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Abstract

Quantitative imaging instruments produce a large number of images of
plankton and marine snow, acquired in a controlled manner, from which the
visual characteristics of individual objects and their in situ concentrations
can be computed. To exploit this wealth of information, machine learning
is necessary to automate tasks such as taxonomic classification. Through a
review of the literature, we highlight the progress of those machine clas-
sifiers and what they can and still cannot be trusted for. Several examples
showcase how the combination of quantitative imaging with machine learn-
ing has brought insights on pelagic ecology. They also highlight what is still
missing and how images could be exploited further through trait-based ap-
proaches. In the future, we suggest deeper interactions with the computer
sciences community, the adoption of data standards, and themore systematic
sharing of databases to build a global community of pelagic image providers
and users.
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1. INTRODUCTION

Plankton are an extremely diverse group of organisms (de Vargas et al. 2015), and its members are
keystone components of Earth’s biosphere. Photosynthetic plankton are responsible for approx-
imately half of global primary production (Behrenfeld et al. 2001). The vertical displacement of
planktonic organisms and the sinking of their detritus, referred to as marine snow, significantly
contribute to the global carbon cycle through a multifaceted biological pump (Boyd et al. 2019).
They are also critical components of marine food webs, contributing to the production of organic
matter and its transfer to higher trophic levels (Frederiksen et al. 2006) and to the deep ocean and
seafloor.Finally, becausemost planktonic species repeat relatively short life cycles embedded in the
same water mass, they are very sensitive indicators of changes in that water mass (Hays et al. 2005).
Therefore, the biomass and diversity of plankton were identified as Essential Ocean Variables by
the Global Ocean Observing System, Essential Biodiversity Variables by the Group on Earth
Observations Biodiversity Observation Network, and Essential Climate Variables by the Global
Climate Observing System (Miloslavich et al. 2018,Muller-Karger et al. 2018,WMO et al. 2003).

Investigating planktonic organisms and marine snow at meaningful spatial and temporal scales
in the vast and deep ocean is difficult. First, many instruments need to be combined to capture
the whole ecosystem, because object sizes range from 0.2–2 µm for bacteria and picoeukaryotes
to up to several meters for large siphonophores, and from a few micrometers for small particles
to centimeters for marine snow aggregates (Figure 1). Second, plankton distribution is character-
ized by multiscale structuring—from seconds to years in time, from centimeters to hundreds of
meters vertically, and from centimeters to hundreds of kilometers horizontally (Davis et al. 1992b,
Mackas et al. 1985). Sampling both at high resolution and across large scales is extremely challeng-
ing. Yet accurately describing plankton patchiness is key for assessing biological rates and trophic
interactions that control ecosystem production and biodiversity (Benoit-Bird & McManus 2012,
Priyadarshi et al. 2019, Woodson & Litvin 2015). Finally, common plankton collection methods,
such as nets, sediment traps, bottles, and pumps, are not adapted to resolve the smallest scales
or to sample fragile organisms and marine snow (Remsen et al. 2004). In addition, they require
the manual and often time-consuming sorting of the resulting samples, which makes them dif-
ficult to scale up to pan-oceanic observations. These difficulties led to the development of new
technologies for plankton studies (Wiebe & Benfield 2003, Lombard et al. 2019).

Among those technologies, quantitative imaging systems have been identified as promising
tools to yield consistent observations of plankton at a global scale, thanks, in part, to automation
(Benfield et al. 2007, Lombard et al. 2019, Stemmann et al. 2012). These systems acquire a large
number of images in a controlled manner, which enables (a) the extraction of some features of
individual objects (size, opacity, etc.) that are consistent across all images and (b) the computation
of in situ concentrations from a relatively small imaged volume (Figure 2). These characteris-
tics accelerate the measurement and identification of objects in the images and allow the resulting
concentrations to be exploited through classic numerical ecology analyses.Without being exhaus-
tive (for more details, see Lombard et al. 2019), we remark that these instruments span a range
of technologies and deployment modes. Many take monochromatic images using side illumina-
tion [Deep Particle Image Velocimetry (DeepPIV) (Katija et al. 2020) and the Underwater Vision
Profiler (UVP) (Picheral et al. 2010)], shadowgraphy [the In Situ Ichthyoplankton Imaging Sys-
tem (ISIIS) (Cowen & Guigand 2008)], or holography (Sun et al. 2008). Some take color images
[the Video Plankton Recorder (VPR) (Davis et al. 1992a) and Scripps Plankton Camera System
(Orenstein et al. 2020b)], which provides richer information but requires more complex and ex-
pensive hardware to achieve a resolution equivalent to that of a black and white sensor. These
images can be light field [the ISIIS and Imaging FlowCytobot (IFCB) (Olson & Sosik 2007)] or
dark field [the UVP, the VPR, the Scripps Plankton Camera System, and Lightframe On-Sight
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Images of plankton and marine snow particles sampled in situ by various instruments. Note the differences in scale between panels;
each scale bar applies to all images in that panel. (a) Phytoplankton from the IFCB: a chain of Chaetoceros (with faint spines between
cells; the cell size is ∼5 µm) (left),Guinardia (center), and a segment of a Trichodesmium trichome (right). (b) Three copepods from the
UVP (the last one bearing eggs, as labeled) (left) and one Calanus hyperboreus from the VPR (with red pigment and a well-developed
lipid sac, as indicated) (right). (c) Limacina from the UVP (raw image, noninverted). (d) Trichodesmium colonies from the UVP. (e) Marine
snow, in various shapes and sizes, with heterogeneous content and porosity, from the UVP (grayscale) and VPR (color). ( f ) A 40-cm-long
portion of a siphonophore, likely Forskalia, from the ISIIS. Abbreviations: IFCB, Imaging FlowCytobot; ISIIS, In Situ Ichthyoplankton
Imaging System; UVP, Underwater Vision Profiler; VPR, Video Plankton Recorder.

