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Abstract

A renaissance of interest in crystallographic shear structures and our re-
cent work in this remarkable class of materials inspired this review.We first
summarize the geometrical aspects of shear plane formation and possible
transformations in ReO3, rutile, and perovskite-based structures. Then we
provide a mechanistic overview of crystallographic shear formation, plane
ordering, and propagation. Next we describe the energetics of planar de-
fect formation and interaction, equilibria between point and extended de-
fect structures, and thermodynamic stability of shear compounds. Finally,
we emphasize the remaining challenges and propose future directions in this
exciting area.
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The infinite variety in the properties of the solid materials we find in the world is really the expression of the
infinite variety of the ways in which the atoms and molecules can be tied together, and of the strength of those ties.

W.H. Bragg, “Concerning the Nature of Things”

INTRODUCTION

Today, one cannot agree more with Hoffmann’s 1987 statement that “[s]olid state chemistry is
important, alive, and growing” (1, p. 846). Once thought to be a saturated discipline, solid-state
chemistry has blossomed radiantly, demonstrating unprecedented glory in the second half of the
twentieth century, thanks to the rapid development of quantummechanics and cutting-edge struc-
ture analysis tools such as electron microscopy, high-energy X-ray diffraction, neutron scattering,
and solid-state nuclear magnetic resonance. The symbiosis of chemistry, physics, and crystallog-
raphy and the unlimited possible combination of elements of the periodic table has resulted in
discoveries of novel solid materials (e.g., nanostructures, ordered porous solids, an endless array
of perovskites, high-entropy alloys and oxides, MXenes) with remarkable physicochemical prop-
erties, leading to applications such as superconductors, energy storage devices, catalysts, magnets,
and phosphors, which stretch the preexisting boundaries of science and technology.

The ultimate goal of practical utilization of materials largely depends on being able to produce
them reproducibly with desired functionalities for a given specific application. The properties of
solid materials can be tuned by their elemental composition. Small deviations from stoichiometry
unavoidably generate defects in the crystal structures, significantly altering the properties of the
solid. By controlling the nature, concentration, and mobility of such defects, the reactivity, sinter-
ing, and many properties (including electrical and magnetic properties) of solids can be tailored to
a great degree (2). The formation of point defects (vacancies, interstitials, or defect clusters) is not
the only route to modification of the solid composition.The partial reduction of certain transition
metal oxides (such as WO3, MoO3, TiO2, Nb2O5, and V2O5) leads to the formation of extended
planar defects or shear planes rather than point defects (3). Any planar boundary in a crystal leads
to a local rearrangement in coordination and to a local change in composition. If shear planes are
in variable numbers and randomly distributed, a crystal with variable composition is generated. In
contrast, if shear planes are periodic, a homologous series of new phases, each characterized by the
separation between the planes defining a fixed composition, can be obtained (4). The formation
of shear planes at different periodicities by the elimination of anion vacancies results in a new
class of fascinating materials known as crystallographic shear (CS) phases or structures. A constel-
lation of eminent scientists and pioneers—including Magnéli, Wadsley, Anderson, Roth, Bursill,
Hyde, Andersson, Catlow, O’Keeffe, Eyring, Tilley, Iijima, Matzke, and others—performed ex-
tensive seminal experimental and theoretical studies of formation and characterization of these
materials between 1950 and 1980. In particular, the pioneering work of Magnéli on shear struc-
tures of reduced tungsten and molybdenum oxides (Magnéli phases), the subsequent concept of
block structures developed by Wadsley, and high-resolution electron microscopy by Iijima were
revolutionary for progress in solid-state chemistry. The work of Murphy and Cava at Bell Labo-
ratories allowed for the utilization of block-type CS structures for reversible insertion of Li ions
at room temperature (5–11). After almost 30 years of relative calm in the field, the work of Han,
Goodenough, and colleagues (12, 13) demonstrating the excellent electrochemical performance
of the TiNb2O7 shear phase rekindled active research in shear phases. As a result, a vast number of
Wadsley-Roth shear phases were recently synthesized and tested as intercalating anode materials
in lithium ion batteries due to their high volumetric capacities, high safety, fast charging, rapid
lithium transport, and buffered volume expansion (14–27).
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Figure 1

Schematic representation of crystallographic shear plane formation (Wadsley defect) in ReO3-type structure.
Black squares represent metal-oxygen octahedra projected along [001], and white squares denote empty
tunnels. (a) A perfect ReO3 structure of corner-sharing octahedra. (b,c) Generation of (b) (102) and (c) (001)
crystallographic shear planes by application of the R = ½[101̄] displacement vector. (d) The antiphase
boundary (APB) (101)½[101̄]. Blue dashed arrows represent the crystallographic shear plane.

This article reviews CS plane structure, mechanisms of formation, and energetics. We discuss
ReO3 and rutile-based Magnéli phases, Wadsley-Roth block structures, and the formation of CS
in perovskites. We conclude this article by providing our future perspectives on these materials.

