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Abstract

This article reviews published data on the mechanical properties of addi-
tively manufactured metallic materials. The additive manufacturing tech-
niques utilized to generate samples covered in this review include powder
bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g.,
LENS, EBF3). Although only a limited number of metallic alloy systems
are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl,
stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published
mechanical properties information has been generated on Ti-6Al-4V. How-
ever, summary tables for published mechanical properties and/or key figures
are included for each of the alloys listed above, grouped by the additive tech-
nique used to generate the data. Published values for mechanical properties
obtained from hardness, tension/compression, fracture toughness, fatigue
crack growth, and high cycle fatigue are included for as-built, heat-treated,
and/or HIP conditions, when available. The effects of test orientation/build
direction on properties, when available, are also provided, along with discus-
sion of the potential source(s) (e.g., texture, microstructure changes, defects)
of anisotropy in properties. Recommendations for additional work are also
provided.
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INTRODUCTION

A number of metal additive manufacturing (AM) processes are currently available (1), depending
on the heat source (2, 3), such as electron beam (2–7), laser, or arc (2, 3, 8, 9), and on how the raw
material is supplied. Materials supply can occur via powder or wire feed, whereby selected regions
are melted at different combinations of absorbed power (P) and beam velocity (V) (10), as shown
in Figure 1, and then solidified. Cooling rates during and after solidification are affected and con-
trolled by the P-V combinations utilized and by any preheating of the substrate. These variables,
along with the subsequent thermal cycles that occur during such layered manufacturing as well as
any postprocessing (e.g., heat treatment, HIP), affect the resulting microstructures, as reviewed
previously (10) and in another contribution to this journal’s keynote topic on AM (11). Nonequi-
librium microstructures and defects can result in as-built materials, depending on the processing
conditions and materials employed, whereas postprocessing via heat treatment and/or HIP can be
used to change some of the microstructural features and to reduce or eliminate defects and any
residual stresses. These changes affect both the orientation dependence of mechanical properties
and their magnitude, as this article documents. A broader review on materials qualification needs
for metal AM is provided elsewhere (10).

The recent reviews of the metal AM processes by Frazier (2) and Dutta & Froes (3) highlight
some of the differences between the various processes. Figure 2 provides the two major metal AM
process categories reviewed in this article, powder bed fusion (PBF) and directed energy deposition
(DED). Figure 2 also includes designations for the technologies currently available within each
major process category [e.g., direct metal laser melting (DMLM), selective laser melting (SLM),
selective laser sintering (SLS), direct metal deposition (DMD)] and current commercial machine
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Figure 1
Typical combinations of power (P) and velocity (V ) in various metal AM processes. Abbreviations: EBF3,
electron beam freeform fabrication; LENS, laser-engineered net shaping; SLM, selective laser melting.
Adapted with permission from Reference 10.
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Powder bed
fusion (PBF)

Metal additive
manufacturing processes

Direct metal laser sintering
(DMLS), EOS

Selective laser melting (SLM);
LaserCUSING, Concept Laser

Selective laser melting
(SLM), SLM Solutions

Laser melting, Renishaw

Selective laser sintering
(SLS), 3D Systems

Laser metal fusion (LMF),
Trumpf

Electron beam melting
(EBM), Arcam

Directed energy
deposition (DED)

Direct manufacturing (DM),
Sciaky (uses electron beam

as heat source)

Laser-engineered net
shaping (LENS), Optomec

Direct metal deposition
(DMD), DM3D Technology
(uses laser as heat source)

Laser metal deposition
(LMD), Trumpf

Wire and arc additive
manufacturing (WAAM)

Direct metal printing,
3D Systems

Figure 2
Summary of metal additive manufacturing processes, along with their commercial machine supplier names.
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Table 1 Summary of various alloys used in different process categories, along with references

PBF DED

EBM
(powder)

Laser
(powder)

EBM
(wire;

Sciaky)
EBM

(powder)
Laser
(wire)

Laser
(powder;
LENS)

WAAM
(wire)

Titanium alloys 12–48 49–71 72–79 80–83 74

TiAl (intermetallics) 199,
203–222

171, 172,
223, 224

Steel alloys 84–93 94 95 96

Nickel alloys 97–102 103–110 111, 112

Aluminum alloys 113–124 125 126, 127

High-entropy alloys 128 129

suppliers. To systematically review the published values for mechanical properties obtained for
materials manufactured by these different techniques, this review begins with a compilation of
the most widely utilized AM alloy systems along with the process category (e.g., PBF, DED) and
energy source for fusion [e.g., electron beam melting (EBM), laser, and wire and arc additive
manufacturing (WAAM)]. Individual tables and/or figures for each alloy, energy source, and/or
mechanical property are then provided for as-built, heat-treated, and/or HIP conditions and
document the test orientation and build direction when available.

ADDITIVELY MANUFACTURED ALLOY SYSTEMS

As indicated in previous reviews (2, 3), at present there is only a limited number of alloy systems
for which mechanical properties are published. Table 1 summarizes the existing alloy classes
and references to published data, along with the process category and source of fusion. These
categories provide the basis for the remainder of this review.