Key Species Investigation (LOKI) (Schulz et al. 2010)]. Some instruments process samples in the
laboratory [the ZooScan (Gorsky et al. 2010) and FlowCam (Sieracki et al. 1998)], some can be
used in the laboratory or on in situ moorings [the IFCB and CytoBuoy (Dubelaar et al. 1999)], and
some profile open waters (the UVP and ISIIS). In situ systems with low flow field perturbations
are more appropriate to image fragile objects and thus allow the simultaneous detection of plank-
ton and marine snow. Finally, many recent developments have been toward smart, miniaturized
cameras mounted on remotely operated or autonomous vehicles, the spatiotemporal coverage of
which is difficult to achieve with manned submersibles or ships (Durden et al. 2016, Ohman et al.
2019, Stemmann et al. 2012).

These instruments produce a huge amount of information—for example, 1 billion pixels con-
taining ∼2 million objects per year for a single ZooScan (∼100 of which are now distributed
worldwide) or 100 billion pixels corresponding to ∼11 million objects per hour of deployment
for the ISIIS. They have been progressively deployed throughout the world’s oceans (Figure 3).
The scientific use of this wealth of data became limited by our ability to recognize the imaged

www.annualreviews.org • Machine Learning for Pelagic Images 279



Sorted images

Image
features

(size, etc.)

Image
features

(size, etc.)

Presorted images

Acquisition

Feature
extraction Machine classification

ValidationValidation

Manual
sorting

Skip valid
atio

n

Data checking
and exploitation

Laboratory
instruments

Field instruments

Final result

Raw images
1,000–10,000/sample

50–100/s

~2,000/h~2,000/h
~200/h

50–500

1

2

3

4

06
897
34

5
Abundances,

concentrations,
and biovolumes

Abundances,
concentrations,
and biovolumes

Figure 2

The plankton quantitative imaging process; the circled numbers identify four strategies for processing the raw images. High
throughput (red numbers) from laboratory- or field-based image acquisition to ecological exploitation is allowed by tight interactions
between instruments, computers, and human operators.

objects accurately and rapidly enough. Enter machine learning. The techniques are detailed in
the next section, but, briefly, several strategies have emerged (as shown in Figure 2): ( 1©) use of
the features (size in particular) of all objects, with no classification at all (Lampitt et al. 1993);
( 2©) manual identification of images by experts (Dennett et al. 2002); ( 3©) machine classification
followed by visual inspection and validation/correction of some taxa (Garcia-Comas et al. 2011)
or all images (Biard et al. 2016); and ( 4©) machine classification only (Irigoien et al. 2009). In most
cases, marine snow is treated as a single heterogeneous entity, despite its overwhelming numerical
dominance, because defining objective categories is difficult (but see Schroeder et al. 2020).

The progress of automated techniques and the development of software to facilitate their use
by non–computer scientists enabled the use of imaging data sets for research and ecosystem mon-
itoring purposes. In this article, we take a step back and review the body of work at the intersection
of machine learning and quantitative pelagic imaging. In particular, we (a) survey the literature on
machine classification of plankton and marine snow images and compare a classic and a modern
approach in a realistic case study, (b) examine a few studies to explain howmachine learning applied
to images has improved our understanding of pelagic ecosystems and highlight the promising use
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Figure 3

Accumulation of images and samples contained in a single repository (EcoTaxa; Picheral et al. 2017). Image data sets collected with
different instruments (the UVP, IFCB, FlowCam, ZooScan, ISIIS, etc.) have been uploaded by an international community of users
from more than 350 organizations. Abbreviations: IFCB, Imaging FlowCytobot; ISIIS, In Situ Ichthyoplankton Imaging System; UVP,
Underwater Vision Profiler.

of image-derived traits to enable new functional ecology approaches, and (c) propose next steps
for the future of plankton classifiers, the coordinated acquisition of massive imaging data sets, and
the development of tools for quantitative imaging.

2. THE CLASSIFICATION OF PELAGIC IMAGES

2.1. A History of Machine Learning Approaches

Machine learning covers all techniques that learn patterns from a training data set and can then
find the same patterns in another, independent, test data set. To classify images taxonomically
and access the underlying ecological information (e.g., concentrations/biomass per taxon), most
studies have used supervised classifiers, which learn to classify (i.e., give a name to) new images
based on a set of images already classified by human experts.

We now tend to separate classic machine learning from deep learning (LeCun et al. 2015). In
the classic approaches, the images are first processed by deterministic algorithms that extract in-
formation from them—the size of the organism, its average color or gray level, the complexity of
its shape, its symmetry, and so on. Those features are said to be handcrafted because they indeed
need to be crafted by a practitioner, who must assess or guess what is relevant to tell the various
taxa apart. Then, the classification algorithm, such as a support vector machine (Cortes & Vapnik
1995) or a random forest (RF) (Breiman 2001), learns which combinations of feature values are
associated with which taxonomic label.Deep learning for image classification is based on convolu-
tional neural networks (CNNs) (Krizhevsky et al. 2012, Russakovsky et al. 2015). The first part of
the network extracts features from the input image by computing convolutions (i.e.,multiplication
by a filter) over it; convolutions increase contrast, highlight edges, and so on. After several steps of
convolution and reduction, the image is transformed into a vector of numbers: its deep features.
These features are then used by a classifier, just like with classic learning; the classifier here is an
artificial neural network. The main difference from classic machine learning is that the feature
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Number of papers dealing with the automated classification of plankton images published each year from 1980 through 2020 (174 total,
138 from journals and 36 from conferences), collected through a systematic literature review.

extractor and classifier are learned at the same time, from the training set. Therefore, the model
tends toward an optimal combination of features for the classifier, and less domain knowledge is
necessary to craft the very best features. This approach has proved hugely successful for a variety
of problems.

To paint a picture of the history of machine learning for plankton image classification,
we conducted a systematic literature review that yielded 174 publications (see Supplemental
Appendix 1 and the accompanying Supplemental Data containing the references in a commonly
readable bibliographic file format). The first paper that used machine learning to classify plankton
images dates from 1980 and performed pattern extraction on digital microscopy images to clas-
sify five genera of phytoplankton (Schlimpert et al. 1980). The literature started to build in the
mid-1990s (Figure 4) but grew at a rate similar to that of the field of oceanography as a whole
until 2012 (i.e., the yearly number of papers standardized by the total number in the field is flat).
Starting in 2012, the yearly number of journal articles increased well beyond the expected growth
of the field. After 2015, the number of conference proceedings papers, particularly in computer
vision, increased significantly, likely because a competition on plankton image classification hosted
by the popular Kaggle website (https://kaggle.com/c/datasciencebowl) provided an open data
set and put it on the radar of the computer sciences community at large.