CRYSTALLOGRAPHIC SHEAR PLANE TOPOLOGY

Reduction of anion content in certain transition metal–containing compounds with a ReO3 or
rutile structure generates anion vacancies that undergo elimination after local reconstruction of
the crystal to form translational CS planes. This process can be visualized as removing anion sites
along the crystallographic plane, which leads to the compression of neighboring coordination
polyhedra as a result of a shear operation that connects two anion sites (28–32).Figure 1 illustrates,
through a chessboardmodel, a simple schematic of CS plane formation in the ReO3 structure.The
aristotype ReO3 structure is composed of an infinite three-dimensional arrangement of octahedra
MO6, linked together by corner sharing (Figure 1a). A loss of oxygen from this structure changes
the corner-sharing connectivity of the octahedral units.Along the definedCS planes, the octahedra
share edges (Figure 1b,c) instead of sharing vertices as in the parent structure, so the number of
oxygen atoms is reduced, resulting in nonconservative defects. The resulting extended defects are
the CS planes, which at relatively low anion deficiency are aligned along (102) and at very high
defect concentrations are aligned along (001), as shown in panels b and c of Figure 1, respectively.
Another pictorial way of demonstrating CS plane formation is the paper and scissor model (33). A
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Table 1 Relationship between crystallographic shear (CS) plane topology and stoichiometry
of cubic crystals (37)

CS plane Formula of homologs
Number of oxygen atoms

lost per unit CS plane spacing, dhkl
{102} MnO3n−1 1 (n − ½)a/

√
5

{103} MnO3n−2 2 (n − 1)a/
√
10

{104} MnO3n−3 3 (n − 3/2)a/
√
17

{10Ɩ} MnO3n−(Ɩ−1) Ɩ − 1 (n − Ɩ + ½)a/
√
l2 + 1

cut along the {h0Ɩ} crystal plane will artificially duplicate the oxygen atoms, and half of these atoms
should be eliminated to accommodate point defects. Oxygen reduction takes place by shearing
the cut structure with respect to the other part by a displacement vector of R = ½[101̄], which
corresponds to the proportion of lattice translation of the original structure (31, 34). The shear
operation leads to a composition change since the oxygen-to-metal (O/M) ratio is higher in the
CS plane than the one-third ratio in the MO3 structure. If the displacement vector is parallel
to the plane, the resulting planar defect is conservative and does not lead to the elimination of
oxygen atoms. In this case, the shear operation results only in antiphase boundary (APB) formation
(Figure 1d), with no change in composition.

With the help of the APB, all CS planes in the ReO3 structure can be resolved into the sum
of two components, one nonconservative and the other conservative, namely the most oxygen-
deficient CS plane (001)½[101̄] and the APB (101)½[101̄] (35, 36). Hence, one can write

(h0l ) = p(001) + q(101)
= (q, 0, p+ q),

1.

so that q = h, p = Ɩ − h, and (h0Ɩ) = (Ɩ − h)(001) + h(101). (p + q) is the number of edge-sharing
pairs of octahedra in the unit length of the CS plane, which are arranged in q separate groups. In
the simplest case of q= 1, (102) shear planes are produced by p= 1, (103) planes by p= 2 and q=
1, and (001) when p = ∞ and q = 1, showing that with an increase in p, the CS plane orientation
changes discontinuously. Thus, (105) can be represented as

(105) = 4(001) + 1(101) 2.

and implies that the structural unit of the CS plane consists of groups of five pairs of edge-sharing
octahedra separated by voids in the structure. If q > 1, an infinite number of intermediate CS
planes can form. For example, if q = 3 and p = 4, the CS plane is parallel to (307) and made
up of two units of (102) plus one of (103) that alternate in the structure. The formation of four
edge-sharing octahedra in the {102} CS plane eliminates one oxygen atom, six edge-sharing oc-
tahedra remove two oxygen atoms in the {103} plane, and in general (Ɩ − 1) oxygens are removed
in the {10Ɩ} plane (37). If the {l0Ɩ} CS planes form an ordered array in the ReO3−x crystal, homol-
ogous series of ordered oxides with the general formula MnO3n−( Ɩ−1) (with n and Ɩ integers and
where n is the number of coordination octahedra in layers between neighboring CS planes) can
result. Homologous series of oxides with the general formula (W,Mo)nO3n−1 and TinO2n−1 are
known as Magnéli phases (38–45). As the separation between CS planes changes (dhkl), the stoi-
chiometry and the formula of an oxide change. The distance between the nearest CS planes also
significantly affects the distortions in MO6 octahedra. Table 1 shows the relationships between
CS plane topology and stoichiometry (37).

Through simultaneous performance of two almost orthogonal and intersecting shear opera-
tions, namely (½)[011]/(h0Ɩ) with Ɩ > h and (½)[1̄10]/(h′0Ɩ′) with h′ > Ɩ′, so-called block structures
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Figure 2

Crystal structures of (a) TiNb2O7, (b) TiNb5O14.5, and (c) TiNb24O62 viewed along the b axis, with visible 3 × 3 octahedral blocks,
3 × 4 octahedral blocks, and 3 × 4 octahedral blocks + 0.5 tetrahedral blocks, respectively. Figure adapted with permission from
Reference 53.

