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Abstract

Advances in machine learning have impacted myriad areas of materials sci-
ence, such as the discovery of novelmaterials and the improvement ofmolec-
ular simulations, with likely many more important developments to come.
Given the rapid changes in this field, it is challenging to understand both
the breadth of opportunities and the best practices for their use. In this re-
view, we address aspects of both problems by providing an overview of the
areas in which machine learning has recently had significant impact in mate-
rials science, and then we provide a more detailed discussion on determining
the accuracy and domain of applicability of some common types of machine
learning models. Finally, we discuss some opportunities and challenges for
the materials community to fully utilize the capabilities of machine learning.
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NLP: natural language
processing

NN: neural network

1. INTRODUCTION

Machine learning (ML) is playing an increasing role in our society and, more specifically, in ma-
terials science and engineering (MS&E). This review seeks to provide a brief introduction to ML
and its growing roles in an array of aspects of MS&E, as well as a more detailed discussion of some
of the challenges and opportunities associated with using ML for predicting materials properties
and accelerating the design of new materials. We hope this review will therefore be of value for
both the novice and experienced user.

ML can be defined as the use of computer systems that do not require explicit programming
to learn about the task they are completing.ML falls into two major categories: unsupervised and
supervised learning. Unsupervised ML learns properties of data without any human guidance: for
example, putting data into groups (clustering) or finding dominant directions of data variation
in high-dimensional space (principal component analysis). These unsupervised methods have the
advantage of being able to analyze data with no need for humans to explicitly label the data, which
is often a time- and resource-intensive endeavor. In contrast, supervised ML uses labeled data to
learn a relationship between an output Y and an input X and is supervised in the sense that it must
be told the values of Y and the corresponding values ofX.This type of learning includes traditional
regression [e.g., multivariate linear regression (MVLR)] and more recent methods such as deep
learning (discussed below) to find objects in an image. Supervised learning typically requires hu-
man input to label the data (e.g., labeling objects in an image), although sometimes the computer
can generate labels itself (e.g., from a simulation).

Tools and applications of ML have undergone an extremely rapid growth in the past approx-
imately 20 years, with a series of stunning achievements that have been widely reported, includ-
ing ML algorithms exhibiting superhuman capability at chess (1), Go (2), poker (3, 4), Jeopardy!
(5), and other computationally demanding tasks such as image recognition, autonomous driving,
and real-time language translation. Many of these capabilities were until recently thought to be
grand challenges likely to remain inaccessible for decades (6). A detailed discussion of the causes
of this transformation is beyond the scope of this review but likely involves a confluence of ever-
increasing computing power [e.g., graphics processing units (GPUs)], the exploding scale and ac-
cessibility of data (e.g., cloud resources), and multiple significant algorithmic advancements with
quite general applicability [e.g., deep learning for images and natural language processing (NLP)].
These influences have now become self-reinforcing, with computing, data, and algorithms all tak-
ing advantage of, and driving innovations in, the other areas to enable increasingly impressive
applications. For instance, in 2016, Google announced it had deployed tensor processing unit
chips specifically designed to enable fast training of deep neural networks (NNs) and demon-
strated improved performance by a factor of 15 to 30 compared to leading GPU technology (7).
Another example is the development of neuromorphic chips (e.g., the TrueNorth chip from IBM
and the Pohoiki Beach chip from Intel), which intrinsically have an NN-like functionality and,
when compared to standard central processing unit and GPU chips, can be dramatically more
efficient in terms of power consumption.

The potential impact of ML, particularly in critical and economically massive areas such as
high-tech businesses, manufacturing, national defense, and health care, has led to resources being
committed to develop the ML ecosystem (computing, data, algorithms, and software) on the scale
of billions of dollars per year in the United States and other countries. These resources have cre-
ated an extraordinary opportunity for MS&E researchers to benefit from this ecosystem with only
modest investment, somewhat analogous to the way computational MS&E has been enabled by
inexpensive commodity processors developed for other fields. In particular, open-source software
implementing state-of-the-art ML algorithms is widely available—often developed by leading
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Figure 1

Growth of machine learning in materials science and engineering as seen in overall publications and review
(inset) publications.

ML companies (e.g., Google, Facebook)—as are relatively inexpensive computing resources,
including GPUs for deep learning. These techniques can be integrated with the rapidly growing
world of materials data, which is being generated by new instruments and simulations and shared
through new cloud-based resources. Worldwide growth of frameworks and initiatives such as
Integrated Computational Materials Engineering (8–10), the Materials Genome Initiative (11,
12), the Novel Materials Discovery Laboratory, MAX (MAterials design at the eXascale), and the
Materials Genome Engineering program have helped support a growing computation and data
infrastructure in theMS&E community that is poised to take advantage of the newML ecosystem.

The renaissance in computing power, data production and dissemination, and ML tools
and their availability is creating very rapid growth in ML in MS&E, particularly since 2014
(Figure 1).1 An examination of a logarithmic plot for the data in Figure 1 suggests that since
2014, we have seen exponential growth of the form A(papers) × exp [t/B(years)], where A and B
are constants and t represents time, suggesting a doubling about every 1.6 years. No single re-
view can cover the broad range of areas and methods being pursued in detail, and in this review,
we include both a high-level overview of areas and trends and a more detailed discussion of one
specific central concern. In particular, in Section 3, we provide a brief discussion of major ML
application areas in MS&E to help guide researchers attempting to understand the landscape and
perhaps take first steps into a given area. In Section 4, we focus on the supervised learning models
for property prediction, which is one of the most frequent uses of ML in MS&E, and describe
some of the best practices for model development and assessment. Section 5 provides guidance

1Publications per year in materials informatics are from a Web of Science search for (“machine learning” or
“artificial intelligence” or “materials informatics” or “data science”) and (“materials”), scaled by 0.75 to correct
for average rate of errors. Review publications per year are from a manual citation search in Google Scholar
and Web of Science.
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SMILES: simplified
molecular-input
line-entry system

ONLINE AVAILABILITY OF DATA IN THIS REVIEW

The diffusion activation energy data set used in Section 4.4.4 is taken from the work of Lu et al. (35) and is available
on Figshare (https://doi.org/10.6084/m9.figshare.7418492).

The data subsets used for training, validation, and testing used in this review; data used to make each original
figure; and the most up-to-date supporting information document are available on Figshare (https://doi.org/10.
6084/m9.figshare.9546305).

on our summaries of useful tools for ML in MS&E. Throughout this review, we focus on recent
results and present opportunities and challenges, and then in Section 6, we offer some more spec-
ulative thoughts on longer-term future opportunities and challenges. All data associated with this
review that are shared online are described, with appropriate links, in the sidebar titled Online
Availability of Data in This Review. These data include catalogues of recent review papers and
ML software tools shared via Figshare so they can be easily updated in the future. We include in
the supplemental material a summary of useful infrastructure information for ML in MS&E (see
the sidebar titled Summary of Supporting Information in the Supplemental Materials).

2. SOME NOTATION

To avoid repeating notation in multiple locations, we introduce it here and use it consistently in
this review. We frequently consider supervised regression problems where we assume our data
have the original form (X,Y ), where X is a matrix of features and Y is a vector of target values.
Commonly, each row of X corresponds to a system (e.g., a material structure and composition)
to be modeled, and each element in that row is a value describing some feature of the system
(e.g., amount of Cu); Y is a vector of target properties to be modeled (e.g., bandgap). X typically
starts in the form of a human-relevant simple description [e.g., just composition and structure, or
a simplified molecular-input line-entry system (SMILES) string], and corresponding features in a
numerical form must be generated (this process is sometimes called featurization and is discussed
in Section 4.2). The relationship between X and Y can be written as Y = F (X ) + ε, where ε is
a noise term (with mean zero and variance σ 2), and we seek to use ML to construct a model for
F (X ).We write this model as F̂ (X ) and its predictions as Ŷ .Given some new vector of descriptors,
X ∗, one can use the ML model to predict a corresponding single target value, Ŷ ∗ = F̂ (X ∗ ).

In general, F̂ can be specified by its model type, parameters, and hyperparameters. Model type
refers to the overall functional forms used (e.g., linear regression or NNs). Model parameters are

SUMMARY OF SUPPORTING INFORMATION IN THE SUPPLEMENTAL MATERIALS

Supplemental material is available online from Annual Reviews and on Figshare (see the sidebar titled Online Avail-
ability of Data in This Review). It contains a list of recent ML in MS&E review papers (Supplemental Section 1),
detailed lists of available ML-centric software packages useful for ML inMS&E (Supplemental Section 2), a short
discussion of journals publishing ML in MS&E studies (Supplemental Section 3), a discussion of different types
of commonly used ML models (Supplemental Section 4), a discussion on basic model checks (Supplemental
Section 5), and a comparison of computed residuals versus model errors and the cumulative distribution of the
ratio of residuals to model errors for the Gaussian process regression (GPR) and random forest model analysis
presented in this review (Supplemental Section 6).
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KRR: kernel ridge
regression

GPR: Gaussian
process regression

RFDT: random forest
decision tree

the values that define the specific instantiation of the model and are fit during the training pro-
cess (e.g., coefficients of linear terms or weights in an NN). Model parameters can generally be
fit by some highly efficient method (e.g., matrix inversion for linear models or backpropagation
for NNs). Model hyperparameters are similar to model parameters but cannot be easily opti-
mized through an efficient method and are therefore typically treated separately from the model
parameters and searched in a more restricted manner (e.g., with a simple grid search), with full op-
timization of model parameters for each evaluation of model hyperparameters. Examples of model
hyperparameters include number of terms in a polynomial regression and number of layers in an
NN.