Before 2015, all papers used classic machine learning approaches. For example, Culverhouse
et al. (1996) developed handcrafted features, based on transformations of the image (two Fourier
transforms and an edge detector) and on its texture, to train an artificial neural network and classify
microscopy images into 23 taxa of dinoflagellates. Trained and tested on a set of 5,000 images, the
model achieved 83% accuracy, while human taxonomists achieved 85%. Tang et al. (1998) used
image moments that describe global properties of the object (size, average color, etc.), a Fourier
descriptor of the contour, and pattern features with a learning vector quantization classifier trained
on a set of 1,000 images to sort 1,000 VPR images into six taxa with ∼90% accuracy. However,
the same technique applied to a real data set of ∼20,000 images containing seven taxa resulted in
only ∼60–70% accuracy, because the proportions of taxa changed between the training set and
the realistic test set (Davis et al. 2004). Switching to features based on gray-level co-occurrence
matrices and support vector machines as the classifier increased the accuracy, to 70%, but only
when compared with the worse model from 2004 (Hu & Davis 2005).

Three papers have largely shaped the field, because they are highly cited both by other ma-
chine learning papers and by ecology papers using the instruments and techniques they present
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Figure 5

Distribution of the 138 journal articles within the systematic review of machine learning methods applied to plankton images, according
to (x axis) how many times they were cited by papers outside of these 138 articles (a proxy for their overall influence, mostly in the field
of plankton ecology) versus (y axis) how many times they were cited by another of the 138 articles (a measure of how influential they are
in the specific field of machine learning for plankton images). Most papers are cited fewer than 10 times. Papers far to the right of the
red 1:1 line were particularly influential, for reasons that go beyond their presentation of machine learning techniques.

(Figure 5): the pair of papers by Grosjean et al. (2004) and Gorsky et al. (2010) that presented the
ZooScan and the paper by Sosik & Olson (2007) that presented the IFCB. The classification of
ZooScan images is based mostly on global object features derived from image moments. Grosjean
et al. (2004) tested many classifiers, and RF achieved ∼85% accuracy on 8 broad taxa and ∼75%
on 29 more detailed ones, as measured by cross-validation on a data set of ∼1,000 images. Gorsky
et al. (2010) further showed that accuracy decreased from 80% to 65% when going from 5 to 35
categories while controlling for the size of the training data set (300 images per category). Sosik
& Olson (2007) derived a much larger set of features based on image moments, general shape and
symmetry, and gray-level co-occurrencematrices as well as specialized approaches aimed at detect-
ing spines radiating from phytoplankton cells. Using a support vector machine classifier trained
on 3,300 images in 23 taxa, they achieved 88% accuracy on a test set of 3,330 other images.

Overall, in their review, Benfield et al. (2007) concluded that 70% and 80% accuracy could be
reached on data sets with 20 and 10 taxa, respectively. The following years saw marginal technical
improvements and mostly ecological applications of these now mature approaches.

The next step in the classification of plankton images was the use of CNNs, publicized by
the Kaggle competition of 2015. Many CNNs for plankton images were described in conference
papers, which are often difficult to access. The first journal article was by Luo et al. (2018), who
used a CNN trained on 42,000 images from the ISIIS that were sorted into 108 taxa. The model
was evaluated on 75,000 images, for which the 108 taxa were regrouped into 38 broader ones.
The overall accuracy was 87%, which looked excellent, but the precision was only 55% for bi-
ological categories, which led the authors to postprocess the results for ecological applications.
As explained above, a CNN is essentially a feature extractor combined with a classifier. González
et al. (2019) and Orenstein & Beijbom (2017) exploited feature extractors trained on nonplankton
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images combined with classifiers retrained on plankton data sets and showed that such external
deep features can be very effective for classifying plankton over multiple data sets of several thou-
sand images. This really is the main progress that CNNs bring: One can forgo the considerable
domain expertise required to craft appropriate features, use a pretrained feature extractor, and get
results that are equally good, if not better.

The discrepancies in the performance metrics reported, the nature and size of the data sets,
and the number of taxa classified among the 174 papers within this systematic review make it
impossible to assess progress over the last 40 years in a simple way. Actually, classification per-
formance seems stable, hovering around 70–80% in most papers. Still, some conclusions can be
reached. First, a richer set of features produces better classifiers, and CNNs are an evolution along
that trend because they produce numerous (and optimized) features. Second, for a given classifier,
performance degrades when the number of classified taxa increases. This explains the apparent
stability in reported accuracy: Authors, justifiably, tackled tasks for which they could produce use-
ful classifiers (i.e., having “good enough” accuracy). In the early days, this meant classifying 5 taxa,
then ∼20 in the 2000s, and now ∼100. Therefore, the classifiers did improve, but this improve-
ment cannot be demonstrated by a simple plot of accuracy over time. Finally, classifier perfor-
mance saturates after a sufficient number of training examples per category is reached. The size
of training (and testing) data sets increased over the years, probably together with the increasing
number of taxa being classified.

Still, most data sets have remained rather small compared with those commonly collected for
pelagic ecology studies, raising questions about their representativity. In addition, those data sets
were rarely made public for other studies to reuse, making comparisons between studies impos-
sible. This is changing, however, with the release of the WHOI-Plankton data set (Sosik et al.
2021), PlanktonSet (Cowen et al. 2015), and ZooScanNet (Elineau et al. 2018). In addition, all
plankton data sets are severely unbalanced: One category dominates and is often made up of de-
tritus or unidentifiable objects. The way this dominant category is handled can completely change
the accuracy (the metric most often reported because it is easy to understand) and is a source of
discrepancies between studies. For example, the accuracy of a classifier trained and evaluated on
data sets with equal proportions of all categories is representative of its raw performance, and
hence is a perfectly valid metric for machine learning, but may differ considerably from its accu-
racy on a real data set, depending on the performance on the dominant class. Other metrics, such
as per-taxon statistics and their average across taxa of ecological interest, should be less sensitive
and more comparable across studies.