or Wadsley-Roth phases are derived from the ReO3 aristotype (45–52). Their crystal structure is
built up from rectangular blocks of ReO3 measuring (m× n) octahedra of finite sizes in two dimen-
sions but infinite in the third dimension. These blocks condense upon themselves by edge sharing
in such a way that tetrahedrally coordinated atoms may, or may not, be present at the junctions
(Figure 2). Blocks are separated by CS planes in two directions at right angles. In adjacent blocks,
octahedrally coordinated cations are at different levels and sheared by half an octahedron, so the
blocks are connected by edge sharing between their peripheral octahedra. Blocks at the same level
can be connected by edge sharing or joined indirectly through cations in tetrahedral sites that are
formed between the blocks to fill the voids in the structure (53). The O/M ratio dictates the block
size, and compounds with larger block size form if the O/M ratio is high, as a high ratio allows
for more corner-shared octahedra. The changes in composition can be accommodated by varia-
tion of block size, block connectivity, and intergrowth of different block structures that change
the number of anion sites removed by octahedral edge sharing. If the anions are not completely
removed in the plane, the remaining ones can increase the cation coordination number from six
to seven, converting octahedra into pentagonal bipyramids.

Analogous formation of CS planes occurs in structures derived from rutile (30, 36, 54, 55).
The tetragonal rutile structure is composed of chains of edge-shared [TiO6] octahedra, and the
chains themselves are joined by corner sharing so that the orientation of neighboring chains differs
by n/2 radians. As in ReO3 structures, compositional change in tetragonal rutile structures can
be accommodated by coordination changes. Because of the more complex structure of rutile, a
simple depiction of CS plane formation by the chessboard model is not possible, so the structure is
commonly described as an ideal hexagonal close-packed (hcp) framework of oxygens, with cations
occupying alternating rows of octahedral interstices (Figure 3a). Performing a shear operation
with a displacement vector of ½[01̄1] parallel to the (011) plane produces APB (Figure 3b) without
a change in stoichiometry, and each [TiO6] octahedron shares six corners and two edges. The step
resulting in APB is denoted by the � symbol, and such a trajectory of planes can be represented as

. . .. . .. . .. . .. . .. . .. . .�����������. . .. . .. . .. . .. . .. . .. . .

The same displacement vector operating on (121) eliminates oxygen sites from the rutile structure,
and the different type of step that occurs is denoted by �, as shown in Figure 3c. The CS plane
with such a sequence of steps can be displayed as

. . .. . .. . .. . .. . .. . .. . .�����������. . .. . .. . .. . .. . .. . .. . .
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Schematic illustration of idealized (100) layers of (a) rutile, (b) an antiphase boundary plane (APB)
(011)½[01̄1], (c) a crystallographic shear (CS) plane (121)½[01̄1], and (d) (374)½[01̄1]. The displacement
vector R = ½[01̄1]. Blue dashed arrows represent CS planes. Figure adapted from Reference 36.

Generally, at higher defect concentrations, the direction of the CS plane changes according to
the following equation:

(hkl ) = p(121) + q(011)
= (p, 2p+ q, p+ q).

3.

Thus, each CS plane is an ordered intergrowth of the component units of a (121) CS plane and a
(011) APB with possible values for p/q = 1, 2, 3, 4,∞. All the members of ordered (hkƖ) structures
have MnO2n−p stoichiometries (where n and p are integers), and at p = ∞, the general formula
degenerates to the MnO2n−1 homologous series. The sequence of steps strictly depends on p and
q values, and extremes of the series are the (121) and (132) planes.When q/p = ∞, the steps form
a . . .���. . . trace, as in (001) APB (TinO2n), and for p/q = ∞, a . . .���. . . trace forms (121).
The combination of (q� + p�) creates an unlimited number of possible intermediate orientations
(Table 2).

By performing a regular (011)½[01̄1] APB operation at every alternate (001) anion plane, an
orthorhombic α-PbO2 structure can be generated, as shown in Figure 4a (55). This structure is a
high-pressure polymorph of rutile, and the CS planes appear to kinetically allow the structure to
be quenched to atmospheric pressure as a metastable phase. The α-PbO2 structure has the same
hcp array of oxygen atoms as in rutile, but with a zigzag ordering of the chains of edge-shared
cation-anion octahedra. This ordering increases the structure’s density. The equilibrium pressure
for the rutile-to-orthorhombic α-PbO2 phase transition is 6 ± 2 GPa at 294 K (56). The enthalpy
of transformation obtained by high-temperature calorimetry is −3.18 ± 0.71 kJ/mol, and the
change in volume associated with the transformation is +2.8%.
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Table 2 Possible crystallographic shear (CS) planes formed from intergrowth of the (011)
antiphase boundary and (121) planes of rutile-based structures

CS plane p q Sequence of steps
(011) 0 1 �������
(121) 1 0 �������
(132) 1 1 �������
(253) 2 1 �������
(374) 3 1 ��������
(154) 1 3 ��������

The corundum structure can be created by a (001)½[01̄1] shear operation (Figure 4b), and if
the operation is repeated twice, a hexagonal (0001) layer of a NiAs structure forms. Unlike the
case of inserting extra cations into empty octahedral sites of rutile, arranging them in this manner
alleviates the strain arising from unfavorable cation repulsion.

Hyde et al. (36) discussed in detail CS structures with more exotic coordination polyhedra,
including derivatives of TmCl3 andCu-Au alloys (57, 58). Furthermore, by intercalation of foreign
atoms at APBs, some oxyhydroxides can also be considered as rutile derivatives (36).

