/2–2° Dynamically consistent
data allow for an
accurate exploration
of physical processes,
including a
representation of the
complete, coupled
climate system
(ocean, atmosphere,
cryosphere, etc.); can
separate the natural
and anthropogenic
influences on
MHWs

Free running models
are not constrained
to represent the
timing of the
observational record;
subgrid-scale
physical processes are
not resolved

CMIP5, CMIP6,
CORDEX

Beggs (2020) provides further details on many specific observational SST data sets. Abbreviations: BRAN, Bluelink Reanalysis; CCI-SST, Climate Change
Initiative Sea Surface Temperature; CERA-20C, Coupled Ocean-Atmosphere Reanalysis of the 20th Century; CMIP5/6, Coupled Model Intercomparison
Project Phase 5/6; COBE2,Centennial In SituObservation-Based Estimates 2; ERSST,ExtendedReconstructed Sea SurfaceTemperature;GHRSST,Group
for High Resolution Sea Surface Temperature; GLORYS, Global Ocean Reanalysis and Simulation; GODAS, Global Ocean Data Assimilation System;
HadISST, Hadley Centre Sea Ice and Sea Surface Temperature; HadSST3, Hadley Centre Sea Surface Temperature; HYCOM,Hybrid Coordinate Ocean
Model; MHW, marine heatwave; NOAA OI SST, National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface Temperature;
SODA, Simple Ocean Data Assimilation; SST, sea surface temperature.

et al. 2014, SenGupta et al. 2016, Power et al. 2017).These shortcomings may bemitigated by bias
correction of the SST time series (e.g., Oliver et al. 2017, Pilo et al. 2019), but such an approach
corrects only for the statistical aspects of the bias and not the underlying issues of poorly captured
or unrepresented physical processes. Increases in model resolution and process parameterization
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Surface mixed layer:
the upper layer of the
ocean, in contact with
the atmosphere, which
has a nearly uniform
density over its depth
due to turbulent
mixing

Mixed-layer
temperature budget:
the theoretical balance
of physical processes
that cause temperature
changes in the surface
mixed layer

may provide some improvements in this regard [e.g., Coupled Model Intercomparison Project
Phase 6 (CMIP6); Eyring et al. 2016].

4. MARINE HEATWAVE MECHANISMS

4.1. Dynamical Understanding

The physical processes responsible for MHWs can be explored through the analysis of the heat
sources and sinks within the surface mixed layer, which are reflected in SST variations (Alexander
et al. 2000, Deser et al. 2010). A mixed-layer temperature budget has been used to describe the
processes of MHW formation, evolution, and decay (Benthuysen et al. 2014, Chen et al. 2014,
Kataoka et al. 2017). This approach relates temperature changes in the surface mixed layer with
physical processes, including horizontal temperature transport and air–sea heat fluxes.

Generally, changes in mixed-layer temperatures arise from a combination of air–sea exchanges,
advection by mean currents and eddies, horizontal and vertical mixing, and entrainment of water
into the mixed layer. The rate of change of vertically averaged seawater temperature in the mixed
layer, or the temperature tendency, is given by (Moisan & Niiler 1998)

∂T
∂t︸︷︷︸

Temperature tendency

= − u · ∇T︸ ︷︷ ︸
Horizontal advection

+ ∇ · (κh∇T )︸ ︷︷ ︸
Horizontal mixing

− 1
h
κz

∂T
∂z

∣∣∣∣
−h︸ ︷︷ ︸

Vertical mixing

−
(
T − T−h

h

)⎛⎜⎜⎜⎝ ∂h
∂t︸︷︷︸

MLD tendency

+ u−h · ∇h︸ ︷︷ ︸
Lateral induction

+ w−h︸︷︷︸
Vertical advection

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Entrainment

+ QSW − QSW(−h) +QLW +Qsens + Qlat

ρcph︸ ︷︷ ︸
Air–sea heat flux

, 1.

where T is the temperature in the surface mixed layer, t is time, u = (u, v) is the two-dimensional
horizontal (x, y) velocity vector, w is vertical (z) velocity, � is the horizontal gradient operator, Q
comprises various components of the air–sea heat flux (see details below), ρ is the seawater density,
cp is the specific heat capacity of seawater, h is the mixed-layer depth (MLD), and κh and κz are the
horizontal and vertical diffusivity coefficients. Quantities have been vertically averaged over the
mixed layer, and the vertical average of any quantity x is defined to be x = h−1

∫ 0
−h xdz; a subscript

x−h indicates that the quantity is evaluated at the base of the mixed layer, i.e., at z= −h. Note that
Equation 1 neglects second-order correlation terms (for the full form of the budget, see Moisan
& Niiler 1998).