Overall, there is a need for (a) large, public data sets of identified images, containing realistic
proportions of the different taxa, and (b) systematic comparisons of different classifiers on these
reference data sets.

2.2. Fully Automated Versus Manual Classification

To illustrate the difference between classic approaches and CNNs, as well as assess the difference a
few points in accuracy make for the ecological interpretation of results, we ran a numerical experi-
ment. A plankton data set collected along a time series was classifiedmanually and then reclassified
using both a classic classifier (RF on handcrafted features) and a modern CNN (for details, see
Supplemental Appendix 2). The data set is quite typical: 850,000 images in 60 categories, signif-
icantly dominated by detritus (350,000 images, i.e., 41% of the data set). It has been checked by
several independent experts and has already been used scientifically, highlighting relevant patterns
(Feuilloley et al. 2021). Therefore, this data set allowed us to investigate whether patterns found
in the human-validated series could be detected the same way in series predicted purely through
machine learning.
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For the classic RF classifier, the results on the test set were 67% accuracy, 71%mean precision
across taxa, and 50% mean recall. Many images from biological taxa were predicted to be in the
detritus class, resulting in the bad recall. With the CNN, the results were 76% accuracy, 69%
mean precision, and 78% mean recall. The largest improvement was in the classification of bio-
logical taxa: Fewer images from biological taxa were predicted to be in the detritus category, hence
increasing the recall.Looking at a few representative taxa (Figure 6) illustrates that automatic clas-
sification worked well for organisms that are abundant and/or have a distinctive shape (Calanidae
and Chaetognatha), but both classifiers, particularly the RF classifier, had more trouble with rare
taxa (Echinodermata) and smaller subgroups of similar-looking organisms (Temoridae,whichwere
overestimated, among the copepods). Performance was similar, and very good, for Chaetognatha
and Phaeodaria, yet this translated into quite different representativity. For Chaetognatha, the
general trends were similar across the three methods, despite some errors. On the other hand,
Phaeodaria were well predicted at the end of the time series, when they were most abundant, but
were overestimated at the beginning, when they were rarer or absent. Feuilloley et al. (2021) ob-
served that the concentrations of most copepod taxa were lower after 2015, while other taxa, such
as tunicates (not shown here but very well predicted), increased in concentration. Only the RF
classifier would bias this observation, because of the overestimation of some copepods, and only
slightly. For Phaeodaria, the intensity of the stepwise increase in 1999 and then 2008 is dampened
in the two predicted series because of the overestimation at low concentrations. Finally, the clear
increases in the concentration of larvae of echinoderms around 2002–2003 and after 2010 would
be completely missed by the RF prediction.

The take-home message from this experiment, which echoes our experience, is that classic ap-
proaches were already very good at predicting plankton when they are abundant. From this point
of view, CNNs yield little improvement beyond being easier to use and more portable, thanks to
libraries such as Keras/TensorFlow and PyTorch. In addition, CNNs do better at low concentra-
tions (i.e., rare taxa but also regions or periods of low concentrations of abundant taxa), when even
a few errors have disproportionately large consequences. However, anticipating where and when
errors are sufficiently small is difficult, even based on per-category statistics (e.g., as with Phaeo-
daria above). The problematic portions are usually regions or periods of data set shift: Because of
the small sample size, the relative concentrations of taxa change compared with those in the train-
ing set, confusing the classifier. In addition to better classifiers, quantification approaches, where
the goal is not to predict the category of every single image but to predict overall concentrations
per category, can help alleviate this problem (Orenstein et al. 2020a).

Systematic comparisons on reference data sets are still necessary, as explained above. For the
time being, conclusions drawn from fully automated predictions regarding high-concentration
events can likely be trusted regardless of which classification approach is chosen, as long as the
training set is large and representative enough. If finer-scale patterns and small differences in
concentration matter, CNNs help but cannot be considered a silver bullet; manual validation,
ideally by several different operators, is still required.

3. NEW INSIGHTS ON PLANKTON ECOLOGY FROM AUTOMATED
PELAGIC IMAGING

3.1. Resolving Plankton Temporal Patterns

Imaging systems can be deployed in situ and acquire data at a high rate. This creates opportunities
for monitoring, as long as the images can be processed in near real time with sufficient accuracy.
For example, an early warning system for blooms of the red-tide-forming dinoflagellate Karenia
brevis was set up by combining trihourly samples taken by the IFCB with several one-versus-all
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Comparison of time series of the concentrations of planktonic organisms (Point B, Villefranche-sur-Mer, northwestern Mediterranean
Sea; IMEV et al. 2020). The true time series (dashed) is compared with the series predicted by a classifier based on classic handcrafted
features and RF (red) and by a CNN (blue). The y axis is square-root transformed to better show fluctuations at low concentrations. The
weekly series are smoothed by a local polynomial with a window size of approximately one season to highlight ecologically relevant
patterns. For each taxon, the number of images over the whole series and the F1 score for each classifier (the harmonic mean of recall
and precision, i.e., a number that balances and summarizes both metrics) are given in the top right. Abbreviations: CNN, convolutional
neural network; RF, random forests.
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support vector machine classifiers, one being focused on K. brevis. The classifier was coupled with
a notification system that sent an email message once cell counts exceeded a defined threshold
(Campbell et al. 2013). This system was recently extended to use CNNs and include two other
target species (Henrichs et al. 2021).

Over seasonal scales, changes in plankton assemblages are described as ecological successions
(Sommer 2012). Most studies focus on the succession within a specific taxonomic group because
sampling and observation instruments target a given size range and because scientific expertise for
the identification of species is also split along those lines. By contrast, Romagnan et al. (2015) used
a combination of flow cytometry, the FlowCam, and the ZooScan to study the succession of the
whole plankton community. Image analysis of weekly samples over 10 months was made possible
by a combination of machine learning prediction and human validation. It also fostered the bring-
ing together of disparate expertise to propose an original mechanism for plankton succession: a
stepwise stacking of four broad trophic communities, frommicrobes to predators, complementing
the more traditional view of a progressive replacement of one community by the other throughout
the season.