MECHANICAL PROPERTIES OF ADDITIVELY MANUFACTURED
METALLIC MATERIALS

Although most of the published mechanical property measurements have been reported for Ti-
6Al-4V, tables and/or figures summarizing data for each of the alloy classes shown in Table 1 are
provided, when available. Review of the literature also reveals that most of the published work has
focused on tension/compression testing, with more recent work on fracture-critical properties.
In the tables, the effects of specimen or build orientation on tensile properties are documented
using the X, Y, Z designation according to the ASTM standard (130) shown in Figure 3, when
documented in the published work. Rectangular and nonsymmetric test coupons thus require three
letters (X, Y, Z) to provide a complete orientation designation. In this terminology, Z designates
the build direction. The X axis is parallel to the front of the machine and is perpendicular to Z. The
Y axis is perpendicular to both the Z and X axes, with a positive direction defined to make a right-
hand set of coordinates. The first letter designates the axis parallel to the longest overall dimension.
The second letter designates the second-longest overall dimension, followed by the third letter,
which designates the third-longest overall dimension of the coupon. For example, a specimen with
XYZ designation has its longest dimension parallel to X, its second-longest dimension parallel to
Y, and its shortest overall dimension parallel to Z. Figure 3 also illustrates that only one letter
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Figure 3
Orientation designations for mechanical testing of AM materials.

is required for cylindrically symmetric samples. Unfortunately, not all of the published works
reviewed herein followed these ASTM/ISO rules. In some cases, only one letter was used for
nonsymmetric samples. The tables also document any postprocessing (e.g., heat treatment, HIP)
that was used.

ASTM committee F42 (131) is reviewing potential modifications to the orientation designa-
tion scheme for fracture toughness and fatigue crack growth, as shown in Figure 4 (48). These
modifications to the evolving ASTM standards for AM materials may be necessary to document
the unique orientation- and location-dependent properties that can be produced both within and
between builds in AM-processed materials (10, 48) due to differences in the microstructure, tex-
ture, residual stresses, and/or defects. These types of samples could also serve as witness samples
deposited along with components in the same build to provide insight into part/component quality
in different locations and orientations.
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Figure 4
Possible designations for AM fracture and fatigue testing based on existing ASTM standards. There are eight
different orientation and direction combinations. Abbreviations: L, longitudinal; S, short; T, transverse.
Adapted from References 48 and 131 with permission.

QUASI-STATIC PROPERTIES: TENSILE AND FRACTURE TOUGHNESS

Tables 2 and 3 compile published tensile properties for Ti-6Al-4V produced via PBF EBM
and laser techniques, respectively, and include hardness data when available along with literature
references. In addition, Tables 2 and 3 show the machine type and powder [e.g., conventional
versus ELI (extra low interstitial)] utilized; show the specimen orientation using the X, Y, Z scheme
presented in Figure 3; and specify whether the material was tested in the as-built, heat-treated,
and/or HIP condition. Figure 5 captures some of the key early observations on AM tensile
properties for Ti-6Al-4V, and the tables and figures contained herein provide updated details
along with many additional references.

The summary in Table 2 for PBF (EBM) reveals orientation-dependent values for yield
strength, ultimate tensile strength (UTS), and elongation to failure that are also affected by
postprocessing heat treatments and/or HIP. Because of differences in the sample gauge lengths
between the different investigations, the reported elongations to failure are difficult to compare
directly. However, properties reported for all of the conditions (as built, heat treated, and/or HIP)
often approach and exceed those reported for conventionally processed Ti-6Al-4V (3). EBM
machine type (e.g., Arcam A1, A2, A2X, S12, S400) appears to affect the reported properties,
although property variations have also been documented on samples manufactured within one
machine type. The source(s) of these variations could be explored by conducting round robin
activities like those organized by NIST/ASTM (132, 133) for PBF (laser), and the source(s) of
the orientation-dependent properties is starting to receive additional attention from the AM com-
munity. Orientation-dependent differences in the microstructure, texture, and defects contribute
to some of these tensile property differences but become more important in the fracture-critical
properties (e.g., HCF, fatigue crack growth, fracture toughness) reviewed below. Postprocess-
ing (e.g., heat treatment and/or HIP) can be used to produce more desirable microstructures
and to reduce or eliminate process-induced defects [e.g., lack of fusion (LoF), isolated porosity]
but affects the cost-effectiveness of the process. In general, the use of preheated powder beds in
the EBM process reduces the cooling rate during and after the AM process, typically producing
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Table 2 Summary of EBM PBF AM Ti-6Al-4V tensile properties

Machine
type Condition

Specimen
orientation E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%)

Hardness
(Hv) Reference

Arcam Heat
treated

ZX NA 869 ± 7 965 ± 5 6 ± 0 NA 141

Arcam
A1

As built XY NA 783 ± 15 833 ± 22 2.7 ± 0.4 NA 142
ZX 812 ± 12 851 ± 19 3.6 ± 0.9

Arcam As built XY NA 870 ± 8.1 971 ± 3.1 12.1 ± 0.9 NA 12

Z 879 ± 12.5 953 ± 8.8 13.8 ± 0.9

HIP XY 866 ± 6.4 959 ± 8.2 13.6 ± 0.6

Z 868 ± 2.9 942 ± 2.6 12.9 ± 0.8

Arcam
ELIa

As built XY NA 817 ± 4.3 918 ± 1.0 12.6 ± 0.8 NA
Z 802 ± 7.9 904 ± 6.0 13.8 ± 0.9

