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Abstract

Three-dimensional (3D) topological semimetals represent a new class of
topological matters. The study of this family of materials has been at the
frontiers of condensed matter physics, and many breakthroughs have been
made. Several topological semimetal phases, including Dirac semimetals
(DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and
triple-point semimetals, have been theoretically predicted and experimen-
tally demonstrated.The low-energy excitation around theDirac/Weyl nodal
points, nodal line, or triply degenerated nodal point can be viewed as emer-
gent relativistic fermions. Experimental studies have shown that relativis-
tic fermions can result in a rich variety of exotic transport properties, e.g.,
extremely large magnetoresistance, the chiral anomaly, and the intrinsic
anomalous Hall effect. In this review, we first briefly introduce band struc-
tural characteristics of each topological semimetal phase, then review the
current studies on quantum oscillations and exotic transport properties of
various topological semimetals, and finally provide a perspective of this area.
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1. INTRODUCTION

The rich cross-pollination between high-energy physics and condensed matter physics has led to
deeper knowledge of important topics in physics such as spontaneous symmetry breaking, phase
transitions, and renormalization (1, 2). Such knowledge has, in turn, greatly helped physicists and
materials scientists to better understand magnets, superconductors, and other novel materials,
leading to practical device applications (1). In the past decade, there has been significant interest
in realizing high-energy particles in solid-state systems. The theoretical attempts to explain
graphene’s properties (3) by using solid-state physics led to an equation similar to one otherwise
seen in cosmology and colliders: the Dirac equation. Following graphene’s discovery, many
materials with nodal band crossings, known as topological insulators and semimetals (4–11), were
discovered, generating significant research excitement.The topological Dirac semimetals (DSMs)
(12–14) and Weyl semimetals (WSMs) (2, 15–23) are crystalline solids whose low-energy elec-
tronic excitations resemble the Dirac (24) andWeyl (15) fermions in high-energy particle physics,
respectively. In particular, although theWeyl fermion played a crucial rule in the Standard Model
(15), it has never been observed as a fundamental particle. The realization of the topological
WSM state (22, 23, 25–27) enables the observation of this elusive particle in physics. Topological
semimetals further allow for band crossings beyond high-energy classifications. Primary examples
include the type II WSMs (28) and DSMs (29), the nodal-line semimetals (NLSMs) (30), and the
unconventional fermion semimetals (31–36). Due to the rich variety of crystalline and magnetic
symmetry properties of condensed matter systems (37), it is likely that such breakthroughs are
only the tip of an iceberg and that there are ample new topological semimetals awaiting discovery.
These topological semimetals provide platforms for studying a number of important concepts in
high-energy physics (e.g., the chiral anomaly) in tabletop experiments. Moreover, such materials
extend the classification of topological phases from gapped matter (e.g., insulators) to gapless
systems (e.g., metals).

Topological semimetals enable a kaleidoscope of novel electronic properties. They support
exotic, topologically protected boundary modes such as the topological Fermi arcs and drumhead
surface states. These surface states have been directly observed in spectroscopic measurements
(19, 25, 27, 38–42). The Fermi arcs also lead to unusual quantum cyclotron orbits (the Weyl
orbits) as observed in quantum oscillation measurements (43, 44). Because of linear dispersion and
spin (pseudospin) momentum locking, low-energy electrons in topological semimetals are highly
robust against crystalline disorder and imperfections, leading to very high electron mobilities (45,
46). The compensating electron and hole carriers further cause nonsaturating magnetoresistance
(MR) (46–48) and magnetothermopower (49–51). The application of parallel electric and mag-
netic fields can break the apparent conservation of the chiral charge (10, 11, 52, 53). Such chiral
anomaly leads to enhanced conductivity with an increasing magnetic field. The diverging Berry
curvatures near the nodal points support distinct anomalous transport phenomena, including
intrinsic anomalous Hall effects (AHEs) (54–56) and anomalous Nernst effects (57, 58). Such
curvatures also support significantly enhanced optical and optoelectronic phenomena, including
large (even quantized) photocurrents (59–64), second-harmonic generation (65, 66), optical
activity and gyrotropy (67–69), and Kerr rotation (70, 71). Furthermore, thinning down a 3D
topological semimetal into 2D may give rise to new 2D topology, including the quantum spin
Hall insulator (QSHI) and the quantum anomalous Hall insulator (QAHI) (14, 20, 21, 72–76).
These unconventional transport and optical properties of topological semimetals can pave the
way for the realization of dissipationless electronic and spintronic devices as well as efficient
photodetectors and energy harvesters.

208 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

The area of 3D topological semimetals is fast growing; many papers have been published
on theoretical predictions and experimental studies. Many reviews have introduced progress in
theoretical and experimental studies on topological semimetals (8–11, 76–85). In this review, we
focus on electronic transport and quantum oscillation studies on topological semimetals; these
two topics have not been reviewed comprehensively in previous reviews. Before we discuss these
topics in detail, we first briefly introduce each prototype topological semimetal phase and discuss
their band structure characteristics, topological invariants, and symmetry protections.

2. CATEGORIES OF TOPOLOGICAL SEMIMETALS

In this section, we discuss various 3D topological semimetal phases of matter, including WSMs,
DSMs, NLSMs, and unconventional fermion semimetals beyond the Dirac and Weyl paradigm.
For each kind of topological semimetal, we focus on three aspects: the characteristic band struc-
ture (the number of bands that cross, the dimensionality of the band crossing in k space, and the
typical energy-momentum dispersion), the topological invariant and the symmetry protections,
and representative materials.

2.1. Weyl Semimetals

WSMs are a class of topological semimetals that host Weyl fermions as low-energy quasiparticle
excitations (2, 6–11, 15–21). In a WSM, two singly degenerate bands cross at discrete points,
i.e., Weyl nodes, and disperse linearly in all three momentum space directions away from each
Weyl node (Figure 1a).Weyl fermions have distinct chiralities that are either left handed or right
handed. The chiralities of the Weyl nodes give rise to chiral charges, which can be understood as
monopoles and antimonopoles of Berry flux in momentum space. The separation of the opposite
chiral charges in momentum space leads to surface Fermi arcs, whose constant energy contours
are open arcs that connect the Weyl nodes of opposite chiralities on the surface.

a Weyl/Dirac semimetal
Type I

b Weyl/Dirac semimetal
Type II

E

ky
kx

E

ky
kx

c   Nodal-line semimetal d   Triple-point semimetal
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Band 2

Figure 1

Schematic band structure of different types of topological semimetals. (a) Type I Weyl/Dirac semimetal. The degeneracy of a Weyl
point is half that of a Dirac point. On a 2D closed surface (the green spherical surface) that encloses the Weyl node in k space, the band
structure is fully gapped and therefore allows a topological invariant to be defined. Specifically, the topological invariant for a Weyl
node is a chiral charge, which corresponds to the Chern number associated with the 2D closed surface. (b) Type II Weyl/Dirac
semimetal. At the energy of the type II Weyl/Dirac node, the constant energy contour consists of an electron pocket and a hole pocket
touching at the node. (c) Nodal-line semimetal. The conduction and valence bands are degenerate on a 1D closed loop, shown as the
yellow circle in the Brillouin zone. The topological invariant of the nodal line is a winding number w, which is defined as the line
integral of the Berry connection along a closed loop, shown as the green circle that interlinks the nodal line. (d) Triple-point semimetal.
Three singly degenerate bands cross at discrete points, the triple points. The triple point can also be viewed as the meeting point
between two nodal lines along the ky axis.
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Because of the existence ofWeyl nodes,WSMs lack a global band gap. The absence of a global
band gap prevents the definition of a topological invariant for the entire 3D bulk Brillouin zone
(BZ). In contrast, on a 2D closed surface that encloses the Weyl node in k space (Figure 1a),
the band structure is fully gapped and therefore allows a topological invariant to be defined (19).
Specifically, the Chern number associated with the 2D closed surface directly corresponds to the
topological invariant of a Weyl node (i.e., the chiral charge). Mathematically, the chiral charge C
can be calculated by the integral of the Berry curvature (the Berry flux) as shown below:

C =
∫
S
� · dS, 1.

where S is the 2D closed surface in k space that encloses the Weyl node and � is the Berry cur-
vature. Due to the chiral charge, Weyl nodes can appear at generic k points of the BZ. In the
presence of translational symmetry, these Weyl nodes are topologically stable and cannot be re-
moved without pair annihilation. The existence of Weyl nodes does not rely on any additional
crystalline point group symmetries.

Real materials that host the WSM state are usually further classified into either inversion
symmetry–breaking WSMs or time-reversal symmetry (TRS)-breaking WSMs. Representative
inversion symmetry–breakingWSMs include the TaAs family of noncentrosymmetric crystals (22,
23, 25, 27, 39, 86–92). Representative TRS-breakingWSMs can be realized in naturally occurring
ferromagnetic (FM) semimetals such as pyrochlore iridate (19),HgCr2Se4 (21),Co3Sn2S2 (93, 94),
Heuslers (95–99), and the noncollinear antiferromagnets Mn3Sn and Mn3Ge (57, 100–103) or by
applying an external magnetic field to a nonmagnetic or antiferromagnetic (AFM) semimetal, as
demonstrated in themagnetotransport experiments (104) onNa3Bi (105),Cd3As2 (45, 106), ZrTe5
(107), and half-Heuslers (108–110). From a different angle, WSMs can also be classified by the
energy-momentum dispersions near theWeyl nodes. Type IWSMs have untilted or weakly tilted
Weyl cones with a point-like Fermi surface when the chemical potential is placed at the Weyl
node. By contrast, type II WSMs have strongly tilted Weyl cones (Figure 1b) (28). Their Fermi
surface consists of electron and hole pockets that touch at the type II Weyl nodes. Representative
type IIWSMs includeWTe2 (28, 111–113),MoTe2 (114–122), TaIrTe4 (123, 124), and (W/Mo)P2

(125). These different classifications are not mutually exclusive. For instance, MoTe2 is not only
an inversion symmetry–breaking WSM but also a type II WSM.

2.2. Dirac Semimetals

DSMs host Dirac fermions as low-energy quasiparticle excitations (12–14, 38, 126–131). In a
DSM, two doubly degenerate bands cross to form a Dirac node and disperse linearly in all three
momentum directions away from the node. Each Dirac node can be viewed as a pair of degenerate
Weyl nodes of opposite chiralities. Since a pair of degenerate Weyl nodes of opposite chiralities is
in general unstable and may annihilate, additional crystalline point group symmetries are needed
to realize a stable DSM phase (131). One route is to rely on uniaxial rotational symmetries (131).
Specifically, a band inversion can create a pair of 3D Dirac nodes on the opposite sites of the
time-reversal invariant momenta. Representative DSMs of this kind include Na3Bi (13, 38, 126)
and Cd3As2 (14, 127–130) (type I) as well as VAl3 (29) (type II). Another route is to rely on non-
symmorphic symmetries, i.e., glide reflections and screw rotations. It has been theoretically shown
that nonsymmorphic symmetries can lead to nontrivial band connectivity at the BZ boundaries,
giving rise to filling-enforced DSMs or NLSMs, depending on the specific space groups (12, 132–
135). Representative filling-enforced DSM candidates include β-BiO2 (12) and distorted spinels
(132). Furthermore, a DSM can be realized as the critical point of the topological phase transition
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between a trivial insulator and a topological insulator. This is achieved in the BiTl(S1−xSex)2 (12,
136), Bi2−xInxSe3 (137), and Pb1−x SnxTe (138) systems by fine-tuning the chemical doping con-
centration. Alternatively, compounds like ZrTe5 (107, 139, 140) and those in the SrMnSb2 family
(141–143) naturally sit near the critical point of such a topological phase transition and therefore
approximate a DSM state. According to current theoretical understanding, Dirac nodes are not
associated with any nontrivial topological invariant (i.e., they have zero chiral charge) (144).

2.3. Nodal-Line Semimetals

In NLSMs, conduction and valence bands cross at 1D lines in k space (Figure 1a) (30, 40, 78, 85,
133, 134, 145–161). Compared to DSMs/WSMs, the electronic structure of NLSMs is distinct
in three aspects: (a) The bulk Fermi surface consists of 1D lines in NLSMs but of 0D points in
WSMs; (b) the density of states (DOS) is proportional to (E − EF)2 in NLSMs but to |E − EF|
in WSMs; and (c) on the surface, nodal lines are accompanied by drumhead-like surface states,
whereas Weyl nodes are connected by 1D Fermi arc surface states.

We now discuss the topological invariant of NLSMs.We consider a 1D closed loop that inter-
links the nodal line in k space (Figure 1c). The band structure is fully gapped and therefore allows
for the definition of a topological invariant, i.e., the winding number (150). Mathematically, the
winding number w is defined as the integral of the Berry connection along the 1D closed loop
that links the nodal line as shown below:

w =
∫
l
A · dl, 2.

where l is the 1D closed loop that links the nodal line and A is the Berry connection.
NLSMs also come in a variety of forms, depending on the characteristic band structure and the

symmetry protection. First, nodal lines can be closed loops (also termed nodal circles) inside the
3D BZ. Such nodal circles are naturally formed by a band inversion. The nodal circles are further
classified on the basis of the symmetry protection. There are nodal circles that are strictly gapless
only in the absence of spin-orbit coupling (SOC) (78, 146, 149, 150).They are usually protected by
the combination of TRS and inversion symmetry (78, 146, 150). Representative materials include
Cu3N (149), Ca3P2 (147), Cu3PdN (148), and those in the ZrSiS family (154–158). Alternatively,
nodal circles can be formed in noncentrosymmetric crystals protected by a mirror plane. These
nodal circles are stable even upon the inclusion of SOC.Representativematerials include PbTaSe2,
TlTaSe2, and CaAgAs (40, 145, 159, 160). Second, nodal lines can also be a straight line that span
across the BZ. Representative materials include those in the BaNbS3 family (161). Third, nodal
circles can interlink with each other in k space, forming Hopf links and nodal chains (162–167).
These Hopf links and nodal chains may be protected by the presence of multiple perpendicular
mirror planes (167) or by nonsymmorphic symmetries (162, 163).

2.4. Unconventional Fermion Semimetals

In contrast to high-energy physics, solid-state crystals can support band crossings beyond
the Dirac/Weyl paradigm (31–36). These band crossings, broadly referred as unconventional
fermions, include three-, four-, six-, and eightfold degeneracies (31).

Here we take a particular type of three-band crossing as an example (33–36, 168–170). In such
a triple-point semimetal, three singly degenerate bands cross at discrete points, the triple points
(Figure 1d). Moving away from one triple point along kx or kz, all three bands become nonde-
generate. By contrast, moving away along ky, bands 1 and 2 remain degenerate for −ky, whereas
bands 2 and 3 remain degenerate for +ky. Therefore, the triple point can also be viewed as the
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meeting point between two nodal lines along the ky axis. These triple points are protected by
the combination of a uniaxial rotational axis, mirror planes, and TRS. These triple points are not
associated with any topological invariant due to the lack of a global band gap on any 2D closed
surface that encloses the triple point. Representative materials include MoC,WC,MoP, and ZrTe
(33–36, 169, 170).

3. TRANSPORT SIGNATURES OF TOPOLOGICAL SEMIMETALS

The relativistic nature of the Dirac and Weyl fermions in topological semimetals manifests in
many distinct transport properties, including extremely large MR, high mobility, light effective
mass, nontrivial Berry phase, the chiral anomaly, and the AHE. These relativistic fermion proper-
ties have great potential for future electronic and spintronic applications. Characterization of rel-
ativistic fermions through transport measurements provides a convenient approach for verifying a
nontrivial topological state, complementary to the direct observation of nontrivial band topology
by ARPES experiments. In this section, we summarize these transport signatures of topological
DSMs and WSMs.

3.1. Magnetoresistance

Electron transport in topological semimetals is usually strongly affected by external magnetic field.
LargeMR is a common signature often seen inmost DSMs andWSMs.MR is usually expressed as
the change in resistance (resistivity) under field normalized by the zero-field resistance (resistivity),
i.e., [R(B) − R(B = 0)]/R(B = 0) or [ρ(B) − ρ(B = 0)]/ρ(B = 0). The transverse MR, measured
with the field perpendicular to the current direction, can reach up to 0.1–1 million percent at low
temperatures (0.5–5 K) and a field of 9 T (see Table 1), without any sign of saturation up to 30–
100 T in WSMs/DSMs such as Cd3As2, PtBi2, WTe2, and NbP (46, 48, 171, 172). A power law
field dependence (MR ∝ Bn) is usually seen in various topological semimetals, with the exponent
n ranging from 1 to 2 (45, 46, 48, 107, 171–187).

In a simple metal, a positive transverse MR with quadratic field dependence is generally ex-
pected due to the Lorentz effect (47). Such Lorentz effect–induced orbital MR is usually weak and
saturates for systems with a closed Fermi surface, contrasted with the giant, nonsaturating MR
seen in topological semimetals. The origin of the unusually large MR of topological semimet-
als has been intensively studied. Electron-hole compensation has been proposed to be a possible
mechanism (46, 48, 171). However, reports also indicate that carrier compensation is not achieved
in some topological semimetals (188, 189). An alternative explanation is that the backscattering at
zero field is strongly suppressed by some protection mechanisms associated with nontrivial band
topology but is significantly enhanced by magnetic fields (45).

The strong coupling betweenMR, highmobility, and linearly dispersed Dirac/Weyl cones may
provide some clues for further understanding of the large MR.High mobility is another signature
accompanied with large MR in topological semimetals. Mobility (μ) is related to conductivity σ

via σ = nqμ, where n and q are the carrier density and charge, respectively. For a single-band sys-
tem, the Hall coefficient RH = 1/nq, and thusμ = σ • RH.However, in multiple-band systems, the
field dependence of Hall resistivity ρxy deviates from linearity. Figure 2a shows one example. In
this case, the Hall coefficient, defined as dρxy/dB, becomes field dependent, and both mobility and
carrier density cannot be directly derived as for a single-band system. A commonly used approach
for analyzing the transport properties of multiband systems is the multiple-band model, i.e., as-
suming that the contributions of various bands to the conductivity are additive. In practice, for a
system with more than two bands, a further simplified model, which considers only one electron
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Figure 2

Magnetoresistance (MR). (a) Magnetic field dependence of the longitudinal (ρxx) and transverse (Hall) (ρxy) resistivity for Cd3As2.
(b) MR normalized by the zero-field resistivity for WTe2 at 2 K and 10 K. Shubnikov–de Haas (SdH) oscillation is seen for the T = 2 K
data. (Upper inset) MR at higher temperatures. (Lower inset) Oscillatory component of the resistivity oscillation, obtained by subtracting
the smooth MR background. (c) MR normalized by the zero-field resistivity for NbP at various temperatures. SdH oscillation is seen at
T < 10 K. (Inset) MR at higher temperatures. Panels a and b adapted from References 45 and 48, respectively, with permission from
Springer Customer Service Centre GmbH, copyright 2014. Panel c adapted from Reference 46 with permission from Springer
Customer Service Centre GmbH, copyright 2015.

band and one hole band, is widely used to describe the longitudinal resistivity (ρxx) and transverse
resistivity (ρxy , i.e., the Hall resistivity), as shown by Equations 3 and 4 below (190):

ρxx = (neμe + nhμh) + (neμeμ
2
h + nhμhμ

2
e )B

2

(neμe + nhμh)
2 + μ2

eμ
2
h(nh−ne )2B2

· 1
e
, 3.

ρxy =
(nhμ2

h − neμ2
e ) + μ2

hμ
2
e (nh − ne )B2

(neμe + nhμh)
2 + μ2

hμ
2
e (nh − ne )2B2

· B
e
, 4.