Studies of the multidecadal evolution of plankton communities are rare not only because sam-
pling at that scale is difficult, but also because the subsequent identification effort is tremendous.
For example, along a time series in the northwestern Mediterranean Sea, the traditional micro-
scope counts of zooplankton performed on some target groups from 1966 to 1993 (Molinero et al.
2008) were supplemented by digitalization and classification of whole samples. By combining ma-
chine learning classifiers and human curation over 12 more years of data, researchers determined
that the changes initially described as a trend were actually periodic oscillations in the whole zoo-
plankton community (Garcia-Comas et al. 2011, Vandromme et al. 2011). This data acquisition
and identification procedure is still in effect today. Furthermore, the archive of images, together
with improved machine learning tools, make it possible to regularly review images to deepen the
level of taxonomic classification (∼10 groups in 2011, >80 now). This suggests that imaging and
machine learning could enable the rescue of data from other samples, preserved in formaldehyde
for decades at many institutions, to build historical plankton data sets at a global scale.

3.2. Resolving Plankton Spatial Patterns

Aswith time series, quantitative imaging is particularly adept at resolving small scales in space.The
earliest plankton imaging instrument developed (the VPR) was targeted at this problem, show-
ing consistent patchiness at scales of meters to tens of meters horizontally (Davis et al. 1992b).
Along the vertical, changes are even more abrupt and require extremely high frequency acquisi-
tion.Greer et al. (2013) used the ISIIS to characterize the meter-scale distribution of zooplankton
in relation to a thin phytoplankton layer. In the deep ocean, the fine-scale patchiness of filter-
feeding larvaceans around a hydrothermal vent could be related to particle distribution through
the analysis of video sequences (Lindsay et al. 2015). None of those studies relied on machine
classification, however, possibly because of a lack of trust in the ability of classifiers to reveal such
fine patterns. But, as a consequence, all studies have a limited spatiotemporal scope.

The mesoscale is dominated by fronts and eddies, which drive three-dimensional transport
and nutrient supply into the euphotic zone, thereby influencing plankton. This scale can be ex-
plored through traditional net samples, but imaging can improve the resolution of spatial patterns.
For example, a clear association between the filamentous cyanobacteria Trichodesmium, identified
in VPR images, and anticyclonic eddies was observed across a trans-Atlantic survey (Davis &
McGillicuddy 2006). Phytoplankton communities during the spring bloom in the North Atlantic
were described through 380,000 images from the IFCB that had been reviewed by humans after
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an initial machine learning prediction (Bolaños et al. 2020). They enabled the detection of a clear
association between communities and water masses at the mesoscale; the additional size data they
provided showed that small cells, rather than diatoms, dominate biomass during the bloom.

Resolving global patterns requires the compilation of thousands of data points—a huge task
for which quantitative imaging and machine learning are uniquely suited, because the consistency
of identifications in the compiled data set can be checked. Thus, the relationship between the
midwater zooplankton community and Longhurst’s biogeochemical provinces could be described
from a few hundred stations (Stemmann et al. 2008), and later on, the latitudinal distribution of
rhizarians could be illuminated from almost 1,000 points (Biard et al. 2016).

3.3. Estimating Carbon Flux in the Twilight Zone

Because particles of marine snow are substantially more numerous than plankton, in situ instru-
ments mostly image these particles. The images can therefore be used to count and characterize
these carbon-rich particles at different depths in the ocean, infer a flux, and estimate its attenua-
tion with depth. The ability to observe the mesopelagic zone, a key layer for the transfer of carbon
from the surface to the deep sea, has revealed seasonal particle flux patterns (Lampitt et al. 1993,
Stemmann et al. 2002) and hot spots of particle flux in the open ocean (Guidi et al. 2007, Kiko
et al. 2017). Because marine snow particles are so numerous and present an apparently contin-
uous spectrum of sizes and shapes (Figure 1e), most studies have not used machine learning to
classify them and have focused only on measuring their size. Key variables for carbon flux, such as
sinking speed, have then been inferred through allometric relationships with size (Giering et al.
2020a, Stemmann & Boss 2012). However, points are often spread widely around those relation-
ships because other particle properties influence sinking speed, such as ballasting, porosity, or the
roughness of their exteriors (Cael et al. 2021). Such properties could be inferred from images, and
particles could therefore be objectively categorized using machine learning techniques to better
assess their contribution to the carbon flux through per-category relationships.

3.4. Seeing Plankton In Situ and (Re-)Discovering Important Taxa

As mentioned in Section 1, plankton nets damage the organisms they sample. The modern nylon
nets damage soft-bodied zooplankton even more than the silk nets used by the natural historians
of the nineteenth century (40% of all the ctenophore species described in the twentieth century
were described in its first decade, from silk net samples; Haddock 2004). The advent of crewed
submersibles and remotely operated vehicles has led to amini-resurgence in descriptions (Robison
et al. 2017). With Declaration 45 of the International Commission on Zoological Nomenclature
stating that descriptions of new species are permitted based on photographic evidence alone when
“justified by special circumstances” (ICZN 2017, p. 96), descriptions relying heavily on images
(Lindsay 2017) or even based on images alone (Ford et al. 2020) can be expected to become more
commonplace.

Furthermore, some taxa thought to be rare based on net samples have actually been found to
be quite common through the use of in situ cameras. This was the case for gelatinous macrozoo-
plankton [Lindsay et al. (2008) reported more than 60 occurrences of the anthomedusa Pandea
rubra during a single remotely operated vehicle cruise, whereas fewer than 6 had been recorded
over the previous 100 years using nets], Trichodesmium colonies (Davis & McGillicuddy 2006,
Sandel et al. 2015), subgroups of Rhizaria (Biard et al. 2016, Brisbin et al. 2020, Nakamura et al.
2017), and polychaetes (Christiansen et al. 2018). Better estimates of the biomass of these taxa,
through in situ imaging combined with machine learning, are relevant because they are significant
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players in primary production (Trichodesmium and Collodaria), nitrogen fixation (Trichodesmium),
and vertical carbon flux (Phaeodaria, polychaetes, and gelatinous macroplankton).