3. WHERE AND HOW IS MACHINE LEARNING IMPACTING
MATERIALS SCIENCE AND ENGINEERING?

This section provides a high-level summary of some of the major areas in which ML is being
applied in the field of MS&E. Some representative examples from recent studies are showcased
in Figure 2.

3.1. Property Prediction and Materials Discovery and Design

Two related and highly active research areas applying ML in MS&E are materials property pre-
diction and materials discovery and design, each of which is discussed in this section.

3.1.1. Property prediction. One of the most common and easy-to-understand uses of ML in
MS&E is predicting new materials data from existing databases through regressing Y on X fol-
lowed by prediction of Ŷ ∗ = F̂ (X ∗ ) for new data (see Section 2 for notation). There is no unique
approach to assigning feature vectors inX to represent a material, and this is a critical challenge we
discuss in detail in Section 4.2. This overall approach can be used to extend almost any database
to new systems, allowing prediction of new data, rapid exploration of large spaces, and iterative
optimization to find new materials (sometimes called active learning). The use of ML in MS&E
has been applied to predict myriad materials properties for many classes of materials. A represen-
tative but not exhaustive list of recent studies includes the prediction of bulk stability of perovskite
oxides, garnet oxides, and elpasolites (13–16); formability of novel ternary compounds (17, 18); su-
perconducting critical temperatures of complex oxides (19, 20); melting points of unary and binary
solids (21); dielectric properties of perovskites and polymers (22, 23); formability of novel half- and
full-Heusler intermetallic compounds (24, 25); casting size of metallic glass alloys (26); electronic
bandgap of different classes of inorganic materials, such as oxides and covalent semiconductors
(27–30); stability and bandgap of halide perovskites for solar cells (31–33); dilutemetal element so-
lute diffusion barriers in an array of metallic hosts (34, 35); electromigration of impurity elements
in metals (36); scintillator materials (37); and piezoelectric materials with high electrostrains (38).
Figure 2a shows an example heat map detailing the number of newly discovered ternary oxide
materials across chemical space; predictions were obtained by using ML to inform the probability
a ternary oxide will form (17).When too little data are available for regression, clustering can still
provide a tool by grouping similarmaterials based on their features.To the extent that these groups
share properties, such a clustering can provide powerful predictions, and some uses for finding
phase diagrams and allotropes are summarized in the review from Ramprasad et al. (39). Some
effective and widely used regression methods employed in the materials data studies listed above
include MVLR (36), kernel ridge regression (KRR) (14, 32), Gaussian process regression (GPR)
(27, 38), ensemble methods such as random forest decision trees (RFDTs) and gradient boosted
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regression (24, 31, 33), and both basic and deep learning NNs (13, 14, 34, 40). For readers less
familiar with these different ML methods, we have included an introductory discussion of these
different model types in Supplemental Section 4; this topic is also mentioned in Section 4.3.
In addition, more detailed information on these general ML methods is covered in References
41–44.
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QSAR: quantitative
structure-activity
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QSPR: quantitative
structure-property
relationships

Figure 2 (Figure appears on preceding page)

(a) Heat map showing number of newly discovered ternary oxide materials across chemical space. (b) Photograph of an autonomous
synthesis and characterization robot. (c) Overview of usage of the objective-reinforced generative adversarial network for inverse-design
chemistry (ORGANIC) model for molecular design in a simplified molecular-input line-entry system (SMILES). (d) Scheme to
represent the Hohenberg-Kohn map using machine learning (ML) models. (e) Machine-learned probability of nanotube synthesis
compared with experimental outcomes from text mining; darker green indicates a higher probability of synthesizing nanotubes.
( f ) Model-labeled elliptical irradiation defects in a characterized steel micrograph. Panel a adapted with permission from Reference 17;
copyright 2010 American Chemical Society. Panel b republished with permission from Reference 64. Panel c adapted with permission
from Reference 70. Panel d adapted with permission from Reference 127. Panel e adapted with permission from Reference 97;
copyright 2017 American Chemical Society. Panel f adapted with permission from Reference 74.

Many present ML approaches for predicting structure-property-performance relationships
of materials in MS&E can be viewed as part of, or emerging from, the field of study known
as quantitative structure-activity relationships (QSAR) [and the closely related field of quanti-
tative structure-property relationships (QSPR)] (45, 46). QSAR and QSPR have used data science
tools for over 100 years to correlate physical and molecular properties of chemical substances
and their associated properties, from biological activity to boiling point, and therefore present
well-established best practices and powerful techniques that can provide excellent guidance to the
MS&E community.

3.1.2. Materials discovery and design. ML has built on its strength in property prediction
(see Section 3.1.1) to enable the discovery, design, and development of novel materials spanning
an array of applications and materials classes by providing a new understanding of key chemical or
physical relationships governing properties of interest. As a concrete example, in the field of halide
perovskites for solar photovoltaics, the use of ML on data has resulted in assessment of chemical
trends (e.g., halogen content and alkali versus organic species content) on properties such as the
bandgap and stability and in the prediction of promising new halide perovskite materials such
as Cs2Au1+Au3+I6 and NH3NH2InBr3, the former of which has been investigated in detail as a
promising solar material (31–33, 47). In addition, materials data predictions from ML on a large
space of Br- and Cl-based elpasolite compounds led to the discovery of numerous new promis-
ing scintillator materials and reproduced more than 20 known well-performing scintillators. In
this case, insights from ML provided rational material composition changes to realize a favorable
placement of the Ce3+ 4f and 5d levels within the material bandgap, a necessary design criterion
for scintillators (37).

In some cases, ML is used as an integral guide to the data collection effort, such as in active
learning, where iterative design of experiments (or simulations) is performed using ML property
models and carefully tuned optimization approaches (38, 48–53).More specifically, active learning
is a method that seeks to balance exploitation of information contained in existing data in an ML
model (i.e., data points with the best predictions) and exploration of less-sampled portions of the
design space (i.e., data points likely to have high model uncertainties). Active learning is used
to obtain a target outcome as efficiently as possible by first quickly sampling potential regions
of interest to construct an initial ML model, followed by adaptive sampling of the exploitation-
exploration trade-off to maximize the expected improvement of the ML model for finding the
target, thus optimizing the experimental objective (e.g., finding a new material with the highest
electronic bandgap) with the smallest number of measurements. Active learning methods have
yielded numerous success stories, such as a new Pb-free piezoelectric material with the largest
measured electrostrain in the BaTiO3 family (38) and new polymers with high glass transition
temperatures, the latter result being obtained by starting from a remarkably small training data
set of just five materials (54).
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GAN: generative
adversarial network

An exciting and fairly new area for materials discovery using ML is the integration of au-
tonomous high-throughput experimentation conducted by robots with on-the-fly decision mak-
ing guided by ML model predictions made using active learning techniques (55–64). This inte-
gration has the potential to perform guided exploration of large materials spaces with limited to
no human intervention, greatly accelerating rates of materials discovery as well as potentially sup-
porting work with materials or in environments that are inhospitable to humans (58) and reducing
human biases in materials searches (58, 62). These approaches have had some notable recent suc-
cesses. Duros et al. (62) explored new approaches for the synthesis and crystallization of a new
polyoxometalate compound and demonstrated that the purely machine-based search covered a
parameter space to realize crystallization about six times larger than that explored by humans,
with an accuracy about 5% higher than that obtained by humans in predicting whether the com-
pound will crystallize.Granda et al. (55) demonstrated anML-guided organic synthesis robot that
was able to predict the outcome of untested chemical reactions with greater than 80% accuracy
and then was able to construct prioritized lists of new reactions to attempt based on their evaluated
likelihood to produce the desired products.A further outcome of this workwas the identification of
unusual reaction mixes, which were later evaluated by human researchers, leading to the discovery
of previously unknown chemical reactions. Finally, Nikolaev et al. (59) developed a robot scientist
named the Autonomous Research System (ARES) that specialized in the autonomous growth and
characterization of carbon nanotubes, a model problem due to its complex coupling of synthe-
sis and processing to resulting structure-property relationships (e.g., example nanotube diameter,
helicity, and the effects of these parameters on the nanotube electronic properties).Figure 2b con-
tains a photograph showing the lab setup of the ARES instrument. ARES successfully optimized
nanotube synthesis in a high-dimensional design space and determined the correct parameters
to maintain accurate growth rate control, thus demonstrating the potential utility and possible
disruptive potential of ML-guided robot scientists in MS&E.