Equation 1 describes how the rate of change of surface mixed-layer temperature is related
to the transfer of heat by horizontal advection, air–sea heat flux, lateral and vertical mixing, and
entrainment of deeper waters into the mixed layer (Figure 3a). Horizontal temperature advection
can drive local temperature changes through horizontal flows across a temperature gradient;
examples include strong poleward geostrophic flows in a western boundary current extension
region and strong Ekman flows associated with changes in wind stress (Rebert et al. 1985).
Anomalous ocean currents—or, less often, anomalous temperature gradients—are responsible for
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Figure 3 (Figure appears on preceding page)

Physical processes affecting mixed-layer temperatures. (a) Relevant physical processes in a mixed-layer temperature budget.
(b–g) Idealized examples of MHW events where the budget is dominated by (b–d) horizontal advection and (e–g) air–sea heat flux. For
the advection event, we have (b) a background state consisting of a poleward ocean current u (arrows) across a temperature gradient �T
(colors; e.g., a western boundary current), which is (c) perturbed by an anomalous flow to the northeast, resulting in (d) anomalously high
SSTs. For the air–sea heat flux event, we have (e) a background state consisting of stratification with a constant mixed-layer depth (h),
wind forcing, and air–sea heat flux (Q). This state is ( f ) perturbed by an atmospheric event that acts to weaken the surface winds,
increase the air–sea heat flux, and shoal the mixed-layer depth, resulting in (g) anomalously high temperatures in the mixed layer (and
anomalously low temperatures immediately below the mixed layer, consistent with Sparnocchia et al. 2006). Abbreviations: MHW,
marine heatwave; SST, sea surface temperature. Panel a adapted from Holbrook et al. (2019).

advective-type MHWs (Figure 3b–d), such as the 2015–2016 Tasman Sea MHW (Oliver et al.
2017) (Figure 4a–g). Vertical temperature advection results from vertical flows in the presence
of thermal stratification and is often related to upwelling and downwelling processes. Schaeffer
& Roughan (2017) showed subsurface coastal warming associated with downwelling-favorable
winds, and Benthuysen et al. (2018) showed warm anomalies and a subsurface MHW owing to
anomalous downwelling via a reduction in the expected upwelling for that time of year.Upwelling
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Anomalous contributions to the mixed-layer temperature budget during the (a–g) 2015–2016 Tasman Sea MHW and (h–n) 2003
Mediterranean Sea MHW. The maps show (a,h) SST anomaly, (b, i) mixed-layer depth (shading) and air–sea heat flux (Q) (contours,
where red indicates a positive flux into the ocean) anomalies, and (c, j) velocity anomalies (arrows) and SST (shading) averaged over the
peak duration of each event (December 1, 2015–February 29, 2016, for the Tasman Sea, and July 3–September 3, 2003, for the
Mediterranean Sea). The time series show (d,k) SST anomaly, (e, l) Q anomaly, ( f,m) mixed-layer depth anomaly, and (g,n) eastward and
northward velocity anomalies spatially averaged. The time series are shaded or (in the case of velocities) the arrows colored according
to the sign of the anomaly, with red and blue indicating a tendency to increase and decrease the mixed-layer temperature, respectively.
Note that during the 2015–2016 Tasman Sea MHW,Q and the mixed-layer depth were variable but the velocities were predominantly
southward, indicating that poleward advection of heat was a dominant contribution to the MHW. During the 2003 Mediterranean Sea
MHW, the velocities were variable and weak, but the mixed-layer depths were anomalously shallow and Q tended to be positive,
indicating a dominance of air–sea heat fluxes in the MHW development. Data are from GLORYS12V2 for SST, mixed-layer depth,
and velocities and from ERA5 for Q; anomalies are relative to the 1993–2013 climatology. Abbreviations: ERA5, European Centre for
Medium-Range Weather Forecasts Reanalysis 5; GLORYS12V2, Global Ocean Reanalysis and Simulation 12 version 2; MHW,marine
heatwave; SST, sea surface temperature.

can also inhibit MHWs by bringing cool water to the surface (DeCastro et al. 2014, Gentemann
et al. 2017, Fewings & Brown 2019).