3.5. Using Images to Infer Functional Traits

Beyond taxonomic identification, images of plankton and marine snow can provide rich morpho-
logical information at the individual level. Such data enable trait-based analyses to investigate the
functioning of planktonic communities or biogeochemical fluxes of marine snow, where a trait is
a characteristic of an individual organism or object that affects its fitness or role in the ecosys-
tem. Size has been termed the master trait and is readily measured individually to infer the dy-
namics of phytoplankton (Bolaños et al. 2020), zooplankton (Romagnan et al. 2016), and marine
snow (Guidi et al. 2009). Quantitative imaging has recently been used to assess the definitions of
phytoplankton size classes, which are classically based on diagnostic pigment analysis. Individual
measurements from images showed that the pigment approach tends to overestimate the contri-
bution of microphytoplankton and underestimate the contribution of nanophytoplankton to the
total phytoplankton biomass (Chase et al. 2020). But images—those taken in situ in particular—
capture many more traits of plankton that could conceivably be measured automatically (Ohman
2019), to investigate feeding (e.g., tentacles of cnidarians; Figure 1f ), defense (e.g., spines of phy-
toplankton cells; Figure 1a), and reproduction (e.g., egg volume; Figure 1b) and to characterize
the density or contour shape of marine snow particles (Figure 1e). In fact, half of the functional
traits proposed for aquatic organisms by Martini et al. (2020) have a visual signature. Few studies
explicitly use this optical information, but they show great promise.

From 1.2 million images of organisms and marine snow captured in situ, in the Arctic Ocean,
Vilgrain et al. (2021) identified approximately 28,000 copepods using a combination of machine
learning and human validation. Visual features were measured on every object, and the authors
used dimensionality reduction through principal component analysis to define three main contin-
uous functional traits related to size, opacity, and appendage visibility (Figure 7a).This individual-
level information revealed a complex response to sea ice melting in the spring: Larger individuals
with less visible appendages (i.e., in a resting posture) were under the ice; individuals at the ice
edge were darker, likely because of their fuller guts and richer pigment content in this blooming
and well-lit region; and smaller, probably younger, individuals with extended antennae (suggesting
that they were active) were in the ice-free, postbloom, open waters.

Trudnowska et al. (2021) used a similar approach on 2 million marine snow images from the
same region, with an additional step of unsupervised clustering to objectively distinguish different
morphotypes of particles (Figure 7b). The forms of these particles can illuminate their nature
(fecal pellets, dead cells, molts, aggregates, etc.) and therefore their significance for the vertical
flux. The authors traced the dynamics of two ice-edge phytoplankton blooms through the relative
abundances of the marine snow morphotypes they produced and estimated a faster carbon export
by smaller, darker, probably denser particles during the bloom, followed by a significant but slower
export by larger and fluffier aggregates after the bloom.

Computer vision, sometimes using machine learning, could be used to investigate many more
functional traits. For example, Kenitz et al. (2020) used a binary support vector machine classifier
to distinguish single-cell from chain-forming diatoms and generate a daily-resolved time series
of their abundance over 2.5 years. They showed that chain-forming diatoms dominated during
bloom conditions, whereas solitary diatoms prevailed during the rest of the year, suggesting the
existence of a trade-off between resource acquisition and predator defense in diatoms. The com-
puter sciences community provides readily available solutions for more complex problems.Object
detectors or semantic segmentation algorithms could detect relevant portions of an organism’s
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Figure 7

Morphological trait-space representation of (a) Arctic copepods and (b) marine snow. Morphological descriptors computed from UVP
images were summarized using principal component analysis, as represented here. The arrows are the original descriptors (whose
general meaning is given in the figure), the axes are the principal components, and example images are displayed at their projected
locations in the trait space. For both copepods and particles, the first principal component is related to size (small on the left, large
on the right) and the second to opacity (dark, and hence opaque, at the top; light, and hence transparent, at the bottom).
Abbreviation: UVP, Underwater Vision Profiler. Panel a adapted from Vilgrain et al. (2021) under a CC BY-NC 4.0 license
(https://creativecommons.org/licenses/by-nc/4.0); panel b adapted from Trudnowska et al. (2021) under a CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0).

body, such as lipid sacs in copepods (Figure 1b) or gonads visible through the transparent body
of jellies. Object detectors combined with tracking would allow investigation of the swimming
behavior from in situ videos. Deep regression could estimate a quantity (such as the amount of
lipid reserves or number of eggs; Figure 1b) directly from an image. Color space manipulation
could ease the quantification of the intensity of a given color, to automatically resolve fine-scale
changes such as the diel variation in color and transparency of Sapphirina nigromaculata docu-
mented by Takahashi et al. (2015), which was interpreted as a strategy to find a mate. Finally, in
situ live staining combined with object detectors could provide information on trophic functions
(Brownlee et al. 2016) or physiological states or traits. All of these approaches would allow the
extraction of even more ecologically relevant information from the abundance of pelagic images
collected.

4. TOWARD A GLOBAL NETWORK OF IMAGES

4.1. Improved Plankton Image Classification

Several of the studies described above, including recent ones (Greer et al. 2015), used manual
classification only, even though supervised classifiers were theoretically available to perform at
least part of the work. A likely explanation is that image processing and the coding of pipelines for
data management are not what plankton ecologists are trained to do. This highlights the need for
tools that give ecologists and taxonomists easy access to machine classifiers, even if those are a few
points of accuracy below the state of the art, as long as the user interface abstracts the technicalities
and can handle thousands of images quickly.
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Of course, better classifiers are always welcome, and the future clearly lies in a more widespread
use of CNNs. But other, existing advances in computer sciences could be leveraged more system-
atically for plankton imaging. For example, simultaneous classification and tracking of organisms
in videos is a problem similar to moving-object tracking in self-driving cars (Badue et al. 2021).
Learning from a data set containing incorrect identifications is a common problem, known as la-
bel noise, for which solutions exist (Fefilatyev et al. 2012). Active learning procedures can guide
taxonomists toward the most relevant images to improve a training set or the most uncertain ones
to assess the performance of a classifier (Luo et al. 2005). Plankton image classification also has
some properties that should make it an interesting research question for computer scientists: the
intrinsic imbalances of taxa abundances, the small and often grayscale images that lend them-
selves to the development of smaller networks for embedded devices, the existence of a phylogeny
of taxa derived from information external to the image, and a relative wealth of human-classified
data. Achieving this transfer of knowledge across disciplines will require collaboration between
researchers from both fields and training of students at their interface.