A particularly interesting area is the development of new materials with generative models
such as variational autoencoders and generative adversarial networks (GANs). These methods are
particularly well-suited to execute the paradigm of inverse materials design, in which the desired
material characteristics are first enumerated and candidate materials are suggested and evaluated
on the fly (65–68). Inverse design creates the challenge of the exploration of an exceedingly large
chemical space, which can be partly overcome by the use of GANs to automatically suggest and
evaluate novel molecules and materials for a desired application (58). Concrete successes have al-
ready been demonstrated in this area; for example, the CrystalGAN (69) model was used to gen-
erate, screen, and subsequently discover new stable hydride compounds for solid-state hydrogen
storage applications. The objective-reinforced generative adversarial network for inverse-design
chemistry (ORGANIC) model was shown to be successful in predicting new high-melting-point
organic molecules (70). Figure 2c shows a schematic of the ORGANIC model, which consists of
separate generator (discriminator) NNs used to suggest new molecular structures (predict desired
molecular properties), where the generation of new candidate molecules is informed by the dis-
criminator and the reinforcement algorithm. Finally, the reinforced adversarial neural computer
was found to outperform ORGANIC and function as a valuable tool for the discovery of novel
molecules for drug design and development (71).

3.2. Materials Characterization

Materials characterization tools are increasingly producing data on scales of quantity and com-
plexity that outstrip human ability to manage and interpret, and ML methods are being used to
process and analyze these data. For example, Voyles (72) recently reviewed numerous applications
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in electron microscopy, pointing out uses of ML in image improvement (e.g., denoising, drift and
distortion correction) and analysis (e.g., spectral demixing and clustering to identify features). Sev-
eral studies have recently applied deep learning machine vision techniques to electron microscopy
images [e.g., to cluster materials based onmicrostructure images (see references in 73) and to iden-
tify defects in images (74, 75)], in multiple cases with apparently human levels of accuracy. For
example,Figure 2f shows dislocation loops in electron micrographs of a steel alloy identified by a
deep learning model, the accuracy of which was as good as or better than that of domain-specific
expert humans (74).ML has also been applied to X-ray diffraction data [e.g., using deep learning to
accurately perform identification of space-group, extinction-group, and crystal-system fromX-ray
powder diffraction patterns (76)]. Other intriguing examples have shown how ML could replace
more challenging measurements or calculations with simpler ones. As an experimental example,
Stein et al. (77) demonstrated that a variable autoencoding approach could quite accurately repro-
duce UV-visible spectra from simple images of a thin film generated with a commercial scanner. In
simulation,Combs et al. (78) recently demonstrated that anMVLRmodel could correlate low- and
high-fidelity scanning tunneling electron microscopy image modeling, allowing approximations
to full multislice simulations of nanoparticles millions of times faster than a full scanning tunneling
electron microscopy image simulation. ML appears likely to provide many paths toward acceler-
ated characterization through simplified experiments and computations and automated analysis,
reducing time spent in traditional methods and enabling processing of the enormously large data
streams coming from newer and next-generation characterization instruments.

3.3. Knowledge Extraction via Text Mining

NLP tools are central to text and speech extraction and recognition, enabling artificial intelli-
gence (AI)-related speech tools such as Apple’s Siri and Amazon’s Alexa and real-time language
translation. Numerous open-source NLP tools currently exist, such as the Word2vec (79) and
Global Vector (GloVe) (80) packages, as well as tools to conduct sentiment analysis using deep
convolutional neural networks (CNNs) (81). NLP, text extraction, and sentiment analysis (i.e.,
the characterization of subjective information such as opinions, communicated through text) have
seen widespread use—for instance, in computational biology and biomedical research (82, 83),
genetics (84), health care (85), and social science (86)—but work has been much more limited in
materials.

A basic NLP analysis in MS&E can be considered in three steps. First, one maps words to
real-valued vectors, a process called embedding, which can be done with unsupervised learning
and requires significant time and large data sets. However, once completed, such embeddings
can be reused in many applications, and multiple MS&E-specific embeddings are already avail-
able (87–89). Given an embedding, the second step is to train an NLP model to recognize target
information using embeddings, typically with supervised training on a set of expert-annotated
sentences, some of which are now being made open-source to encourage democratization of the
NLPMLmodel-training process (90).The second step treats the sentence as a sequence of words,
which are converted into a sequence of vectors, and the model is trained to predict the correct an-
notated categories (e.g., identify text “Fe” as category “metal”) on the training data. Models are
typically recursive, convolutional, or transformer NNs (91–93). A common third step then applies
grammar rules to understand connections between identified words in a dependency parse tree
(e.g., allowing one to determine if a given value is describing a given property in a sentence) (94).

Software packages such as ChemDataExtractor (95) are being developed to enhance standard
NLP approaches with the ability to parse unstructured text in complex scientific publications—for
example, chemical formulas or domain-specific words or abbreviations (e.g., the meaning of the
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term UV-Vis spectroscopy). One area in which text mining is playing an increasingly large role
in MS&E is synthesis (96). Recent text extraction studies have resulted in useful guidance regard-
ing key experimental parameters needed for optimal materials synthesis, such as in creating TiO2

nanotubes (97), as shown in Figure 2e; synthesis of new perovskite materials (98); and aggregated
synthesis parameters for 30 different oxidematerials systems (89).These studies have also provided
insights on best writing practices to facilitate efficient transfer ofmachine-readable knowledge (99)
and understanding of best synthesis practices through graph representations (100). In contrast to
the above examples, which conducted NLP using supervised methods with annotated studies as
training data, Tshitoyan et al. (87) demonstrated the successful use of unsupervised techniques in
extracting structure-property and chemical relationship information and showed that these tools
can aid in future materials discovery by codifying knowledge contained in past publications. An-
other impressive example is the recent book Lithium-Ion Batteries: A Machine-Generated Summary
of Current Research, a review extracted from over 150 papers on Li-ion batteries that was generated
by an ML model (101). This work suggests a future in which information aggregation in topical
reviews could be automatically delivered in a very human-understandable form, significantly ac-
celerating the process of learning new areas.

3.4. Machine Learning for Molecular Simulation

Another area in which ML has had a large impact on MS&E is molecular simulation. Here, ML
has been widely applied to develop interatomic potentials and to improve and accelerate ab initio
simulations, each of which is discussed in this section.

3.4.1. Interatomic potentials. Atomistic-scale simulations of molecules and condensed phases
typically find the interaction between classically treated nuclei through Hamiltonians that are
based on either approximate solutions to the Schrödinger equation for electrons or coarse-grain
quantum electronic effects to develop an effective interatomic potential. Interatomic potentials
are typically about 103–106 times faster than common quantum methods [e.g., density functional
theory (DFT)], but finding and parametrizing appropriate functional forms to treat systems with
complex electronic behavior (e.g., with charge transfer, bond breaking, or multiple types of hy-
bridization) is very challenging. Replacing interatomic potential functional forms and fitting pro-
cedures with those from ML offers the alluring possibility of both greatly reducing the time and
expertise required for developing potentials and perhaps enhancing their accuracy. In the past
decade,many researchers have usedML to generate interatomic potentials [referred to as machine
learning potentials (MLPs)], which have enabled studies of larger size and longer time than what is
accessible with direct DFT (102–108).Generating anMLP is fundamentally a complex regression
problem to map the potential energy surface, its derivative the force field, or both by fitting anML
model to a large training database, typically containing thousands of DFT calculations (often de-
rived from individual time steps of ab initiomolecular dynamics simulations) (103, 109–112).Con-
structing input features for the MLPmodel (sometimes called atomic structure descriptors or fin-
gerprints) is critical and has received a lot of attention over the past decade (39, 105, 113, 114) (see
Section 4.2). As a concrete example of the success of these methods, Botu & Ramprasad (103)
trained a KRR model to demonstrate a large-scale acceleration of ab initio molecular dynamics
calculations for bulk and surface slabs of Al. More recently, Bartók et al. (109) have shown using
GPR that an MLP can accurately capture the energetics of Si surface reconstructions. Finally,
Artrith and colleagues (110, 111) demonstrated that modeling systems with up to 11 elemental
components with NNs is not only computational feasible but highly accurate.

Despite these and many other notable successes, challenges remain, such as the difficulty in
obtaining enough high-quality DFT data to fit an MLP for complex phenomena (such as grain
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boundaries, surfaces, cluster defects, or other extended defects) and multiple alloying elements.
An additional challenge of using MLPs is similar to that encountered with the construction of
empirical potentials: namely, how to assess the chemical and physical applicability domain of the
MLP and understanding when the MLP may fail (102, 110, 115, 116). Finally, MLPs are of-
ten quite slow compared to many traditional interatomic potentials (e.g., about 1–2 orders of
magnitude slower) (113), so approaches that can accelerate their evaluation would broaden their
utility.