The net air–sea heat fluxes (Q) are the sum of the net shortwave (QSW) and longwave (QLW)
radiative components minus the fraction of shortwave radiation that escapes out the bottom of
the mixed layer [QSW(−h)], as well as the net latent (Qlat) and sensible (Qsens) turbulent heat fluxes
(positive into the ocean) (Cronin et al. 2019). With the exception of shortwave radiation, which
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Serial
autocorrelation: the
correlation of a time
series with a delayed
version of itself

has a depth structure, these heat fluxes are distributed through the whole mixed layer, and so
their effect on temperature tendency is inversely related to the mixed-layer depth (h). MHWs
are often associated with anomalous air–sea heat fluxes, which can include abnormally high QSW,
as a result of less cloud cover and greater insolation, or Qsens when the surface air is warm. Of-
ten, both scenarios occur during an atmospheric high-pressure system and coincide with reduced
wind speeds that suppress vertical mixing, thereby reducing h. Meanwhile, unusually low latent
heat loss from the ocean (negative Qlat anomalies), as a result of weak winds, may also contribute
to temperature increases. These processes, which may act independently or simultaneously, are
responsible for air–sea heat flux–type MHWs (Figure 3e, f ), such as the 2003 Mediterranean Sea
MHW (Sparnocchia et al. 2006, Olita et al. 2007) (Figure 4h–n).

The remaining terms in Equation 1 are associated with mixing due to horizontal diffusive flux,
mixing due to vertical turbulent flux at the base of the mixed layer, and entrainment of waters into
the mixed layer due to temporal or spatial variations in mixed-layer depth. These processes are
often assumed to account for a smaller proportion of mixed-layer temperature changes associated
with MHWs, and so are often neglected or considered part of a residual term.

4.2. Statistical Understanding

The statistical properties of a daily temperature time series form the basis of MHW properties,
such as their frequency, duration, and intensity.We can decompose the time series of temperature
as

Tt = T tr
t + T S

t + TNS
t , 2.

where Tt is the SST at time t, T tr
t is the change related to the long-term (secular) trend, T S

t is
the seasonal climatological mean (identically repeating each year), and TNS

t is the nonseasonal
component of the SST (the anomalies, with the secular trend removed). If MHWs are defined as
SST values above a seasonally varying threshold (e.g.,Hobday et al. 2016), and assuming that there
is no long-term trend in SST, then MHW SSTs are dependent on the nonseasonal component’s
properties.

Frankignoul &Hasselmann (1977) developed a stochastic climate model to represent the tem-
perature of a one-dimensional surface mixed layer forced by noisy surface heat fluxes. This model
elucidates the relationships between MHW properties and the statistical characteristics of SST.
Considering the nonseasonal component TNS

t to have zero mean, variance σ 2, and a nonnegligible
serial autocorrelation (i.e., the memory timescale τ ), the nonseasonal component can be modeled
as an order-1 autoregressive (AR1) process (see also Deser et al. 2010), so that the temperature
time series is red noise:

TNS
t+1 = aTNS

t + εt , 3.

where a is the autoregressive parameter (0 ≤ a ≤ 1), and ϵt is a white noise process that is assumed
here to be normally distributed with zero mean and variance σ 2

ε . The memory timescale of the
AR1 process τ increases with a, given by τ = −1/ln a, and the variance of TNS

t is a function of both
a and σ 2

ε , given by σ 2 = σ 2
ε /(1 − a2). Given values of a and σ 2

ε and realizations of ϵt, simulations
of TNS

t and (after assuming a sinusoidal form for T S
t ) Tt may be generated (Figure 5a–c).

Memory timescales are related to the ocean’s slow integration of relatively fast atmospheric
forcing (e.g., atmospheric weather on timescales of one to two weeks) via surface heat fluxes, near-
surface currents, and mixing processes, and temperatures relax to climatological values via damp-
ing caused by turbulent energy and longwave radiative fluxes (Deser et al. 2010, Di Lorenzo &
Ohman 2013). The variance of this process is related to energetics of the atmospheric forcing and
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Figure 5

The effect of SST statistical properties on MHW characteristics. (a–c) Simulated SST time series assuming a sinusoidal seasonal
climatology and a nonseasonal component given by an AR1 process with memory timescale τ and noise variance σ 2