ReO3 structures can be considered as perovskites (ABX3) with vacant cuboctahedral A sites.
Anions and anion vacancies in ABX3−δ perovskite structures can be arranged in different ordered
patterns, and their ordering strongly depends on the properties ofA and B cations.Abakumov et al.
(59, 60) demonstrated that, by performing shear operationwith a combination of two displacement
vectors as R = ½[110] + ⅓[001] on an A2Fe2O5 anion-deficient perovskite, a CS structure can
be generated. Similar to the case of block structures, the production of CS planes modifies the
linkage of octahedra, but without changing the coordination number of B cations. In particular,
a nonconservative ½[110] shear vector applied to the (101) plane removes some of the oxygen
atoms (Figure 5a) due to a change from corner sharing to edge sharing. The oxygen atoms that
are not eliminated by the shear operation cannot remain in the structure due to the extremely
short metal-oxygen distances.

The resulting (1̄01)⅓[001] displacement relaxes the structure, transforming FeO6 octahedra
into FeO5 tetragonal pyramids (Figure 5c).Figure 5d shows a [010] HAADF STEM (high-angle
annular dark-field scanning transmission electron microscopy) image of Pb2Fe2O5. Figure 5e
schematically shows the resulting atomic arrangement of the cations. The pyramid chains have
A2Fe2O4 composition, and adding them to perovskites with layer thickness n results in a homol-
ogous series with planar interfaces having A2+nFe2+nO4+3n composition. Pb2Fe2O5 has a large

a b

Figure 4

(a) A (100) layer of orthorhombic α-PbO2. (b) A (0001) layer of corundum. Blue dashed lines represent
crystallographic shear planes. Adapted from Reference 36.
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(a,b) Creation of oxygen vacancies (orange squares) (a) by a (1̄01)½[110] shear vector converting FeO6 into
FeO5 pyramids (b). Oxygen atoms that are not eliminated by the shear operation are denoted by blue
squares. Edge-shared polyhedra are shown in blue in panel b. (c) The (1̄01)⅓[001] relaxes the structure,
increasing the distance between A-type cations. In panels a–c, FeO6 octahedra are light green, FeO5
pyramids are light blue, displaced FeO5 pyramids are dark blue, displaced FeO6 octahedra are dark green,
A-type cations after relaxation from displacement are yellow circles, A-type cations before displacement are
green circles, and A-type cations after displacement are blue circles. (d) [010] HAADF STEM (high-angle
annular dark-field scanning transmission electron microscopy) image of Pb2Fe2O5. The brighter spots on
the unfiltered [010] HAADF STEM image of Pb2Fe2O5 correspond to Pb columns, whereas the dimmer
spots correspond to the projection of Fe columns. The monoclinic unit cell is outlined in thick white lines,
and a simulation of the image is outlined in thin white lines. (e) Arrangement of columns of Pb and Fe atoms
in Pb2Fe2O5. The monoclinic unit cell is outlined by thick solid lines, the perovskite blocks are outlined by
thick dashed lines, the six-sided channels are outlined by thin solid lines, and the crystallographic shear (CS)
planes are indicated by thin dotted lines. ( f,g) Perspective views of the ( f ) Pb15Fe16O39 ½[110](104)p and
(g) Pb18Fe20O48 ½[110](305)p CS structures. FeO5 tetragonal pyramids are blue, FeO6 octahedra are green,
Pb atoms in the six-sided tunnels are yellow circles, and A-type cations located in the cavities of perovskite
blocks are green circles. Panels a–c, f, and g adapted with permission from Reference 60. Panels d and e
adapted with permission from Reference 59.
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variety of CS structures (Figure 5f,g). Application of other conservative or nonconservative shear
operations to the (1̄01) plane can generate anion-deficient perovskite structures with different
compositions (61–63).

In contrast to the case of anion-deficient perovskites, a CS structure was also reported in lay-
ered perovskites La4Srn−4TinO3n+2 with oxygen excess (64, 65). At n< 7, layered phases form, and
consecutive blocks are joined via CS of oxygen-rich planes. With increasing n, extended defects
become more irregularly spaced, and at n > 11, shear structures disappear, and only oxygen-rich
defects are randomly distributed within the structure.The excess oxygen beyondABO3 stoichiom-
etry is located in oxygen-rich defect regions and is not compensated by A-site cation vacancies.

MECHANISMS OF CRYSTALLOGRAPHIC SHEAR PLANE FORMATION

The general mechanism of shear plane formation has been the subject of intense controversy
and remains somewhat enigmatic. Several different homogeneous and heterogeneous formation
models that can explain specific cases have been proposed, but none of these mechanisms can
explain CS plane formation for the whole class of materials. The mechanism proposed by Gado
(66, 67) assumes that a crystal loses oxygen, producing oxygen vacancies. These vacancies then
order inside the crystal, forming walls across which the crystal shears, annihilating vacant sites
and generating a shear plane (schematically illustrated in Figure 6a). Repetition of this process
results in parallel CS planes that divide the original structure into slabs. For his model, Gado
considered the reaction 20WO3 → W20O58 + O2, for which a high anion vacancy concentration
of 3.3% is needed before lattice condensation takes place (31). However, experiments have shown
that the formation of shear plane occurs even at ten-times-lower defect concentrations. Such a
large concentration of vacancies in the face-centered-cubic ReO3 structure is very unlikely, if not
impossible. In addition, this model does not explain CS plane ordering and rearrangement.