HIP XY 814 ± 2.4 916 ± 2.5 13.6 ± 1.2

Z 807 ± 8.4 902 ± 8.7 14.8 ± 0.5

Arcam
A2X
ELIa

As built XY NA 851.8 ± 5.8 964 ± 0.3 16.3 ± 0.8 NA 143

Arcam
A2
ELIa

As built Z NA 928 ± 13.3 1,011 ± 14.8 13.6 ± 1.4 NA 31

HIP Z NA 813 ± 14.3 908 ± 3.2 17.7 ± 0.9 NA

Arcam
S12

As built XY NA 975 1,033 16.78 NA 144

Arcam As built XY NA 881 ± 12.5 978 ± 11.5 10.7 ± 1.5 NA 33

HIP XY NA 876 ± 12.5 978 ± 9.5 13.5 ± 1.5 NA

Arcam
S12

As built XY NA 982 ± 5.7 1,029 ± 7 12.2 ± 0.8 372 ± 7.2 145
Z NA 984 ± 8.5 1,032 ± 12.9 9 ± 2.9 367 ± 8.3

Arcam
S400

As built XY NA 899 ± 4.7 978 ± 3.2 9.5 ± 1.2 NA 39
ZX 869 ± 7.2 928 ± 9.8 9.9 ± 1.7

Arcam
S400

As built XY 104 ± 2.3 844 ± 21.6 917 ± 30.53 8.8 ± 1.42 NA 40

Z 101 ± 2.5 782 ± 5.1 842 ± 13.84 9.9 ± 1.02 NA

Arcam
S400
ELIa

As built Z NA 1,150 1,200 16 380 146

Arcam As built NA 118 ± 5 830 ± 5 915 ± 10 13.1 ± 0.4 NA 16

HIP NA 117 ± 4 795 ± 10 870 ± 10 13.7 ± 1 NA

Arcam
A2
ELIa

As built Z 93 ± 2 735 ± 28 775 ± 26 2.3 ± 0.8 369 ± 2 29

(Continued )
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Table 2 (Continued )

Machine
type Condition

Specimen
orientation E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%)

Hardness
(Hv) Reference

Arcam
ELIa

HIP XY NA 841 938 20 NA 14
As built Z NA 856 924 15 NA

HIP Z NA 800 876 16 NA

Arcam As built NA 114 ± 6 1,135 ± 12 NA NA NA 147

Arcam
S400

As built Z 109 ± 2.1 1,098 ± 15 1,237 ± 13 8.8 ± 0.6 NA 148

Arcam As built NA 128 880 930 >10% NA 149

NA denotes data not available.
aELI (extra low interstitial) powder was used.

α + β lamellar microstructures [with prior β grain sizes that can be affected or controlled by the
combinations of P and V utilized in the process (134–140)]. EBM AM materials typically possess
lower levels of residual stresses in the as-built condition than do materials made by laser-based
techniques that typically use no preheat; the faster cooling rates typically produce highly nonequi-
librium microstructures [e.g., martensite in PBF (laser) Ti-6Al-4V] and much higher levels of
residual stress that require subsequent stress relief treatments, as described below. Chemistry
control in the PBF (EBM) process can also become an issue in Ti-6Al-4V due to the preferential
loss of Al during EBM of powders in high vacuum.

Table 3 illustrates that PBF (laser) of Ti-6Al-4V exhibited features (e.g. orientation-dependent
properties, machine effects (132, 133), postprocessing improvements to properties) similar to those
shown for PBF (EBM) in Table 2. Highly nonequilibrium microstructures (e.g., martensite), along
with substantial residual stresses that increase the strength and decrease the elongation values, are
possible in as-built Ti-6Al-4V. Postprocessing has been used to increase the elongation to failure
while reducing the yield strength, UTS, and residual stress values.

Table 4, which summarizes DED (laser) tensile properties, shows similar general character-
istics of orientation- and machine-dependent properties, with values for as-built yield strength,
UTS, and elongation to failure generally between the values exhibited in Tables 2 and 3 for PBF
(EBM) and PBF (laser), respectively. The combinations of P and V shown in Figure 1 for DED
generally produce α + β lamellar microstructures, with prior β grain sizes somewhat larger than
those obtained from PBF (laser) due to the slower cooling rates typically present in DED (57, 59,
134–137). Table 4 also shows that HIP can result in significant increases to the elongation-to-
failure values via the elimination of process-induced defects. These process-induced defects are
particularly detrimental to the high cycle fatigue behavior, as discussed below.

Table 5 summarizes the more limited published work on tensile properties for all of the other
alloys in Table 1 manufactured using PBF techniques. The limited published tensile properties
for 316L PBF (laser) reveal properties in the range of commercially produced 316L. HIP of 316L
produced via SLM increased elongation, likely due to the elimination of process-induced defects.
Both Al-12Si and Al-Si-10Mg are alloys typically processed via commercial casting techniques
(e.g., sand, gravity die). Strength levels in PBF (laser)–processed versions of Al-12Si and Al-Si-
10Mg are in the range of data produced via sand and die casting techniques, whereas the somewhat
higher elongation values arise due to the microstructure refinement provided by the faster cooling
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Table 3 Summary of laser-melted PBF AM Ti-6Al-4V tensile properties

Machine
type Condition

Specimen
orienta-

tion E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%) Hardness Reference

EOS As built XZY 91.8 ±
0.5

938 ± 7.7 1,140 ± 5 NA NA 150

Stress
relieved

98.2 ±
1.2

862 ± 3.1 936 ± 3.6

HIP 106.8 ±
1.3

835 ± 3.8 910 ± 2.9

SLM As built XY NA 1,093 ± 64 1,279 ± 13 6 ± 0.7 NA 151

ZX 1,125 ± 22 1,216 ± 8 6 ± 0.4

Stress
relieved

XY 1,145 ± 17 1,187 ± 10 7 ± 2.7
ZX 1,132 ± 13 1,156 ± 13 8 ± 0.4

Heat
treated

XY 973 ± 8 996 ± 10 3 ± 0.4
ZX 964 ± 7 998 ± 14 6 ± 2

EOS M280 As built ZX NA 1,017 ± 7 1,096 ± 7 12 ± 0.5 NA 141

SLM As built NA 110 736 1,051 11.9 360 (Hv) 152

HIP 115.4 885 973 19 351 (Hv)