ε = (1 − a2)σ 2.
Shaded areas indicate MHWs according to the Hobday et al. (2016) definition. (d–f ) MHW properties as a function of SST standard
deviation σ and memory timescale τ . The plots show the annual maximum MHW intensity (panel d), annual mean MHW duration
(panel e), and annual count of MHW events (panel f ). An ensemble of 100 SST time series were simulated for each σ ϵ and τ value over
the ranges 0.01–2.00°C and 10–100 days, respectively. Abbreviations: AR1, order-1 autoregressive; MHW, marine heatwave; SST, sea
surface temperature.
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the local ocean dynamics (e.g., the generation of eddies via instability growth). MHWs occurring
in time series with larger τ (Figure 5c) are typically longer than for those from time series with
smaller τ (Figure 5a,b). In addition,MHWs are more intense for larger σ 2 (Figure 5b,c) than for
smaller σ 2 (Figure 5a). Performing simulations of an ensemble of 40-year SST time series for a
range of realistic values of σ 2 and τ and calculating the ensemble-mean annual MHW properties
shows that these properties are strongly dependent on underlying SST properties. Specifically,
annual maximum MHW intensity increases with SST variance (Figure 5d), annual mean MHW
duration increases with SST memory timescale (Figure 5e), and annual MHW count (frequency)
decreases with SST memory timescale (Figure 5f ).

The conclusions provided above assume that the SST statistics are stationary, i.e., that themean
and variance of SST do not change over time. In a warming ocean, we know that this is unlikely
to be true, particularly for the mean SST (Oliver 2019). Therefore, we expect trends in the mean
SST (effectively a nonzero T tr

t ) and SST variance to affect MHW properties. Nonstationarity in
SST statistics leads directly to trends in MHW frequency, duration, and intensity (Oliver et al.
2018a, Oliver 2019). This aspect is an important consideration that must be taken into account
when defining baseline periods for studies on the effects of climate change on MHWs (see also
Sections 5.3, 5.4, and 6.1).

5. MEAN STATE, VARIABILITY, AND LONG-TERM TRENDS
IN MARINE HEATWAVES

5.1. Global Distribution

Remotely sensed SSTs indicate that MHW frequencies range from approximately one to three
events per year on average (Oliver et al. 2018a). In the eastern tropical Pacific, however, El Niño–
Southern Oscillation (ENSO) events manifest as individual, long-lasting MHWs (Holbrook et al.
2020a). Hot spots of high MHW intensity (Figure 6b) occur in regions of large SST variabil-
ity (Figure 6e), including the five western boundary current extension regions (Chen et al. 2014,
Oliver et al. 2017), the central and eastern equatorial Pacific Ocean (Echevin et al. 2018), and
eastern boundary current regions (Rouault et al. 2007). Typical MHW durations (Figure 6c) are
longest in the eastern tropical Pacific, a region dominated by ENSO SST variability with an av-
erage duration of up to 60 days (Holbrook et al. 2020a), and shortest over other tropical regions,
typically 5–10 days. In the extratropics,MHWdurations are more uniformly 10–15 days, with the
northeast and southeast PacificOcean being exceptions (up to 30-daymean durations; Di Lorenzo
& Mantua 2016).

The observed spatial pattern of MHW properties is dependent on the physical processes con-
trolling temperature variability across the globe (see Section 4.1).Unstable boundary currents and
mesoscale eddies cause MHWs through anomalous temperature advection in those regions, and
anomalous air–sea heat flux is responsible for setting MHW properties in regions susceptible to
atmospheric forcing. The observed patterns of SST and MHW statistics follow the expected sta-
tistical relationships (see Section 4.2). Spatial correlations show that MHW intensity is strongly
correlated with SST variance (r = 0.95) and MHW duration is strongly related to SST memory
timescale (r = 0.68).

5.2. Variability

MHWs are modulated by local and remote processes acting across a large range of spatial and
temporal scales (see figure 2 in Holbrook et al. 2019). The strength of many of these local
processes, including surface heat fluxes and vertical mixing, are a function of the overlying
atmospheric synoptic conditions (winds, cloud cover, and humidity). These conditions may in
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Statistical properties of (a–c) MHWs and (d–f ) SST. The plots shown are the (a) annual count of MHW days, (b) annual maximum
MHW intensity, (c) annual mean MHW duration, (d) annual mean SST, (e) standard deviation of the nonseasonal component of SST,
and ( f ) memory timescale of the nonseasonal component of SST (Section 4.2). The nonseasonal component of SST was calculated by
subtracting the seasonal climatology and long-term linear trend. The plots were created using NOAA OI SST V2.0 data for
1982–2019, with a baseline period of 1982–2011. Abbreviations: MHW, marine heatwave; NOAA OI SST V2.0, National Oceanic and
Atmospheric Administration Optimum Interpolation Sea Surface Temperature version 2.0; SST, sea surface temperature.