214 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

where ne (nh) and μe (μh) are the density and mobility of the electron (hole) band, respectively.
From the simultaneous fitting for ρxx(B) and ρxy(B) by using such a two-bandmodel, both the den-
sities andmobilities of the electron bands and hole bands can be obtained.Clearly, for a real system
with more than one electron or hole band, this oversimplified model averages electron and hole
bands and neglects any interband interactions. Although adding more bands to the above model is
possible in principle,more accurate results may not be obtained with an overparameterizedmodel.
In fact, the two-band model already yields reasonable results for a variety of material systems, so
it is reasonable to extend its application to topological semimetals.

Equation 3 indicates that ρxx tends to saturate at high fields where the B2 terms dominate.Only
when ne = nh, i.e., the case of electron-hole compensation,ρxx ∝B2 without saturation.Under such
a circumstance, large MR is expected when mobility is high.Table 1 shows the mobilities of some
representative topological semimetals acquired from two-band model analysis; the mobilities are
indeed high, in the range of 103–106 cm2/(V·s). Such high transport mobility is consistent with
the ultralow residual resistivity at the zero-temperature limit (∼n� to a few μ�; see Table 1)
as well as with the high quantum mobility revealed by quantum oscillation studies (discussed in
Section 3.2.2).

The two-bandmodel,while widely used, provides only an approximate description for themag-
netotransport properties of multiple-band materials. First, Equations 3 and 4 are not applicable if
there are open orbits, which occur when the Fermi surface is not closed in the momentum space
(190). Second, the negligence of interband interaction leads to an apparent contradiction: The
carrier compensation appears to be necessary for the nonsaturated MR according to Equation 3,
but the Hall resistivity expressed by Equation 4 must be linearly dependent on the field when
ne = nh, which is not true for most topological semimetals (e.g., see Figure 2a). Third, according
to Equation 3, even approximate electron-hole compensation should be able to lead to a quadratic
or nearly-quadratic field dependence for ρxx. Such a dependence has indeed been observed in a
number of topological semimetals (48, 183, 191–193), but linear or even sublinear MR has also
been observed in a variety of samples (107, 171, 172, 174–180, 182, 183, 191, 194). LinearMRmay
be a classical effect due to strong current inhomogeneity (172) or may have a quantummechanical
interpretation (195) (see Section 3.2.8), while sublinear MR may be attributed to the weak antilo-
calization caused by strong SOC (196). With these considerations, the two-band model appears
to be applicable only for a limited field range or at higher temperatures at which quantum effects
are not significant.

Although obtaining the precise value of carrier mobility for individual bands might be chal-
lenging, the two-band model still provides an effective approach for the approximate description
of magnetotransport properties of multiband materials. This model successfully explains the ex-
tremely large MR arising from high mobility and approximate carrier compensation. Then, a
key question for topological semimetals is why Dirac/Weyl fermions have high mobility. This
question can be understood in terms of the energy band characteristics of topological semimet-
als. Given that the carrier mobility is determined by relaxation time τ and effective mass m∗, i.e.,
μ = eτ /m∗, greater relaxation time and smaller effective mass favor higher mobility. As shown in
Section 3.2.2, the cyclotron effective masses derived from quantum oscillations are indeed small
for many topological semimetals, reaching as low as 0.02me (where me is the free electron mass)
for some materials. Such massless behavior is naturally expected for ideal topological fermions
since they are hosted by linearly dispersed bands crossing near the Fermi level, which requires
zero mass in the Hamiltonian (11).

Greater relaxation time in topological materials may be associated with symmetry protection
in many cases. For topological insulators, it has been well established that backscattering is for-
bidden by TRS, even though nonmagnetic defects exist, thus resulting in longer relaxation time
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(197–201). In some topological semimetals, a strong suppression of backscattering due to nontriv-
ial band topology has also been proposed (45); such suppression would lead to enhanced transport
relaxation time. This idea is partially supported by the quantum oscillation studies that reveal a
long quantum relaxation time in topological semimetals, as shown in Section 3.2.2.

3.2. Landau Quantization and Quantum Oscillations

In addition to the extremely large MR, another important phenomenon in the magnetotrans-
port of topological semimetals is quantum oscillation (Figure 2b,c), i.e., the Shubnikov–de Haas
(SdH) effect. Quantum oscillations can also be probed in other measurements such as magneti-
zation/magnetic torque [i.e., the de Haas–van Alphen (dHvA) effect], thermoelectric power, and
ultrasonic absorption.Quantum oscillations have been widely used for the study of 3D topological
insulators (202) and topological semimetals and reveal key parameters for Dirac/Weyl fermions
such as effective mass, quantum mobility, and (most importantly) the Berry phase. In this section,
we review quantum oscillation studies of topological semimetals.

3.2.1. The zeroth Landau level for relativistic fermions. Quantum oscillation theory for
nonrelativistic electrons has been well established and documented in earlier textbooks and re-
views (203, 204). Here we briefly recall the fundamental theory and put major emphasis on its
extension to relativistic fermions. Quantum oscillation originates from the quantized cyclotron
motion of charge carriers under magnetic fields, i.e., the Landau quantization of the energy states.
With the conduction band splitting to Landau levels (LLs), the DOS at the Fermi level, DOS(EF),
becomes periodically modulated by magnetic field (more precisely, periodic in 1/B), leading to pe-
riodic oscillations of physical quantities.

Panels a and b of Figure 3 show the textbook drawings of the Landau quantization for spinless
(i.e., ignoring Zeeman splitting) nonrelativistic electrons with parabolic dispersion.The quantized
LL energy is εn = (n + 1/2)�ωc, where ωc = eB/m is the cyclotron motion frequency and the
LL index n = 0, 1, . . . . The energies of all LLs are field dependent and evenly spaced by �ωc,
as shown in Figure 3b. For the lowest LL, a finite zero-point energy �ωc/2 exists, which is in
analogy to the zero-point energy of a harmonic oscillator. To distinguish the lowest LL for the
nonrelativistic fermions from the exotic zeroth LL with field-independent zero energy for the
relativistic fermions shown below, we rewrite the LL energy of nonrelativistic electrons as εn =
(n − 1/2)�ωc, where n becomes a nonzero integer (1, 2, . . .).

The LL quantization is completely different for the relativistic fermions with linear dispersion
(Figure 3c). Earlier studies on graphene (205, 206) established that the quantized energies of LLs
for spinless 2D Dirac fermions are

εn = vF sgn(n)
√
2e�|B‖n| (n = 0,±1,±2. . .), 5.

where sgn(n) is the sign function and vF is the Fermi velocity. As illustrated in Figure 3d, LLs
are no longer equally spaced for relativistic fermions given εn ∝ √|n|. Most strikingly, a field-
independent zeroth (n = 0) LL locked at the band crossing point (ε0 = 0) appears, which is a sig-
nature unique to 2D relativistic electron systems. Such a zero energy can be understood in terms of
the Berry phase arising from the cyclotron motion of carriers in momentum space (206). The de-
tailed theoretical background of the Berry phase and its manifestation in transport measurements
have been well understood (202, 207–209). In short, the Berry phase describes a geometrical phase
factor of a quantum mechanical system acquired in the adiabatic evolution along a closed trajec-
tory in the parameter space. Such a phase factor does not depend on the details of the temporal
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Landau quantization. (a,c) Schematics for energy-momentum dispersions of the (a) normal (nonrelativistic) and (c) relativistic electrons.
(b,d) Landau spectra for the 2D spinless (b) nonrelativistic and (d) relativistic electrons. (e,f ) Landau spectra for the 3D spinless
(e) nonrelativistic and ( f ) relativistic electrons with the magnetic field along the kz direction (B//kz). (g) Landau tubes intersecting a 3D
spherical Fermi surface. (h) Landau rings within the 2D Fermi surface (ring). Panels b, e, and g show the scenario for nonrelativistic
electrons without the zeroth Landau level.

evolution and thus differs from the dynamical phase. A nonzero Berry phase φB originates from
the band touching point, such as Dirac nodes. Under magnetic fields, the cyclotron motion of
Dirac fermions, i.e., the closed trajectory in momentum space, induces a Berry phase that changes
the phase of quantum oscillations. Ideally, φB = π for an exact linear energy-momentum disper-
sion, and this value shifts when the bands deviate from linear dispersion and/or the Zeeman effect
is strong (209, 210).

Before formulizing the quantum oscillation for relativistic fermions by incorporating the Berry
phase–induced phase shift, we should pay attention to the dimensionality of the investigated ma-
terial systems. The Landau quantization of the 2D surface state of topological insulators is very
different from that of the Dirac or Weyl fermions in 3D topological semimetals. Most topologi-
cal semimetals reported so far are 3D in nature [such as Cd3As2 (14, 127–130), Na3Bi (13, 126),
and the TaAs family (22, 23, 25, 27, 39, 86, 87, 211)], and 3D is necessarily required for a Weyl
state (10). For nonrelativistic electrons in 3D, the motion along the magnetic field direction is
not quantized, leading to additional energy of (�kz)2/2m (where kz is the momentum along the
magnetic field direction) for LLs:

εn,k = �eB
m∗

(
n− 1

2

)
+ �

2k2z
2m∗ (n = 1, 2, 3, . . .). 6.

Similarly, an additional energy term due to unquantized kz also occurs for 3D relativistic fermions:

εn = vF sgn(n)
√
2e�|B||n| + (�kz )2. 7.
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Therefore, although the zeroth LL’s energy is still field independent, it is not strictly zero. More-
over, Equation 7 is valid for Dirac fermions with n= 0, 1, 2,…. ForWeyl fermions, the chirality is
well defined due to the lifting of spin degeneracy, so Equation 7 needs to be modified for the ze-
roth LL ofWeyl fermions. As discussed in Section 3.4, the chiral zeroth LL leads to one important
effect for Weyl fermions, i.e., the chiral anomaly.

3.2.2. The Lifshitz–Kosevich model for de Haas–van Alphen oscillations. For the perfect
2D case, the Landau bands are degenerate into sharp levels (Figure 3b,d), and the motions of all
electrons at the Fermi level are in phase. For the 3D case, due to the additional energy related to
unquantized kz as shown in Equations 6 and 7, different LLs overlap in energy space, leading to a
mixture of Landau bands for particular energy (Figure 3e,f ) and a continuous energy spectrum.
This is better illustrated in Figure 3g: Landau quantization for 3D free electrons manifests as
Landau cylinders along the magnetic field direction, so an equal energy surface intersects multiple
Landau cylinders. This scenario is distinct from the 2D case (Figure 3h). Therefore, different
models have been derived for 3D and 2D quantum oscillations.

Here we start with the dHvA oscillation because the magnetization is the derivative of
the Gibbs thermodynamic potential � at constant temperature and chemical potential ζ , M =
−( ∂�

∂B )T ,ζ , so that it directly reflects the LL spectrum. At the zero-temperature limit, the oscilla-
tory thermodynamic potential � due to Landau quantization for a 3D system can be expressed as
(in CGS units) (203)

�osc =
( e
2πc�

)3/2 e�B5/2

mcπ2(∂2Sextr/∂k2z )
1/2

∞∑
r=1

1
r5/2

cos
[
2πr

(
F
B

− γ

)
+ 2πδ

]
, 8.

where Sextr is the extremal Fermi surface cross-section area perpendicular to the magnetic field,
∂2Sextr/∂k2z is the Fermi surface curvature along the kz direction (i.e., the field direction) at the
extremal cross section, and r is the harmonic index. Given several damping factors, the general
formula of the magnetization oscillations for a 3D system, derived by Lifshitz & Kosevich (the
LK formula) (203, 204, 212), is (in SI units)

M3D
osc = −

( e
2π�

)3/2 Sextr
π2m∗

(
B

|∂2Sextr/∂k2z |
)1/2 ∞∑

r=1

1
r3/2

RTRDRS sin
[
2πr

(
F
B

− γ + δ

r

)]
. 9.

RT, RD, and RS are the temperature-, field-, and spin-damping factors, which are associated with
the finite temperature corrections to the Fermi-Dirac distribution function, the finite relaxation
time due to impurity scattering, and the phase difference between the spin-up and spin-down
subbands, respectively. These factors can be expressed as

RT = raTμ/B
sinh(raTμ/B)

, 10.

RD = exp
(

− raTDμ

B

)
, 11.

RS = cos
rπgμ
2

, 12.

where μ is the ratio of effective cyclotron massm∗ to free electron massm0.TD is the Dingle tem-
perature that is relevant to the quantum relaxation time, and a = (2π2kBm0)/(�e) ≈ 14.69 T/K.

The sine term in Equation 9 describes the oscillation with frequency rF and phase factor
2πr(−γ + δ

r ), where the fundamental frequency F is linked to Sextr by the Onsager relation
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F = �Sextr/2πe. The determination of the phase factor is of particular interest for the quantum
oscillation study of topological materials since the Berry phase φB is connected to the phase factor
via γ = 1

2 − φB
2π . The Berry phase, which was not included in Lifshitz & Kosevich’s original for-

malism (i.e., γ = 1
2 ) (212), can effectively shift the phase of quantum oscillations (209, 210). The

phase shift δ in Equation 9, which is determined by the dimensionality of the Fermi surface, is
0 for the 2D case and ±1/8 for the 3D case. For the 3D case, δ = −1/8 (δ = +1/8) for maximal
(minimal) cross section for a 3D electron pocket (203, 204, 212) and a 3D hole pocket, respectively.

Although most topological semimetals are 3D, there are also some materials with lay-
ered structure and that thus display a quasi-2D electronic structure, such as ZrSiTe (156) and
(Sr/Ba)Mn(Bi/Sb)2 (143, 173, 177, 213). For a perfectly 2D system, the above LK formula has
been modified by Shoenberg and others (203, 204, 214, 215):

M2D
osc = −

( e
2π�

) S
π2m∗

∞∑
r=1

1
r
RTRDRS sin

[
2πr

(
F
B

− γ

)]
, 13.

with the same definitions for damping factors (RT, RD, and RS) and phase factor γ as the 3D
model. The Fermi surface cross-section area becomes a constant for 2D, so Sextr in the 3D model
(Equation 9) is replaced by S, and the phase factor δ is zero. In addition to this phase difference,
the oscillation amplitude (i.e., the prefactor of the summation in Equation 13) and harmonic com-
ponents (r 	= 0) are enhanced relative to the 3D model.

Significantly, the above 3D (Equation 9) and 2D (Equation 13) LK models are based on the
assumption of constant chemical potential, which is appropriate for a 3D system because the elec-
tron energy spectrum is continuous, as mentioned above. In this scenario, the lowest unoccupied
state is always located at EF and is independent of B (i.e., the chemical potential = EF for T =
0 K). In contrast, the 2D Landau quantization gives rise to discrete energy levels, so the chemical
potential, which is the minimum energy needed to add an electron to the system, is pinned to the
highest occupied LL and hence also oscillates with ramping magnetic field. This chemical poten-
tial oscillation will affect the quantum oscillations. Furthermore, in real materials, the interlayer
coupling is not negligible in layered compounds and is also not captured by Equation 13. More
comprehensive analyses can be found in References 203 and 204 and references therein.

In practice, the oscillation frequency or frequencies F can be directly resolved from the fast
Fourier transform (FFT) of the oscillation pattern, and other important parameters, including
the effective cyclotron mass, quantum relaxation time, and Berry phase, can be obtained from the
analyses with the LK formula. From FFT, one can also clarify whether the higher harmonic terms
(r> 1) with frequency rF are significant. In principle, these terms attenuate quickly with r−3/2 for a
3D system (Equation 9) or r−1 for a 2D system (Equation 13), and thus the quantum oscillations in
real materials are usually dominated by fundamental frequencies (r= 1). If the oscillation contains
only a single frequency without obvious harmonic frequency components, effective mass m∗ can
be obtained from the fit of the temperature dependence of the oscillation amplitude Aosc at a fixed
magnetic field to the thermal damping factor RT in Equation 10 [i.e.,Mosc(T ) ∝ RT]. In normal
metals with exact parabolic bands, the band effective mass is expected to be a constant, despite the
location of Fermi level. It can be easily shown that such band mass is equivalent to the cyclotron
mass, which is defined as m∗ = �

2

2π

[
∂S
∂E

]
E=EF within the semiclassical approximation, where S is the

extremal area enclosed by the cyclotron orbit inmomentum space.Applying the same definition to
the linearly dispersed bands with an isotropic Dirac cone, one can easily find that m∗ is connected
to the Fermi vector kF and velocity vF with m∗ = �kF/vF. Thus, m∗ should vanish when a Dirac
point resides at EF (where kF = 0) and should increase when the Dirac point is shifted away from
EF. Such a trend has been observed in various Dirac materials (172, 216). Generally, EF is not
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too far away from the Dirac band crossing point in most known topological semimetals, so m∗

obtained from quantum oscillation is usually small, as summarized in Table 1.
With a known effective mass, the Dingle temperature that is associated with the quantum

relaxation time can be extracted from the fit of the field dependence of the oscillation amplitude
at a fixed temperature by the field damping factor RD in Equation 11 [i.e.,Mosc(B) ∝ RD]. Because
TD is included in the exponential term ofRD, the logarithmof the oscillation amplitude normalized
by B1/2RT (for 3D) or RT (for 2D) should have linear dependence on 1/B according to Equation 11.
Thus,TD can be obtained from the slope of the linear fit of such a Dingle plot. In practice, Dingle
plots are nonlinear in some cases in which accurate TD cannot be obtained. Such a scenario could
be attributed to, e.g., sample inhomogeneity, magnetic field inhomogeneity, a beating oscillation
pattern due to the existence of two very close frequencies, or torque interaction at high fields if
torque magnetometry is used (203).

From TD extracted from a Dingle plot, the quantum relaxation time τ q can be derived via
τ q = �/(2πkBTD). Because τ q affects the oscillation amplitude exponentially (Equation 11), strong
dHvA oscillations present in low field ranges implies large τ q, which is generally the case for topo-
logical semimetals (Table 1). It is important to distinguish the quantum relaxation time from the
transport relaxation time τ t, as discussed in Section 3.1. While both arise from the scattering by
static impurities and defects, these two quantities are essentially different (217, 218): τ q charac-
terizes the quantum lifetime of the single-particle relaxation time of the momentum eigenstate,
which determines the LL broadening of the momentum eigenstate by 
 = �/2τ q, whereas τ t is
introduced in the classical Drude model and affects the Drude conductivity, σ = neμ = ne2τ t/m∗.
Given that τ t measures themotion of charged particles along the electric field gradient, it is largely
unaffected by the forward scattering (i.e., small-angle scattering), in contrast to τ q, which is sus-
ceptible to momentum scattering in all directions. Therefore, τ t is usually larger or even much
larger than τ q. Taking the form of the classical transport mobility μt = eτ t/m∗, one can also define
the quantum mobility by μq = eτ q/m∗. Consequently, μq obtained from quantum oscillation is
usually less than μt derived frommagnetotransport, as observed in various topological semimetals
(see Table 1).