Heat
treated

117.4 1,051 1,115 11.3 321 (Hv)

Renishaw
MTT250

As built XY NA 910 ± 9.9 1,035 ± 29 3.3 ± 0.76 NA 153

SLM250 As built ZX NA NA 1,314 ±
15.6

4 ± 1.2 NA 154

HIP 1,088 ±
26.3

13.8 ± 1.3

Heat
treated

1,228 ±
32.4

8 ± 15

Renishaw
AM250

As built XZ 115 ± 6 978 ± 5 1,143 ± 6 11.8 ± 0.5 NA 155
ZX 119 ± 7 967 ± 10 117 ± 3 8.9 ± 0.4

XY 113 ± 5 1,075 ± 25 1,199 ± 49 7.6 ± 0.5

Stress
relieved

XZ 113 ± 9 958 ± 6 1,057 ± 8 12.4 ± 0.7
ZX 117 ± 6 937 ± 9 1,052 ± 11 9.6 ± 0.9

XY 112 ± 6 974 ± 7 1,065 ± 21 7.0 ± 0.5

SLM250 As built ZX NA 1,008 1,080 1.6 NA 9

HIP 962 1,080 5

Heat
treated

912 1,005 8.3

Realizer As built ZX 119 ± 7 967 ± 10 117 ± 3 8.9 ± 0.4 NA 64

SLM50 Stress
relieved

117 ± 6 937 ± 9 1,052 ± 11 9.6 ± 0.9

EOS M270 As built ZX NA 1,143 ± 30 1,219 ± 20 4.89 ± 0.6 NA 39

XY 1,195 ± 19 1,269 ± 9 5 ± 0.5

(Continued )
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Table 3 (Continued )

Machine
type Condition

Specimen
orienta-

tion E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%) Hardness Reference

SLM As built XY 109.2 ±
3.1

1,110 ± 9 1,267 ± 5 7.28 ± 1.12 NA 156

EOS M270 As built NA 110 ± 5 990 ± 5 1,095 ± 10 8.1 ± 0.3 NA 51

Heat
treated

NA 1,040 ± 10 1,140 ± 10 8.2 ± 0.3 NA

EOS M270 As built ZX 111 1,120 1,257 8.0 37 (HRC) 148

EOS M27 As built Z NA 1,333 1,407 4.54 NA 157

SLM
(Trumpf )

As built XY 105 ± 5 1,137 ± 20 1,206 ± 8 7.6 ± 2 NA 158
ZX 102 ± 7 962 ± 47 1,166 ± 25 1.7 ± 0.3

Heat
treated

XY 103 ±
11

944 ± 8 1,036 ± 30 8.5 ± 1

ZX 98 ± 3 925 ± 14 1,040 ± 40 7.5 ± 2

SLM As built NA 94 1,125 1,250 6 NA 159

Renishaw
MTT

As built X NA 1,166 ± 6 1,321 ± 6 2.0 ± 0.7 NA 160

DLF As built X 118 ±
2.3

1,100 ± 12 1,211 ± 31 6.5 ± 0.6 NA 161

Concept
Laser M2

As built X NA 1,070 ± 50 1,250 ± 50 5.5 ± 1 NA 162
Z 1,050 ± 40 1,180 ± 30 8.5 ± 1.5

NA denotes data not available.

rates in the PBF (laser) processes used. The very limited published tension data on CoCrMo reveal
that PBF (laser) exhibits somewhat higher strengths and lower elongation to failure than does
PBF (EBM) in the as-built condition; these data also indicate orientation-dependent properties
in the PBF (EBM) material. HIP and heat treatment of PBF (EBM) CoCrMo removed the
orientation effects on properties and significantly increased the elongation to failure, consistent
with HIP elimination of process-induced defects. There are not enough published data on the
other alloy systems listed in Table 5 to make sensible comparisons at this time.

Table 6 summarizes the evolving database for DED, focusing on Inconel 718 (IN718). Prop-
erties are shown for both as-built and heat-treated conditions for a variety of machine types using
either laser melting or EBM. Although there are not enough data reported within one machine type
to make sensible comparisons, Table 6 shows significant differences between the properties ob-
tained on IN718 processed across the different machine types and energy sources used for melting.

Whereas there has been extensive research to determine the range of uniaxial tensile properties
possible for PBF (EBM, laser) and DED (laser) reported in Tables 2–6, much less published
research is available for the fracture-critical properties (e.g., toughness, fatigue) of Ti-6Al-4V, and
very few published data exist for the fracture properties of the other alloy systems listed in Table 1.
Table 7 summarizes fracture toughness properties of Ti-6Al-4V for both PBF (laser)– and PBF
(EBM)–processed materials, again using the X, Y, Z nomenclature shown in Figure 3. Candidate
fracture toughness numbers, Kq, are provided in Table 7 because thickness requirements for valid
fracture toughness (i.e., KIc) measurements are not met in PBF (EBM) Ti-6Al-4V (48) and are not
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Figure 5
Summary of Ti-6Al-4V AM tensile properties. Abbreviations: DMD, direct metal deposition; DMLS, direct
metal laser sintering; EBM, electron beam melting; HT, heat treated; LENS, laser-engineered net shaping;
UTS, ultimate tensile strength; YS, yield stress. Adapted from Reference 3.