Anderson & Hyde (34, 68) proposed another mechanism (the dislocation model) suggesting
that the elimination of oxygen from the crystal creates random oxygen vacancies that then order,
forming planar disks. At a critical defect concentration, which is much lower than that required for
Gado’s model, the flat disk collapses, producing a nucleus of a CS plane enclosed by a partial dislo-
cation loop. Due to elastic stress, the dislocations act as vacancy sinks, trapping other vacancies by
a loop that diffuses from the bulk to this region. Consequently, the CS plane propagates to the in-
tersection with the crystal surface. Figure 6b shows this mechanism. Evidence for this dislocation

a b

1/2[110] 1/2[110]

Anion vacancy

Figure 6

The (a) Gado and (b) Anderson-Hyde dislocation models for the generation of crystallographic shear planes
(blue dashed lines) in an ReO3-type structure. Adapted from Reference 33.
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Figure 7

The Andersson-Wadsley mechanism of cooperative migration. (a) Perfect ReO3 structure of corner-sharing
octahedra (green). (b) Formation of a shear plane. (c,d) Propagation of the shear plane. The shear plane is
shown in orange.

mechanism for the nucleation and growth of CS planes is provided by the reduction ofMoO3 with
an electron beam (69), NbO2F (70), and Nb3O7F (71). The dislocation mechanism assumes that
vacancies, and not cation interstitials, compose the majority of point defects, but this assumption
has been debated. Other complex nucleation mechanisms based on cation interstitials with cation
sublattice rearrangement have also been proposed. In the cases of WO3−x and MoO3−x, evidence
for nucleation of vacancy dislocation loops was obtained,while for TiO2−x, cation interstitials were
found via drawing Burgers’s circuit ontoHRTEM images (72).Dislocation-limitedCS planes have
been occasionally observed, mostly in materials close to stoichiometric composition. The advan-
tage of this model is avoiding high vacancy concentration. However, while explaining CS plane
propagation, this model does not describe how CS planes order and defects migrate to produce
intermediate phases.

Andersson&Wadsley (73) proposed the cooperativemigrationmodel,which involvesCS plane
formation on the crystal surface without the involvement of point defects. The CS plane is pro-
duced through the reduction of oxygen at the surface, liberating oxygen atoms into the gas phase
(Figure 7a). Afterward, metal-oxygen rows cooperatively move to adjacent empty sites by leaving
their original positions (Figure 7b,c). The Wadsley defects formed can migrate into the next row
of interstitials by successive cooperative steps, thus diffusing deeper into the interior of the crystal
(Figure 7d).

The net effect is the unidirectional propagation of planar defects through the crystal under a
stress gradient. This mechanism can be used to explain why perovskites (ABO3) having an ReO3

structure with filled A sites do not form related CS structures, since cation diffusion is hindered
when cuboctahedral A sites are occupied (73). Migration of Wadsley defects should not be con-
fused with lattice oxygen diffusion in oxides; the latter occurs because of a concentration gradient
and results in random oxygen diffusion in all possible directions. However, the direct formation
of Wadsley defects inside the crystal is excluded in this model, which disagrees with experimental
results. Hyde & Bursill (31) noted that, to form a single CS plane inside a structure, a vast number
of ions (e.g., 50% of Ti4+ in TiO2) must migrate from the surface, and such migration may not
be energetically favorable at low concentrations of CS planes.
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(a) Hairpin model proposed by Van Landuyt & Amelinckx (75). Thick black lines denote a hairpin loop.
(b) TEM image demonstrating isolated hairpins (marked by X) in an irregular sequence of crystallographic
shear planes in TiO2−x. Figure adapted with permission from Reference 75.

O’Keeffe (74) pointed out that the Anderson-Hyde mechanism explains the formation and
growth of Wadsley defects, while the Andersson-Wadsley model elucidates the formation and
propagation of those defects. Another mechanism related to the Andersson-Wadsley model is the
hairpin propagation model suggested by Van Landuyt & Amelinckx (75) (Figure 8a). The differ-
ence between these two mechanisms is that the Van Landuyt & Amelinckx model does not assume
the cooperative movement of the whole row, but rather only some fraction of it. This model ex-
plains the formation, the lateral displacement, and the longitudinal growth of CS planes.Hairpin-
shaped CS planes have been observed only in TiO2−x thin foils with a clearly visible (by TEM)
hairpin tip in which all cooperative jumps and interstitial propagations take place (Figure 8b). In
reality, depending on thermodynamic parameters (such as temperature, pressure, and composi-
tion), all these mechanisms can operate simultaneously. Although these models can explain some
cases, a universal mechanism for Wadsley defect formation, growth, and migration should be for-
mulated with the help of modern computational capabilities.

SHEAR PLANE ENERGETICS

Although the energetics of point defect formation have been extensively studied, little is known
about the energetics of planar defect formation and interaction.The intriguing fundamental ques-
tions are why these defects form, what is the thermodynamic price of formation, why they form
only in special cases and not more generally, whether they coexist with point defects, and how
extended defects interact with each other to produce long-range shear plane ordering.