3.4.2. Improving and accelerating ab initio simulations. Ab initio methods (e.g., DFT and
hybrid functionals) use approximate solutions to the quantum mechanical equations of electrons
to model materials systems and have become some of the most widely used tools in materials
and chemical science (DFT is today used in at least 30,000 new research publications every year)
(117). However, these methods suffer from limitations of accuracy and speed that significantly
inhibit their use, and there have been multiple strategies to apply ML to improve and accelerate
the calculation of ab initio functionals, each showing significant notable advances. One strategy
has focused on improving the accuracy of DFT methods. For example, the work of Nagai et al.
(118) used an NN to numerically calculate the Hartree exchange-correlation functional in an
effort to improve its accuracy. Bogojeski et al. (119) found that one can efficiently learn the energy
differences fromDFT and coupled cluster simulations and useML to provide a promising avenue
to have coupled-cluster-level accuracy andDFT-level speed for physical situations where standard
DFT is inadequate. Another strategy is to useML to learn the computationally expensive portions
of solving the Kohn-Sham equations in a DFT calculation, namely contributions to the exchange-
correlation energy (120–122). To this end, Snyder et al. (120) modeled the kinetic energy of a one-
dimensional system of noninteracting electrons; this analysis was then extended to more general
cases (121).Mills et al. (123) and Lei &Medford (124) showed that a CNN can learn the mapping
between the potential energy landscape and the resulting one-electron ground state and kinetic
energies.

The second strategy is to directly learn the electron charge density itself. This strategy has the
advantage of allowing one to completely bypass solving the Kohn-Sham equations and instead
rely on the Hohenberg-Kohn theorems, which allow one to obtain the total energy (and other
properties) directly from the charge density (125–129).Figure 2d shows a representation of using
ML and charge densities to bypass the calculation of the Kohn-Sham equations. Researchers have
employed diverse methods to learn the charge density directly. For example, Kajita et al. (126)
proposed a method of descriptor generation based on a three-dimensional voxel representation
of the electron density for use in CNNs. In contrast, Brockherde et al. (127) and Bogojeski et al.
(128) formulated KRR models to directly learn the charge density using a suite of training data,
and Sinitskiy & Pande (129) showed that CNNs trained on low-fidelity charge density data can
learn meaningful characteristics of the charge density for a variety of organic molecule chemical
environments, enabling predictions withDFT-level accuracy but orders of magnitude faster.Once
sufficiently mature, these methods may fundamentally alter the way researchers conduct ab initio
calculations, wherein ML fundamentally provides quantum mechanical knowledge of complex
systems without needing to solve the Schrödinger equation.

4. SOME CHALLENGES AND BEST PRACTICES FOR MACHINE
LEARNING IN MATERIALS SCIENCE AND ENGINEERING

In this section, we discuss issues that occur in manyMLmodeling projects, focusing on supervised
regression learning models for property prediction, although many of the issues are similar in
other applications. The key steps in an ML workflow broadly include the following:
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R2: coefficient of
dependence

1. Data collection and cleaning
2. Feature generation and selection (featurization or feature engineering)
3. Model type selection, fitting, and hyperparameter optimization
4. Model uncertainty assessment (e.g., performance on test data) and domain applicability
5. Final model predictions

TheML workflow has been discussed extensively in other reviews (39, 130), and a detailed discus-
sion of all parts is not included here.However,we dowish to discuss some critical aspects associated
with steps 2–4 that we feel are valuable to help the community move toward best practices in ML
modeling.

4.1. Basic Statistics of Accuracy

In many steps of supervised regression learning, ML models are assessed by some statistic related
to the differences between the predicted data Ŷ and true data Y. The equations for these statistics
are widely available and are not given here, but we briefly discuss their effective use.The rootmean
squared error (RMSE) is a commonly used error metric and is frequently the error metric that the
MLmodel seeks tominimize.Mean absolute error is also useful to calculate andwill typically trend
with RMSE, but it is less sensitive to large errors from outlier predictions and, unlike RMSE, is not
smoothly differentiable, making it harder to use in some optimizations. Mean absolute percent-
age error (often called by many different names, including average absolute relative error) is just
the absolute error as a percentage of the true data point value and is also very helpful, as the im-
portance of an error is often related to the size of the quantity being predicted. It is also important
to give RMSE errors relative to the standard deviation of the data set, which is sometimes called
the reduced RMSE, as this provides a reasonable representation of the scale of the ML errors
with respect to which RMSE should be measured. In particular, the reduced RMSE value for a
well-performing MLmodel should be significantly less than 1, as simply guessing the mean of the
predicted data (typically not useful) would yield a reduced RMSE equal to 1.

Another widely used metric is the coefficient of dependence, R2, which gives the fraction of
variance in the true value that is predictable from the predicted values (the parity plot, which
shows predicted versus actual data, is a very useful plot and gives a graphical feel for R2). R2 is ≤1,
with 1 representing perfect prediction, and can be <0 for predictions that trend with the opposite
sign slope as the true values (R2 technically has no lower bound). Reduced R2 (sometimes referred
to as adjusted R2) is given as R2

red = 1 − [(1 − R2)(n− 1)/(n− k− 1)], where n is the number of
observations and k is the number of features.R2

red ≤R2 and, since it adjusts for the complexity in the
model, it decreases when terms that have no predictive ability are added. R2 gives a useful overall
assessment of model quality, and generally, values >0.7 are desired for a useful model. However,
R2 can be misleading; a few widely separated regions that are fit on average can give a high R2

even when no predictive ability within each region is given by the model.
Overall, we suggest determining at least RMSE, reduced RMSE, mean absolute error, mean

absolute percentage error,R2, and R2
red, generating a parity plot as standard practice, and using the

metrics most relevant for your application. RMSE is typically used for choosing the best features
and models during ML model development. The exact method of choosing data for fitting and
assessing a model with RMSE (or any metric) can be complicated and is described in Section 4.4.1.

4.2. Feature Engineering

Feature engineering is a key component of developing useful supervised ML models. Features
must be machine readable (i.e., vectors of numbers), be practical to obtain for the desired
application (e.g., they should certainly be significantly easier to obtain than the target property
values), capture as much of the relevant variables controlling behavior as possible, and ideally
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contain limited additional information that is not useful and that may lead to overfitting data and
poor predictions. Generally, feature engineering consists of two steps: feature generation and
feature selection, each of which is described here.

A common set of minimal descriptors may include composition and processing conditions
(e.g., precursors, annealing temperature, or gas pressure), as these can completely specify the final
material, although perhaps rather indirectly. Additional characterization information can also be
included (e.g., infrared or X-ray diffraction spectral data).While composition specified by weight
or atomic percent is useful, it cannot be used to extrapolate to any new elements, since the model
will have no knowledge of how to predict effects of that element if it has not appeared in the
training database.One solution to this limitation is to represent each element with a feature vector
of elemental properties (e.g., melting temperature or electronegativity). These can then be used
to generate features for alloys by taking arithmetic- or composition-averaged combinations of
the constituent element features—for example, constructing the composition-averaged melting
point of the elements in a compound. This approach has been codified by the materials agnostic
platform for informatics and exploration (131), which gives a canonical set of elemental properties
and arithmetic operations that have proved successful in predicting stable compounds (14), glass-
forming ability (26), and diffusion coefficient, to name a few (34, 35).

For cases in which some level of atomic structure (by which we mean atom position and ele-
ment type) information can be readily determined (e.g., in atomistic modeling or organic molecule
descriptions), the atomic structure forms a powerful feature set, as it is likely to play a large or even
totally controlling role in setting a property of a molecule or crystal. Direct use of the atomic co-
ordinate vectors and atom types as a feature is inadvisable, as they do not satisfy the translational,
rotational, and permutation (swapping atoms of same types) symmetries of the system under study
and thus likely need a very large amount of data to be trained well enough to reflect these basic
symmetries. An array of different feature-generation methods have therefore been developed that
do satisfy these symmetry requirements. For molecules, these methods consider properties such
as bond lengths, connectivity, and functional groups and can include relative atomic position and
electronic structure data computed with quantummechanical atomistic simulations. Such proper-
ties have beenwidely used inQSAR/QSPR analysis.Thousands of basicQSAR/QSPR features are
now available and can be extracted automatically from basic molecular formulae (e.g., SMILES
strings) (see 132 for a summary of recent automated tools for QSAR/QSPR). Numerous tools
have also been developed for extended systems (i.e., not just molecules) in the context of con-
structing ML-based potentials (see Section 3.4). These features have been validated for particular
materials systems and benchmarked against key standard databases (e.g., the QM9 molecule data
set), including, but not limited to, atom-centered symmetry functions (133); the smooth overlap
of atomic orbitals method (134); partial radial distribution functions (135); bag of bonds (136);
bonds, angles, and machine learning (137); and the many-body tensor representation (138). The
streamlined production of many of these features has been implemented in the matminer code
package (see Supplemental Section 2) (139). Another approach to feature generation is graph-
based deep learning methods, which first map atomic structure onto a vector of atom descriptors
(e.g., type and simple properties, such as formal charge) and bond distances and connectivity (the
graph) and thenmerge those descriptions with weighted averaging to ensure flexible joining of the
atomic descriptions with the correct bonds (140–143). These methods work from very basic in-
formation and replace the step of invoking human intuition and analysis to generate features with
a more automated deep learning generation of a feature map. Finally, we note that one can work
from unsymmetrized data if the method itself performs the symmetrization. For example, Nie
et al. (112) recently generalized kernel regression approaches to include permutation symmetry
and showed it could generate effective energy fitting directly from atomic pair distances.
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Once a set of features to represent a data set have been generated, it is common to select a
representative set of features that is large enough to result in low model errors and avoid model
underfitting, yet not so large as to incur penalties to overall model accuracy and extrapolative
ability due to overfitting. Certain ML models such as polynomial regression and KRR can easily
become confused or overfit if too many features are used, but other models, such as random forest
methods (see Section 4.3; Supplemental Section 4), intrinsically function as a form of feature
selector, as more important features carry heavier weights in the final ensemble of trees compared
to less pertinent features.A simple approach to feature selection is to enumerate all possible feature
subsets and select the one minimizing some model error score (e.g., RMSE of a particular cross-
validation routine) (see Section 4.4). For testing up toM features out of N possible features, this
approach requires N chooseM model score evaluations, which is computationally prohibitive for
large feature sets. Similar spirited approaches iteratively test one descriptor at a time and then add
it to a growing list (forward feature selection) or remove it from a shrinking list (reverse feature
selection) based onwhether it results in the greatest reduction (or least increase) in themodel error
score. Forward (reverse) feature selection methods take N! / (N − M)! model score evaluations to
findM (removeM) features, which is generally tractable for models that are computationally fast
to evaluate.