reported for PBF (laser) Ti-6Al-4V (151). Again, directly comparing toughness numbers between
various works is difficult because few of the published values were obtained on samples sufficiently
thick to provide valid KIc (i.e., plane strain) measurements and because non–plane strain conditions
(i.e., thinner samples) inflate toughness numbers due to plane stress conditions. Nonetheless,
PBF (laser)–processed Ti-6Al-4V exhibits toughness values well below those of conventionally
processed Ti-6Al-4V (48, 140, 196) and exhibits orientation-dependent values and significant
effects of machine type and postprocessing conditions. In general, the as-built PBF (laser) Ti-6Al-
4V exhibits the lowest toughness in the as-built condition, likely due to a combination of highly
nonequilibrium microstructures, significant residual stresses, and process-induced defects. Stress
relief, heat treatment, and/or HIP postprocessing appear to improve the toughness values reported
in Table 7 by reducing harmful residual stresses, by generating more favorable microstructures,
and by minimizing defects in the as-built PBF (laser) material. The highest published toughness
for the PBF (laser) Ti-6Al-4V reported in Table 7 belongs to the EOS M280 processed material
(Kq = 86.3 MPa�m) after a postprocessing heat treatment (194), whereas the as-built and/or HIP
versions exhibited significantly lower toughness values.

In contrast, Table 7 reveals significantly higher toughness values from preliminary studies on
PBF (EBM) Ti-6Al-4V (48, 140) in both as-built and HIP-processed material, although machine-,
orientation-, and location-dependent toughness values were exhibited. More recent work (10)
suggested that both microstructure and texture variations and defect population vary with dif-
ferent build orientations, locations, and machines, thereby affecting the magnitude of toughness.
Figure 6 shows the fracture surface of an as-built PBF (EBM) Ti-6Al-4V toughness sample tested
in the LT-BOTH orientation (10) shown in Figure 4. The various LoF defects that are evident
perpendicular to the build direction in this LT-BOTH sample likely contribute to the orientation-
dependent toughness values, although microstructural differences along and perpendicular to the
build can also contribute (10), as suggested in Figure 7.

www.annualreviews.org • Metal Additive Manufacturing 161



MR46CH07-Lewandowski ARI 8 June 2016 12:1

Table 4 Summary of laser-fusion DED AM Ti-6Al-4V tensile properties

Machine
type Condition

Specimen
orientation E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%) Hardness Reference

LENS
(Op-
tomec)

Stress
relieved

X 116 1,065 1,109 4.9 NA 58

Y 116 1,066 1,112 5.5

Z 112 832 832 0.8

HIP X 118 946 1,005 13.1

Y 118 952 1,007 13.0

Z 114 899 1,002 11.8

DLD
(Trumpf )

As built X NA 950 ± 2 1,025 ± 10 12 ± 1 NA 72
Z 950 ± 2 1,025 ± 2 5 ± 1

HIP NA 850 ± 2 920 ± 1 17 ± 2

LMD As built X NA 976 ± 24 1,099 ± 2 4.9 ± 0.1 NA 163

LSF As built Z NA 1,070 1,140 6 NA 164

LF3 As built X NA 892 ± 10 911 ± 10 6.4 ± 0.6 NA 165

As built Z 522 797 ± 27 1.7 ± 0.3

As built
(ma-
chined)

X 984 ± 25 1,069 ± 19 5.4 ± 1

As built
(ma-
chined)

Z 958 ± 14 1,026 ± 17 3.8 ± 0.9

Heat
treated

X 681 ± 35 750 ± 20 4.8 ± 1.6

Heat
treated

Z 637 ± 13 717 ± 12 3.4 ± 1.0

Heat
treated
(ma-
chined)

X 870 ± 37 953 ± 18 11.8 ± 1.3

Heat
treated
(ma-
chined)

Z 930 ± 15 942 ± 13 9.7 ± 2.2

DMD As built X NA 1,105 ± 19 1,163 ± 22 4 ± 1 NA 166

Heat
treated

X 975 ± 15 1,053 ± 18 7.5 ± 1

IPG YLR As built X NA 960 ± 26 1,063 ± 20 10.9 ± 1.4 NA 80

Z 958 ± 19 1,064 ± 26 14 ± 1

(Continued )
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Table 4 (Continued )

Machine
type Condition

Specimen
orientation E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%) Hardness Reference

LENS
(Op-
tomec)

As built
(low
power)

X NA 1,005 1,103 4 NA 167

Heat
treated
(low
power)

1,000 1,073 9

As built
(high
power)

990 1,042 7

Heat
treated
(high
power)

991 1,044 10

Laser
form-
ing

Heat
treated

NA NA 839 900 12.3 NA 168

DLF Heat
treated

NA NA 958 1,027 6.2 NA 169

LENS Heat
treated

NA NA 827–965 896–1,000 1–16 NA 170

LENS As built Z 119 908 1,038 3.8 NA 226

Annealed 112 959 1,049 3.7

Heat
treated

118 957 1,097 3.4

NA denotes data not available. Other abbreviations: DLD, direct laser fabrication; DMD, direct metal deposition; LMD, laser metal deposition; LSF, laser
solid forming; LF3, laser freeform fabrication.