In addition to nearly zero effective mass and high quantum mobility, nontrivial Berry phase
is a key signature of relativistic fermions. As indicated above, it results in the zeroth LL, which
is absent in the LL spectrum of nonrelativistic electrons. In general, for a system exhibiting
quantum oscillations with a single frequency, φB can be determined from the LL index fan
diagram, i.e., the plot of the LL indices n versus the inverse magnetic field 1/B (one example is
shown in Figure 4a,b). This method has been widely used in previous studies on topological
insulators, and a proper way to construct a LL fan diagram has been established, although there
had been some confusion in early studies (202, 219).We first consider a 2D situation. As shown in
Figure 3b, with ramping magnetic field, the LLs successively pass through EF. Integer LL indices
are assigned when EF lies at the middle of two adjacent LLs [i.e., minimum DOS(EF)], while
half-integer indices are assigned when EF is right at the LL [maximum DOS(EF)]. For a LL fan
diagram established with such a definition of the LL index, the linear extrapolation of the linear
fit of n(1/B) to the 1

B → 0 limit must lead to n = 0 for nonrelativistic electrons, but n = 1/2 for
relativistic fermions due to the zeroth LL pinned at the zero energy. This n = 1/2 intercept cor-
responds to an ideal Berry phase of π. For a 3D system, the phase of quantum oscillation is shifted
by 2πδ, as mentioned above, so the linear extrapolation should intercept the n axis at φB

2π − δ.
Therefore, proper assignment of LL indices is critically important for guaranteeing precise

determination of the Berry phase. Oscillations in differential magnetic susceptibility χ (= dM
dB )

offer a straightforward approach to determining integer LL indices; that is, theminima of χ should
be assigned with integer LL indices, since they correspond tominimal DOS(EF).This scenario can
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Quantum oscillations in topological semimetals. (a) The oscillatory component of resistance for Cd3As2, obtained via subtracting the
smooth magnetoresistance (MR) background, as a function of 1/B at various temperatures. (b) Landau level (LL) fan diagram
constructed from Shubnikov–de Haas oscillations for two Cd3As2 samples. (Inset) Intercepts of the linear extrapolations of LL indices
for the two samples. (c) The oscillatory component of resistance for TaP, obtained via subtracting the smooth MR background, as a
function of 1/B at various temperatures. The red solid lines show the fits of the oscillation data to the two-band Lifshitz–Kosevich (LK)
model. (d) Mixed real and momentum space representation of the Weyl orbit, which consists of the Fermi arcs at the top and bottom
surfaces connecting the projections of Weyl nodes with opposite chirality (labeled as + and −, respectively) and the bulk states with
fixed chirality (blue and red). (e,f ) MR at 2 K and its fast Fourier transform for a thin (150-nm) slab sample, for magnetic field parallel
(90°) and perpendicular (0°) to the surface. In addition to the bulk frequency FB, another oscillation frequency corresponding to the
surface state (FS) is observed for the perpendicular field. Panels a and b adapted with permission from Reference 178. Copyright 2014,
American Physical Society. Panel c adapted from Reference 192 under a Creative Commons Attribution 4.0 International License.
Panels d–f adapted from Reference 44 with permission from Springer Customer Service Centre GmbH, copyright 2016.

be understood as follows: As indicated above,magnetization is equal to the derivative of the Gibbs
thermodynamic potential � at constant temperature and chemical potential ζ ,M = −( ∂�

∂B )T ,ζ . At
zero temperature, � is indeed proportional to the total energy of electrons and is modulated by
magnetic field in the form of a cosine function (Equation 8) (203). Given χ = ∂M

∂B = − ∂2�
∂B2 , χ and

� would oscillate in phase when Landau quantization occurs with increasing magnetic field. Since
the minima of � correspond to the minimal DOS(EF), minimal χ should be assigned with integer
LL indices. Given χ = ∂M

∂B , if the oscillations of magnetization are used to establish a LL fan
diagram, the minima ofM should be assigned with n − 1/4 (where n is an integer number). With
this approach, the nontrivial Berry phase has been extracted from dHvA oscillations for several
topological semimetals (156, 220–222).

Several factors can affect the value of the Berry phase in topological semimetals. First, the
Berry phase can deviate from an ideal value of π if the band dispersion is not perfectly linear
(210). Second, the Zeeman effect, which has not been considered so far, also leads to a deviation of
the Berry phase obtained from a LL fan diagram (210). Therefore, the Berry phase determination
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using the LL fan diagram should be performed with caution for high-field quantum oscillations
or for materials with large g-factors such as Cd3As2 (172, 223) and ZrSiS (221). Furthermore,
from the aspect of data analysis, reading the Berry phase from a LL fan diagram may bear large
uncertainty in some cases.Because the Berry phase is determined by the intercept of the linear fit of
n(1/B), when low-LL indices cannot be reached in experiments due to high oscillation frequency,
a slight change in the slope of the linear fit can lead to a large shift in the intercept, thus resulting
in a large uncertainty in the extracted Berry phase. Therefore, reaching low-LL indices under
high magnetic fields is necessary for obtaining a reliable Berry phase from a LL fan diagram.

In addition to magnetization measurements, dHvA oscillations can also be probed by torque
magnetometry since a magnetic moment �m in a magnetic field is subject to a torque �τ = �m× �B.
It is convenient to perform magnetic torque measurements on topological semimetals by using
a cantilever (176, 224–230) to high magnetic field, even up to 60 T. One drawback of the torque
magnetometry is the torque interaction, an instrumental effect due to the feedback of the oscil-
lating magnetic moment on the cantilever position, which leads to artificial effects in quantum
oscillations under high magnetic fields (203).

3.2.3. Shubnikov–de Haas oscillations. Besides dHvA oscillation, the resistivity oscillation,
i.e., the SdH effect, is also widely used to study topological semimetals (46, 141, 171, 172, 174,
178, 179, 183, 191–193, 231–233). The extraction of the Berry phase from SdH oscillations seems
straightforward. Since the SdH effect also originates from Landau quantization, the nontrivial
Berry phase associated with the zeroth LL also manifests itself by a phase shift in the SdH os-
cillation. As stated above, integer LL indices should be assigned when EF lies in the middle of
two adjacent LLs and DOS(EF) reaches minima. The situation is less complicated in 2D integer
quantum Hall systems (including the 2D surface states of the 3D topological insulators), in which
the integer LL indices unambiguously correspond to the quantized Hall plateaus where the lon-
gitudinal conductance reaches minima (Sxx = 0) due to the dissipationless edge state. The proper
way to build a LL fan diagram from the SdH effect for topological insulators was discussed in a
previous review (202).

In the studies of topological semimetals, however, there have been controversies in construct-
ing LL fan diagrams from the SdH effect. The literature contains various definitions for integer
LL indices, including resistivity minimum (141, 178, 234, 235), resistivity maximum (171, 179,
183, 191, 193, 232, 233, 236–239), and conductivity minimum (143, 172, 213). At first glance, it
is natural to extend the above argument for the quantum Hall system to topological semimetals,
except that the conductivity of topological semimetals cannot be directly measured through con-
ventional transport experiments but should be obtained through inverting the resistivity tensor,
σ̂ = ρ̂−1. For in-plane (x-y plane) current I and out-of-plane (z-direction) magnetic field B (i.e., a
standard Hall effect setup with B � I ) applied to a 2D system, the charge carriers undergo only
in-plane motion, and we have

σ̂ =
(

σxx σxy

σyx σyy

)
= ρ̂−1 =

(
ρxx ρxy

ρyx ρyy

)−1

. 14.

Here the resistivity tensor elements ρi j (i, j= x, y) are defined as Ei/J j (where Ei is the electric field
component along the +i direction and J j is the current density along the +j direction) or, equiva-
lently,Vi/Ij (where Vi is the voltage drop along the +i direction and Ij is the current along the +j
direction). In fact, from this definition, ρxx and ρxy are essentially the longitudinal and transverse
(Hall) resistivity. Under the assumption of isotropic scattering rate for a given 2D material, it is
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easy to demonstrate ρxx = ρyy and ρxy = −ρyx. Therefore, precise conductivity can be obtained
from measured ρxx and ρxy via σxx = ρxx

ρxx2+ρxy2
.

However, additional considerations must be taken for 3D topological semimetals. Although
the integer quantum Hall effect (QHE) also has a semiclassical interpretation based on Landau
quantization, its underlying transport mechanism is distinct from the SdH effect due to its nonlo-
cal character. As discussed in more detail in Sections 3.2.7 and 3.5, the quantizedHall conductance
plateaus and the zero longitudinal conductance are associated with the dissipationless edge chan-
nels. Such scale-invariant dissipationless edge conduction in quantum Hall systems is completely
different from the transport in conventional diffusive systems, where the resistance or conduc-
tance is associated with the sample dimensions and is governed by the transport relaxation rate
(i.e., the scattering rate). The scattering mechanisms in real materials can be very complicated.
Fortunately, a semiquantitative LK model that gives satisfactory descriptions for the SdH effect
has been developed for 3D systems. The earlier transport theory established that the scattering
probability is proportional to the number of available states that electrons can be scattered into
(47, 240), and the scattering possibility thus oscillates in concert with the oscillations of DOS(EF)
and gives rise to SdH oscillations (203, 204).More explicitly,DOS(EF)osc ∝ ( m

∗B
Sextr

)2 ∂Mosc
∂B .With this

relation, the expression for conductivity/resistivity oscillation, i.e., the LK formula for the SdH ef-
fect, can be derived from the derivative of the magnetization oscillation (203, 204). Clearly, within
the framework of this LK model based on the oscillation scattering rate, conductivity should ex-
hibit maxima when the scattering rate reaches minima that occur at minimal DOS(EF). Given
that integer LL indices should correspond to DOS(EF) minima as indicated above, the maxima
of conductivity oscillation should be assigned with integer LL indices. However, this approach is
based on the semiquantitative model for the SdH effect (203). The scattering rate in a real ma-
terial depends on a number of factors and can be very complicated, particularly in multiband or
anisotropic systems, which could lead the SdH oscillations to strongly deviate from the LK the-
ory (204). As a result, a simple connection between the integer LL indices and the SdH oscillation
extrema may be problematic in some cases. Therefore, to demonstrate the nontrivial Berry phase,
a better approach might be the oscillation of thermodynamic properties that are directly linked
to the LL energy spectrum, such as the dHvA effect as discussed above.

In addition, the complication of the scattering rate in the SdH oscillation also leads to incon-
sistency between the SdH effect and the dHvA effect. In some layered topological semimetals,
dHvA oscillation is strong for arbitrary magnetic field directions, but SdH oscillation quickly at-
tenuates when the magnetic field is tilted toward the current direction (221, 226, 232, 241, 242).
In those materials, the stronger dHvA effect is also useful in distinguishing the Zeeman splitting
effect from the oscillation pattern (221).

3.2.4. Multifrequency quantum oscillations. The above discussions on LL fan diagrams are
applicable to quantum oscillations with a single frequency.However, multiple oscillation frequen-
cies are often observed in most topological semimetals, such as those of the TaAs family (179, 180,
182, 183, 191–193, 227, 243) and WHM materials with PbFCl-type structure (W = Zr or Hf;
H= Si, Ge, or Sn;M = S, Se, or Te) (156, 221, 222, 226, 228, 232, 233, 241, 242, 244, 245). Given
F = �Sextr/2πe, the dependence of oscillation frequencies on the magnetic field orientation pro-
vides useful information on Fermi surface morphology. In the presence of multifrequency oscil-
lations, the method used to analyze effective mass, quantum mobility, and the Berry phase differs
from what is discussed for the single-frequency situation. The commonly used approach to obtain
the effective mass for each frequency band is the fits of the FFT amplitudes for each frequency
component by the thermal damping factor RT (Equation 10). In this method, the inverse mag-
netic field 1

B in RT is approximated by the average inverse field 〈 1
B 〉, defined as 〈 1

B 〉 = 1
2 (

1
B1

+ 1
B2
),
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where 1
B1

and 1
B2

are the upper and lower inverse fields used for FFT analyses. However, this
method may lead to large errors for the fitted effective mass in some cases, since the obtained
effective mass may depend on the range of the inverse magnetic field ( 1

B1
→ 1

B2
) used for FFT.

For example, for the NLSM ZrSiS, the effective mass obtained from the fit of the FFT ampli-
tude is greatly increased when a narrower field range is used for the FFT analysis. When the
inverse magnetic field range is taken as 0.143–1.5 T−1, the fitted effective mass is small for the
Fβ = 240 T band, ∼0.052 m0 (221). However, when the inverse field range is reduced to 0.3–
0.5 T−1, the fitted effective mass is increased to 0.17 m0 (A. Carrington, private communication).
Since the two quantum oscillation frequencies observed in ZrSiS (i.e., 8.4 T and 240 T) are far
apart, the effective masses corresponding to these oscillation components can also be obtained
by fitting the temperature dependence of the oscillation amplitude probed at a certain field. The
effective mass obtained using such a method is 0.18 m0 for the 240 T oscillation component.
This example shows that a narrower inverse field range for FFT may improve the accuracy of
the fitted effective mass. However, this is not always true. Therefore, one must be extremely
careful when using FFT amplitudes to extract the effective mass. For multifrequency oscilla-
tions, if the frequencies are far apart, it may be possible to obtain an accurate effective mass
by directly reading the oscillation amplitudes, as discussed above. In contrast, if the frequen-
cies are close to each other, several approaches may be used to double check effective mass (A.
Carrington, private communication). First, as demonstrated above, accurate effective masses may
be obtained from the FFT analyses within a narrow field range. Second, it may be possible to use
Fourier filters to separate multifrequency oscillations into several single-frequency oscillations,
which may allow one to obtain an accurate effective mass for each frequency. In this method, the
data near the two ends of the magnetic field range should be excluded after applying the Fourier
filter, since the end effect could induce artificial signal. To minimize the errors in effective mass,
the combination of the above methods, together with a simulation of the oscillation pattern using
the LK formula after obtaining the effective mass, may be helpful.

The Dingle temperature and Berry phase can be extracted through fitting the oscillation pat-
tern to the generalized multiband LK formula, with the assumption that the quantum oscillations
of different bands are additive. This method was previously used for the LaAlO3/SrTiO3 het-
erostructure (246) and was first employed for analyzing the SdH oscillations of TaP (Figure 4c)
in the study of topological semimetals (192) and was then proven to be effective in characterizing
topological fermion properties for many other multiband topological semimetals (143, 156, 221,
226, 230, 245, 247–249). For the multiband LK fit, it is important to include all major frequency
components, as well as the higher harmonic (r> 1 in Equations 9 and 13) terms if they are signif-
icant in the FFT spectrum, although there is a trade-off for accuracy due to the increased number
of parameters. RS is field independent (see Equation 12) and can thus be treated as a constant
for the fit; it takes effects in modulating the amplitude for the harmonic component, as it con-
tains r. Furthermore, RS can be used to extract the Landé g-factor of a 2D/quasi-2D system via
the spin-zero method; that is, the oscillation amplitude vanishes at some field orientation due to
the interference of spin split Fermi surfaces. This provides an alternative method to evaluate the
g-factor in addition to the direct measurement of the separation of the split oscillation peaks. Such
analysis has been reported for ZrSiS (221) and WTe2 (250).

3.2.5. Magnetic breakdown. Multiple oscillation frequencies usually result from multiple
Fermi surface extremal cross-section areas perpendicular to the field. Additionally, charge car-
riers may tunnel from one cyclotron orbit to another and jump back to the original one to form
a bigger cyclotron orbit, hence leading to an additional frequency or frequencies equal to the
sum or difference of two or more fundamental frequencies (203, 251). This phenomenon, termed
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magnetic breakdown, becomes more pronounced at high fields because the tunneling probability
scales exponentially with the inverse field 1/B as e−α /B, where α is a material-dependent param-
eter relevant to the k-space separation of the orbits (203). The additional frequencies ascribed
to magnetic breakdown have been observed in high-field quantum oscillation studies on several
topological semimetals (171, 226, 252).

In type II WSMs, the magnetic breakdown has been predicted to be associated with the Klein
paradox, which states that the tunneling barrier is nearly “transparent” for relativistic fermions
when its height exceeds the electron’s rest energy mc2 (253). This relativistic effect is attributed
to the positron or electron emission by a potential barrier when the barrier is sufficiently high
(254–256). The matching between electron and positron wave functions across the barrier leads
to high-probability tunneling (257). However, the requirement of the high potential barrier
(∼mc2) imposes a great challenge for the experimental observation of this phenomenon in particle
physics. Fortunately, the massless relativistic fermions discovered in condensed matter provide
a realistic platform, given that, in principle, there is no theoretical requirement of the potential
barrier for massless relativistic fermions. Klein tunneling has been demonstrated in graphene,
with a potential barrier created by a local gate (257, 258). A similar effect is expected in topological
semimetals with massless relativistic fermions. Recent theoretical work has predicted a momen-
tum space counterpart of Klein tunneling in quantum oscillations for type II WSMs (259). In the
scenario of magnetic breakdown, quantum tunneling through different momentum space orbits
naturally mimics real space tunneling of carriers [e.g., in graphene (257, 258)], which is expected
to lead to an unusual dependence of the FFT amplitude on magnetic field orientation (259).

3.2.6. Quantum oscillation due toWeyl orbits. The unusual surface Fermi arc is one distinct
property of topological WSMs. For a DSM whose Dirac node can be viewed as the superposition
of two Weyl nodes with opposite chirality, its surface state exhibits two sets of Fermi arcs curving
in opposite directions on two opposite surfaces, as shown in Figure 4d. It has been predicted
that under magnetic fields, electrons can transport on a cyclotron orbit that connects one surface
Fermi arc to the opposite Fermi arc by coupling to bulk states (Figure 4d) (43, 260). Such an
unconventional Weyl orbit manifests itself by an additional frequency in quantum oscillations
(Figure 4e,f ), with 2D character that can be verified by the measurement of the field orientation
dependence of oscillation frequency (i.e., F ∝ 1/ cos θ ). Quantum oscillations due to Weyl orbits
exhibit anomalous properties such as a sample thickness–dependent phase shift. To observe such
a Weyl orbit, it is necessary to reduce the sample size to suppress the contribution of the bulk
states. This has been demonstrated in nanostructures of Cd3As2 (Figure 4e,f ) (44, 261) andWTe2
(262).

3.2.7. Other anomalous transport signatures originating from the zeroth Landau level.
As indicated above, the field-independent zeroth LL of relativistic fermions leads to a phase shift
in quantum oscillations from which the Berry phase can be inferred. In some layered topological
semimetals, the zeroth LL has been probed more directly by several transport techniques such as
QHE and interlayer tunneling.

The concept for QHE for 2D Dirac fermions has already been established for graphene and
topological insulators (216, 263–265). Under a magnetic field, Landau quantization gives rise to
quantized electron cyclotron orbits. Semiclassically, under sufficiently strong field, the electrons
are pinned to these quantized small radii orbits, which causes a bulk insulating state. However,
electrons that are close enough to the edges cannot complete cyclotron motions but rather get
bounced back by the edges. Given the direction of the Lorentz force, the reflected electrons
have to move forward until they are reflected by the edge again. This creates the so-called skip-
ping orbit at the edge that carries current, i.e., the edge channel (Figure 5a). Given that the
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Direct manifestations of the zeroth Landau level (LL). (a) Schematic of the real space Landau levels for relativistic electrons in a
finite-size 2D sample. (b) Crystal structure of EuMnBi2. (c) Normalized inverse Hall resistivity ρxy

0/ρxy versus BF/B measured at 1.4 K
for two EuMnBi2 samples, where BF is the SdH oscillation frequency and B = μ0(H + M) is the magnetic induction. (d) Schematic of
the interlayer tunneling of the zeroth LLs’ relativistic fermions in YbMnBi2. (e) Experimental setup for the measurement of the angular
dependence of interlayer magnetotransport. ( f ) Angular-dependent interlayer resistance (AMR) measured under different fields up to
31 T and at T = 2 K, using the setup in panel e. The darker curves superimposed onto the data represent the fits to the tunneling model.
The inset shows the sin2θ dependence at low field. Panels b and c adapted from Reference 177 under a Creative Commons Attribution
4.0 International License. Panels d–f adapted from Reference 247 under a Creative Commons Attribution 4.0 International License.

skipping orbit originates from the cyclotron orbit, the number of the edge conduction channels
is determined by the number of the quantized cyclotron motion states that electrons can occupy,
which is the number of the filled LLs below EF. This gives rise to quantized Hall conductance
of Gxy = nG0, where G0 = e2/h is the conductance quantum. In the language of band theory, the
internal (bulk) of the 2D system is gapped when EF locates in between LLs. At the sample edge,
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the confining electrostatic potential that keeps electrons inside the sample bends the LLs upward,
as illustrated in Figure 5a. The bent LLs that cross EF form the edge channels, giving rise to
quantized Hall conductance. From the above edge channel interpretation for the QHE, the QHE
is a direct manifestation of Landau quantization of electron energy states. This is in contrast with
SdH oscillation, which arises from the oscillating scattering rate and is thus an indirect probe of
LLs. In other words, the QHE is a nonlocal transport phenomenon due to LLs, while the SdH
effect is a manifestation of LLs in local transport. Furthermore, the QHE also has a topological
interpretation, which is discussed in Section 3.5.