Merritt & Hyde (76) performed accurate equilibrium thermodynamic measurements on TiOx

over a wide composition range (1.66 ≤ x ≤ 2.00) and determined the partial molar free energy of
oxygen under precisely controlled H2 + H2O gas buffers. They found that the composition range
consists of five distinct regions. At 1.98 ≤ x ≤ 2.00, mainly lamellae of ordered (132) CS planes
are distributed in a rutile structure.With a further reduction, the 1.93 ≤ x ≤ 1.98 region consists
of (132) phases with very small composition intervals between neighboring ordered phases. The
1.90 ≤ x ≤ 1.93 region is populated by a continuous array of ordered or partially ordered phases,
and CS planes lie between (121) and (132). Thus, crystals within this region consist of coherent
domains resulting from an ordered intergrowth of (121) and (132) planes at different proportions.
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Importantly, changes in composition take place by changing the orientation rather than the density
of the shear planes. In the 1.73 ≤ x ≤ 1.90 region, (121) CS phases form, and when 1.66 ≤ x ≤
1.73, Ti3O5 coexists with Ti4O7. The thermodynamic results show that complete equilibrium is
not attainable with the very wide hysteresis loop observed over most of the composition range
studied. These results indicate that in the TiO2 system, another phase starts to appear before the
next nearest phase in the series completely forms.

The generation of vacancies is usually an energetically expensive process and typically in the
range of 1,500–2,000 kJ/mol for rutile and fluorite oxides (77–79). Thus, vacancy annihilation
must be strongly exothermic. On the basis of this logic, the formation of shear planes should be
energetically favorable relative to point defects and should be a more commonly observed type of
defect. However, the production of CS shortens metal-metal distances and leads to electrostatic
repulsions betweenmetal atoms (78, 79). As a result, the formation of CS structures is allowed only
when the exothermic energy of extended defect formation exceeds the endothermic Coulombic
cation repulsion.

The reduction of repulsion energy in shear planes has been explained bymetal atom relaxations
away from the planes (78–82).The lattice energy calculations for perfect Ti5O9, in which Ti atoms
occupy the same sites as in the ideal rutile structure, and for Ti5O9, in which the Ti3+ cations
close to the CS plane are displaced by 0.3 Å from the centers of the octahedra, show a 975 kJ/mol
energy difference between the relaxed and initial structures. This large difference confirms that
cation relaxation significantly stabilizes shear structures. Furthermore, if the reduction of TiO2

results in a divalent cation instead of a tetravalent one, then shear plane formation is stabilized by
an even larger 1,060 kJ/mol per removed oxygen ion (80). This higher value is also attributed to
the reduction of repulsion energy with the decrease in cation valence. However, reduced titanium
oxides are more likely to contain trivalent rather than divalent titanium. These results suggest
that doping oxide with lower-valence cations may strongly enhance stability and may even result
in CS structures that otherwise might not form. It has also been calculated that a reduction of
either ionic radius or electronic polarizability of dopant cations increases the binding energy of
doped cations to the shear plane, forming more stable structures (80). Additionally, the reduction
of oxides generates conduction band electrons that can interact with shear planes, and shear plane–
electron binding energies are in the range of 10–60 kJ/mol for Ti4O7 andTi5O9 (78).These values
are small compared to calculated relaxation energies but are sufficiently large to have a dramatic
impact on the thermodynamics of the formation and electrical conductivity of crystals.

Interesting results were obtained for CS planes in reduced oxides with the ReO3 structure (3).
The calculated unrelaxed lattice energies follow the sequence of (102) > (103) > (104) > (001),
with (001) plane defects being the most stable. However, after ion relaxation, the low-symmetry
(102) shear plane becomes the most stable one, which is explained by more substantial lattice
relaxation in the lateral and perpendicular directions around these defects. In the case of the (001)
plane, which is restricted by symmetry, ion displacements are perpendicular only to the plane.
Moreover, the energies of different relaxed planes differ by only 50–100 kJ/mol.

The relaxation theory is supported by Tilley’s (82) empirical observations that shear planes
form in those crystals that possess very high static dielectric constants, ε0. High ε0 values can
effectively screen Coulombic interactions between charged defects. Two contributions, the elec-
tronic and ionic polarizabilities of atoms, compose ε0. Materials with low ε0 (<24) tend to form
point defects, whereas those with high ε0 (>100) form extended defects. For example,TiO2,which
has a high value of ε0 ∼ 100, forms planar defects, while isostructural SnO2, with ε0 ∼ 15, forms
only point defects (79). A high ε0 value is generally attributed to the high-ionic-polarizability term
arising from the displacement of cations from the centers of octahedra. This empirical correlation
considers room temperature ε0 value, but this value can become large for some materials at the

532 Voskanyan • Navrotsky



synthesis temperature. Therefore, the temperature dependence of ε0 should be considered. In ad-
dition, the ionic and electronic contributions of atoms are related to the allowed lattice vibrations
of crystals, and high ε0 is associated with a very low frequency transverse optical phonon in the
lattice (78, 81). Defects can alter local fields in some areas of the crystal, thus affecting the stability
of low-optical-phonon modes. The existence of soft phonon modes in the crystal may favor the
formation of planar defects over point defects (53), although there is no quantitative analysis to
favor this point. We suggest that the vibrational density of states obtained from cryogenic heat
capacity measurements and inelastic neutron scattering of various shear structures may help to
analyze the validity of such correlations.