Figure 8 shows μCT analyses revealing process-induced defects in a large (i.e., 10 × 20 ×
100 mm) as-built PBF (EBM) LT-BOTH Ti-6Al-4V fracture toughness sample that was tested
to failure. Interestingly, although μCT analyses showed that HIP minimized or eliminated the
defects present in Figure 8, Table 7 and recently published work (10) report lower toughness
values for HIP PBF (EBM) Ti-6Al-4V in comparison to the as-built material. Ongoing work is
examining the details of the crack path and microstructure interactions to determine the source(s)
of this reduction in toughness observed in the defect-free HIP versions (197).

The competition between microstructure-dominated (e.g., Figure 7) and defect-dominated
(e.g., Figures 6 and 8) contributions to toughness may be responsible for these apparently
conflicting observations in which defect-free PBF (EBM) HIP Ti-6Al-4V samples exhibit
lower toughness than do their defect-containing as-built counterparts. Figure 9 summarizes
location-dependent toughness values along a tall, as-built PBF (EBM) Ti-6Al-4V sample, in ad-
dition to microstructure variations and significant differences in defect density along the build.
Although HIP eliminates process-induced defects, location-dependent toughness values remain,
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Table 6 Summary of tensile properties of other alloys additively manufactured by DED

Machine
type Alloy

Condition
(as built,
HIP, or

heat
treated)

Specimen
orienta-

tion E (GPa)

Yield
strength
(MPa)

Ultimate
tensile

strength
(MPa)

Elongation
(%) Hardness Reference

GTAW TiAl As built Y NA 474 ± 17 549 ± 23 0.5 NA 185

Z 424 ± 30 488 ± 50 0.5

DMD 4340 Stress
relieved

XY NA 1,398.65 NA 1.665 NA 95

DLD
(LENS)

316L As built Z NA 405–415 620–660 34–40 NA 225
Heat
treated

Z NA 325–355 600–620 42–43 NA

SMD IN718 As built XY NA 473 ± 6 828 ± 8 28 ± 2 NA 186

DLD IN718 As built Z NA 650 1,000 NA NA 187

Heat
treated

1,257 1,436

Laser IN718 As built NA NA 590 845 11 NA 188

Heat
treated

1,133 1,240 9

EBF3 IN718 As built XY 159 580 910 22 NA 189

EBF3 IN718 As built XY 138 655 978 NA NA 99

YX 194 699 936

Heat
treated

XY 174 986 1,114
YX 192 998 1,162

DLD IN718 Heat
treated

NA NA 1,097.6 1,321 9.8 NA 111

DLD IN718 Heat
treated

NA NA 1,034 1,276 12 NA 190

Laser/wire IN718 Heat
treated

NA NA 1,079 1,314 20.4 NA 191

WAAM AA2319 As built X NA 114 ± 4.8 263 ± 0.5 18 ± 0.5 NA 127

Y 106 ± 0.8 258 ± 2.2 15.5 ± 1

NA denotes data not available.

suggesting that subtle detrimental changes to the microstructure may be responsible. More work
is clearly needed to resolve these issues, and testing of much thicker samples is necessary to obtain
valid KIc measurements.

The relatively high toughness values obtained for the as-built PBF (EBM) Ti-6Al-4V shown
in Table 7 appear promising from a damage tolerance perspective. However, the presence of
process-induced defects significantly reduces HCF properties, as discussed below.

Table 8 provides Kq toughness values for PBF (EBM) Ti-Al 4822 (198, 199) in both the as-
built and HIP conditions. Although only very limited data exist, the toughness values were similar
to those previously obtained for as-cast Ti-Al 4822 (200). However, the scale and homogeneity
of the microstructures of the as-built and HIP PBF (EBM) TiAl were very different from one
another and from those of the as-cast TiAl (200). The presence of process-induced defects in the
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Table 7 Summary of AM Ti-6Al-4V PBF (laser/EBM) fracture toughness

Process
category Machine type Condition

Specimen
orienta-

tion
Specimen

type Kq (MPa�m) Reference

PBF(laser) SLM As built XY CT 28 ± 2 151

XZ 23 ± 1

ZX 16 ± 1

Stress relieved XY 28 ± 2

XZ 30 ± 1

ZX 31 ± 2

Heat treated XY 41 ± 2

XZ 49 ± 2

ZX 49 ± 1

SLM MTT250 As built XY 66.9 ± 2.6 192

XZ 64.8 ± 16.9

YZ 41.8 ± 1.7

SLM As built ZX 52.4 ± 3.48 193

EOS M280 As built XY 37.5 ± 5 194

HIP 57.8 ± 5

Heat treated 86.3

PBF(EBM) Arcam A1 As built XY 110 ± 8.9 142

ZX 102 ± 7.4

Arcam As built XY 96.9 195

ZX 78.1

HIP XY 99.0

ZX 83.1

Arcam A2 As built XYZ 3PB 68, 80 48

XZY 76

ZXY:
middle

65, 66

ZXY:
near
start

79 140

ZXY:
near
end

100

as-built PBF (EBM) TiAl was confirmed by μCT, and many of these defects were eliminated with
HIP. This produced less scatter in the toughness data reported, again suggesting a competition
between microstructure-dominated and defect-dominated contributions to toughness.