Given the existence of the field-independent zeroth LL pinned at the band crossing point
(Figure 3d,f ), there is always an edge channel formed by the zeroth LL, as shown in
Figure 5a. Since the zeroth LL is evenly shared by both electrons and holes (Figures 3f and
5a), the contribution of the zeroth LL to edge conduction is half the contribution of nonzero
LLs, leading to the so-called half-integer quantization; i.e.,

Gxy = G0

(
n+ 1

2

)
. 15.

This half-integer quantization can also be understood in terms of a Berry phase of π for relativistic
fermions and has been observed in graphene (216, 263), zero-gap HgTe quantum wells (266), and
3D topological insulators (264, 265). In real materials, an integer factor may be applied forG0 due
to degeneracy, such as graphene with a factor of 4 that originates from spin and valley degeneracies
(216, 263).

Given the difference in Landau quantization in 2D and 3D systems as mentioned in
Section 3.2.1, it is challenging to probe the half-integer QHE in 3D topological semimetals. One
approach is to pursue their 2D nanostructures, but only the integer QHE has been observed so far
in nanostructures of Cd3As2 andWTe2 (261, 267, 268), probably due to the quantum confinement
effect, which gaps the Dirac cone (267).Masuda et al. (177) reported a half-integer QHE in a bulk
DSM EuMnBi2 with a layered structure (Figure 5b). This material exhibits the coexistence of
two AFM orders: one formed by the Mn sublattice and the other by the Eu sublattice. Applica-
tion of a magnetic field induces a spin flop transition for the Eu AFM order, resulting in a canted
AFM state, which significantly reduces interlayer coupling so that Dirac fermions generated by Bi
square-net layers are more confined within the plane (i.e., are quasi-2D) and exhibit signatures of
the half-integer QHE.As seen in Figure 5c, 1/ρxy normalized by 1/ρxy

0 (where ρxy
0 is the step size

of successive plateaus) displays quantized plateaus with half-integers. However, the quantum limit
corresponding to (1/ρxy)/(1/ρxy

0) = 1/2 could not be reached in this system because the canted
AFM state of Eu sublattice exists only in a limited field range.

In another structurally similar compound, YbMnBi2, the zeroth LL was probed via interlayer
transport (247). In this material, the Bi layers that host relativistic fermions are separated by the
relatively insulating Yb-MnBi-Yb blocks, leading to a quasi-2D electronic state. As shown in
Figure 5d, given that two linear bands cross right at EF in this material (269), 2D Landau quanti-
zation leads to the zeroth LL to be pinned to EF, regardless of magnetic field strength. Therefore,
increasing magnetic field leads to a monotonic increase in DOS(EF) due to the enhanced zeroth
LL degeneracy, which further enhances tunneling of electrons of neighboring Bi layers through
the Yb-MnBi-Yb barrier when an interlayer electric field is applied. Because 2D Landau quantiza-
tion in YbMnBi2 is governed by the magnetic field component perpendicular to the Bi plane, such
exotic quantum tunneling of the zeroth LL carriers is sensitive to the magnetic field direction and
can be detected in angular-dependent magnetotransport such as interlayer MR and the interlayer
Hall effect. For example, for the experimental setup shown in Figure 5e, at low field when LLs are
not well separated, LL broadening and thermal excitations smear out discrete LLs, which leads to

www.annualreviews.org • Topological Semimetals: Transport 227



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

conventional (sinθ )2 dependence for the angular-dependent interlayer resistance (AMR)
(Figure 5f, inset). In contrast, when the magnetic field is strong enough to establish the
above quantum tunneling scenario, AMR reaches a broad minimum, with θ being approximately
0° due to strong quantum tunneling, but sharply increases for the in-plane field orientation when
2D Landau quantization is suppressed. This causes a surprising strong peak centered at θ = 90°
in AMR, which can be well fitted by the model that includes tunneling of the zeroth LL’s carriers
(Figure 5f ) (270).

3.2.8. Beyond the quantum limit. Whenmagnetic field is strong enough to push all LLs above
EF except for the lowest LL, all electrons are condensed to the lowest LL; such a state is generally
referred to as a quantum limit. From this definition, one can find that the critical field needed
to reach a quantum limit is at least comparable to the quantum oscillation frequency. The quan-
tum limit is not accessible under a moderate magnetic field for most materials with high carrier
density (i.e., large Fermi surface and large quantum oscillation frequency). A system under a quan-
tum limit or an ultraquantum limit may show unusual properties, which has been a long-standing
topic of interest even for conventional materials. For instance, a fractional QHE can occur near
or in the ultraquantum limit of a 2D electron gas (271). In topological semimetals, the dramat-
ically enhanced degeneracy for the lowest LL, combined with the unique nature of relativistic
fermions, may lead to some new exotic phenomena. Indeed, a mass enhancement in the quantum
limit has been observed for ZrTe5 (272). This was interpreted as the dynamic mass generation
accompanied by density wave formation, which is due to the nesting of the zeroth LL driven by
enhanced electron correlation (272). Another example of unusual transport in the quantum limit
due to degeneracy enhancement is the aforementioned quantum tunneling of relativistic fermions
in YbMnBi2 (247). Because the zeroth LL is pinned at EF (269), the quantum limit can be reached
in relatively low fields in this material (247).

Another phenomenon directly associated with electron condensation to the zeroth LL in topo-
logical semimetals is anomalous magnetization (224). The Landau quantization for a 3D WSM
yields energy spectra of

εn,k =
{

vF sgn(n)
√
2e�|B||n| + �2k2z ,

χ�vFkz,

n 	= 0,
n = 0,

16.

where χ = ±1 represents the chirality of the Weyl points. At the quantum limit, magnetiza-
tion is entirely due to the zeroth LL states, with Mn=0 = −∂εn=0,k/∂B. Taking the derivatives of
Equations 6 and 16, one can find that the magnetization per electron should saturate to a constant
in a trivial metal but should vanish in the Weyl case. Therefore, one can expect a collapse of mag-
netization for topological semimetals crossing the quantum limit. Indeed, the magnetic torque
anomaly, which has been observed in NbAs, can be quantitatively described by the topological
character of the electronic dispersion (224).

High magnetic field may also lead to annihilation of a Weyl state. The recent studies on TaP
have shown that the two counterpropagating chiral modes of the lowest LL (represented by χ =
±1 in Equation 16) may hybridize and open up an energy gap, leading to a magnetic tunneling–
induced Weyl node annihilation in TaP that manifests as a sharp reversal of the Hall signal
(Figure 6a) (273).

In addition to the above phenomena associated with the properties of the relativistic Dirac or
Weyl fermions on the zeroth LL, new quantum states in the quantum limit regime have been pro-
posed (274, 275). For ZrTe5, whose carrier density varies with different crystal growth techniques,
its quantum limit can be reached under a very small magnetic field (∼0.2T) for low-carrier-density
samples. In the quantum limit, surprising resistivity oscillations periodic in log(B) have been
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observed (Figure 6b) (274), and these oscillations are believed to be associated with the discrete
scale invariance and formation of the two-body quasi-bound state (274, 275).

Another long-known but intensively investigated transport behavior in the quantum limit is
linear MR. As discussed in Section 3.1, orbital MR stemming from the Lorentz effect should
exhibit quadratic or nearly quadratic field dependence. In the quantum limit, however, MR grows
linearly withB (195). Such linearMRwas discovered in a number ofmaterials (276–280) before the
establishment of the theory for topological quantum states. Linear MR has been widely observed
in many of the recently reported topological semimetals (45, 172, 173, 175, 234, 235, 281–283).
However, linear MR for those materials begins to develop at a field much lower than the critical
field needed to reach their quantum limits (45, 172, 173, 175, 234, 235, 281–283). An alternative
proposition is that the linear MR in Cd3As2 may arise from spatial fluctuations of the magnitude
and direction of local current density in disordered systems (172), and this interpretation appears
to be applicable for other topological semimetals with linear MR.

3.3. The Intrinsic Anomalous Hall Effect

In Section 3.2, we intensively discuss the phenomena related to the Landau quantization and the
zeroth LL in topological semimetals. As indicated above, the unique zeroth LL originates from
the Berry phase of the band character of relativistic fermions. In this section, we review another
important phenomenon in magnetic topological semimetals, i.e., the intrinsic AHE, which also
stems from Berry phase physics.

AHE, the enhanced Hall signal that couples with the magnetization of magnetic materials, has
been intensively studied, as discussed in previous reviews (e.g., 284). Generally, the total Hall re-
sistivity ρxy in a FMmaterial has an anomalous contribution proportional to sample magnetization
M (ρxy

AH = RsM) (284). Anomalous Hall resistivity can originate from extrinsic mechanisms such
as skew scattering (285) and side jumps (286) and from intrinsic mechanisms due to the topological
properties of bands (56, 287–289).

One important feature of magnetic WSMs is their intrinsic AHE. Such an intrinsic Hall com-
ponent can be understood in terms of the Berry curvature �� of the electronic Bloch states, which

www.annualreviews.org • Topological Semimetals: Transport 229



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

leads to an anomalous electron group velocity perpendicular to the longitudinal electric field
[(e/�)�E × ��] (288). In a magnetic WSM, a pair of Weyl nodes with opposite chirality can be
seen as monopole sources of Berry curvature. In this case, the AHE is purely intrinsic and tun-
able by the separation of pairedWeyl nodes (54). The intrinsic AHE current is dissipationless (55,
56, 284, 289) and fully spin polarized (289–291) and therefore has great potential for spintronic
applications.

A TRS-breaking Weyl state has also been predicted or established in many magnetic com-
pounds. An incomplete list includes Co-based Heusler alloys Co2XZ (X = IVB or VB; Z = IVA
or IIIA) (95–99), half-metallic Co3Sn2S2 (93, 94, 292), half-Heusler compounds RPtBi (R = Gd
and Nd) with AFM orders (108–110), and the chiral antiferromagnets MnSn3 and MnGe3 (102,
103). The FM Co2XZ compounds are known to be half-metallic ferromagnets, and some of them
have Curie temperatures above room temperature, high spin polarization, and a large Seebeck
coefficient (293, 294). It has been theoretically predicted that the locations of the Weyl points
of these compounds in momentum space can be tuned by the magnetization direction (96, 97).
These properties, together with the predicted giant anomalous Hall conductivity (98, 293), make
thesematerials potentially useful for spintronic and thermoelectric applications.These predictions
are awaiting experimental verification. A large intrinsic AHE and a giant anomalous Hall angle
were recently reported in FM Co3Sn2S2 (94, 292), for which the existence of Weyl fermions has
been demonstrated by the observation of surface Fermi arcs (93).

The topological nontrivial states in half-Heusler compounds attracted significant attention
even before the discoveries of topological semimetals (108, 295–297). The recent observations
of the chiral anomaly—a unique feature of Weyl fermions—together with band structure calcu-
lations suggest a magnetic field–driven Weyl state in AFM RPtBi (109, 110). Although different
mechanisms such as Zeeman splitting (109) and exchange field (110) have been proposed for the
formation of a TRS-breaking Weyl state in these AFM zero-gap semiconductors with quadratic
band touching, the intrinsic AHE associated with the magnetic field–driven Weyl state has been
probed (Figure 7a), with a very large anomalous Hall angle of ∼0.15 comparable to the largest
observed in bulk ferromagnets (Figure 7b) (110, 298).

The chiral antiferromagnets Mn3Sn and Mn3Ge exhibit large anomalous Hall resistivity
in the AFM-ordered state, with a sharp and narrow hysteresis loop in magnetic field sweeps
(Figure 7c) (100, 101). In particular, Mn3Sn is the first antiferromagnet to be discovered to ex-
hibit such a surprising large room temperature AHE (100). Furthermore, remarkable anomalous
behavior has also been observed in this material’s Nernst effect (57). These anomalous transport
features have been ascribed to a magnetic Weyl state, which was subsequently demonstrated both
theoretically (102) and experimentally (103).

Although the intrinsic AHE results from magnetic Weyl states, the strong intrinsic AHE does
not exclusively occur in magnetic Weyl systems. Other magnetic systems such as FM kagomé
metal Fe2Sn3 (299), FM spinel CuCr2Se4−xBrx (289), and magnetic semiconductors (288, 291)
have also been reported to display the intrinsic AHE.

3.4. The Chiral Anomaly

As a hallmark of WSMs, the chiral anomaly is particularly important, as it bridges Weyl fermions
in condensedmatter physics and in high-energy physics.Generally, the numbers of left- and right-
handedWeyl fermions are conserved. This individual conservation of particles with opposite chi-
rality is violated in the presence of parallel electric andmagnetic fields.This effect,which was orig-
inally proposed in particle physics and termed the Adler–Bell–Jackiw effect or the chiral anomaly
(17), leads to exotic transport behaviors in condensed matter, i.e., negative longitudinal MR, AMR
narrowing, and the planar Hall effect (PHE), which are discussed in detail below.
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3.4.1. The chiral magnetic effect and negative longitudinal magnetoresistance. Negative
longitudinal MR (i.e., the increase in magnetic field parallel to the electrical current leading to
a decrease of resistivity) related to the chiral anomaly has been discovered in several topological
semimetal systems, as shown below.The chiral anomaly is the manifestation of the chiral magnetic
effect: the generation of electric current under magnetic field induced by the chirality imbalance.
The mechanism of this phenomenon is well established (10, 11, 52, 53). Here we give a brief
overview on its relevant physics. We consider the quantum limit, where only the zeroth LL is
occupied. As described in Equation 16 and illustrated in Figure 8a, the 3D Landau quantiza-
tion of a WSM leads to counterpropagating zeroth LLs for a pair of Weyl cones, which disperse
only along the magnetic field direction. This direction is also the direction for electrons to have
coherent motion when an external electric field E is applied. Such electric field–driven motion
leads to electron pumping between Weyl nodes with a rate ∝ −E · B (10, 11, 53), which results
in imbalanced population of carriers between the two zeroth LLs of the paired Weyl cones. As
a result, the chirality becomes imbalanced. In condensed matter, this charge pumping process is
finally relaxed by inter–Weyl node scattering, and a steady state is reached, with a chiral current
jc ∝ BE · Bτint, where τ int is the internode relaxation time (10, 11, 53). Clearly, this chiral current
contributes to negativeMRwhenE//B. Aside from this quantummechanical interpretation based
on only the zeroth LL, a semiclassical approach based on the Boltzmann equation also yields the
same result; with this approach, this formulism can also be generalized to the semiclassical regime
that involves multiple LLs (10, 11, 53).

Although the negative longitudinal MR originating from chiral magnetic effect occurs in both
the quantum limit and semiclassical regime, the actual field dependence of MR can be material
dependent. Generally, the negative MR is expected to be linearly dependent on B in the quan-
tum limit while being ∝ B2 in the low-field range. But the real situation can be more complex
if the internode scattering that relaxes the chiral charge pumping becomes field dependent. This
is possible in the quantum limit at high field, as shown below. In real materials, the situation can
be further complicated by positive orbital MR due to the Lorentz effect, which is determined by
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the magnetic field component perpendicular to current, as discussed in Section 3.1. Ideally, such
positive orbital MR should vanish when E//B, but finite orbital MRmay arise from an anisotropic
Fermi surface for E//B (300). Given such orbital effects, the longitudinal MRmay show quadratic
field dependence in the low-field range but becomes negative when the chiral magnetic effect
dominates.

It is also worth noting that the chiral magnetic effect is not limited to the case of exact E//B,
since the chiral charge pumping rate is finite for nonorthogonal electric and magnetic fields.
Therefore, negative MRmay be observed in a range of field orientation angles and vanishes when
it is compensated by the positive orbital MR component, which is determined by the transverse
magnetic field component. If the negative MR is too sensitive to field orientation (e.g., it disap-
pears when the magnetic field is deviated by 1° or 2° from the parallel direction), it may suggest a
classical origin of current jetting, which is discussed below.

The chiral magnetic effect was first observed in Dirac systems such as Bi0.97Sb0.03 (301),
Na3Bi (Figure 8c) (105), Cd3As2 (45, 106), and ZrTe5 (Figure 8d) (107) before the experimental
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discovery of WSMs. This effect can be attributed to the fact that the Dirac point in a 3D DSM
can be viewed as a superposition of two pairedWeyl nodes with opposite chirality. Such two over-
lapping Weyl nodes can be separated in momentum space by magnetic field, which breaks TRS
(Figure 8b). Half-Heusler RPtBi is another group of materials that exhibits the magnetic field–
induced chiral magnetic effect (109, 110). As mentioned in Section 3.3, these materials are zero-
gap semiconductors, and their Weyl points are believed to be caused by external field–induced
Zeeman splitting (109) or by the exchange field from 4f electrons (110). It has been proposed that
their Weyl points can be induced for any magnetic field orientation and that the induced Weyl
points do not necessarily reside on the axis parallel to the field (104). For these field-induced
Weyl states, the separation of Weyl points in momentum space may be dependent on magnetic
field, so the negative longitudinal MR could display nonuniversal field dependence. For example,
a quadratic field dependence of negativeMR anticipated for a non–quantum limit regime has been
observed for most of the above materials (107, 110, 301). However, a saturation behavior is seen
in Na3Bi (Figure 8c), which is attributed to the field-dependent internode relaxation time in the
quantum limit (105).

Since the experimental discoveries of the WSM state in materials such as TaAs class (type I)
materials (22, 23, 25, 27, 39, 86–92) and (W/Mo)Te2 (type II) materials (28, 111–122), many re-
search groups have reported observation of negative longitudinal MR in those materials and have
attributed it to the chiral magnetic effect (109, 110, 179–181, 183, 192, 225, 302, 303). Although
the chiral anomaly is usually viewed as smoking gun evidence for aWeyl state, onemust be cautious
before attributing the observed negative longitudinal MR to the chiral anomaly, since a classical
effect, current jetting, can also lead to negative longitudinal MR (47). Current jetting is simply
due to the rule that the current flows predominately along the high-conductance direction. Once
large-conductance anisotropy exists, equipotential lines are strongly distorted, and the current
thus forms jets. For materials with large transverse MR, which is the case for most DSMs and
WSMs, magnetic field causes very strong conductance anisotropy between the along-current and
perpendicular-to-current directions. Therefore, with increasing magnetic field, the voltage drop
between voltage contacts may even decrease for asymmetric point–like electrical contacts and ir-
regular sample shape, leading to negative longitudinal MR (10, 304, 305). To minimize such a
classical effect, it is important to use a perfect bar-shape sample with a large aspect ratio and well-
separated, symmetric voltage contacts.Current jetting is also expected to be weak inmaterials with
small transverse MR [e.g., GdPtBi (304)] due to reduced-conductance anisotropy under magnetic
fields. More comprehensive discussions of the current jetting effect in topological semimetals can
be found in References 304 and 305.