turn vary with changes in the general circulation (e.g., the Walker circulation) or planetary
waves generated remotely (e.g., associated with ENSO or the Madden–Julian Oscillation). Such
remotely forced variations can cause oceanic disturbances that propagate large distances (via
Rossby and Kelvin waves), affecting local ocean advection of temperature with long predictability
timescales (Holbrook et al. 2019, 2020b).

ENSO is the dominant mode of interannual climate variability across the globe (e.g.,
McPhaden et al. 2006). It is also a leading cause of MHW occurrences globally (Oliver et al.
2018a), with key influences and impacts in the Indo-Pacific (Holbrook et al. 2019, 2020a) and
more distant links to the Atlantic and Southern Oceans (Holbrook et al. 2019). Coupled air–sea
interactions in the tropical Pacific are related to large shifts in SST and directly affect MHW
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characteristics in the central and eastern tropical Pacific. ENSO teleconnections via atmospheric
and oceanic pathways have been an important factor in triggering major MHWs in subtropical
to midlatitude regions of the northeast Pacific (e.g., Doi et al. 2015; Di Lorenzo &Mantua 2016;
Jacox et al. 2017, 2019), in the central South Pacific (Lee et al. 2010), and in the eastern Indian
Ocean off Australia’s west coast (Doi et al. 2013, Feng et al. 2013, Benthuysen et al. 2014,Marshall
et al. 2015). Such ENSO teleconnections can be amplified by local air–sea feedback processes (e.g.,
Marshall et al. 2015,Myers et al. 2018) or work in concert with stochastic local weather conditions.

Other climate modes also modulate the occurrence rate of MHWs either locally where the
mode operates or in remote regions via teleconnections (Holbrook et al. 2019). Significant rela-
tionships exist among indices of the Indian Ocean Dipole (the Dipole Mode Index), ENSO (the
El Niño Modoki and Niño3.4 indices; see figures 3b and 4 in Holbrook et al. 2019), and MHW
occurrences and likelihoods across the tropical Indo-Pacific region. These modes exhibit a de-
gree of predictive skill, suggesting that it may be possible to make MHW probabilistic forecasts
(Holbrook et al. 2020b) using knowledge of ENSO flavors (e.g., Capotondi & Sardeshmukh 2015,
Capotondi et al. 2015), the Indian Ocean Dipole (e.g., Zhao et al. 2019), and the Madden–Julian
Oscillation (Zhang et al. 2017, Lim et al. 2018).

5.3. Long-Term Trends

Given the dependence of MHW characteristics on the underlying SST properties, along with a
warming ocean, significant changes in MHW characteristics have been identified over the his-
torical record. Notably, increases in both the mean SST and the variability of SST can lead to
increases in warm temperature extremes (Field et al. 2012). Much of the global ocean has seen
mean SST warming over the satellite record, and several such hot spots have also seen increases
in SST variability, with implications for changes in MHWs (Figure 7).

The days of extremely high SST have becomemore common over 38% of the world’s coastline
(Lima & Wethey 2012). As a global average, the frequency, intensity, duration, and spatial extent
of MHWs have increased substantially over the satellite record (Frölicher et al. 2018, Oliver et al.
2018a). MHW frequency increased over 82% of the global ocean but decreased in parts of the
Southern Ocean (Oliver et al. 2018a). The intensity of MHWs has increased most notably in
the five midlatitude western boundary current extension regions, areas noted to be warming con-
siderably faster than the global mean rate (Wu et al. 2012, Hu et al. 2015). The global-average
duration of MHWs has nearly doubled over the satellite record, particularly over the mid- and
high-latitude regions of all ocean basins (Oliver et al. 2018a).

While a few studies have assessed longer-term changes inMHWs over the presatellite records,
these analyses are limited in overall spatiotemporal coverage and homogeneity by data availabil-
ity (see Section 3.2). Using monthly SSTs as a proxy for MHW properties, Oliver et al. (2018a)
showed that the annual count ofMHWdays has increased bymore than 50% since the early twen-
tieth century. Several coastal locations around the world have time series of daily or weekly SSTs
(see Table 1), which could provide additional estimates of long-term changes in coastal MHWs.