High ε0 values are not the immediate reason for shear plane stabilization (78, 81). Large cation
displacements take place in materials with high polarizability, lead to high ε0, and hence should
allow for large cation relaxations along the shear plane. Both high ε0 values and CS plane forma-
tion are related to large cation polarizabilities, and rather than one causing the other, both arise
from the essential characteristics of the metal-oxygen potential. Interestingly, colossal ε0 was also
recorded in high-entropy oxides without a concrete explanation of its origin (83).We suggest that
this high ε0 value may also be related to possible large cation displacements in these materials.

Because the formation of CS planes eliminates point defects, another question is whether point
defects and shear planes can coexist in the same crystal structure. Statistical mechanics was used
to deduce that, for crystals containing shear planes, an equilibrium concentration of point defects,
however small, must exist (3, 78). If oxygen vacancies (Vo) are the predominant point defects in
TiO2−x, the following defect equilibrium can be written:

shear plane ↔ Vo + 2e−. 4.

The generated electrons are confined in the positively charged shear plane and released af-
ter its dissociation. The calculated free energy for Reaction 4 is approximately 200 kJ/mol and
has been calculated by ignoring all lattice entropy terms and including only the configurational
entropy associated with point defects (79). Then this energy value is used to calculate the ex-
tended/point defect equilibrium. The results show that a considerable concentration of oxygen
vacancies (∼10−3) is in equilibrium with shear planes above 1,000 K. Even at very small concen-
trations, point defects may still influence transport and thermodynamic properties. Importantly,
at extremely small deviations from stoichiometry, x ≈ 0.003, possible shear planes are dissociated
into anion vacancies that aggregate into CS planes only when x exceeds this value. These re-
sults can be extended to ReO3 structures, assuming vacancy formation on oxide reduction. Shear
planes exist for WO2.994 in the temperature range of 1,000–1,500 K (3). Electrical conductivity
studies above 1,000 K reveal a sharp change in conductivity at the near-stoichiometric region of
TiO2−x (84). This conductivity change is best explained by the aggregation of anion vacancies
into extended defects, implying that CS planes start to form at the TiO1.99 composition. A dra-
matic change in conductivity at room temperature was also observed for the La4Srn−4TinO3n+2

perovskite series at n = 12, and below this point, extended defects are converted into randomly
distributed oxygen-rich defect clusters (65).

Above we discuss aspects related to the topology, mechanism, and energetics of shear plane
formation. Another important feature of shear planes is their long-range ordering, which results
in homologous series of shear compounds such as Magnéli and Wadsley-Roth phases. The or-
dering of CS planes emerges from defect interactions. With the embedding of more planes into
the crystal, the shear planes move to minimize the total Gibbs energy. Stoneham & Durham (85)
developed a theory that explains the interaction of planes in the ReO3 structure. This theory is
based on plane-plane elastic interactions with a negligible electrostatic contribution. The electro-
static interaction is insignificant because the positive charge of shear planes is locally balanced by
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conduction band electrons. According to this theory, shear planes are represented as defect forces,
and each individual plane exerts force on the elastic strain field of the neighboring plane. The
continuum elasticity approach can be used to analytically evaluate the interaction energy between
two planes. Categorically different results have been obtained for interaction energies of infinite
arrays and separate pairs of CS planes. For infinite arrays of planes, a deep energy minimum at
finite spacing was predicted; this minimum corresponds to a spacing of approximately four times
the width of the repeating unit within each plane. Away from the minimum, the interaction energy
increases significantly. Experimentally observed plane spacings for different reduced oxides are in
good agreement with the minimum predicted by this theory. The interaction of a pair of planes
as a function of spacing is much more complicated because the periodicity of an array cannot be
applied.The calculated results indicate oscillatory interactions between isolated pairs of CS planes
with a series of maxima and minima; however, no evidence of oscillatory plane interactions has
been recorded to date.

Iguchi & Tilley (86) extended the continuum elasticity theory by considering the actual shear
planes in WO3 instead of the hypothetical (100) plane in the ReO3 structure used in earlier work.
They concluded that, if only one set of CS planes is considered, the obtained microstructure as
revealed by TEM is in accord with the prediction of elastic strain theory. However, the sequence
of planes observed after the reduction of WO3 is not regulated by strain energy; otherwise, (001)
planes would always be favored. Therefore, Iguchi & Tilley speculated that the formation of the
CS plane is governed by cation-cation and cation-anion-cation bonding within the CS plane.
Furthermore, cubic sets of planes such as (102), (103), and (001) become nonequivalent in the real
WO3 structure, leading to distortions of MO6 octahedra.Magnéli (87) pointed out that these off-
center displacements of metal atoms differ between homologs andmay have a significant influence
on the stability of certain members of homologous series. Using atomistic computer modeling,
Cormack (88) obtained attractive interactions of shear planes even at large separations. The ori-
gin of this interaction was also ascribed to the displacement of octahedra between the CS planes
generating elastic strain fields.