HIGH CYCLE FATIGUE AND FATIGUE CRACK GROWTH

As discussed above, process-induced AM defects (e.g., Figures 6, 8, and 9) and microstructure
variation/changes (e.g., Figures 7 and 9) can affect the tensile and toughness properties. However,
such defects, along with surface roughness and residual stresses, can dominate the cyclic behavior,
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Figure 6
Lack-of-fusion (LoF) defects evident on the fracture surface of a PBF (EBM) as-built Ti-6Al-4V toughness
sample tested in the LT-BOTH orientation shown in Figure 4. LoF defects are perpendicular to the build
direction. (a) Low magnification. (b) Higher magnification.

can obscure microstructural effects, and can severely degrade the high cycle fatigue performance
by providing potent fatigue initiation sites along with superimposed harmful residual stresses.
These features can overwhelm any microstructural effects, as is shown below.

Although the early fatigue work of Kobryn & Semiatin (58) on LENS-processed (i.e., DED) Ti-
6Al-4V exhibited HCF behavior that exceeded cast properties and was in the scatter band for cast +
HIP and wrought-annealed Ti-6Al-4V (58), that work also revealed orientation-dependent fatigue
life. More recent work (81) on LENS-processed Ti-6Al-4V documented defect-dominated fatigue
behavior with fracture initiation from surface cracks and unmelted particles at the surface, as well
as subsurface fatigue initiation from unmelted particles. Unmelted particles at the surface reduced
the fatigue lifetime by an order of magnitude in comparison to subsurface crack initiation from
unmelted particles in the bulk. However, when surface defects were suppressed by optimization

Crack growth
direction across

grains

Crack growth
direction along

grains

7 mm 

10
 m

m
 

001 101

111
Ti-β

Figure 7
Large-area EBSD of an as-built PBF (EBM) Ti-6Al-4V sample showing crack growth across versus along
reconstructed β grains. Adapted with permission from Reference 10.
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Figure 8
μCT images of a 10 × 20 × 100 mm as-built LT-BOTH PBF (EBM) Ti-6Al-4V toughness sample tested to
failure in bending. Isolated defects (dark spots) are evident throughout the sample. Notch, fatigue precrack,
cracked regions, and direct current potential drop lead holes are also shown. Build direction is out of page.

of the LENS process parameters (81), both as-deposited and simulated repair conditions could
produce a fatigue life that exceeded the lower bound for wrought, annealed Ti-6Al-4V and that
was in the upper-bound regions of cast + HIP material.

A very recent review (201) summarized the stress-controlled fatigue behavior of PBF (laser)–
processed, PBF (EBM)–processed, and DED-processed Ti-6Al-4V, along with the effects of sur-
face roughness (e.g., as built versus machined) and defects (e.g., as built versus HIP) in comparison
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Figure 9
Illustration of location-dependent toughness values in an as-built PBF (EBM) Ti-6Al-4V sample. Variations in microstructure (prior β
grains and α+ β microstructure) and defect density were detected along the same as-built sample.

to as-cast and wrought Ti-6Al-4V tested with machined surfaces. Figure 10 includes data from
that work (201) in addition to a recent similar study on PBF (EBM) Ti-6Al-4V (202) conducted
under strain control to capture the essence of the observations to date (201).

Figure 10 shows summary data replotted (from Reference 201) of PBF (laser) S-N fatigue
behavior for Ti-6Al-4V tested at R = 0.1, along with Metallic Materials Properties Development
and Standardization (MMPDS) data obtained for cast (3-inch-thick) and wrought (annealed and
aged) material with machined surfaces in addition to data obtained from Reference 202. Al-
though orientation-dependent fatigue behavior was found and some property improvements were
achieved with machined and polished surfaces, the very poor performance in comparison to the
other data summarized in this plot was assumed to result from process-induced defects. Reference
201 indicates that the significantly improved fatigue data that were obtained by machining the as-
built surfaces after optimization of the PBF (laser) process for Ti-6Al-4V support this hypothesis.
However, this review (201) indicated that variations in laser process parameters created either a
martensitic microstructure or a fine α microstructure. Fine α microstructure resulted in fatigue

Table 8 Summary of AM γTi-Al 4822 fracture toughness for EBM PBF

Machine type Alloy Condition
Specimen

orientation Specimen type Kq (MPa�m) Reference

Arcam A2X Ti4822 As built Z 3PB 24.1 ± 6.5 198

HIP 27.8 ± 0.4
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800

400
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100
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eff
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Laser: HIP at 920°C/2 h/100 MPa, machined surface
Laser: no treatment, as-built surface
Laser: 3 h at 650°C, as-built surface, R = 0.1
Laser: no treatment, machined surface
Laser: 4 h at 650°C, machined surface
MMPDS 2010: 3-inch casting, machined surface, R = 0.1
MMPDS 2010: wrought, annealed, machined surface, R = 0.1
MMPDS 2010: wrought, aged, machined surface, R = 0.1
E-beam: no treatment, machined surface
E-beam: no treatment, as-built surface
E-beam: HIP at 920°C/2 h, machined surface
Directed energy deposition, laser wire feed: heat treated and no treatment
E-beam: optimized, no treatment, as-built surface finish, R = 0.1
E-beam: optimized, surface treated, R = 0.1
E-beam: no treatment, machined surface, R = 0.1

Figure 10
Summary of stress (S) versus cycles to failure (N) (S-N) data for PBF (laser), PBF (EBM), and wire (DED) at
R = 0.1. Metallic Materials Properties Development and Standardization (MMPDS) data for cast, wrought
machined data are shown for comparison. Data were obtained from a variety of sources, including
References 12, 201, and 202. Adapted from Reference 201.

performance superior to that of MMPDS reference data for cast + HIP material, whereas the
martensitic microstructure’s performance was below that of the MMPDS reference data. Heat
treatment at 650◦C/3 h marginally improved fatigue behavior with the as-built rough surfaces, and
cracking again appeared to initiate from the (rough) surfaces. Heat treatment at 650◦C/4 h along
with machined/EDM/shot-peened/sand-blasted surfaces produced fatigue performance that ap-
proached the fatigue performance of cast + HIP MMPDS data.