5.4. The Role of Anthropogenic Climate Change

Long-term trends in MHW characteristics (frequency, intensity, and duration) over the instru-
mental record are strongly linked to anthropogenic climate change. In global climate model sim-
ulations, substantial increases in global MHW frequency, intensity, duration, and spatial extent
were consistent with anthropogenic forcing (Frölicher et al. 2018), with properties exceeding the
range expected by natural variability in the early-to-mid-twenty-first century (Oliver et al. 2019).
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Changes in global MHW characteristics have been strongly linked to changes in the background
SST (Oliver 2019); these increases are expected to continue under projected future emissions
scenarios, and it is possible that much of the global ocean will reach a permanent MHW state by
the late twenty-first century (Oliver et al. 2019). Most studies on the role of climate change have
examined MHWs globally, but there is a need to examine regional cases. Such analyses have been
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Event attribution:
a quantification of the
role of anthropogenic
versus natural climate
forcing in the
probability of extreme
climate events, often
with the use of global
climate model
experiments

Figure 7 (Figure appears on preceding page)

Change in SST statistics and relationship to changes in extreme temperatures. The map shows where SSTs indicate an increase in
annual mean SST (light red) and SST variance (dark red) over the satellite period. White indicates no increase in either; an increase is
measured by a positive linear trend in NOAA OI SST V2.0 over 1982–2017. The four surrounding panels show probability density
functions of daily SST anomalies from four regions. The functions shown are for the full time series (dashed gray lines), the first half of
the data (solid black lines), and the second half of the data (solid red lines); shaded regions indicate the area of the function above the 90th
percentile of the full time series. The mean (μ, in degrees Celsius) and standard deviation (σ , in degrees Celsius) are also shown for the
two time periods. Abbreviations: NOAA OI SST V2.0, National Oceanic and Atmospheric Administration Optimum Interpolation Sea
Surface Temperature version 2.0; SST, sea surface temperature.

performed for a few regions, including theNorth Atlantic (Alexander et al. 2018) and theMediter-
ranean Sea (Darmaraki et al. 2019), but such analyses are encouraged for other regions as well.

A growing body of literature has examined how individual MHW events are attributable
to global warming (see also Collins et al. 2019). These analyses draw from a method of event
attribution, based on the fraction of attributable risk, that is used in atmospheric heatwave studies
(Stott et al. 2004). To date, event attribution studies have been performed on the 2015–2016
Tasman Sea event (Oliver et al. 2017), the 2017–2018 Tasman Sea event (Perkins-Kirkpatrick
et al. 2019), the 2016 event across northern Australian waters (Oliver et al. 2018b), the 2016 event
in the Gulf of Alaska and Bering Sea (Oliver et al. 2018b,Walsh et al. 2018), the northeast Pacific
Blob (Weller et al. 2015), the 2015–2016 extreme El Niño warming in the central equatorial
Pacific (Newman et al. 2018), and the 2016 California Current event ( Jacox et al. 2017). Some
studies have extended attribution approaches to include the likelihood of ecosystem impacts, such
as Great Barrier Reef coral bleaching in 2016 (Lewis & Mallela 2018). In general, anthropogenic
climate change has substantially increased the likelihood of MHWs with the observed intensity
and duration, although several notable MHWs remain to be attributed (Collins et al. 2019). Most
studies attribute the temperature anomalies associated with the events (the intensity), but a few
also independently attribute the duration of the event. Presently, there is no consistent framework
for jointly attributing the totality of the event characteristics.

6. CONTEMPORARY ISSUES

6.1. Baseline Periods for Marine Heatwave Analyses

Given significant ocean warming, a major issue forMHW analyses is choosing the baseline period
for calculating the climatological mean and percentile metrics. A fixed-baseline period is com-
monly used in climatology studies (WMO 2017, 2018) and is standard practice in atmospheric
studies (Perkins et al. 2012, Perkins & Alexander 2013). Many MHW studies have chosen fixed-
baseline periods (e.g., Liu et al. 2014, Benthuysen et al. 2018, Oliver et al. 2018a), while others
have recommended amoving baseline ( Jacox 2019).The baseline period affects how the long-term
trend in mean SST is expressed through MHWs (Section 4.2), and specific research questions of
interest dictate the decision to use a fixed versus moving baseline.