Feature selection usually benefits from a consideration of the physical reasonableness of the
features, and features that make no physical sense are obviously a concern (e.g., cost of elements
correlating with bandgap). Such correlations are likely created by the feature correlating with
some other more physical feature or features but the model not having enough data to select the
correct features. Better models can generally be generated by intentionally replacing such fea-
tures with physically motivated handpicked features that perform equivalently well (or better) as
automatically selecting features [note that forward (reverse) feature selection is not a global op-
timization method and can miss optimal feature sets]. For example, Liu et al. (36) and Lu et al.
(35) found that starting forward selection with an initial physically meaningful feature chosen by
human intuition (and known physics) resulted in improved model performance compared to using
purely automated forward selection. One can consider iterative exploration of two or more fea-
tures for addition or subtraction from the feature list, although we are not aware of any examples
in which this yielded significantly better results, and it greatly increases computational cost. In
addition to these feature selection methods, other popular dimensional reduction methods take
linear combinations of the features to best explain their behavior with fewer variables, often called
latent variables (e.g., principal component analysis, linear discriminant analysis, and factor analy-
sis). Including just the most important latent variables generated by these methods can improve
some fits, although the interpretation of the latent variables can be difficult.

An important trend to be aware of in ML is the use of deep learning to obtain better results
from features without extensive human guidance in both feature construction and feature selec-
tion (for more details, see Section 4.3; Supplemental Section 4). Deep learning methods can
effectively generate their own feature set (generally called a feature map), often doing so starting
from an initially large and rather unstructured set of features (e.g., a vector of pixel intensities or
graph-based matrix of atom and bond properties) that are not effective with traditional MLmeth-
ods. The comparison between more human-crafted versus machine-learned features has largely
established the latter as superior in machine vision applications, leading to a revolution in the ac-
curacy of ML in this field (144, 145).While the outcome of the comparison of human-crafted and
machine-learned features inMS&Eproblems is not yet clear, there is increasing evidence that deep
learning will provide significant improvements. For example, the deep convolutional individual
residual network (40) was shown to achieve better performance from a long list of initial features
than traditional methods such as RFDTs and ridge regression. Some graph-based deep learning
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CV: cross validation

methods, which build feature maps from a very basic initial feature list, have shown compara-
ble or better performance in organic molecule studies than human-crafted traditional features in
QSAR/QSPR comparisons (e.g., message passing NN frameworks) (146, 174). Similarly, for inor-
ganic materials, the graph-based MatErials Graph Network (142), SchNet (147) and SchNetPack
(148), and crystal-graph CNN (149, 150) have shown performance comparable to or better than
non-deep-learning approaches.Given the success of deep learning in machine vision and language
translation and its already impressive performance compared tomore human-crafted features used
in traditional methods after just a few years, it seems likely that deep learning–based feature maps
will play a major if not dominant role in the future of feature development in ML for MS&E.

4.3. Types of Machine Learning Models

The large number of ML models and their many technical details are well covered in many texts
and reviews (41–43, 151), and their discussion would require more space than is available here, so
we do not attempt any type of general review of MLmodels. However, in Supplemental Section
4, we provide a short discussion of some of the most commonly used models (with a focus on tools
for supervised regression) in MS&E with a goal of highlighting the most salient features for an
MS&E researcher.

4.4. Model Development and Model Assessment

ML modeling typically has two closely connected but distinct major stages: model development
and model assessment. In model development (Section 4.4.1), we determine model type, parame-
ters, hyperparameters, and features (see Section 2 for definitions of these terms). In model as-
sessment, we determine the accuracy of the model for expected use cases, which typically in-
cludes assessing the model performance with sampling methods such as cross validation (CV)
(Section 4.4.2), understanding the domain of applicability where the model is expected to be ac-
curate, and quantifying error bars in model-predicted values to understand expected model uncer-
tainties (Section 4.4.3). To help illustrate these important concepts of model applicability domain
and assessment of model errors more concretely, we provide and discuss an in-depth practical ex-
ample using ML models trained on data of calculated migration energies for solute elements in
metallic hosts (Section 4.4.4).

4.4.1. Best practices for managing data in model development and assessment. The same
model scoring approaches are often used in bothmodel development andmodel assessment,which
can lead to overfitting and overestimation of the model accuracy if one is not careful. This danger
is increased when model development involves many degrees of freedom (e.g., many hyperparam-
eters) and there are limited data to constrain those degrees of freedom. The simple rule to avoid
model assessment errors from overfitting is that any data used for model development should not
be used for model assessment. To understand how to apply this rule practically, it is useful to de-
fine three types of data points (here, a data point means a vector of corresponding features Xi and
target property value or values Yi):

1. Training data are data used to determine the optimal model parameters for a given model
type, hyperparameters, and feature set.

2. Validation data are data not used in training. They are instead used to assess the error in the
model with optimal model parameters determined from fitting the training data. This error
is frequently used to determine the optimal model type, hyperparameters, and feature set.
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LO: leave out

3. Testing data are completely left out and are not used in training or validation. Instead, they
are used to assess the error in the final optimized model.

First consider the process of model development. We start by dividing the data into training,
validation, and test data in some way (we discuss how to do this most effectively in the practical
example in Section 4.4.4). A basic fit of the model, with fixed model type, hyperparameters, and
feature set, uses training data to find the optimal model parameters that give the lowest possible
value of some scoring metric (typically measured with RMSE, so we use that here) on the training
data. The RMSE obtained from these training data shows how well the model fits the training
data, but this error is usually not a good estimate of how the model will fit data outside the train-
ing data. This limitation arises because the model often adjusts its many degrees of freedom to
properties of the training data that cannot be correctly represented by the model (a process called
overfitting), either due to limitations of the model form and features or noise in the data that
cannot be modeled. To obtain a reasonable estimate of the model errors on new data not used in
training, we can look at how well the model predicts the validation data—for example, the val-
idation data RMSE. We can now optimize the model type, hyperparameters, and feature set to
minimize the validation data RMSE. The optimal model type, hyperparameters, and feature set
can then be used to refit the parameters of this model to the combined training and validation data
to get the best possible fitted model without using the test data. The use of any information in
model development from the test data, or more generally from a source that would not be avail-
able in a corresponding manner during model use, is sometimes called data leakage and can lead
to overestimating the quality of your model.

4.4.2. Model development and assessment with cross validation. Perhaps the most com-
mon way to split data into sets for model development and assessment, typically called training
and validation sets (defined in Section 4.4.1), is CV. Splits can be done in many ways, and common
approaches include leaving out (LO) one data point or some randomly chosen X% fraction (typ-
ically called LO one CV or LO X% CV, respectively), splitting the whole data set into k separate
equal-sized groups called folds, iteratively LO each fold once (k-fold CV), LO targeted groups
with certain characteristics (LO group CV, sometimes called LO class CV) (e.g., all data with a
specific chemical composition), and time-split CV (152), which leaves out select data based on
the time of their inclusion in the data set. For LO X% CV and k-fold CV, one typically chooses
which data are in each fold randomly, and this can be done multiple times with different random
permutations to ensure good sampling. As discussed in Section 4.4.1, the errors in prediction for
validation data frommodels trained on training data, which we call CV errors, are typically a much
better way to assess a model than are errors in the training data predictions, as the latter typically
show overfitting. CV errors are a common method of model assessment and can be used to de-
velop a model (e.g., RMSE for all folds in fivefold CV is a common scoring metric used in feature
selection, as discussed in Section 4.1) and estimate its predictive error, as discussed in more detail
in Section 4.4.3.