Still, machine learning models are only as good as the data they are trained on. A sure way
to improve classifiers is through large, diverse, and high-quality training data sets. However, the
number of trained taxonomists is ever decreasing (Pearson et al. 2011), and the number of those
who can reliably identify lower taxa based on images alone is even smaller. In addition, manually
labeling a large number of images is cumbersome and not gratifying for those trained taxonomists.
As a result, images are classified by nonspecialists, often interns, who, unsurprisingly, make mis-
takes. For example, in the most advanced research paper to date on the use of CNN classifiers
applied to plankton images (Ellen et al. 2019), some example images presented as representative
are not correctly labeled: The acantharians include spumellarian radiolarians, the fish larvae in-
clude copepods, the Narcomedusae include what appear to be Anthomedusae, and so on. Because
the sorting of each category was consistent, the names applied to them do not bear on the results
of the machine learning endeavor. But the fact that experts could not be consulted to verify the
labels and that the reviewers for a leading journal did not catch those mistakes is telling. This
deficiency of taxonomic expertise is a challenge among almost all research groups making use of
imaging technology. Furthermore, this problem is, of course, not restricted to images of plankton
and has recently been shown to hinder the assessment of the performance of all image classi-
fiers (Northcutt et al. 2021). Even GenBank, the go-to database for genetic information, contains
many inaccurate taxonomic identifications (Lindsay et al. 2017), so combinations of imaging and
sequencing proposed to alleviate the taxonomic bottleneck (Riedel et al. 2013) are also problem-
atic. Therefore, collaboration with trained taxonomists to build and share gold-standard plank-
ton image data sets appears necessary to fully harness the power of modern machine learning
techniques.

4.2. Coordinated Acquisition of Massive Data Sets

The increasing rate of acquisition of plankton images (Figure 3) has been fueled by the recog-
nition that they can provide biological information at an unprecedented scale, for research and
monitoring purposes, and by the wide distribution of commercial instruments (Lombard et al.
2019, Stemmann et al. 2012). This acquisition is quickly growing beyond the capacities of most
plankton ecology laboratories, even for classic stand-alone studies: When each deployment yields
millions of images to classify and terabytes of raw data to store, personal computers are not enough;
data centers become necessary.

Section 3 highlighted that few data sets cover long periods or large spatial scales. With the
deployment of imaging sensors on automated moorings (Orenstein et al. 2020b), on autonomous
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instruments (Ohman et al. 2019), or as part of large-scale programs such as theGlobal Ocean Ship-
Based Hydrographic Investigations Program (GO-SHIP) (Lombard et al. 2019), such data sets
should become easier to acquire, and this would be a boon for understanding plankton dynamics
at those scales. However, those data sets would be even larger than those of the typical ecological
study and will require adequate infrastructure.

Another way of accessing information over long/large scales, or to investigate local processes
but at several times/places, is by aggregating individual data sets. For this to succeed, data sets
need to be interoperable, consistent, and shared.

For plankton and marine snow image data sets, interoperability probably starts with a common
taxonomy. The World Register of Marine Species (Costello et al. 2013) is the reference for the
ocean. While its coverage of protists as well as its basal taxa could be improved, and it does not
deal with nonorganismal objects (i.e., marine snow), it is an ongoing work, used as a taxonomic
backbone of the Ocean Biodiversity Information System, the Global Biodiversity Information Fa-
cility, the Encyclopedia of Life, and so on. But taxonomic identification from images is often not
as definitive as identification from physical samples. Therefore, taxonomists may be unsure and/or
stop at a coarse level; whether this is due to a lack of meristic information or done by choice, to
limit the human effort required, is unclear. Open nomenclature qualifiers were recently recom-
mended to designate cases of incomplete or uncertain identification in the specific case of images
(Horton et al. 2021). Beyond taxa names, other qualifiers are often added to identifications (such
as life stage), and some are specific to in situ images (such as whether the organism is complete—
e.g., an appendicularian body, or just its mucus house, or both). The vocabularies of the British
Oceanographic Data Centre (BODC 2021), used by the Ocean Biodiversity Information System,
and of the Video Annotation andReference System knowledge base (MBARI 2019), geared toward
deep-sea images, provide standard terms for some but not all of these cases. Those vocabularies
also cover the documentation of other essential metadata, including not only the longitude, lati-
tude, and time but also the volume sampled, instrument name, pixel size of the image, and so on,
which are essential to aggregate data sets in a meaningful way. They are currently being extended
to better accommodate quantitative imaging data sets.

Consistency also starts with taxonomy. As explained above, the nature of image-based identi-
fication (at a coarse level, from a single view of the organism that may not display all diagnostic
characters) makes it more prone to subjectivity. The difficulty of differentiating smaller objects
from the largely dominant and diversely shaped marine snow makes errors common and pos-
sibly numerous. But images can at least be reviewed by several human operators, and machine
learning can also help identify visual outliers in a data set, which may be incorrect classifications
(Fefilatyev et al. 2012). Still, proper quality control procedures remain to be defined, like they
were for other global programs (e.g., Argo floats; Gaillard et al. 2009). In addition, for training
sets to be transferable and with the advent of trait-based approaches, the images themselves and
the features measured on them would also need to be kept as consistent as possible. This involves
intercalibration of instruments, which is rarely done (but see Picheral et al. 2010), and of the soft-
ware that processes the images (Giering et al. 2020b). Currently, even size measurements must be
postprocessed to align between instruments (Forest et al. 2012, Stemmann et al. 2012).