For type II WSMs such as (W/Mo)Te2 (28, 111–122), the chiral anomaly shows a different
situation. Given the strongly titled Weyl cones in such WSMs, Landau quantization sensitively
depends on the orientation of magnetic field, and the Landau spectrum is gapped for some field
directions. Therefore, their negative longitudinal MR is strongly anisotropic (28, 306, 307); this
has been observed inWTe2 (302, 303). Further studies also found that, in the classical limit charac-
terized by ωcτ 
 1 (as opposed to the quantum limit or semiclassical limit, where ωcτ � 1, where
ωc is the cyclotron frequency and τ is the transport relaxation time), negative longitudinal MR in
type II WSMs becomes isotropic, similar to that in type I semimetals (303, 308).

3.4.2. The Planar Hall effect. In addition to generating negativeMR in longitudinal transport,
the chiral anomaly also leads to a nontrivial transverse (Hall) signal under in-plane magnetic field
(Figure 9a). Intuitively, an in-plane Hall signal is not expected under in-plane magnetic field due
to the absence of electron accumulation on the sample edges. However, in-plane Hall voltage can
be generated in the presence of coplanar electric and magnetic fields (Figure 9a) due to the chiral
anomaly, leading to the so-called PHE (309–315).
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The PHE, a well-known phenomenon observed in ferromagnets, is due to the resistivity
anisotropy caused by anisotropic magnetization (316). Although topological semimetals have the
same in-plane angular dependence in Hall resistivity ρxy as do ferromagnets, the PHE in topolog-
ical semimetals occurs in the absence of magnetic order, with a significantly enhanced amplitude
(309, 310).With coplanar electric and magnetic fields, the transverse resistance ρxy of the PHE is
(309)

ρxy = (ρ|| − ρ⊥ )
2

sin 2ϕ, 17.

where ρ|| and ρ⊥ denote resistivity with current flowing along and perpendicular to the direction
of the magnetic field, respectively, and ϕ is the angle between the current flow and magnetic field
orientation (Figure 9a). As discussed in Section 3.2, in the Drude model, the orbital MR for B//I
is strictly zero unless a multiband effect is involved. Therefore, ρ|| − ρ⊥ represents the resistivity
anisotropy caused by the chiral anomaly.
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In experimental studies onDSMs andWSMs, an abnormalHall signal under in-planemagnetic
field was first reported in ZrTe5 (317). A strict sin 2ϕ dependence was later observed in a number
of materials, including ZrTe5, Cd3As2, GdPtBi, WTe2, and VAl3 (311–315). With rotating in-
plane field (Figure 9a) and out-of-plane field (Figure 9b), the twofold anisotropy of the PHE
(Figure 9c) clearly differs from the onefold symmetry seen for the conventional Hall effect
(Figure 9d) (313). Unlike the conventional Hall effect, the PHE does not satisfy antisymmetry;
i.e., ρxy 	= −ρyx. This is because the PHE does not originate from the Lorentz force (309, 310).

3.4.3. Narrowing of angular-dependent interlayer resistance. With the above definition of
ρ‖ and ρ⊥, longitudinal resistivity can be expressed as (309)

ρxx = ρ⊥ + (ρ‖ − ρ⊥ )cos2 ϕ. 18.

Another unusual property that can be derived from Equation 18 is the narrowing of the AMR
peak at high magnetic field (309). For simplicity, magnetoconductivity with sweeping in-plane
angle ϕ may be expressed as 1

ρxx (B,ϕ)
− 1

ρxx (0,ϕ)
(a stricter process requires tensor conversion). At a

small angle, the angular dependence of magnetoconductivity has a Lorentzian profile with angular
width (309):

�ϕ ≈
(

εF

�vF/lB

)2√
τ

τc
, 19.

where lB = √
�/eB is the magnetic length, τc is the relaxation time for chiral charge diffusion, and

τ is the conventional momentum relaxation time. At low fields, LLs are wiped out by energy level
broadening and thermal excitation. In this case, the parameters involved in Equation 19 are field
independent except for lB, indicating a narrowing of angular width with B that has been observed
in Na3Bi (Figure 8e,f ) (176). When a strong magnetic field drives the system to the quantum
limit, the field dependence of each parameter in Equation 19 leads to the saturation of �ϕ, as
shown in Figure 9e,f (176).

3.5. Quantum Hall States in the 2D Limit

Topological semimetal phases may evolve into new topological quantum states in low dimensions.

3.5.1. Classifications of the various quantum Hall states. In the 2D limit, one intriguing
aspect of topological semimetals is the potential to generate various quantum Hall states. In
Section 3.2.8, we mention that the QHE in the 3D layered topological semimetal EuMnBi2 is
caused by the formation of 2D electronic states due to restriction of electron motion in the 2D
Bi plane (177). Here we discuss two other quantum Hall states in the 2D limit that have potential
applications in electronics and spintronics: the QSHI (i.e., 2D topological insulator) state and the
QAHI state.

The 2D quantum Hall states for both nonrelativistic and relativistic electrons reflect the
fundamental topological properties of materials. For example, the integer QHE, an established
phenomenon that was well understood in terms of Landau quantization, now has a topological
interpretation based on the topological invariant of the Chern number, which opens up the field
of topological electronic states in condensed matter. As shown in Figure 10a and mentioned in
Section 3.2.7, an integer quantum Hall system under sufficiently strong fields is characterized by
an insulating bulk state with electrons pinned to quantized small radii orbits and a conducting,
dissipationless chiral edge state formed by skipping orbits. The superposition of two copies of
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time-reversal integer quantum Hall systems in the quantum limit leads to the QSHI, i.e., the
2D topological insulator, which displays a pair of counterpropagating, spin-polarized edge states
due to spin-orbit locking (Figure 10c). Apparently, the magnetic field necessary to produce an
integer quantum Hall system is no longer needed for a QSHI system (76, 79), as the magnetic
field is cancelled out when the time-reversal copies of integer quantum Hall systems are brought
together. Another modification of the integer quantum Hall system that does not require an
external magnetic field is the QAHI state, in which spontaneous magnetization leads to the
dissipationless chiral edge state (Figure 10b) and the formation of LLs is not required (76, 79).

The QSHI and QAHI states also provide significant insights into topological physics beyond
simple modification of the integer quantumHall system (76).TheQAHI and the integer quantum
Hall system are essentially 2DChern insulators characterized by nonzero Chern numbers, in con-
trast with a trivial insulator with C = 0. With TRS, the Chern number must vanish, but another
topological invariant, the Z2 number, can be introduced to clarify the 2D insulators, becoming 0
for trivial insulators and 1 for a symmetry-protected topological insulator (QSHI) (318). Simple
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stacking of these 2D building blocks leads to a 3D weak Chern insulator or a weak topological
insulator that is not robust against disorder (319). It is also possible to extend the topological
classification of a QSHI to 3D and create a strong 3D topological insulator (319). However, the
extension of the 2D Chern insulator to 3D cannot produce a strong 3D Chern insulator. Instead,
this development results in a metallic phase: the topological semimetal (76). The above discus-
sions show how quantum Hall systems, QSHIs, QAHIs, 3D topological insulators, and topolog-
ical semimetals are closely connected in terms of the topological properties, which implies the
possibility of conversion between these states.

From the experimental aspect, QSHIs and QAHIs are expected to display unusual nonlocal
transport (320, 321).The resistance or conductance of conventional diffusive systems is dependent
on the dimensions of the sample and is determined by the local resistivity or conductivity (Ohm’s
law). However, in quantum Hall systems, due to scale-invariant dissipationless edge conduction,
transport is nonlocal, and the concepts of resistivity or conductivity are thus meaningless. The
Hall conductance can be obtained from the Chern number C by Gxy = Ce2/h; a half-quantized
Hall conductance is also expected for massless relativistic fermions, as discussed in Section 3.2.8
(Equation 15). For a QSHI, Gxy = 0 due to C = 0 in a TRS system, which can be attributed to
the fact that the pair of time-reversed chiral edge states cancels each other (Figure 10c). For the
longitudinal conductance Gxx, the measurement results strongly depend on the configuration of
the contact electrodes. This is because an ideal contact attached to the edge of the sample acts as a
reservoir that draws electrons and emits them from and to the edge channels.The spin information
of an electron is smeared out during this process. For an integer quantum Hall system or a QAHI
system, the edge state is chiral (Figure 10a,b), and the electrons emitted from the contact have
to flow along the same direction, which should lead to zero longitudinal conductance and hence
zero longitudinal resistance according to resistivity and conductivity tensor conversion. However,
for a QSHI with time-reversed spin-polarized edge states, the spin of the emitted electrons has
half probability to be reversed, corresponding to the back-moving edge channel with opposite
spin. Therefore, a finite resistance depending on the number and configuration of contacts can be
expected (320, 321).

3.5.2. Material realizations for the QSHI and QAHI states. The QSHI state has been pro-
posed in the monolayer form of the layered 1T′–transition metal dichalcogenidesMX2 (M = W,
Mo; X = S, Se, Te) (72) and WHM (322). The structure of monolayer MX2 is formed from the
stacking of X-M-X layers, with its physical properties being determined by the type of stacking. A
hexagonal H structure with ABA stacking (Figure 10d) results in the well-known direct-band-gap
semiconductors (323). For a rhombohedral 1T phase with ABC stacking (Figure 10e), the struc-
ture is unstable and undergoes a spontaneous lattice distortion to the 1T′ phase (Figure 10f ),
which consequently leads to a QSHI state in the presence of SOC (72). The QSHI state in mono-
layer 1T′-MX2 was first demonstrated in WTe2, as this material naturally has the 1T′ structure
in the bulk form. There is transport (74, 75) and spectroscopic (73) evidence of the QSHI state
in WTe2 monolayers prepared using mechanical exfoliation or molecular beam epitaxy (MBE)
growth. For example, upon sweeping the gate voltage, a conductance plateau associated with the
1D edge state of a QSHI is observed in aWTe2 monolayer (Figure 10g) but is absent in bilayer or
few-layer samples (74, 75). More importantly, the temperature at which the conductance plateau
starts to develop is as high as 100 K (Figure 10g), which is greatly higher than the operating
temperature of other well-established QSHIs in semiconductor quantum wells (324) and could
be ascribed to the large bulk band gap of the 1T′-WTe2 monolayer [which was predicted to be
100 meV (72) and found to be 55 ± 20 meV for MBE-grown samples (73)]. This finding has
great potential for practical device applications. Furthermore, under one proposal, the horizontal
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electric field may break the inversion symmetry and may induce strong Rashba splitting of the
bands near EF, which closes the bulk gap at some critical electric fields. Such gap closing leads to
a topological phase transition to a trivial phase; this transition occurs very rapidly and can thus be
used for topological field effect transistors (72).

The tetragonal layered WHM compounds have also been predicted to become QSHIs in the
monolayer form (322).Different fromWTe2, which is a type II topologicalWSM in the bulk form
(28, 111–113, 117), bulk WHM is predicted to be a weak topological insulator formed from the
stacking of QSHIs (322, 325); this is a long-sought topological quantum state (326). In WHM,
C2v symmetry ensures nodal-line crossings near EF in the absence of SOC, but this symmetry
cannot prevent SOC gap opening (154). Because the Fermi level crosses the gapped cones and
the band dispersion is extremely linear over a wide energy range,WHMs have been established
as topological NLSMs (78, 85, 154). To realize the predicted QSHI state, one possible route is to
exfoliate the bulkWHMs to their monolayers. Although the interlayer coupling inWHMs is not
van der Waals type (322, 327), the weak coupling strength in someWHMs allows for mechanical
exfoliation, as has been demonstrated (156). One possible advantage of usingWHMs as a platform
for realizingQSHIs is the variable SOC gap with various combinations ofW,H, andM (226); such
a gap offers the opportunity to design different QSHIs.

As mentioned above, a QAHI system is in principle similar to the integer quantum Hall sys-
tem, but the former occurs without an external magnetic field and LLs (76, 79) and thus carries
great promise for possible applications in spintronics. Furthermore, a QAHI system also provides
a promising platform for the creation, manipulation, and utilization of Majorana fermions, the
hypothetical particles that are their own antiparticles (328, 329). The QAHI state was first exper-
imentally demonstrated in magnetically doped topological insulators (330–332). However, it has
so far been realized only at very low temperatures (<1 K) (330–332). Room temperature QAHIs,
if realized, will have the potential to revolutionize information technology through dissipation-
less spin-polarized chiral edge transport in spintronic devices. Recent studies have revealed a new
possible route to the realization of high-temperature QAHIs: 3D FM WSMs can evolve into
large-gap QAHIs when the dimensionality is reduced from 3D to 2D, due to the confinement-
induced quantization of low-energy states (21). One possible candidate material is HgCr2Se4 (21),
which is awaiting experimental verification. In addition to these two approaches, there are other
proposals for the realization of QAHIs (76).

4. SUMMARY AND PERSPECTIVE

Above we review distinct electronic transport phenomena associated with nontrivial band topol-
ogy in different types of topological semimetals and discuss how to extract the fundamental prop-
erties of Dirac/Weyl fermions such as effective mass, quantummobility, and the Berry phase from
dHvA or SdH quantum oscillation measurements. The above discussion shows that topological
semimetals exhibit a rich variety of exotic properties that are not seen in nonrelativistic electron
systems. These properties include the chiral anomaly and the PHE in WSMs, the intrinsic AHE
in TRS-breaking WSMs, quantum oscillations due to Weyl orbits and AMR peak narrowing un-
der high magnetic fields in DSMs, the half-integer QHE and quantum tunneling of the zeroth
LLs in layered magnetic DSMs, and vanishing magnetization and dynamic mass generation in the
quantum limit of DSMs/WSMs. We discuss how these properties are connected with nontrivial
band topology, although the mechanisms for some of these properties are not fully understood.
Furthermore, we discuss how DSMs/WSMs are linked with the QSHI and QAHI states and how
these two quantum Hall states can be approached by reducing NLSMs/FM WSMs to 2D thin
layers.
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As previous reviews have noted (10, 11), one challenge in this field is the experimental real-
ization of ideal model systems like graphene (10) or the hydrogen atom (11) for various types of
topological semimetal phases. An ideal model system should contain only the topological band(s),
with the same types of Dirac orWeyl points being symmetrically related, located at the Fermi en-
ergy level, and well separated inmomentum space. For thematerial aspect, such a system should be
stable in the ambient environment and have minimal defects (10, 11). As noted above, the topo-
logical semimetals discovered so far are probably the tip of the iceberg. Given that topological
semimetals can be predicted by band structure calculations, we believe that many new topological
semimetal phases and candidate materials will be discovered and that some of them may serve as
model systems.There have been recent breakthroughs in topological phase screening and database
development for topological quantum materials (37, 325, 333–336a).With new simple model sys-
tems, the trivial bands will not mask or interfere with the contributions from exotic phenomena
arising from the nontrivial bands, and novel knowledge of various topological semimetal phases
can be further revealed.

Topological quantum materials have stimulated great interest because of not only their con-
nection with high-energy particle physics but also their great potential in future technology ap-
plications. As discussed above, both the QSHI and QAHI states can be obtained by reducing the
dimension ofNLSMs/FMWSMs to 2D, and these two states can support dissipationless transport
through their topological spin-polarized edge states. Therefore, they carry great promise for ap-
plications for spintronic devices and quantum computation.Although both theQSHIs andQAHIs
have been demonstrated experimentally, these states currently occur only in the low-temperature
range. Pushing their operation temperature to room temperature is another great challenge in the
field. Achieving this goal requires discoveries of new topological materials with better properties,
along with integrated efforts in theoretical modeling, computation, synthesis, characterization,
and device demonstrations.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

J.H. is supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sci-
ences programunder awardDE-SC0019467.Z.M. is supported by theUSNational Science Foun-
dation under grant DMR1707502. N.N. is supported by the US DOE, Office of Science, Basic
Energy Sciences program under award DE-SC0011978.We thank Prof. Antony Carrington from
Bristol University for informative discussions on the effectivemass formultifrequency oscillations.

LITERATURE CITED

1. Wilczek F. 1998. Why are there analogies between condensed matter and particle theory? Phys. Today
51:11

2. Volovik GE. 2009. The Universe in a Helium Droplet. Oxford, UK: Oxford Univ. Press
3. Geim AK, Novoselov KS. 2007. The rise of graphene.Nat. Mater. 6:183–91
4. Hasan MZ, Kane CL. 2010. Topological insulators. Rev. Mod. Phys. 82:3045–67
5. Qi X-L, Zhang S-C. 2011. Topological insulators and superconductors. Rev. Mod. Phys. 83:1057–110

www.annualreviews.org • Topological Semimetals: Transport 239



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

6. Vafek O, Vishwanath A. 2014. Dirac fermions in solids: from high-Tc cuprates and graphene to topo-
logical insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5:83–112

7. Jia S, Xu S-Y,HasanMZ. 2016.Weyl semimetals, Fermi arcs and chiral anomalies.Nat.Mater. 15:1140–
44

8. Yan B,Felser C. 2017.Topological materials:Weyl semimetals.Annu.Rev.Condens.Matter Phys.8:337–54
9. Burkov AA. 2018.Weyl metals. Annu. Rev. Condens. Matter Phys. 9:359–78

10. Armitage NP, Mele EJ, Vishwanath A. 2018. Weyl and Dirac semimetals in three-dimensional solids.
Rev. Mod. Phys. 90:015001

11. Bernevig A, Weng H, Fang Z, Dai X. 2018. Recent progress in the study of topological semimetals.
J. Phys. Soc. Jpn. 87:041001

12. Young SM, Zaheer S, Teo JCY, Kane CL, Mele EJ, Rappe AM. 2012. Dirac semimetal in three dimen-
sions. Phys. Rev. Lett. 108:140405

13. Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, et al. 2012. Dirac semimetal and topological phase
transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85:195320

14. Wang Z, Weng H, Wu Q, Dai X, Fang Z. 2013. Three-dimensional Dirac semimetal and quantum
transport in Cd3As2. Phys. Rev. B 88:125427

15. Weyl H. 1929. Elektron und Gravitation. I. Z. Phys. 56:330–52
16. Herring C. 1937. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52:365–73
17. Nielsen HB, Ninomiya M. 1983. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys.

Lett. B 130:389–96
18. Abrikosov AA, Beneslavskii SD. 1971. Some properties of gapless semiconductors of the second kind.

J. Low Temp. Phys. 5:141–54
19. Wan X, Turner AM, Vishwanath A, Savrasov SY. 2011. Topological semimetal and Fermi-arc surface

states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83:205101
20. Burkov AA, Balents L. 2011. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett.

107:127205
21. Xu G, Weng H, Wang Z, Dai X, Fang Z. 2011. Chern semimetal and the quantized anomalous Hall

effect in HgCr2Se4. Phys. Rev. Lett. 107:186806
22. Huang S-M, Xu S-Y, Belopolski I, Lee C-C, Chang G, et al. 2015. A Weyl fermion semimetal with

surface Fermi arcs in the transition metal monopnictide TaAs class.Nat. Commun. 6:7373
23. Weng H, Fang C, Fang Z, Bernevig BA, Dai X. 2015. Weyl semimetal phase in noncentrosymmetric

transition-metal monophosphides. Phys. Rev. X 5:011029
24. Dirac PAM. 1928. The quantum theory of the electron. Proc. R. Soc. A 117:610–24
25. Xu S-Y, Belopolski I, Alidoust N, Neupane M, Bian G, et al. 2015. Discovery of a Weyl fermion

semimetal and topological Fermi arcs. Science 349:613–17
26. Lu L,Wang Z,Ye D,Ran L, Fu L, et al. 2015. Experimental observation ofWeyl points.Science 349:622–

24
27. Lv BQ,Weng HM, Fu BB, Wang XP, Miao H, et al. 2015. Experimental discovery of Weyl semimetal

TaAs. Phys. Rev. X 5:031013
28. Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, et al. 2015. Type-II Weyl semimetals. Nature

527:495–98
29. Chang T-R, Xu S-Y, Sanchez DS, Tsai W-F, Huang S-M, et al. 2017. Type-II symmetry-protected

topological Dirac semimetals. Phys. Rev. Lett. 119:026404
30. Burkov AA, Hook MD, Balents L. 2011. Topological nodal semimetals. Phys. Rev. B 84:235126
31. Bradlyn B, Cano J, Wang Z, Vergniory MG, Felser C, et al. 2016. Beyond Dirac and Weyl fermions:

unconventional quasiparticles in conventional crystals. Science 353:aaf5037
32. Wieder BJ, Kim Y, Rappe AM,Kane CL. 2016.Double Dirac semimetals in three dimensions.Phys. Rev.