Once an optimized model has been developed, we would like to assess its errors and domain.
This model error and domain assessment ideally should not be done with CV scores already ob-
tained using the validation data, since these CV scores can be subject to overfitting based on the
optimization done in model development. Thus, we need to consider yet another left-out data
set, the test data, to quantify the model error. Specifically, we take the optimal model type, hy-
perparameters, and feature set obtained from optimizing the validation data RMSE and refit the
parameters of this model to the combined training and validation data to get the best possible fit-
ted model, and we then predict the test data to get the test data RMSE. Because the test data have
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not been used in any step of the optimization process, the test data RMSE is a good quantification
of errors in the final model.

The above approach is often not practical, as it is difficult to simply separate out test data and
never look at them until the model is finalized. In addition, use of just one training, validation,
and test data set may introduce large biases associated with the specific data that end up in those
splits, leading to suboptimal models and error estimates, particularly for smaller data sets. These
problems can be avoided by effectively simulating the above steps multiple times with different
splits in a method called nested CV. First, you must settle on at least a general model development
approach,which includes the types of models you will consider, hyperparameters you will optimize
for each model, and features you will explore. Then, you perform CV on all the data, considering
each excluded set as test data (level-1 CV), and an additional nested CV (level-2 CV) on the
included training and validation data to determine the best model. Each level-1 left-out test set
then can be considered a true test set in the sense that it was not used in any part of the model
development. Many authors effectively perform a level-1 CV just once with approximately 10–
20% of the data left out at level 1 and perhaps also level 2, as multiple folds at level 1 and level 2
can lead to a lot of computation. If the splits are done many times (e.g., with fivefold CVs for levels
1 and 2), they provide a strong sampling across all the data, which is recommended for smaller
data sets where it may also be most practical. The nested CV approach is typically not totally
rigorous, as researchers will almost inevitably modify aspects of their approach in light of the final
results, thereby introducing some level of data leakage and potential overfitting, but nested CV is
a practical approach to quantifying model errors that avoids most effects of overfitting.

One subtlety of the nested CV approach is that while one uses the level-2 CV to optimize
model type, hyperparameters, and feature set, one is potentially overfitting to the level-2 CV score
with multiple variables, which could lead to some of them actually being incorrectly optimized for
truly best performance. A practical example of this, documented in Reference 153, is that if you
optimize hyperparameters for two different model types and then choose between them based on
the level-2 CV score, you might choose the less-optimal model type simply because it is more
overfit. Ideally, one would use many nesting levels and optimize just one property at each level,
but this can quickly become impractical, and one nesting level is all that is typically used. Such
nesting should be adapted to best meet the specific optimization and assessment needs of your
problem.

4.4.3. Model domain of applicability and assessing uncertainties in model predictions.
Perhaps the most important question one can ask of an ML model is this: How accurate is the
model for the potential applications I have in mind? Answering this important question typically
has two coupled components, which are (a) an estimate of the domain where the model can be ac-
curately used and (b) an estimate of the uncertainty in the model-predicted values (e.g., a standard
deviation in prediction accuracy). Regarding (a), the model domain of applicability is a region
of feature space outside of which we simply cannot reliably use the model (e.g., using a model
trained only on yield strengths of metal alloys to predict yield strengths of polymers). Regarding
(b), error estimates provide some form of uncertainty quantification on each value predicted by
the model, thus providing more information on the uncertainty of a prediction than simply assess-
ing the average predicted RMSE of the model. In this section, we provide a general introduction
to understanding model errors. In Section 4.4.4, we illustrate how one may assess the errors and
applicability domain of real ML models using GPR and RFDT models fit to computed databases
of DFT-calculated dilute impurity diffusion activation energies in a range of metal hosts.

One can determine a domain of applicability based on some criterion of maximum acceptable
errors if the errors are accurate everywhere in the feature space, but it may be necessary to
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understand the domain of the model to ascertain where error estimates can be trusted. Many
methods can be used to assess domain of applicability based on some measure of distance of
the features of a potential data point from those in the model training data (e.g., within the
convex hull) (Reference 154 summarizes many of these methods). However, these methods all
rely on distance metrics of uncertain validity for the specific problem being studied and require
somewhat arbitrary cutoffs, so they are difficult to apply for more than a qualitative guide on
where you might consider the model to be at risk of being not applicable. We believe some
combination of distances in feature space from training data and predicted error values is likely
to provide the best guidance on domain and error estimates. However, predicted error values are
more immediately and obviously useful for assessing models, and therefore, we discuss here in
more detail common methods used to establish some type of error bar on the predictions and
their use in establishing model domain, each of which has certain strengths and limitations.

To better understand model prediction errors, it is useful to start with the well-known bias-
variance-noise decomposition of the error. Following the definitions in Section 2, one can rigor-
ously decompose the expected squared error for prediction on a new point X∗ as

E
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)2
]
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(
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[
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Here, the expectation is the average over all possible training data sets of size n, which we can
imagine to be randomly sampled from the total possible space of (Xi,Yi ) pairs. The three right-
hand side terms from left to right are the bias squared, variance, and noise variance, respectively.
The bias is the difference between the expected value of our model averaged over all training set
samplings E[F̂ (X )] and the underlying true function F (X ). The variance is the squared spread in
F̂ (X ) relative to its average, again taken over all training set samplings. Intuitively, models with
few parameters that underfit but are very well constrained will minimize variance but have large
bias, andmodels with many parameters that overfit will minimize bias but have large variance.The
lowest overall errors are typically found with a balance between optimizing both the bias and the
variance. Equation 1 formally requires exploring every training data set of size n, and we typically
have a problem with a single data set of size n, so it is not straightforward how to estimate the
expected squared error in Equation 1.

4.4.4. Example of assessing model errors and domain of applicability using Gaussian pro-
cess regression and random forest decision tree models on real data. In this section, we
consider the errors and domains of some widely used modeling approaches on a realistic data set.
There are two very common approaches to estimating a distribution on model prediction values.
The first approach is ensemble methods, where one fits an ensemble of models, which can then
yield a distribution of predictions for any new data point. The ensembles can be generated by re-
sampling data (e.g., bootstrap and CV) or by refitting models (e.g., retraining NNs from different
starting weights or with different dropouts), or a combination of both (as is done in RFDTs), as
is described further below. The second approach is to use Bayesian methods to modify a prior
distribution and produce a posterior distribution (e.g., as done in GPR). Ensemble methods are
very flexible and can be applied to many models. For example, resampling can be used to get a
predicted distribution for essentially any model if it is computationally feasible. Bayesian methods
tend to require more specialized methods adapted to use a Bayesian approach but can potentially
avoid many iterations and include key information through priors.

Here, we explore the behavior of error predictions from the very common approaches of
CV, GPR, and RFDTs to better see how these errors behave and might be used. For simplic-
ity, we usually consider just the mean and standard deviation (or RMSE, or just error) of predicted
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distributions, as these represent the prediction and a simple error bar, respectively, but themethods
discussed here actually give a full distribution for predicted values. All these methods for estimat-
ing the error of a model result in model-predicted errors on every data point, although in the case
of CV, the errors are often averaged over all predictions to obtain a single CV RMSE, as we do
here. For each case below, we illustrate the accuracy of the estimated standard deviations by com-
paring them to actual observed standard deviations on validation and test data sets. We make use
of models fitted to a database of DFT-calculated dilute impurity diffusion activation energies in a
range of metal hosts. The data contain 408 activation energies for 15 different hosts and are de-
scribed in detail in Reference 35 (see the sidebar titled Online Availability of Data in This Review
for data availability on Figshare). All the models were evaluated using the routines available in the
scikit-learn package (155), and themodel fits and analysis were automated using theMaterials Sim-
ulation Toolkit for Machine Learning (MAST-ML) (https://github.com/uw-cmg/MAST-ML)
(156).

To help assess the model domain of applicability, we explore a chemistry test in which we
consider Pd-X systems, where Pd is the host element and X is a dilute impurity taken from three
sets (set 1 comprises 3d and 4d transition metals, set 2 comprises Col VIA elements except O, and
set 3 comprises elements from the first two rows on the periodic table). In this test, we train the
model with no Pd host data and then predict the errors for the three sets. While we have DFT
data for only some of these predictions, they represent data that are very similar to those in our
database (set 1, which has many 3d and 4d metals) and from quite to extremely different (sets
2 and 3, respectively), with set 2 sharing related chemistry due to being in the same column of
the periodic table and set 3 having many dramatically distinct chemistries (e.g., Pd-O). Thus, we
expect errors to be small in group 1, larger and similar in set 2, and larger and often outside the
model domain in set 3.