The effect of a fixed versus moving baseline period can be demonstrated using a time series
of SST exhibiting a long-term trend. To do so, we used SST area-averaged over a region in the
northeast Pacific from the Community Earth SystemModel (CESM) Large Ensemble Numerical
Simulation (LENS) climate model (Kay et al. 2015) historical and Representative Concentration
Pathway 8.5 future projection experiments, which together span 1920–2080 (Figure 8a).We used
two different approaches to calculate the SST climatology and anomaly time series: one using a
fixed 31-year baseline period and one using a moving 31-year baseline centered on the year in
question (Figure 8b,c). We then used the exceedances above the resulting thresholds (Figure 8c)
to determine MHWs following the Hobday et al. (2016) method. A fixed-baseline period leads
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Figure 8

The effect of using a fixed baseline versus a moving baseline on the calculation of SST climatologies, anomalies, and MHWs. The plots
shown are time series of (a) SST, (b) SST anomalies, (c) the climatological 90th-percentile threshold, and (d) annual MHW days;
panels b–d were calculated using either a fixed baseline (1980–2010; blue lines) or a moving contemporary baseline (red lines). The initial
time series in panel a is SST area-averaged over 30–57°N, 140–120°W (the Blob region), from the historical and Representative
Concentration Pathway 8.5 simulations of the CESM LENS global climate model (1920–2080). Abbreviations: CESM, Community
Earth System Model; LENS, Large Ensemble Numerical Simulation; MHW, marine heatwave; SST, sea surface temperature.

to a saturation of SST above the threshold, which in turn leads to a full year of MHW days (a
permanent MHW state) in the later part of the twenty-first century, while a moving-baseline
period leads to more stationary MHW properties over time (Figure 8d). The use of a fixed-
baseline period assigns all of the long-term warming to the anomalies and thus to the MHWs
(i.e., in the notation of Section 4.2, the anomalies represent T tr

t + TNS
t and the climatology only

T S
t ), while the use of a moving baseline assigns all of the long-term warming to the climatology

(and thus removes it from the anomalies and MHWs—i.e., the anomalies represent only TNS
t and

the climatology T S
t + T tr

t ).
Both methods of calculating baseline climatologies are complementary, and the recommended

choice depends on the questions asked. Much of the study of MHWs is motivated by ecological
impacts,which raises the issue of each species’ rate of adaptation.The rate and degree of ecosystem
change under warming conditions depend on the thermal tolerance ranges and diversity of partic-
ular species (Stuart-Smith et al. 2015, Burrows et al. 2019).However,major questions remain as to
whether species can acclimatize and adapt to warmer conditions and, if so, how quickly they can
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do so (Donelson et al. 2019, Fox et al. 2019). A fixed-baseline period is particularly useful when
studying ecosystems with a slow (or no) capacity for adaptation and for illustrating overall changes,
including long-term warming effects. Moving-baseline periods are most useful when considering
ecosystems with a faster adaptation capacity or greater mobility (e.g., the ability to move to new
habitats) and for studying physical climate characteristics with a focus on variability rather than
long-term warming, as this approach primarily reflects shorter-term variability changes (changes
in temperature variance and skewness). However, further research on species’ and ecosystems’
acclimatization and adaptation timescales are needed to inform these choices. The combination
of both approaches (i.e., considering both in parallel) can be useful to disentangle the effects of
long-term warming from changes in the magnitude of variability.

6.2. Communicating About Marine Heatwaves

A contemporary issue in many branches of science is effective communication. The science of
understanding MHWs will be advanced with a clear communication approach to the description
of events, which will aid public communication, allied research communities, and funding ini-
tiatives. As with other extreme events, including atmospheric heatwaves, tropical cyclones, and
bushfires, naming and categorizing MHWs allows for straightforward communication (Hobday
et al. 2018a). Importantly, naming an event based on the year and location ensures that extreme
events are consistently discussed. A categorization system based on anMHW’smaximum intensity
allows for monitoring and communicating how its characteristics are changing in near real time.

Real-time tracking and monitoring of MHWs also offer a communication opportunity. The
rapid deployment of ocean gliders during ongoing events and the dissemination of near-real-
time data are expected to be of considerable interest and potential value to marine managers and
the tourism, fishing, and aquaculture industries (for several examples of MHW tracking tools, see
the Related Resources section at the end of this article).