HIP of the PBF (laser) Ti-6Al-4V at 920◦C/2 h/100 MPa, combined with surface machining,
produced further improvements to the fatigue data in Figure 10 via elimination of process-induced
defects (201). However, although HIP at 1,050◦C/4 h/100 MPa similarly eliminated process-
induced defects, the associated microstructure coarsening at this HIP temperature reduced the
fatigue performance. These results again emphasize the competition between defect-dominated
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and microstructure-dominated contributions to properties. Although the presence of process-
induced defects dominates high cycle fatigue performance and obscure microstructural effects, the
removal of these defects via HIP or process optimization requires optimization of microstructural
features to continue to improve performance.

Figure 10 also includes data (from References 201 and 202) of PBF (EBM) and wire (DED)
S-N fatigue behavior for Ti-6Al-4V tested at R = 0.1. The PBF (EBM)–processed samples tested
with as-built (i.e., rough) surfaces reveals performance only slightly better than that of the worst-
performing PBF (laser) samples shown. Some improvement in performance is provided by ma-
chining as-built surfaces (12), with more significant improvement reported recently on machined
samples (202). However, the high cycle fatigue performance of the early work (12) on machined
samples is well below that of the MMPDS cast Ti-6Al-4V data and is likely compromised by
premature crack initiation at process-induced defects such as porosity. However, machining +
HIP at 920◦C/2 h/100 MPa (12) produced results comparable to MMPDS wrought data, again
consistent with the HIP elimination of process-induced defects.

Figure 10 also summarizes wire-fed DED fatigue performance. The good fatigue performance
of DED-processed Ti-6Al-4V is attributed to the general lack of process-induced defects, whereas
differences in the fatigue performance of the laser wire-fed and tungsten inert gas wire-fed
Ti-6Al-4V were attributed to differences in microstructural scale (201).

Table 9 summarizes the limited fatigue crack growth data reported for PBF (laser) and PBF
(EBM) Ti-6Al-4V. Despite the generally low toughness values of the PBF (laser) Ti-6Al-4V
summarized in Table 7, Table 9 reveals Paris slope values at R = 0.1 in the range of 3–6, which is
typical for metallic materials, and overload Kc values in the range of the toughness values reported in
Table 7 for PBF (laser) Ti-6Al-4V. The higher-toughness PBF (EBM) Ti-6Al-4V exhibits much
higher Kc at overload in fatigue and similarly low Paris slope values and fatigue thresholds in the
range of conventional Ti-6Al-4V. However, location- and orientation-dependent fatigue crack
growth is evident in Table 9 and is likely affected by the competition between microstructure-
dependent and defect-dependent contributions to fatigue crack growth, which is somewhat similar
to that proposed in Figure 9 for toughness.

CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVE

Figure 11 summarizes the range of mechanical properties typically generated in the mechani-
cal characterization of metallic structural materials depending on their intended application. In
that regard, this review summarizes published data currently available for AM metallic materials
across the range of currently available PBF and DED process categories. Although the breadth of
published mechanical properties has not covered the whole range of those shown in Figure 11,
some of the mechanical properties reported for some of the metallic systems approach, and some-
times exceed, properties obtained on similar materials processed conventionally (e.g., casting,
extrusion, forging). However, relatively few published data exist on standard samples, and lit-
tle to no published work exists for low cycle fatigue, fatigue crack growth, fracture toughness,
impact, creep, creep fatigue, multiaxial testing, or environmental effects. Furthermore, the cur-
rent variability of properties (controlled by microstructure, residual stress, defects, etc.) within
and between builds in one machine and across different machines and techniques, as well as
the presence of process-induced defects and location/orientation-dependent properties, limits
the more widespread use of these processing techniques for fracture-critical applications. The
source(s), detection, and elimination of process-induced defects remain areas requiring additional
focus to determine the microstructural features that will control properties with these processing
techniques. These goals can be accomplished only by a better understanding of the fundamental
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Figure 11
The range of mechanical properties typically generated for structural materials. The specific properties of interest depend on the
intended application. Abbreviations: LEFM, linear elastic fracture mechanics; SHPB, split-Hopkinson pressure bar.

processing-structure-property relationships possible with this emerging technology. A more com-
plete review of the evolving processing-microstructure-property relationships is in progress (203).

One approach that has recently been proposed (10) and that is summarized in Figure 12 is
to utilize Integrated Computation Materials (Science) and Engineering [ICM(S)E] to begin to
address the multitude of issues that include development strategies for new alloys/microstructures
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Figure 12
Integrated multiscale approach for the development of additively manufactured alloys for structural
applications.

specifically designed to take advantage of AM as well as the lack of detailed process-structure-
property understanding both within and across different machines that do not provide open source
access. Some of the various challenges that have been summarized in more detail elsewhere (10)
include lack of computationally efficient tools, lack of in situ commercial monitoring systems, lack
of material/testing standards, feedstock and recyclability/reusability issues, surface roughness and
residual stress management/control, process feedback and control, postprocessing via alternate
heat treatments and/or HIP conditions, big data generation and handling issues, and probabilistic
modeling of fracture-critical properties. Addressing these challenges in a cost-effective manner will
require the integration of fundamental and applied approaches by various science and engineering
disciplines at academic, industrial, and government institutions.
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