Perhaps the most widely used approach for estimating model errors is the use of resampling
methods, which estimate the uncertainty of predictions by sampling a subset of the available data
(training data) and predicting remaining data left out of the subset (validation data). The errors
on the left-out validation data are then used to estimate a typical error bar for the model. These
approaches have the advantage of being relatively simple and applicable to any model being used.
The most common resampling method for error prediction is probably CV (Section 4.4.2). An-
other common resampling method is bootstrapping, which differs from CV primarily by resam-
pling with replacement.We do not discuss bootstrap in detail here owing to space limitations and
the fact that CV appears to have some advantages over bootstrap for resampling (157). However,
bootstrapping is used in the random forest method described below. In addition, basic k-fold CV
has been shown to give relatively good estimates of errors (43) and is a recommended standard
test for any model. Note that for k-fold CV, this error will generally increase with decreasing k
(equivalently, increasing X% LO), particularly for smaller data sets, as the smaller and more in-
dependent training sets will lead to larger bias and variance. Values of k in the range of 3 to 10
are generally found to be a good compromise and yield good results. We illustrate this behavior
in Figure 3, which shows a clearly increasing average CV error with k that matches the test data
error best for k near 10.

In general, all resampling methods suffer from some significant limitations that are not always
appreciated. The most severe and difficult to treat is that these methods give an estimate of the
error for the data you have in your analysis (i.e., data in the training and validation sets), which
can only be expected to be accurate for data in some way similar to your database. Therefore,
resampling does not provide any guide on how similar new data are to those in the database. A
related issue is that when you assess an error from an LO validation data point, you typically do
not know how similar that point is to data in the subset used as training data. While duplicate

www.annualreviews.org • Machine Learning in Materials Science 89

https://github.com/uw-cmg/MAST-ML


MR50CH04_Morgan ARjats.cls June 16, 2020 14:21

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Leave one out

10-fo
ld

5-fo
ld

3-fo
ld

2-fo
ld

Leave out 9
0%

Leave out g
ro

up

Te
st 

se
t 1

 (ra
ndom)

Te
st 

se
t 2

 (g
ro

ups)

CV
 R

M
SE

 (e
V

)

Random test sets
Grouped test sets

Figure 3

Plot of cross validation root mean squared error (CV RMSE) for various leave-out nested CV tests. The top
level-1 split was into training and validation (left of vertical dashed line) and test data sets (right of vertical dashed
line). These level-1 splits were done in two ways. Green bars signify tests done with five test sets chosen
randomly with replacement, where each test set had 20% of the data and each training and validation set had
80% of the data. Blue bars signify tests with 15 test sets (one for each host), where each test set had one host
and all impurities in that host and each training and validation set had all other data in the database.
Predictions of test data were done with training on the full training and validation sets. The nested level-2
splits were done within the training and validation sets (left of vertical dashed line). The level-2 splits included
leave one out, k-fold CV, and leave out 90% (randomly sampled five times, with replacement) (green bars) and
leave out each host (14 splits) (blue bar). Error bars denote standard errors in the mean CV RMSE over
level-2 splits (left of vertical dashed line) and level-1 splits (right of vertical dashed line). Error bars on the CV
RMSE values indicate one standard error in the mean of the CV RMSE calculated with all values from
level-2 or level-1 fits, as appropriate. All fits were done with Gaussian process regression using features
optimized for this method taken from Lu et al. (35).

data can be easily removed, the validation data can be very similar to one or more elements of the
training data, which will typically yield errors much lower than for a prediction on a data point
less similar to the validation data (this is sometimes called the twin problem, as your validation
data point has one or more nearly identical twins in the training data). Both of these issues are
closely related and arise from the fact that resampling yields error estimates potentially closely
tied to the specific characteristics of the data sampled and predicted and may not represent the
errors one will obtain for the future predictions to be made by the model.

An excellent example of this problem can be found in a recent study of superconducting tem-
peratures (20), in which models fit to just low- or just high-temperature superconductors both
showed good CV scores within each group but essentially no ability to predict the other group.
This result is easy to understand in terms of the known large qualitative differences in the physics
governing low- and high-temperature superconductivity, but one cannot rely on such robust phys-
ical guidance in general. These issues can be somewhat alleviated by careful LO group error bar
assessments, in which one attempts to mimic the types of prediction challenges the model will face
in real applications (14, 20, 35, 158). For materials systems, good LO group tests might typically
include leaving out certain elements, alloys, or composition ranges. For example, the LO host
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error on test data shown in Figure 3 is significantly larger than that obtained from the k-fold CV
for typical k values of 3 or 5, demonstrating that the latter is unreliable for predicting new hosts,
but it is well estimated by the LO host error determined from the training and validation data.
A more direct way to avoid the twin problem might be to remove all compositions within some
hypersphere around any point in the validation data, thereby ensuring the predictions are always
being made from significantly different compositions. A particularly elegant way to select LO
groups that mimic how your model will be used is to explicitly test new data based on data from
earlier times [time-split CV (152)], although this is not always practical or appropriate. Sheridan
(152) used QSAR data to show that time-split CV was quite accurate, while random LO CV tests
tended to result in an overly optimistic assessment of a model and LO clusters CV (i.e., a variant of
LO group CV) tended to result in an overly pessimistic assessment of a model. In general, we rec-
ommend that all model development and error quantification done with resampling [e.g., nested
CV (Section 4.4.2)] at least use a CV error determined by combining LO random folds and LO
physically motivated groups that assess your planned uses for the model and remove twin effects.

As mentioned above, Bayesian methods can provide an error bar without resampling. Perhaps
the most widely used Bayesian method in MS&E is GPR, discussed in Supplemental Section 4.
GPRdistributions for a new point are entirely determined by the featurematrix of the training data
and the model kernel and do not depend on the specific values of the training data (except for a fit
scale factor, σmax, that typically closely matches the training data standard deviation),making GPR
distributions effectively ameasure of how similar a new data point to be predicted is to the database
being used to train the GPR model. Data points very similar to those in the training database will
have small errors, while those less similar will have larger errors. These error bars do have the
limitation that they are estimates from a modified prior and are therefore expected to become less
accurate for data points far from the training data. In fact, GPR error bars approach the constant
value σmax for points far from (i.e., having quite different feature values than) the original data set.
Thus, for a good model and predicted errors significantly less than σmax, the error estimates can
potentially be taken as reliable, but for predicted errors near to σmax, the errors cannot be taken
as quantitative, although they do suggest that the model is not robust for those data. In this way,
for any prediction, GPR potentially provides either potentially reasonable error bar estimates or a
clear warning that a particular data point is outside the domain of the model. GPR error estimates
can also be used to assess where the GPR model is least constrained, suggesting where a new
data point might be added to best improve the model, making it a powerful guide for iterative
optimization with active learning (see Section 3.1.2).

Figure 4a shows the standard deviations predicted for the three chemistry groups discussed
above in this section, and the results are astonishingly close to what wewould expect from chemical
intuition. These results suggest that, at least in this case, the GPR errors are both accurate on
average in the domain of the model and capable of establishing set 1 (or set 3) as inside (or outside)
the model domain, with set 2 at the border of the model domain. However, Figure 4c shows, at
least in this case, that the root mean of the squared residuals and GPR-predicted errors show very
limited correlation, suggesting that while in the model domain the GPR errors are of the correct
average size, they do not appear to be varying by data point in a physically meaningful way. The
results of Figure 4c suggest that GPR can predict large errors for systems well predicted by the
model, so GPR may give a fairly conservative estimate for the model domain.

One of the most widely used ensemble ML approaches (in addition to CV) in MS&E is
RFDTs, which are formulated to provide an intrinsically powerful tool for estimating uncertain-
ties. RFDTs train an ensemble of models and thereby predict a distribution of values for new data
points, generally providing both good estimates from mean values and uncertainties from the
spread of the distribution (see Supplemental Section 4 for more information). The ensemble of
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Figure 4

Summary of Gaussian process regression (GPR) and random forest decision tree (RFDT) chemistry tests. (a,b) Chemistry tests showing
model errors on predicted values for various solutes in a Pd host using the GPR model (a) and RFDT model (b). (c,d) Comparison of
root mean square (RMS) absolute value of the residuals versus the binned model error values for GPR (c) and RFDT (d) tests. In panels
a and b, the models were trained on all data except Pd. In panels c and d, both the x and y axes values are normalized by the data set
standard deviation, which is 0.4738 eV. The linear fits have intercepts that are forced to equal 0. In panel d, the linear fit is done only on
the blue data points, which have normalized binned RFDT errors <1. The histograms in panels c and d show the counts of the number
of mean squared residuals used to obtain the RMS residual for a given model error bin. The fits in panels c and d were performed using
the same 15 grouped data sets as described in the caption of Figure 3. These data sets are equivalent to leave-out-two-hosts cross
validation, where each training data set excludes two hosts and the predictions are done on the two excluded hosts. This resampling
corresponds to 15 × 14 = 210 training and validation splits, and each data point is predicted 14 times for a total of 408 × 14 = 5,712
total predictions.

models is traditionally generated by fitting to different data samplings (e.g., bootstrap aggregation
or bagging being perhaps the best known approach) or iteratively reweighting the fitted data to
harder cases (boosting), but it can also be generated from varying the model used in fitting (e.g.,
changing dropouts in NNs or possible split criteria in decision trees). A detailed discussion of
these approaches across all methods is outside the scope of this review, but it is useful to be aware
of a few important examples.