There is demand for information about future weather and climate, including subseasonal to
seasonal forecasts of MHWs. These forecasts are on timescales that allow proactive planning
rather than reactive responses (Hobday et al. 2018b) and are based on statistical relationships
and dynamical models (Holbrook et al. 2020b) (for examples, see the Related Resources section).
Recent developments are enhancing understanding of the physical mechanisms that give rise to
MHWs, which underpin prediction systems of MHWs ( Jacox et al. 2020). Using climate mode
indices may enable successful climate forecasts of likely increases or decreases in MHW days over
broad geographic areas (Holbrook et al. 2019).

It is clear that MHWs, as extreme events with dramatic effects, can help scientists, policy mak-
ers, and the public build understanding about the urgency of response to long-term environmental
change.

SUMMARY POINTS

1. There are a diversity of approaches for how to define marine heatwaves (MHWs), using
fixed, relative, or seasonally varying thresholds, and each approach has its advantages
and disadvantages. Consistent definitions and baselines facilitate comparisons and will
accelerate learning about MHWs in different parts of the world.

2. Global observations of sea surface temperature by satellite and advances in data assim-
ilative ocean models have made it feasible to monitor MHWs on a global scale in near
real time.
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3. The physical drivers of MHWs can be elucidated using a mixed-layer temperature bud-
get, which relates the accumulation of surface ocean heat to physical processes, including
horizontal currents and air–sea heat fluxes.

4. MHW characteristics are linked to the statistical properties of the temperature time
series, with event intensity increasing with temperature variance and event duration in-
creasing with serial autocorrelation.

5. MHWs are distributed globally and have different characteristics depending on the
regionally dominant physical processes and the statistics of the underlying temperature
distribution. For example, highly variable regions, such as western boundary current
extensions, have high-intensity events that are caused predominantly by anomalous heat
transport.

6. The historical record shows that the occurrence frequency of MHWs and their charac-
teristics are sensitive to climate modes of variability and long-term warming, which has
implications for the predictability of MHW events.

7. Anthropogenic climate change has led to substantial increases in the intensity and dura-
tion of MHWs, with several recent events explicitly attributable to anthropogenic forc-
ing, and these trends are projected to continue throughout the twenty-first century.

FUTURE ISSUES

1. Efforts toward developing a process-based understanding of MHW mechanisms and
their predictability need to inform the development of appropriate forecast systems with
relevant lead times.

2. Reliable, consistent observational data sets of daily ocean temperatures, including sub-
surface temperatures, are needed to study observedMHWswith improved data coverage
in space and time.

3. Further research is needed to develop a more robust understanding of the physical pro-
cesses and climate drivers of subsurface MHWs and their links to the surface.

4. To better inform climatological baseline periods, further research is required on linking
the physical and climatological aspects of MHWs with species’ and ecosystems’ acclima-
tization and adaptation timescales.

5. In the case of MHWs calculated with a fixed baseline and in the presence of long-term
warming conditions, is the notion of permanent MHW conditions useful? How can
ecosystem adaptation timescales be incorporated into how baselines are defined?

6. In regions where the environmental conditions have radically and abruptly shifted (e.g.,
in areas historically dominated by sea ice cover), there is no clear definition of MHWs.

7. Currently, global systems for SST and other data streams are in place that allow for
near-real-time identification of MHWs. These systems can be adapted to ensure that
when unprecedented MHWs arise, resources are available to the public and the scien-
tific community for rapid research and dissemination of information regarding ongoing
events.
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RELATED RESOURCES

Australian Bureau of Meteorology ocean temperature outlooks: http://www.bom.gov.au/oceanography/
oceantemp/sst-outlook-map.shtml

California Current Marine Heatwave Tracker: https://www.integratedecosystemassessment.noaa.gov/
regions/california-current/cc-projects-blobtracker

Climate Prediction Center seasonal climate forecast from CFSv2: https://www.cpc.ncep.noaa.gov/
products/CFSv2/CFSv2seasonal.shtml

Coral Reef Watch satellite monitoring and modeled outlooks: https://coralreefwatch.noaa.gov/satellite
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Fishforecasts Marine Heatwave Monitoring: https://fishforecasts.dtu.dk/heatwaves
Integrated Marine Observing System OceanCurrent: http://oceancurrent.imos.org.au
Marine Heatwaves InternationalWorking GroupMarine Heatwave Tracker: http://www.marineheatwaves.

org/tracker.html
T-MEDNet Mediterranean Marine Heatwaves: http://t-mednet.org/t-resources
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