Lett. 116:186402
33. Weng H, Fang C, Fang Z, Dai X. 2016. Topological semimetals with triply degenerate nodal points in

q-phase tantalum nitride. Phys. Rev. B 93:241202
34. Zhu Z, Winkler GW, Wu Q, Li J, Soluyanov AA. 2016. Triple point topological metals. Phys. Rev. X

6:031003

240 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

35. Weng H, Fang C, Fang Z, Dai X. 2016. Coexistence of Weyl fermion and massless triply degenerate
nodal points. Phys. Rev. B 94:165201

36. Chang G, Xu S-Y, Huang S-M, Sanchez DS, Hsu C-H, et al. 2017. Nexus fermions in topological
symmorphic crystalline metals. Sci. Rep. 7:1688

37. Watanabe H, Po HC, Vishwanath A. 2018. Structure and topology of band structures in the 1651 mag-
netic space groups. Sci. Adv. 4:eaat8685

38. Xu S-Y, Liu C, Kushwaha SK, Sankar R, Krizan JW, et al. 2015. Observation of Fermi arc surface states
in a topological metal. Science 347:294–98

39. Yang LX, Liu ZK, Sun Y, Peng H, Yang HF, et al. 2015. Weyl semimetal phase in the non-
centrosymmetric compound TaAs.Nat. Phys. 11:728–32

40. Bian G, Chang T-R, Sankar R, Xu S-Y, Zheng H, et al. 2016. Topological nodal-line fermions in spin-
orbit metal PbTaSe2.Nat. Commun. 7:10556

41. Inoue H, Gyenis A,Wang Z, Li J, Oh SW, et al. 2016. Quasiparticle interference of the Fermi arcs and
surface-bulk connectivity of a Weyl semimetal. Science 351:1184–87

42. Batabyal R, Morali N, Avraham N, Sun Y, Schmidt M, et al. 2016. Visualizing weakly bound surface
Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2:e1600709

43. Potter AC, Kimchi I, Vishwanath A. 2014. Quantum oscillations from surface Fermi arcs in Weyl and
Dirac semimetals.Nat. Commun. 5:5161

44. Moll PJW, Nair NL, Helm T, Potter AC, Kimchi I, et al. 2016. Transport evidence for Fermi-arc-
mediated chirality transfer in the Dirac semimetal Cd3As2.Nature 535:266–70

45. Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP. 2015. Ultrahigh mobility and giant magnetore-
sistance in the Dirac semimetal Cd3As2.Nat. Mater. 14:280–84

46. Shekhar C, Nayak AK, Sun Y, Schmidt M, Nicklas M, et al. 2015. Extremely large magnetoresistance
and ultrahigh mobility in the topological Weyl semimetal candidate NbP.Nat. Phys. 11:645–49

47. Pippard AB. 1989.Magnetoresistance in Metals. Cambridge, UK: Cambridge Univ. Press
48. Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, et al. 2014. Large, non-saturating magnetoresistance in

WTe2.Nature 514:205–8
49. Skinner B, Fu L. 2018. Large, nonsaturating thermopower in a quantizing magnetic field. Sci. Adv.

4:eaat2621
50. Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur SP, et al. 2013. Evidence for massive bulk

Dirac fermions in Pb1−xSnxSe from Nernst and thermopower experiments.Nat. Commun. 4:2696
51. Stockert U, dos Reis RD, Ajeesh MO,Watzman SJ, Schmidt M, et al. 2017. Thermopower and thermal

conductivity in the Weyl semimetal NbP. J. Phys. Condens. Matter 29:325701
52. Jho Y-S, Kim K-S. 2013. Interplay between interaction and chiral anomaly: anisotropy in the electrical

resistivity of interacting Weyl metals. Phys. Rev. B 87:205133
53. Son DT, Spivak BZ. 2013. Chiral anomaly and classical negative magnetoresistance of Weyl metals.

Phys. Rev. B 88:104412
54. Burkov AA. 2014. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113:187202
55. Karplus R, Luttinger JM. 1954. Hall effect in ferromagnetics. Phys. Rev. 95:1154–60
56. Haldane FDM. 2004. Berry curvature on the Fermi surface: anomalous Hall effect as a topological

Fermi-liquid property. Phys. Rev. Lett. 93:206602
57. IkhlasM,Tomita T,Koretsune T, SuzukiM-T,Nishio-HamaneD, et al. 2017.Large anomalous Nernst

effect at room temperature in a chiral antiferromagnet.Nat. Phys. 13:1085–90
58. Sakai A, Mizuta YP, Nugroho AA, Sihombing R, Koretsune T, et al. 2018. Giant anomalous Nernst

effect and quantum-critical scaling in a ferromagnetic semimetal.Nat. Phys. 14:1119–24
59. Ishizuka H, Hayata T, Ueda M, Nagaosa N. 2016. Emergent electromagnetic induction and adiabatic

charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117:216601
60. Taguchi K, Imaeda T, Sato M, Tanaka Y. 2016. Photovoltaic chiral magnetic effect in Weyl semimetals.

Phys. Rev. B 93:201202
61. Chan C-K, Lindner NH, Refael G, Lee PA. 2017. Photocurrents in Weyl semimetals. Phys. Rev. B

95:041104

www.annualreviews.org • Topological Semimetals: Transport 241



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

62. de Juan F, Grushin AG,Morimoto T,Moore JE. 2017. Quantized circular photogalvanic effect in Weyl
semimetals.Nat. Commun. 8:15995

63. Ma Q, Xu S-Y, Chan C-K, Zhang C-L, Chang G, et al. 2017. Direct optical detection of Weyl fermion
chirality in a topological semimetal.Nat. Phys. 13:842–47

64. Osterhoudt GB, Diebel LK, Gray MJ, Yang X, Stanco J, et al. 2019. Colossal mid-infrared bulk photo-
voltaic effect in a type-I Weyl semimetal.Nat. Mater. 18:471–75

65. Wu L, Patankar S, Morimoto T, Nair NL, Thewalt E, et al. 2016. Giant anisotropic nonlinear optical
response in transition metal monopnictide Weyl semimetals.Nat. Phys. 13:350–55

66. Morimoto T, Nagaosa N. 2016. Topological nature of nonlinear optical effects in solids. Sci. Adv.
2:e1501524

67. Goswami P, Sharma G, Tewari S. 2015. Optical activity as a test for dynamic chiral magnetic effect of
Weyl semimetals. Phys. Rev. B 92:161110

68. Ma J, Pesin DA. 2015. Chiral magnetic effect and natural optical activity in metals with or withoutWeyl
points. Phys. Rev. B 92:235205

69. Zhong S,Moore JE, Souza I. 2016. Gyrotropic magnetic effect and the magnetic moment on the Fermi
surface. Phys. Rev. Lett. 116:077201

70. Feng W, Guo G-Y, Zhou J, Yao Y, Niu Q. 2015. Large magneto-optical Kerr effect in noncollinear
antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92:144426

71. Higo T, Man H, Gopman DB, Wu L, Koretsune T, et al. 2018. Large magneto-optical Kerr ef-
fect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12:73–
78

72. Qian X, Liu J, Fu L, Li J. 2014. Quantum spin Hall effect in two-dimensional transition metal dichalco-
genides. Science 346:1344–47

73. Tang S, Zhang C,Wong D, Pedramrazi Z, Tsai H-Z, et al. 2017. Quantum spin Hall state in monolayer
1T′-WTe2.Nat. Phys. 13:683–87

74. Fei Z, Palomaki T,Wu S, Zhao W, Cai X, et al. 2017. Edge conduction in monolayer WTe2.Nat. Phys.
13:677–82

75. Wu S, Fatemi V, Gibson QD,Watanabe K, Taniguchi T, et al. 2018. Observation of the quantum spin
Hall effect up to 100 Kelvin in a monolayer crystal. Science 359:76–79

76. Weng H, Yu R, Hu X, Dai X, Fang Z. 2015. Quantum anomalous Hall effect and related topological
electronic states. Adv. Phys. 64:227–82

77. Burkov AA. 2015. Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter 27:113201
78. Chen F,HongmingW,Xi D,Zhong F. 2016.Topological nodal line semimetals.Chin. Phys. B 25:117106
79. Liu C-X, Zhang S-C,Qi X-L. 2016. The quantum anomalous Hall effect: theory and experiment.Annu.

Rev. Condens. Matter Phys. 7:301–21
80. Bansil A, Lin H, Das T. 2016. Topological band theory. Rev. Mod. Phys. 88:021004
81. Wang S,Lin B-C,Wang A-Q,YuD-P,Liao Z-M.2017.Quantum transport inDirac andWeyl semimet-

als: a review. Adv. Phys. X 2:518–44
82. Hasan MZ, Xu S-Y, Belopolski I, Huang S-M. 2017. Discovery of Weyl fermion semimetals and topo-

logical Fermi arc states. Annu. Rev. Condens. Matter Phys. 8:289–309
83. Zheng H, Zahid Hasan M. 2018. Quasiparticle interference on type-I and type-II Weyl semimetal sur-

faces: a review. Adv. Phys. X 3:1466661
84. Nurit A, Jonathan R, Abhay K-N, Noam M, Rajib B, et al. 2018. Quasiparticle interference studies of

quantum materials. Adv. Mater 30:1707628
85. Yang S-Y, Yang H, Derunova E, Parkin SSP, Yan B, Ali MN. 2018. Symmetry demanded topological

nodal-line materials. Adv. Phys. X 3:1414631
86. Xu S-Y, Alidoust N, Belopolski I, Yuan Z, Bian G, et al. 2015. Discovery of a Weyl fermion state with

Fermi arcs in niobium arsenide.Nat. Phys. 11:748–54
87. Xu N, Weng HM, Lv BQ, Matt CE, Park J, et al. 2015. Observation of Weyl nodes and Fermi arcs in

tantalum phosphide.Nat. Commun. 7:11006
88. Belopolski I, Xu S-Y, Sanchez DS, Chang G,Guo C, et al. 2016. Criteria for directly detecting topolog-

ical Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116:066802

242 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

89. Liu ZK,Yang LX, Sun Y,ZhangT,PengH, et al. 2015.Evolution of the Fermi surface ofWeyl semimet-
als in the transition metal pnictide family.Nat. Mater. 15:27–31

90. Souma S, Wang Z, Kotaka H, Sato T, Nakayama K, et al. 2016. Direct observation of nonequivalent
Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP. Phys. Rev. B
93:161112

91. Xu S-Y, Belopolski I, Sanchez DS, Zhang C, Chang G, et al. 2015. Experimental discovery of a topo-
logical Weyl semimetal state in TaP. Sci. Adv. 1:e1501092

92. Xu D-F, Du Y-P, Wang Z, Li Y-P, Niu X-H, et al. 2015. Observation of Fermi arcs in non-
centrosymmetric Weyl semi-metal candidate NbP. Chin. Phys. Lett. 32:107101

93. Xu Q, Liu E, Shi W, Muechler L, Gayles J, et al. 2018. Topological surface Fermi arcs in the magnetic
Weyl semimetal Co3Sn2S2. Phys. Rev. B 97:235416

94. Wang Q, Xu Y, Lou R, Liu Z, Li M, et al. 2018. Large intrinsic anomalous Hall effect in half-metallic
ferromagnet Co3Sn2S2 with magnetic Weyl fermions.Nat. Commun. 9:3681

95. Belopolski I, Sanchez DS, Chang G,Manna K, Ernst B, et al. 2017. A three-dimensional magnetic topo-
logical phase. arXiv:1712.09992 [cond-mat.mtrl-sci]

96. Chang G, Xu S-Y, Zheng H, Singh B, Hsu C-H, et al. 2016. Room-temperature magnetic topological
Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci.
Rep. 6:38839

97. Wang Z, Vergniory MG, Kushwaha S, Hirschberger M, Chulkov EV, et al. 2016. Time-reversal-
breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117:236401

98. Ernst B, Sahoo R, Sun Y, Nayak J, Muechler L, et al. 2017. Manifestation of the Berry curvature in
Co2TiSn Heusler films. arXiv:1710.04393 [cond-mat.mtrl-sci]

99. Kübler J, Felser C. 2016.Weyl points in the ferromagnetic Heusler compound Co2MnAl.Europhys. Lett.
114:47005

100. Nakatsuji S, Kiyohara N,Higo T. 2015. Large anomalous Hall effect in a non-collinear antiferromagnet
at room temperature.Nature 527:212–15

101. Nayak AK, Fischer JE, Sun Y, Yan B, Karel J, et al. 2016. Large anomalous Hall effect driven by a
nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2:e1501870

102. Hao Y, Yan S, Yang Z, Wu-Jun S, Stuart SPP, Binghai Y. 2017. Topological Weyl semimetals in the
chiral antiferromagnetic materials Mn3Ge and Mn3Sn.New J. Phys. 19:015008

103. Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA, et al. 2017. Evidence for magnetic Weyl
fermions in a correlated metal.Nat. Mater. 16:1090–95

104. Cano J, Bradlyn B, Wang Z, Hirschberger M, Ong NP, Bernevig BA. 2017. Chiral anomaly factory:
creating Weyl fermions with a magnetic field. Phys. Rev. B 95:161306

105. Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M, et al. 2015. Evidence for the chiral
anomaly in the Dirac semimetal Na3Bi. Science 350:413–16

106. Li C-Z,Wang L-X,LiuH,Wang J, Liao Z-M,YuD-P. 2015.Giant negative magnetoresistance induced
by the chiral anomaly in individual Cd3As2 nanowires.Nat. Commun. 6:10137

107. Li Q, Kharzeev DE, Zhang C, Huang Y, Pletikosic I, et al. 2016. Chiral magnetic effect in ZrTe5. Nat.
Phys. 12:550–54

108. Nakajima Y, Hu R, Kirshenbaum K, Hughes A, Syers P, et al. 2015. Topological RPdBi half-Heusler
semimetals: a new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1:e1500242

109. Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S, et al. 2016. The chiral anomaly and ther-
mopower of Weyl fermions in the half-Heusler GdPtBi.Nat. Mater 15:1161–65

110. Shekhar C,Nayak AK, Singh S,KumarN,Wu S-C, et al. 2016.Observation of chiral magneto-transport
in RPtBi topological Heusler compounds. arXiv:1604.01641 [cond-mat.mtrl-sci]

111. WuY,MouD, JoNH,SunK,Huang L, et al. 2016.Observation of Fermi arcs in type-IIWeyl semimetal
candidate WTe2. Phys. Rev. B 94:121113(R)

112. Wang C, Zhang Y,Huang J, Nie S, Liu G, et al. 2016. Observation of Fermi arc and its connection with
bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94:241119

113. Bruno FY,Tamai A,WuQS,Cucchi I, Barreteau C, et al. 2016.Observation of large topologically trivial
Fermi arcs in the candidate type-II Weyl WTe2. Phys. Rev. B 94:121112

www.annualreviews.org • Topological Semimetals: Transport 243



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

114. Wang Z, Gresch D, Soluyanov AA, Xie W, Kushwaha S, et al. 2016. MoTe2: a type-II Weyl topological
metal. Phys. Rev. Lett. 117:056805

115. Huang L,McCormick TM,Ochi M, Zhao Z, Suzuki M-T, et al. 2016. Spectroscopic evidence for a type
II Weyl semimetallic state in MoTe2.Nat. Mater 15:1155–60

116. Deng K,Wan G, Deng P, Zhang K, Ding S, et al. 2016. Experimental observation of topological Fermi
arcs in type-II Weyl semimetal MoTe2.Nat. Phys. 12:1105–10

117. Belopolski I, Sanchez DS, Ishida Y, Pan X, Yu P, et al. 2016.Discovery of a new type of topologicalWeyl
fermion semimetal state in MoxW1−xTe2.Nat. Commun. 7:13643

118. Belopolski I,Xu S-Y, Ishida Y,PanX,Yu P, et al. 2016.Fermi arc electronic structure andChern numbers
in the type-II Weyl semimetal candidate MoxW1−xTe2. Phys. Rev. B 94:085127

119. Jiang J, Liu ZK, Sun Y, Yang HF, Rajamathi CR, et al. 2017. Signature of type-II Weyl semimetal phase
in MoTe2.Nat. Commun. 8:13973

120. Liang A, Huang J, Nie S, Ding Y, Gao Q, et al. 2016. Electronic evidence for type II Weyl semimetal
state in MoTe2. arXiv:1604.01706 [cond-mat.mtrl-sci]

121. XuN,WangZJ,Weber AP,Magrez A,BugnonP, et al. 2016.Discovery ofWeyl semimetal state violating
Lorentz invariance in MoTe2. arXiv:1604.02116 [cond-mat.mtrl-sci]

122. Tamai A, Wu QS, Cucchi I, Bruno FY, Riccò S, et al. 2016. Fermi arcs and their topological character
in the candidate type-ii Weyl semimetal MoTe2. Phys. Rev. X 6:031021

123. Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S, et al. 2016. TaIrTe4: a ternary type-II
Weyl semimetal. Phys. Rev. B 93:201101

124. Belopolski I, Yu P, SanchezDS, Ishida Y,ChangT-R, et al. 2017. Signatures of a time-reversal symmetric
Weyl semimetal with only four Weyl points.Nat. Commun. 8:942

125. Autès G, Gresch D, Troyer M, Soluyanov AA, Yazyev OV. 2016. Robust type-II Weyl semimetal phase
in transition metal diphosphides XP2 (X = Mo,W). Phys. Rev. Lett. 117:066402

126. Liu ZK, Zhou B, Zhang Y,Wang ZJ,Weng HM, et al. 2014. Discovery of a three-dimensional topolog-
ical Dirac semimetal, Na3Bi. Science 343:864–67

127. Neupane M, Xu S-Y, Sankar R, Alidoust N, Bian G, et al. 2014. Observation of a three-dimensional
topological Dirac semimetal phase in high-mobility Cd3As2.Nat. Commun. 5:3786

128. Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, et al. 2014. A stable three-dimensional topological Dirac
semimetal Cd3As2.Nat. Mater 13:677–81

129. Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava RJ. 2014. Experimental real-
ization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113:027603

130. Yi H, Wang Z, Chen C, Shi Y, Feng Y, et al. 2014. Evidence of topological surface state in three-
dimensional Dirac semimetal Cd3As2. Sci. Rep. 4:6106

131. Yang B-J, Nagaosa N. 2014. Classification of stable three-dimensional Dirac semimetals with nontrivial
topology.Nat. Commun. 5:4898

132. Steinberg JA, Young SM, Zaheer S, Kane CL,Mele EJ, Rappe AM. 2014. Bulk Dirac points in distorted
spinels. Phys. Rev. Lett. 112:036403

133. Watanabe H, Po HC, Vishwanath A, Zaletel M. 2015. Filling constraints for spin-orbit coupled insula-
tors in symmorphic and nonsymmorphic crystals. PNAS 112:14551–56

134. Wieder BJ, Kane CL. 2016. Spin-orbit semimetals in the layer groups. Phys. Rev. B 94:155108
135. Young SM,Wieder BJ. 2017. Filling-enforced magnetic Dirac semimetals in two dimensions. Phys. Rev.