Finally, individual data sets need to be shared in order to be aggregated. A few data aggregation
initiatives exist, such as the Marine Ecosystem Biomass Data (MAREDAT) initiative (Buitenhuis
et al. 2013) and the aforementioned Ocean Biodiversity Information System, but they are of-
ten hindered by the lack of high-quality, documented, open data sets. Even with legal and cross-
reference tools that should ensure proper traceability and citability (Creative Commons licenses,
digital object identifiers), the cost and effort to collect ecological data sets in the ocean are in-
voked to justify the disinclination toward sharing them. But although DNA sequencing used to
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be very expensive (and is still not cheap), public release of sequences used in articles has been
mandatory for some time (Kaye et al. 2009). The ImageNet data set (Deng et al. 2009) represents
a tremendous curation effort of 14 million images from the internet, in ∼22,000 categories, yet
is freely available for anyone to download. In both cases, the public release of data has consid-
erably accelerated scientific research, because teams can build on one another’s work. Biological
oceanographers need to embrace data sharing to reap the same benefits, and images are rather
easy to share. Yet the infrastructure for sharing images is in its infancy and requires commitment
for continuous financial support.

4.3. Customized Tools for Quantitative Imaging

Most hurdles between us and a worldwide network of plankton image curation seem to be in
process and mentalities, not in technology. Indeed, many instruments and machine learning tech-
niques are mature and already in use. It is the connections between them, the overall data flow,
and the final release of data that are often missing.

Software tools that ease the storage, management, annotation, and sharing of images can help.
Gomes-Pereira et al. (2016) reviewed 23 such tools, most of which are geared toward benthic im-
ages, although SQUIDLE+ (https://squidle.org), for example, is also used for plankton. Tools
dedicated to plankton images have also been developed by independent teams; for example, Plank-
ton Identifier (Gorsky et al. 2010) and Zoo/PhytoImage (Grosjean et al. 2018) can be used to
build training sets and ease access to classic machine learning methods, and the IFCB dashboard
(https://ifcb-data.whoi.edu) enables users to store and browse data sets from this instrument.
Recently, the EcoTaxa web application (Picheral et al. 2017) has gained traction and now hosts
∼150 million images, from ∼10 different instruments, generated by over 1,000 users from more
than 350 organizations worldwide (Figure 3). It integrates image and metadata storage, data
browsing and subsetting, classic and deep learning, and data export. Its main goal is to provide an
interface that accelerates the work of human curators by using machine learning. Yet, in its current
form, it will not scale to the billions of plankton images collected worldwide, it only conforms to
a few metadata standards, it has no tools dedicated to quality control, and its machine learning
back end could be improved. These shortcomings are being actively worked on, but at the mo-
ment, neither EcoTaxa nor any other tool is fulfilling the needs outlined in the paragraphs above.
More work should be dedicated to the development of such tools for the benefit of the whole
community.

Furthermore, all of those tools are designed for experts, packing many functions into a dense
user interface. If plankton observations are to be scaled to the global ocean, these specialized
tools could be complemented by more approachable ones, geared toward a global community
of citizen scientists. Successful examples already exist for plankton (Kiko et al. 2018, Robinson
et al. 2017), and inspiring solutions have been developed by other ecologists, such as iNaturalist
(https://www.inaturalist.org) and Pl@ntNet (https://plantnet.org). In these projects, scientists
provided the initial input of data, which served to train the first machine learning classifiers. This
then allowed a community of hobbyists to grow, together with improved classifiers, over several
years. Now, the records generated by these applications feed back into the Global Biodiversity In-
formation Facility, are presented at major computer sciences conferences (Van Horn et al. 2018),
and are used by ecologists to describe the distribution of species (Botella et al. 2018). The commu-
nity of planktonology hobbyists is likely much smaller than the community of botany hobbyists, so
the number of classifications generated may not be impressive at first. But citizen science applied
to images is an excellent outreach tool to grow such a community. Plankton are just as pretty as
flowers!
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SUMMARY POINTS

1. Pelagic imaging instruments and associated machine learning models are now mature
and have brought significant insights on ocean ecology and biogeochemistry.

2. However, the progress of machine classifiers is difficult to track because much of the
current literature relies on different small data sets, with different numbers of image
categories, and often highlights only overall accuracy, which is potentially misleading
for unbalanced data sets.

3. Modern convolutional neural networks are easier to set up than classic machine learning
approaches and perform better at low abundances.

4. Fully automated taxonomic prediction can be trusted for high-abundance events, but
manual validation by experts remains necessary for rare taxa and the locations or peri-
ods where common taxa are present in small numbers, even with convolutional neural
networks.

5. Despite the apparent success of automation, many studies still rely on manual image
classification because of a lack of tools that are approachable for all plankton ecologists.

6. While quantitative imaging and machine learning facilitate the acquisition of large, con-
sistent data sets, studies over long periods and at a global scale are still rare.

7. Beyond taxonomic classification, pelagic images provide rich visual information about
plankton and marine snow that enable promising trait-based approaches.

FUTURE ISSUES

1. Plankton and marine snow image data have rare properties that create interesting ma-
chine learning problems and should be leveraged to foster deeper collaborations between
computer scientists and pelagic ecologists.

2. Systematic exploration of existing and future machine learning methods should be per-
formed on large, public data sets that reflect realistic planktonic ecosystems and should
be assessed with metrics that account for the imbalance between categories.

3. Such gold-standard data sets should be curated by expert taxonomists, through collabo-
rative tools, to avoid the errors that plague current training sets.

4. Now that image acquisition and classification are mature, effort should be directed to-
ward the development of significant infrastructure to store and curate images, with the
help of machine learning, at a scale that is beyond what plankton ecology laboratories
are used to.

5. To leverage such an infrastructure and the data therein, oceanographers should be
trained in data science, not only to leverage machine learning methods but also simply
to deal with the massive data sets involved.

6. The software tools developed should rely on standard terms and taxonomy, to facilitate
data exchange, and should allow the development of quality control procedures, to ensure
data consistency.
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7. These reference data sets, infrastructures, and tools can only be achieved through global
collaboration and a change of mindset toward systematic data sharing.
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