A particularly rigorous formulation of RFDT error estimates (which includes correction for
the sampling and limited ensemble size as well as for missing bias and noise contributions) and an
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assessment showing their accuracy on materials properties are given in Reference 159, although
here we simply use the standard deviation of the distribution of predicted values to obtain errors.
Similar to GPR, these estimates are expected to become less accurate for data far from the orig-
inal training data. For RFDTs that use the mean of the individual decision tree estimators for
regression, this value is bounded at half the range of the training data (since maximally varying
predictions will match the lowest and highest values half the time each), although it is unlikely
to reach that value, and we here assume that any value approaching the standard deviation of the
training data, σ train, is likely to signify the data are outside the domain of the model. Unlike the
GPR case, the RFDT error predictions are likely to be sensitive to both the X and Y values in
the training data.Figure 4b shows the analogous chemistry plot for RFDTs as was shown for GPR
in Figure 4a. However, unlike GPR, the root mean of the squared residuals and RFDT-predicted
standard deviations show strong correlation, as shown in Figure 4d, for predicted standard de-
viations up to about the standard deviation of the total data set and then show a clear transition
to almost no correlation. Also, unlike GPR, the Pd-X predictions show no ability to distinguish
chemistries. These studies suggest that, for the data studied here, GPR errors are good for deter-
mining a conservative estimate for the model domain and good on average in that domain, but
they are not reliable for distinguishing trends between data points in the domain, while RFDT er-
rors are good on average and for distinguishing trends between data points in the domain but not
so good at estimating true errors when they approach the standard deviation of the data set and
not very good at determining the model domain itself. We reiterate that these studies were done
on just one fairly small data set and absolutely cannot be used to make robust broad conclusions,
but the results suggest some of the opportunities and challenges of using error estimates and show
the need for further studies to establish how they can be best applied to problems in MS&E.

Finally, we note that NNs can also provide their own uncertainty estimates through an ensem-
ble of networks approach. This can include simply starting from random weight initializations
multiple times (which can be time consuming) (160), using snapshots taken during a typical op-
timization run (160), and exploring multiple fits done with different dropouts (dropouts in NNs
are removing output of a random and changing subset of nodes) (161).

Despite one’s best efforts using methods such as those described above, it can be difficult to
be sure one has a meaningful model for the data for small data sets. A few checks against simple
naive references are recommended to ensure that the model is adding significant value. These are
described in Supplemental Section 5.

5. MACHINE LEARNING TOOLS AND SOFTWARE FOR MATERIALS

Recently, there has been intense development of open-source software packages aimed at stream-
lining and accelerating the adoption of ML in general and in MS&E in particular. Effective soft-
ware tools are becoming increasingly important to maintain community best practices and ease of
use, especially given the rapidly evolving field of ML and its application to MS&E more specifi-
cally, and especially for users new to the field (67, 73, 162).We have provided a detailed list of these
packages with a brief explanation of the types of ML-related analysis enabled by each package in
Supplemental Section 2 and posted via Figshare (see second link in the sidebar titled Online
Availability of Data in This Review) to enable updates to this evolving list in the future.

6. FUTURE OPPORTUNITIES AND ONGOING CHALLENGES OF
MACHINE LEARNING IN MATERIALS SCIENCE AND ENGINEERING

MS&E is still just beginning to utilize informatics on large databases (162, 163), but the increasing
data generation rates from both experiments and simulation increasingly create opportunities
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for—and sometimes necessitate—using ML for analysis. This trend, along with the rapid
evolution of ML algorithms, supporting hardware, cloud data, and computing resources, suggests
that opportunities for ML in MS&E are still far from being fully realized. Here, we highlight
what we see as three (of no doubt many) key opportunities and associated challenges for ML in
MS&E to address in the coming years.

The first opportunity revolves around the creation of a codified, living materials informatics
ecosystem that unifies materials data, MS&E-centric ML tools, and the generation, analysis, and
dissemination of ML models in a democratized fashion. The development and dissemination of
models in a robust innovation infrastructure is still missing and would dramatically increase the
use and impact of ML onMS&E.As a testament to the importance of seizing this opportunity, the
potential impact of and need for additional developments in ML across many fields of MS&E has
been recognized in reports and at workshops hosted by many organizations—for example, the US
Department of Energy (164),National Institute of Standards andTechnology,American Society of
Mechanical Engineers (165), and the National Science Foundation (165)—and has been reviewed
in various articles (39, 67, 73, 162, 163, 166–168). As ML tools become ubiquitous in MS&E, we
envision this new infrastructure could enable materials researchers, particularly the many who
are not ML specialists, to construct multistep, automated workflows for complex analysis and to
experiment with various algorithms and approaches to solve a particular problem, all within a
consistent interface and nomenclature that implements best practices for materials-specific data,
and without repeated human intervention for data formatting and translation. Such infrastruc-
ture is also necessary to allow ML models to be disseminated effectively in the broad materials
innovation ecosystem, which includes ensuring they are discoverable, reproducible, reusable, and
machine and human accessible, including access via an application programming interface for in-
corporation into more complex workflows.

In addition to this new infrastructure centered on ML models, there is also a need for open
data that are curated and hosted, which will prevent data siloing and improve ease of access and
sharing (67).Consistentmaterials metadata—for example, as implemented by the Citrination plat-
form (169)—will also enable more informed comparisons between similar data sets, such as when
comparingmaterials property data obtained fromDFT calculations of different levels of fidelity. A
long-standing challenge is related to the tradition in the scientific community of rarely reporting
failed or null results in the literature. However, such results still constitute valuable information,
particularly for training ML models, which can be leveraged to facilitate new materials advances.
For example, recently the exploration of vanadium selenide materials synthesis was informed by
failed synthesis approaches (170). Information that is often not deemed publishable in traditional
peer-reviewed scientific studies can improve ML approaches by reducing the biases toward par-
ticular outcomes of data typically reported in the literature (e.g., data on solid-state Li electrolytes
may be biased toward systems that are fast Li conductors) and thus should still be made publicly
available, perhaps by way of the codified infrastructure described above or through new incentives
encouraged by journal publishers.

In the coming years, the advancements made in the ML and broader field of AI will likely
change how humans conduct scientific research. Indeed, the advent of autonomous robot scien-
tists has already begun to shift the role of human scientists in the lab from actively conducting
individual experiments to instead analyzing vast amounts of automatically produced data. These
advancements create a large opportunity for more efficient and less error-prone scientific investi-
gation but also create challenges related to how human researchers use and interact with ML/AI
tools in a manner that results in improved outcomes compared to purely human- or machine-
driven analysis.Human–ML collaboration (also referred to as centaur approaches, interactiveML,
or human-in-the-loop ML) will likely evolve substantially in the near future and play a key role in
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many domains. For example, while computers equipped with ML/AI tools are better on average
than humans at many tasks (e.g., image recognition), edge cases can still occur that result in incor-
rect model predictions; these cases could be quickly checked and fixed based on human intuition.
Thus, human-in-the-loop ML approaches will remain useful for error minimization and sanity
checks, particularly for situations in which data are sparse or the edge of the domain of applicabil-
ity is being reached, and will be of particular importance in situations such as the health care field,
in which decisions reached using ML tools can result in life or death (171). As a concrete example
of the power of human-in-the-loop methods in MS&E, the work of Duros et al. (172) showed
that active learning approaches incorporating a machine–human hybrid team outperformed both
the pure human– and pure ML–based prediction of performing the chemical reaction of the self-
assembly and crystallization of polyoxometalate clusters. As another example, the work of Gómez-
Bombarelli et al. (173) found thousands of promising, organic, light-emitting diode molecules, in
part by leveraging domain expert opinion on which molecules were most worth investigating ex-
perimentally using an online voting process. While it is currently the case that human–machine
hybrid teams tend to result in better outcomes than what either humans or machines could pro-
duce in isolation, we speculate that it is very likely in the future (it is unclear when, but perhaps
in the coming few decades) that ML/AI approaches will always outperform humans at numerous
computationally intensive tasks integral to the scientific enterprise. It is also possible that how
we perceive human-in-the-loop ML may change dramatically in the near future. Instead of the
human andML algorithm being used collectively but existing separately, it is possible that linkage
of human and machine via brain-to-machine interfacing—for example, as is being developed by
companies such as Neuralink—will fundamentally alter how human researchers interact with and
use ML/AI approaches to advance the scientific enterprise.

To conclude, we see many ways in which ML (and AI) is already changing MS&E, but we be-
lieve their interactions are still in the nascent stages, with the full power of their merging still far
from being fully realized. The impact of their coupling is also expected to evolve quickly through
building on the rapid evolution of the broaderML ecosystem, providing the opportunity for trans-
formative advances to the discovery, design, and deployment of new materials impacting myriad
technologies central to today’s society.
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