Lett. 118:186401
136. Xu S-Y, Xia Y, Wray LA, Jia S, Meier F, et al. 2011. Topological phase transition and texture inversion

in a tunable topological insulator. Science 332:560–64
137. Brahlek M, Bansal N, Koirala N, Xu S-Y, Neupane M, et al. 2012. Topological-metal to band-insulator

transition in (Bi1−xInx )2Se3 thin films. Phys. Rev. Lett. 109:186403
138. Xu S-Y, Liu C, Alidoust N, Neupane M, Qian D, et al. 2012. Observation of a topological crystalline

insulator phase and topological phase transition in Pb1−xSnxTe.Nat. Commun. 3:1192
139. Weng H, Dai X, Fang Z. 2014. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-

gap quantum spin Hall insulators. Phys. Rev. X 4:011002

244 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

140. Manzoni G, Gragnaniello L, Autès G, Kuhn T, Sterzi A, et al. 2016. Evidence for a strong topological
insulator phase in ZrTe5. Phys. Rev. Lett. 117:237601

141. Park J, Lee G,Wolff-Fabris F, Koh YY, EomMJ, et al. 2011. Anisotropic Dirac fermions in a Bi square
net of SrMnBi2. Phys. Rev. Lett. 107:126402

142. Feng Y, Wang Z, Chen C, Shi Y, Xie Z, et al. 2014. Strong anisotropy of Dirac cones in SrMnBi2 and
CaMnBi2 revealed by angle-resolved photoemission spectroscopy. Sci. Rep. 4:5385

143. Liu JY, Hu J, Zhang Q,Graf D, Cao HB, et al. 2017. A magnetic topological semimetal Sr1–yMn1−zSb2
(y, z < 0.10).Nat. Mater 16:905–10

144. Kargarian M, Randeria M, Lu Y-M. 2016. Are the surface Fermi arcs in Dirac semimetals topologically
protected? PNAS 113:8648–52

145. Bian G, Chang T-R, Zheng H, Velury S, Xu S-Y, et al. 2016. Drumhead surface states and topological
nodal-line fermions in TlTaSe2. Phys. Rev. B 93:121113

146. Fang C, Chen Y, Kee H-Y, Fu L. 2015. Topological nodal line semimetals with and without spin-orbital
coupling. Phys. Rev. B 92:081201

147. Xie LS, Schoop LM, Seibel EM, Gibson QD, Xie W, Cava RJ. 2015. A new form of Ca3P2 with a ring
of Dirac nodes. APL Mater. 3:083602

148. Yu R,Weng H, Fang Z, Dai X, Hu X. 2015. Topological node-line semimetal and Dirac semimetal state
in antiperovskite Cu3PdN. Phys. Rev. Lett. 115:036807

149. Kim Y, Wieder BJ, Kane CL, Rappe AM. 2015. Dirac line nodes in inversion-symmetric crystals. Phys.
Rev. Lett. 115:036806

150. Chiu C-K, Schnyder AP. 2014. Classification of reflection-symmetry-protected topological semimetals
and nodal superconductors. Phys. Rev. B 90:205136

151. Wu Y, Wang L-L, Mun E, Johnson DD, Mou D, et al. 2016. Dirac node arcs in PtSn4. Nat. Phys.
12:667–71

152. Ekahana SA, Shu-Chun W, Juan J, Kenjiro O, Dharmalingam P, et al. 2017. Observation of nodal line
in non-symmorphic topological semimetal InBi.New J. Phys. 19:065007

153. Feng X, Yue C, Song Z,Wu Q,Wen B. 2018. Topological Dirac nodal-net fermions in AlB2-type TiB2

and ZrB2. Phys. Rev. Mater 2:014202
154. Schoop LM, Ali MN, Straszer C, Topp A, Varykhalov A, et al. 2016. Dirac cone protected by non-

symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.Nat. Commun. 7:11696
155. Neupane M, Belopolski I, Hosen MM, Sanchez DS, Sankar R, et al. 2016. Observation of topological

nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93:201104
156. Hu J, Tang Z, Liu J, Liu X, Zhu Y, et al. 2016. Evidence of topological nodal-line fermions in ZrSiSe

and ZrSiTe. Phys. Rev. Lett. 117:016602
157. Takane D, Wang Z, Souma S, Nakayama K, Trang CX, et al. 2016. Dirac-node arc in the topological

line-node semimetal HfSiS. Phys. Rev. B 94:121108
158. Chen C, Xu X, Jiang J, Wu SC, Qi YP, et al. 2017. Dirac line nodes and effect of spin-orbit coupling in

the nonsymmorphic critical semimetalsMSiS (M = Hf, Zr). Phys. Rev. B 95:125126
159. Yamakage A, Yamakawa Y, Tanaka Y, Okamoto Y. 2015. Line-node Dirac semimetal and topological

insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn. 85:013708
160. Wang X-B, Ma X-M, Emmanouilidou E, Shen B, Hsu C-H, et al. 2017. Topological surface electronic

states in candidate nodal-line semimetal CaAgAs. Phys. Rev. B 96:161112
161. Liang Q-F, Zhou J, Yu R,Wang Z,Weng H. 2016.Node-surface and node-line fermions from nonsym-

morphic lattice symmetries. Phys. Rev. B 93:085427
162. Bzdušek T,Wu Q, Rüegg A, Sigrist M, Soluyanov AA. 2016. Nodal-chain metals.Nature 538:75–78
163. Wang S-S, Liu Y, Yu Z-M, Sheng X-L, Yang SA. 2017.Hourglass Dirac chain metal in rhenium dioxide.

Nat. Commun. 8:1844
164. Bi R, Yan Z, Lu L,Wang Z. 2017. Nodal-knot semimetals. Phys. Rev. B 96:201305
165. Chen W, Lu H-Z, Hou J-M. 2017. Topological semimetals with a double-helix nodal link. Phys. Rev. B

96:041102
166. Yan Z, Bi R, Shen H, Lu L, Zhang S-C,Wang Z. 2017. Nodal-link semimetals. Phys. Rev. B 96:041103

www.annualreviews.org • Topological Semimetals: Transport 245



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

167. Chang G,Xu S-Y, Zhou X,Huang S-M, Singh B, et al. 2017.Topological Hopf and chain link semimetal
states and their application to Co2MnGa. Phys. Rev. Lett. 119:156401

168. Wieder BJ. 2018. Threes company.Nat. Phys. 14:329–30
169. Lv BQ, Feng ZL, Xu QN, Gao X, Ma JZ, et al. 2017. Observation of three-component fermions in the

topological semimetal molybdenum phosphide.Nature 546:627–31
170. Ma JZ, He JB, Xu YF, Lv BQ, Chen D, et al. 2018. Three-component fermions with surface Fermi arcs

in tungsten carbide.Nat. Phys. 14:349–54
171. Gao W, Hao N, Zheng F-W, Ning W, Wu M, et al. 2017. Extremely large magnetoresistance in a

topological semimetal candidate pyrite PtBi2. Phys. Rev. Lett. 118:256601
172. Narayanan A,Watson MD, Blake SF, Bruyant N,Drigo L, et al. 2015. Linear magnetoresistance caused

by mobility fluctuations in n-doped Cd3As2. Phys. Rev. Lett. 114:117201
173. Wang K, Graf D, Lei H, Tozer SW, Petrovic C. 2011. Quantum transport of two-dimensional Dirac

fermions in SrMnBi2. Phys. Rev. B 84:220401
174. Novak M, Sasaki S, Segawa K, Ando Y. 2015. Large linear magnetoresistance in the Dirac semimetal

TlBiSSe. Phys. Rev. B 91:041203
175. Yi-Yan W, Qiao-He Y, Tian-Long X. 2016. Large linear magnetoresistance in a new Dirac material

BaMnBi2. Chin. Phys. B 25:107503
176. Xiong J, Kushwaha S, Krizan J, Liang T, Cava RJ, Ong NP. 2016. Anomalous conductivity tensor in the

Dirac semimetal Na3Bi. Europhys. Lett. 114:27002
177. Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, et al. 2016. Quantum Hall effect in a

bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv.
2:e1501117

178. He LP, Hong XC, Dong JK, Pan J, Zhang Z, et al. 2014. Quantum transport evidence for the three-
dimensional Dirac semimetal phase in Cd3As2. Phys. Rev. Lett. 113:246402

179. Wang Z, Zheng Y, Shen Z, Lu Y, Fang H, et al. 2016. Helicity-protected ultrahigh mobility Weyl
fermions in NbP. Phys. Rev. B 93:121112

180. Yang X, Liu Y,Wang Z, Zheng Y, Xu Z-a. 2015. Chiral anomaly induced negative magnetoresistance in
topological Weyl semimetal NbAs. arXiv:1506.03190 [cond-mat.mtrl-sci]

181. Zhang C, Guo C, Lu H, Zhang X, Yuan Z, et al. 2015. Large magnetoresistance over an extended tem-
perature regime in monophosphides of tantalum and niobium. Phys. Rev. B 92:041203(R)

182. Zhang C-L, Yuan Z, Jiang Q-D, Tong B, Zhang C, et al. 2017. Electron scattering in tantalum
monoarsenide. Phys. Rev. B 95:085202

183. Huang X, Zhao L, Long Y, Wang P, Chen D, et al. 2015. Observation of the chiral-anomaly-induced
negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5:031023

184. Wang YL, Thoutam LR, Xiao ZL, Hu J, Das S, et al. 2015. Origin of the turn-on temperature behavior
in WTe2. Phys. Rev. B 92:180402

185. Zhao Y, Liu H, Yan J, An W, Liu J, et al. 2015. Anisotropic magnetotransport and exotic longitudinal
linear magnetoresistance in WTe2 crystals. Phys. Rev. B 92:041104

186. Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, et al. 2015. Quantum oscillations, thermoelectric coefficients,
and the Fermi surface of semimetallic WTe2. Phys. Rev. Lett. 114:176601

187. Wang A, Graf D, Liu Y, Du Q, Zheng J, et al. 2017. Large magnetoresistance in the type-II Weyl
semimetal WP2. Phys. Rev. B 96:121107

188. Wang C-L, Zhang Y,Huang J-W,Liu G-D, Liang A-J, et al. 2017. Evidence of electron-hole imbalance
in WTe2 from high-resolution angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 34:097305

189. Thirupathaiah S, Jha R, Pal B, Matias JS, Das PK, et al. 2017. MoTe2: an uncompensated semimetal
with extremely large magnetoresistance. Phys. Rev. B 95:241105

190. Chamber RG. 1990. Electrons in Metals and Semiconductors. New York: Chapman and Hall
191. Luo Y, Ghimire NJ,Wartenbe M, Choi H, Neupane M, et al. 2015. Electron-hole compensation effect

between topologically trivial electrons and nontrivial holes in NbAs. Phys. Rev. B 92:205134
192. Hu J, Liu JY, Graf D, Radmanesh SMA, Adams DJ, et al. 2016. πBerry phase and Zeeman splitting of

Weyl semimetal TaP. Sci. Rep. 6:18674

246 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

193. Du J,Wang H, Mao Q, Khan R, Xu B, et al. 2016. Large unsaturated positive and negative magnetore-
sistance in Weyl semimetal TaP. Sci. China Phys. Mech. Astron. 59:657406

194. Ghimire NJ, Yongkang L,Neupane M,Williams DJ, Bauer ED, Ronning F. 2015.Magnetotransport of
single crystalline NbAs. J. Phys. Condens. Matter 27:152201

195. Abrikosov AA. 1998. Quantum magnetoresistance. Phys. Rev. B 58:2788–94
196. Datta S. 1995. Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge Univ. Press
197. Chen YL, Chu J-H, Analytis JG, Liu ZK, Igarashi K, et al. 2010. Massive Dirac fermion on the surface

of a magnetically doped topological insulator. Science 329:659–62
198. Beidenkopf H, Roushan P, Seo J, Gorman L, Drozdov I, et al. 2011. Spatial fluctuations of helical Dirac

fermions on the surface of topological insulators.Nat. Phys. 7:939–43
199. Okada Y, Dhital C, Zhou W, Huemiller ED, Lin H, et al. 2011. Direct observation of broken

time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett.
106:206805

200. Wray LA, Xu S-Y, Xia Y,Hsieh D, Fedorov AV, et al. 2011. A topological insulator surface under strong
Coulomb, magnetic and disorder perturbations.Nat. Phys. 7:32–37

201. LiuM, Zhang J, Chang C-Z, Zhang Z, Feng X, et al. 2012. Crossover between weak antilocalization and
weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108:036805

202. Ando Y. 2013. Topological insulator materials. J. Phys. Soc. Jpn. 82:102001
203. Shoenberg D. 1984.Magnetic Oscillations in Metals. Cambridge, UK: Cambridge Univ. Press
204. Kartsovnik MV. 2004. High magnetic fields: a tool for studying electronic properties of layered organic

metals. Chem. Rev. 104:5737–82
205. McClure JW. 1956. Diamagnetism of graphite. Phys. Rev. 104:666–71
206. Ando T. 2008. Physics of graphene: zero-mode anomalies and roles of symmetry.Prog. Theor. Phys. Suppl.

176:203–26
207. Berry MV. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392:45–57
208. Xiao D,ChangM-C,NiuQ. 2010. Berry phase effects on electronic properties.Rev.Mod. Phys. 82:1959–

2007
209. Mikitik GP, Sharlai YV. 1999.Manifestation of Berry’s phase inmetal physics.Phys. Rev. Lett.82:2147–50
210. Taskin AA, Ando Y. 2011. Berry phase of nonideal Dirac fermions in topological insulators. Phys. Rev. B

84:035301
211. Lv BQ, Xu N,Weng HM,Ma JZ, Richard P, et al. 2015. Observation of Weyl nodes in TaAs.Nat. Phys.

11:724–27
212. Lifshitz IM, Kosevich AM. 1956. Theory of magnetic susceptibility in metals at low temperatures. Sov.

Phys. JETP 2:636–45
213. Kealhofer R, Jang S, Griffin SM, John C, Benavides KA, et al. 2018. Observation of a two-dimensional

Fermi surface and Dirac dispersion in YbMnSb2. Phys. Rev. B 97:045109
214. Shoenberg D. 1984. Magnetization of a two-dimensional electron gas. J. Low Temp. Phys. 56:417–40
215. Champel T, Mineev VP. 2001. de Haas–van Alphen effect in two- and quasi-two-dimensional metals

and superconductors. Philos. Mag. B 81:55–74
216. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, et al. 2005. Two-dimensional gas of

massless Dirac fermions in graphene.Nature 438:197–200
217. Das Sarma S, Stern F. 1985. Single-particle relaxation time versus scattering time in an impure electron

gas. Phys. Rev. B 32:8442–44
218. Hwang EH, Das Sarma S. 2008. Single-particle relaxation time versus transport scattering time in a

two-dimensional graphene layer. Phys. Rev. B 77:195412
219. Xiong J, Luo Y, Khoo Y, Jia S, Cava RJ, Ong NP. 2012. High-field Shubnikov–de Haas oscillations in

the topological insulator Bi2Te2Se. Phys. Rev. B 86:045314
220. Pariari A, Dutta P, Mandal P. 2015. Probing the Fermi surface of three-dimensional Dirac semimetal

Cd3As2 through the de Haas–van Alphen technique. Phys. Rev. B 91:155139
221. Hu J, Tang Z, Liu J, Zhu Y, Wei J, Mao Z. 2017. Nearly massless Dirac fermions and strong Zeeman

splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations. Phys.
Rev. B 96:045127

www.annualreviews.org • Topological Semimetals: Transport 247



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

222. Kumar N, Manna K, Qi Y, Wu S-C, Wang L, et al. 2017. Unusual magnetotransport from Si-square
nets in topological semimetal HfSiS. Phys. Rev. B 95:121109(R)

223. Jeon S, Zhou BB, Gyenis A, Feldman BE, Kimchi I, et al. 2014. Landau quantization and quasiparticle
interference in the three-dimensional Dirac semimetal Cd3As2.Nat. Mater 13:851–56

224. Moll PJW, Potter AC, Nair NL, Ramshaw BJ, Modic KA, et al. 2016. Magnetic torque anomaly in the
quantum limit of Weyl semimetals.Nat. Commun. 7:12492

225. Arnold F, Shekhar C, Wu S-C, Sun Y, dos Reis RD, et al. 2016. Negative magnetoresistance without
well-defined chirality in the Weyl semimetal TaP.Nat. Commun. 7:11615

226. Hu J, Zhu YL, Graf D, Tang ZJ, Liu JY, Mao ZQ. 2017. Quantum oscillation studies of topological
semimetal candidate ZrGeM (M = S, Se, Te). Phys. Rev. B 95:205134

227. Arnold F, Naumann M,Wu SC, Sun Y, Schmidt M, et al. 2016. Chiral Weyl pockets and Fermi surface
topology of the Weyl semimetal TaAs. Phys. Rev. Lett. 117:146401

228. Hu J,Zhu Y,Gui X,Graf D,Tang Z, et al. 2018.Quantum oscillation evidence of a topological semimetal
phase in ZrSnTe. Phys. Rev. B 97:155101

229. ZhengW, Schönemann R, Aryal N, Zhou Q,Rhodes D, et al. 2018.Detailed study of the Fermi surfaces
of the type-II Dirac semimetallic candidates XTe2 (X = Pd, Pt). Phys. Rev. B 97:235154

230. Zhu Y, Zhang T, Hu J, Kidd J, Graf D, et al. 2018. Multiple topologically non-trivial bands in non-
centrosymmetric YSn2. Phys. Rev. B 98:035117

231. Cai PL, Hu J, He LP, Pan J, Hong XC, et al. 2015. Drastic pressure effect on the extremely large
magnetoresistance in WTe2: quantum oscillation study. Phys. Rev. Lett. 115:057202

232. Ali MN, Schoop LM,Garg C, Lippmann JM, Lara E, et al. 2016. Butterfly magnetoresistance, quasi-2D
Dirac Fermi surfaces, and a topological phase transition in ZrSiS. Sci. Adv. 2:e1601742

233. Singha R, Pariari A, Satpati B, Mandal P. 2017. Large nonsaturating magnetoresistance and signature
of nondegenerate Dirac nodes in ZrSiS. PNAS 114:2468–73

234. Wang K, Graf D, Wang L, Lei H, Tozer SW, Petrovic C. 2012. Two-dimensional Dirac fermions and
quantum magnetoresistance in CaMnBi2. Phys. Rev. B 85:041101

235. Li L,Wang K, Graf D,Wang L,Wang A, Petrovic C. 2016. Electron-hole asymmetry, Dirac fermions,
and quantum magnetoresistance in BaMnBi2. Phys. Rev. B 93:115141

236. Cao J, Liang S, Zhang C, Liu Y, Huang J, et al. 2015. Landau level splitting in Cd3As2 under high
magnetic fields.Nat. Commun. 6:7779

237. Zhao Y, Liu H, Zhang C, Wang H, Wang J, et al. 2015. Anisotropic Fermi surface and quantum limit
transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys. Rev. X 5:031037

238. Liu J, Hu J, Cao H, Zhu Y, Chuang A, et al. 2016. Nearly massless Dirac fermions hosted by Sb square
net in BaMnSb2. Sci. Rep. 6:30525

239. Huang S, Kim J, SheltonWA, Plummer EW, Jin R. 2017.Nontrivial Berry phase in magnetic BaMnSb2
semimetal. PNAS 114:6256–61

240. Pippard AB. 1965. The Dynamics of Conduction Electrons. New York: Gordon and Breach
241. Lv Y-Y, Zhang B-B, Li X, Yao S-H, Chen YB, et al. 2016. Extremely large and significantly anisotropic

magnetoresistance in ZrSiS single crystals. Appl. Phys. Lett. 108:244101
242. Wang X, Pan X, Gao M, Yu J, Jiang J, et al. 2016. Evidence of both surface and bulk Dirac bands and

anisotropic nonsaturating magnetoresistance in ZrSiS. Adv. Electron. Mater 2:1600228
243. Zhang C-L, Xu S-Y, Belopolski I, Yuan Z, Lin Z, et al. 2016. Signatures of the Adler–Bell–Jackiw chiral

anomaly in a Weyl fermion semimetal.Nat. Commun. 7:10735
244. Sankar R, Peramaiyan G, Muthuselvam IP, Butler CJ, Dimitri K, et al. 2017. Crystal growth of Dirac

semimetal ZrSiS with high magnetoresistance and mobility. Sci. Rep. 7:40603
245. Pezzini S, van Delft MR, Schoop LM, Lotsch BV, Carrington A, et al. 2018. Unconventional mass

enhancement around the Dirac nodal loop in ZrSiS.Nat. Phys. 14:178–83
246. Fête A, Gariglio S, Berthod C, Li D, Stornaiuolo D, et al. 2014. Large modulation of the Shubnikov–de

Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface.New J. Phys. 16:112002
247. Liu JY,Hu J, Graf D, Zou T, ZhuM, et al. 2017. Unusual interlayer quantum transport behavior caused

by the zeroth Landau level in YbMnBi2.Nat. Commun. 8:646

248 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

248. Fei F, Bo X, Wang R, Wu B, Jiang J, et al. 2017. Nontrivial Berry phase and type-II Dirac transport in
the layered material PdTe2. Phys. Rev. B 96:041201

249. Wang Q, Guo P-J, Sun S, Li C, Liu K, et al. 2018. Extremely large magnetoresistance and high-density
Dirac-like fermions in ZrB2. Phys. Rev. B 97:205105

250. Ran B, Zili F, Xinqi L, Jingjing N, JingyueW, et al. 2018. Spin zero and large Landé g-factor in WTe2.
New J. Phys. 20:063026

251. Cohen MH, Falicov LM. 1961. Magnetic breakdown in crystals. Phys. Rev. Lett. 7:231–33
252. Matusiak M, Cooper JR, Kaczorowski D. 2017. Thermoelectric quantum oscillations in ZrSiS. Nat.

Commun. 8:15219
253. Klein O. 1929. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dy-

namik von Dirac. Z. Phys. 53:157–65
254. Ru-Keng S, Siu GG, Xiu C. 1993. Barrier penetration and Klein paradox. J. Phys. A Math. Gen. 26:1001
255. Calogeracos A, Dombey N. 1999. History and physics of the Klein paradox. Contemp. Phys. 40:313–21
256. Dombey N, Calogeracos A. 1999. Seventy years of the Klein paradox. Phys. Rep. 315:41–58
257. Katsnelson MI, Novoselov KS, Geim AK. 2006. Chiral tunnelling and the Klein paradox in graphene.

Nat. Phys. 2:620–25
258. Young AF, Kim P. 2009. Quantum interference and Klein tunnelling in graphene heterojunctions.Nat.

Phys. 5:222–26
259. O’Brien TE, Diez M, Beenakker CWJ. 2016. Magnetic breakdown and Klein tunneling in a type-II

Weyl semimetal. Phys. Rev. Lett. 116:236401
260. Zhang Y, Bulmash D, Hosur P, Potter AC, Vishwanath A. 2016. Quantum oscillations from generic

surface Fermi arcs and bulk chiral modes in Weyl semimetals. Sci. Rep. 6:23741
261. Zhang C, Narayan A, Lu S, Zhang J, Zhang H, et al. 2017. Evolution of Weyl orbit and quantum Hall

effect in Dirac semimetal Cd3As2.Nat. Commun. 8:1272
262. Li P,Wen Y,He X,ZhangQ,Xia C, et al. 2017. Evidence for topological type-IIWeyl semimetalWTe2.

Nat. Commun. 8:2150
263. Zhang Y, Tan Y-W, Stormer HL, Kim P. 2005. Experimental observation of the quantum Hall effect

and Berry’s phase in graphene.Nature 438:201–4
264. Xu Y,Miotkowski I, Liu C,Tian J,NamH, et al. 2014.Observation of topological surface state quantum

Hall effect in an intrinsic three-dimensional topological insulator.Nat. Phys. 10:956–63
265. Brüne C, Liu CX, Novik EG, Hankiewicz EM, Buhmann H, et al. 2011. Quantum Hall effect from the

topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106:126803
266. Büttner B,Liu CX,TkachovG,Novik EG,Brüne C, et al. 2011. Single valley Dirac fermions in zero-gap

HgTe quantum wells.Nat. Phys. 7:418–22
267. Uchida M,Nakazawa Y, Nishihaya S, Akiba K, Kriener M, et al. 2017. Quantum Hall states observed in

thin films of Dirac semimetal Cd3As2.Nat. Commun. 8:2274
268. Schumann T, Galletti L, Kealhofer DA, Kim H, Goyal M, Stemmer S. 2018. Observation of the quan-

tum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett.
120:016801

269. Borisenko S,Evtushinsky D,GibsonQ,Yaresko A,KimT, et al. 2015.Time-reversal symmetry breaking
type-II Weyl state in YbMnBi2. arXiv:1507.04847 [cond-mat.mes-hall]

270. Tajima N, Sugawara S, Kato R, Nishio Y, Kajita K. 2009. Effect of the zero-mode Landau level on
interlayer magnetoresistance in multilayer massless Dirac fermion systems. Phys. Rev. Lett. 102:176403

271. Stormer HL, Tsui DC,Gossard AC. 1999. The fractional quantumHall effect.Rev.Mod. Phys. 71:S298–
305

272. Liu Y, Yuan X, Zhang C, Jin Z,Narayan A, et al. 2016. Zeeman splitting and dynamical mass generation
in Dirac semimetal ZrTe5.Nat. Commun. 7:12516

273. Zhang C-L, Xu S-Y, Wang CM, Lin Z, Du ZZ, et al. 2017. Magnetic-tunnelling-induced Weyl node
annihilation in TaP.Nat. Phys. 13:979–86

274. WangH,Liu H,Li Y, Liu Y,Wang J, et al. 2018.Discovery of log-periodic oscillations in ultra-quantum
topological materials. Sci. Adv. 4:eaau5096

www.annualreviews.org • Topological Semimetals: Transport 249



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

275. Liu H, Jiang H, Wang Z, Joynt R, Xie XC. 2018. Discrete scale invariance in topological semimetals.
arXiv:1807.02459 [cond-mat.mtrl-sci]

276. Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB. 1997. Large magne-
toresistance in non-magnetic silver chalcogenides.Nature 390:57–60

277. Hu J, Liu TJ, Qian B, Mao ZQ. 2013. Coupling of electronic and magnetic properties in
Fe1+y(Te1−xSex). Phys. Rev. B 88:094505

278. Hu J,RosenbaumTF.2008.Classical and quantum routes to linearmagnetoresistance.Nat.Mater 7:697–
700

279. Kuo H-H, Chu J-H, Riggs SC, Yu L, McMahon PL, et al. 2011. Possible origin of the nonmonotonic
doping dependence of the in-plane resistivity anisotropy of Ba(Fe1−xTx)2As2 (T = Co, Ni, and Cu).
Phys. Rev. B 84:054540

280. Huynh KK, Tanabe Y, Tanigaki K. 2011. Both electron and hole Dirac cone states in Ba(FeAs)2 con-
firmed by magnetoresistance. Phys. Rev. Lett. 106:217004

281. Wang K, Petrovic C. 2012. Multiband effects and possible Dirac states in LaAgSb2. Phys. Rev. B
86:155213

282. Wang K, Graf D, Petrovic C. 2013. Quasi-two-dimensional Dirac fermions and quantum magnetore-
sistance in LaAgBi2. Phys. Rev. B 87:235101

283. Wang A, Zaliznyak I, Ren W,Wu L, Graf D, et al. 2016. Magnetotransport study of Dirac fermions in
YbMnBi2 antiferromagnet. Phys. Rev. B 94:165161

284. Nagaosa N, Sinova J, Onoda S,MacDonald AH, Ong NP. 2010. Anomalous Hall effect. Rev. Mod. Phys.
82:1539–92

285. Smit J. 1955. The spontaneous Hall effect in ferromagnetics. I. Physica 21:877–87
286. Berger L. 1970. Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2:4559–66
287. Onoda M, Nagaosa N. 2002. Topological nature of anomalous Hall effect in ferromagnets. J. Phys. Soc.

Jpn. 71:19–22
288. Jungwirth T, Niu Q, MacDonald AH. 2002. Anomalous Hall effect in ferromagnetic semiconductors.

Phys. Rev. Lett. 88:207208
289. Lee W-L, Watauchi S, Miller VL, Cava RJ, Ong NP. 2004. Dissipationless anomalous Hall current in

the ferromagnetic spinel CuCr2Se4−xBrx. Science 303:1647–49
290. Husmann A, Singh LJ. 2006. Temperature dependence of the anomalous Hall conductivity in the

Heusler alloy Co2CrAl. Phys. Rev. B 73:172417
291. Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z. 2004. Large anomalous Hall effect in a

silicon-based magnetic semiconductor.Nat. Mater 3:255–62
292. Liu E, Sun Y, Kumar N,Muechler L, Sun A, et al. 2018. Giant anomalous Hall effect in a ferromagnetic

kagome-lattice semimetal.Nat. Phys. 14:1125–31
293. Barth J, Fecher GH, Balke B, Graf T, Shkabko A, et al. 2011. Anomalous transport properties of the

half-metallic ferromagnets Co2TiSi, Co2TiGe and Co2TiSn. Phil. Trans. R. Soc. A 369:3588–601
294. Felser C, Hirohata A, eds. 2016. Heusler Alloys: Properties, Growth, Applications. Cham, Switz.: Springer

Int.
295. Chadov S, Qi X, Kübler J, Fecher GH, Felser C, Zhang SC. 2010. Tunable multifunctional topological

insulators in ternary Heusler compounds.Nat. Mater 9:541–45
296. LinH,Wray LA,Xia Y,Xu S, Jia S, et al. 2010.Half-Heusler ternary compounds as newmultifunctional

experimental platforms for topological quantum phenomena.Nat. Mater 9:546–49
297. Al-Sawai W, Lin H, Markiewicz RS, Wray LA, Xia Y, et al. 2010. Topological electronic structure in

half-Heusler topological insulators. Phys. Rev. B 82:125208
298. Suzuki T, Chisnell R, Devarakonda A, Liu YT, Feng W, et al. 2016. Large anomalous Hall effect in a

half-Heusler antiferromagnet.Nat. Phys. 12:1119–23
299. Ye L, Kang M, Liu J, von Cube F, Wicker CR, et al. 2018. Massive Dirac fermions in a ferromagnetic

kagome metal.Nature 555:638–42
300. Pal HK,Maslov DL. 2010. Necessary and sufficient condition for longitudinal magnetoresistance. Phys.

Rev. B 81:214438

250 Hu et al.



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

301. Kim H-J, Kim K-S,Wang JF, Sasaki M, Satoh N, et al. 2013. Dirac versus Weyl fermions in topological
insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111:246603

302. Wang Y, Liu E, Liu H, Pan Y, Zhang L, et al. 2016. Gate-tunable negative longitudinal magnetoresis-
tance in the predicted type-II Weyl semimetal WTe2.Nat. Commun. 7:13142

303. Lv Y-Y, Li X, Zhang B-B, Deng WY, Yao S-H, et al. 2017. Experimental observation of anisotropic
Adler-Bell-Jackiw anomaly in type-IIWeyl semimetalWTe1.98 crystals at the quasiclassical regime.Phys.
Rev. Lett. 118:096603

304. Liang S, Lin J, Kushwaha S, Xing J, Ni N, et al. 2018. Experimental tests of the chiral anomaly magne-
toresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8:031002

305. Reis RDd, AjeeshMO,Kumar N, Arnold F, Shekhar C, et al. 2016.On the search for the chiral anomaly
in Weyl semimetals: the negative longitudinal magnetoresistance.New J. Phys. 18:085006

306. Udagawa M, Bergholtz EJ. 2016. Field-selective anomaly and chiral mode reversal in type-II Weyl ma-
terials. Phys. Rev. Lett. 117:086401

307. Yu Z-M, Yao Y, Yang SA. 2016. Predicted unusual magnetoresponse in type-II Weyl semimetals. Phys.
Rev. Lett. 117:077202

308. Sharma G, Goswami P, Tewari S. 2017. Chiral anomaly and longitudinal magnetotransport in type-II
Weyl semimetals. Phys. Rev. B 96:045112

309. Burkov AA. 2017. Giant planar Hall effect in topological metals. Phys. Rev. B 96:041110
310. Nandy S, Sharma G, Taraphder A, Tewari S. 2017. Chiral anomaly as the origin of the planar Hall effect

in Weyl semimetals. Phys. Rev. Lett. 119:176804
311. Li P, Zhang CH, Zhang JW,Wen Y, Zhang XX. 2018. Giant planar Hall effect in the Dirac semimetal

ZrTe5-δ . Phys. Rev. B 98:121108(R)
312. Li H, Wang H-W, He H, Wang J, Shen S-Q. 2018. Giant anisotropic magnetoresistance and planar

Hall effect in the Dirac semimetal Cd3As2. Phys. Rev. B 97:201110
313. Kumar N,Guin SN, Felser C, Shekhar C. 2018. Planar Hall effect in theWeyl semimetal GdPtBi. Phys.

Rev. B 98:041103
314. Singha R, Roy S, Pariari A, Satpati B, Mandal P. 2018. Planar Hall effect in the type II Dirac semimetal

VAl3. Phys. Rev. B 98:081103(R)
315. Wang YJ,Gong JX,LiangDD,GeM,Wang JR, et al. 2018. Planar Hall effect in type-IIWeyl semimetal

WTe2. arXiv:1801.05929 [cond-mat.mtrl-sci]
316. West FG. 1963. Rotating-field technique for galvanomagnetic measurements. J. Appl. Phys. 34:1171–73
317. Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, et al. 2018. Anomalous Hall effect in ZrTe5. Nat. Phys.

14:451–55
318. Kane CL, Mele EJ. 2005. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett.

95:146802
319. Fu L, Kane CL, Mele EJ. 2007. Topological insulators in three dimensions. Phys. Rev. Lett. 98:106803
320. Roth A, Brüne C, Buhmann H, Molenkamp LW, Maciejko J, et al. 2009. Nonlocal transport in the

quantum spin Hall state. Science 325:294–97
321. Kou X, Fan Y,Wang KL. 2017. Review of quantum Hall trio. J. Phys. Chem. Solids In press
322. Xu Q, Song Z, Nie S,Weng H, Fang Z, Dai X. 2015. Two-dimensional oxide topological insulator with

iron-pnictide superconductor LiFeAs structure. Phys. Rev. B 92:205310
323. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 2012. Electronics and optoelectronics

of two-dimensional transition metal dichalcogenides.Nat. Nanotechnol 7:699–712
324. König M, Wiedmann S, Brüne C, Roth A, Buhmann H, et al. 2007. Quantum spin Hall insulator state

in HgTe quantum wells. Science 318:766–70
325. Bradlyn B, Elcoro L, Cano J, Vergniory MG, Wang Z, et al. 2017. Topological quantum chemistry.

Nature 547:298–305
326. Eugene JM. 2015. The winding road to topological insulators. Phys. Scr. 2015:014004
327. Wang C,Hughbanks T. 1995.Main group element size and substitution effects on the structural dimen-

sionality of zirconium tellurides of the ZrSiS type. Inorg. Chem. 34:5524–29
328. Qi X-L,Hughes TL,Zhang S-C. 2010.Chiral topological superconductor from the quantumHall state.

Phys. Rev. B 82:184516

www.annualreviews.org • Topological Semimetals: Transport 251



MR49CH09_Mao ARjats.cls May 25, 2019 12:41

329. Liu X, Wang Z, Xie XC, Yu Y. 2011. Abelian and non-Abelian anyons in integer quantum anomalous
Hall effect and topological phase transitions via superconducting proximity effect.Phys. Rev. B 83:125105

330. Chang C-Z, Zhang J, Feng X, Shen J, Zhang Z, et al. 2013. Experimental observation of the quantum
anomalous Hall effect in a magnetic topological insulator. Science 340:167–70

331. Checkelsky JG, Yoshimi R, Tsukazaki A, Takahashi KS, Kozuka Y, et al. 2014. Trajectory of the anoma-
lousHall effect towards the quantized state in a ferromagnetic topological insulator.Nat. Phys.10:731–36

332. He QL, Pan L, Stern AL, Burks EC, Che X, et al. 2017. Chiral Majorana fermion modes in a quantum
anomalous Hall insulator–superconductor structure. Science 357:294–99

333. PoHC,Vishwanath A,WatanabeH. 2017. Symmetry-based indicators of band topology in the 230 space
groups.Nat. Commun. 8:50

334. Tang F, Po HC, Vishwanath A, Wan X. 2019. Comprehensive search for topological materials using
symmetry indicators.Nature 566:486–89

335. Vergniory MG, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z. 2019. A complete catalogue of
high-quality topological materials.Nature 566:480–85

336. Zhang T, Jiang Y, Song Z, Huang H, He Y, et al. 2019. Catalogue of topological electronic materials.
Nature 566:475–79

336a. Kruthoff J, de Boer J, Wezel J, Kane CL, Slager R. 2017. Topological classification of crystalline insu-
lators through band structure combinatorics. Phys. Rev. X 7:041069

337. Zhou Q, Rhodes D, Zhang QR, Tang S, Schönemann R, Balicas L. 2016. Hall effect within the colossal
magnetoresistive semimetallic state of MoTe2. Phys. Rev. B 94:121101

338. Rhodes D, Schönemann R, Aryal N, Zhou Q, Zhang QR, et al. 2017. Bulk Fermi surface of the Weyl
type-II semimetallic candidate g-MoTe2. Phys. Rev. B 96:165134

339. Qi Y, Naumov PG, Ali MN, Rajamathi CR, Schnelle W, et al. 2016. Superconductivity in Weyl
semimetal candidate MoTe2.Nat. Commun. 7:11038

340. Chen FC, Lv HY, Luo X, LuWJ, Pei QL, et al. 2016. Extremely large magnetoresistance in the type-II
Weyl semimetal MoTe2. Phys. Rev. B 94:235154

341. Mun E, Ko H, Miller GJ, Samolyuk GD, Bud’ko SL, Canfield PC. 2012. Magnetic field effects on
transport properties of PtSn4. Phys. Rev. B 85:035135

342. Wang YJ, Liang DD,Ge M, Yang J, Gong JX, et al. 2018. Topological nature of the node-arc semimetal
PtSn4 probed by de Haas–van Alphen quantum oscillations. J. Phys. Condens. Matter 30:155701

343. Fu C, Scaffidi T, Waissman J, Sun Y, Saha R, et al. 2018. Thermoelectric signatures of the electron-
phonon fluid in PtSn4. arXiv:1802.09468 [cond-mat.mtrl-sci]

344. Liang S, Lin J, Kushwaha S, Xing J, Ni N, et al. 2018. Experimental tests of the chiral anomaly magne-
toresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8:031002

345. He JB,Wang DM, Chen GF. 2012. Giant magnetoresistance in layered manganese pnictide CaMnBi2.
Appl. Phys. Lett. 100:112405

346. He JB, Fu Y, Zhao LX, Liang H, Chen D, et al. 2017. Quasi-two-dimensional massless Dirac fermions
in CaMnSb2. Phys. Rev. B 95:045128

347. Singha R, Pariari A, Satpati B,Mandal P. 2017.Magnetotransport properties and evidence of a topolog-
ical insulating state in LaSbTe. Phys. Rev. B 96:245138

252 Hu et al.