We recently demonstrated that Wadsley-Roth shear phases of the TiO2-Nb2O5 pseudobi-
nary system such as TiNb2O7, TiNb5O14.5, and TiNb24O62 have positive enthalpies of formation
from binary oxides (TiO2 and Nb2O5), implying that they are entropy stabilized and stable only
above someminimum temperature (53).The energetically metastable entropy-stabilized interme-
diate phases Ca3Fe2TiO8 and Ca4Fe2Ti2O11 have also been observed in the CaTiO3-Ca2Fe2O5

(perovskite-brownmillerite) system (89). High-synthesis temperature creates cation disorder, and
the configurational entropy arising from such disorder can thermodynamically stabilize shear
structures against decomposition. In the TiO2-Nb2O5 series, increasing concentrations of higher-
valence Nb5+ cations in ternary compounds decrease the energetic stability of these phases with
respect to their binary constituents (TiNb2O7 > TiNb5O14.5 > TiNb24O62). Substitution of Ti4+

with higher-valence Nb5+ likely increases unfavorable cation-cation repulsions along the shear
plane. These results are in harmony with Pauling’s third rule, which states that if two anion poly-
hedra share edges, the stability of an ionic structure decreases since two central metal atoms have
less separation. The observed energetics suggest that TiNb24O62 has extensive cation disorder,
whereas TiNb2O7 and TiNb5O14.5 appear to be substantially more ordered. Indeed, Cheetham
& Von Dreele (90) observed partial cation ordering in TiNb2O7 and TiNb5O14.5 through neu-
tron diffraction. They found that Nb5+ cations prefer the centers of blocks, whereas Ti4+ cations
occupy corner sites because of electrostatic interactions.

These CS phases and probably many others constitute a new and extensive class of entropy-
stabilized oxides or high-entropy oxides (91) that are stable only at high temperature and in
which positive enthalpies of formation are counterbalanced by large positive entropies arising
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from cation disorder and not from CS.Our results demonstrate that entropy stabilization of these
oxides is possible through the disorder of two cations rather than five or more cations (the latter
quantity is commonly part of the definition of high-entropy materials) (91–95). Such entropy sta-
bilization of energetically unfavorable materials was noted 50 years ago in spinels with disordered
cation distributions (96, 97).

We anticipate that thermodynamic stabilization via configurational entropy of cation distri-
butions is more common than previously realized, and many new families of entropy-stabilized
compounds are waiting to be synthesized.

CONCLUSIONS AND PERSPECTIVES

In this review, we present the structural aspects, mechanisms, and energetics of CS plane forma-
tion in a condensed form to avoid being overly exhaustive. We realize that there is still much
to be learned and discovered concerning this fascinating class of materials. A number of funda-
mental questions related to the formation and energetics of shear plane should be revisited and
answered using the exceptional opportunities provided by modern high-resolution electron mi-
croscopy, computer simulations, and state-of-the-art instrumentation for precise evaluation of
various physicochemical properties of interest, including the thermodynamics of formation and
transformation.

In particular, in situ X-ray diffraction of precursor mixtures under controlled temperatures
and pressures may provide distinctive structural details of shear plane formation in different sys-
tems. Furthermore, information regarding the phase formation and thermophysical properties of
shear structures can be acquired through in situ high-energy X-ray diffraction studies of levitated
samples, which eliminate problems of reaction with containers. High-temperature calorimetric
studies of different shear phases based on rutile or ReO3 structures are necessary to assess the
general thermodynamic stability trends of these compounds.

Not only inorganic solids but also organic-inorganic hybrid materials, including metal organic
frameworks (MOFs), crystallize in ReO3 and other perovskite-related structures (98). In the latter,
the oxygen atoms in ReO3 are replaced by organic anions, and MOFs with the ReO3-type struc-
ture include formates, carboxylates, guanidinates, azolates, and others. Anion vacancies in MOFs
can be readily generated by doping or substitution of higher-valence cations with lower-valence
ones. Therefore, the logical question is whether CS formation is possible in MOFs. To the best
of our knowledge, there is no report on shear plane or Wadsley defect formation in MOFs, and
we suggest that experimental and/or theoretical clarification regarding the feasibility of such
formation is worth investigating. Interestingly, researchers recently detected clear evidence of
nonrandom ordering of vacancy networks in a single crystal of Prussian blue analog (PBA) via
X-ray diffuse scattering (99, 100). Furthermore, these investigators found a surprising diversity
of diffuse scattering patterns for PBAs and demonstrated that ordering strictly depends on each
crystal’s chemical composition as well as on the conditions used for crystallization. Precise defect
engineering is the next step to tailor properties of materials for specific applications.

Wadsley-Roth shear structures have been identified as promising high-performance anodema-
terials for lithium ion batteries. Despite much structure performance–oriented research, there are
few reports on computationalmodeling of lithium insertionmechanisms, the effect of cation disor-
der, and electronic structure change throughout the lithiation of shear phases.The main drawback
of these compounds is their extremely low electronic conductivity, which significantly affects the
rate capability. Therefore, the synthesis of novel CS structures with high electronic conductivity
and excellent energetic stability is necessary to enhance the electrochemical performance of these
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materials. Intrinsically metastable CS phases may demonstrate excellent activity in catalyzing/
photocatalyzing industrially important chemical reactions.
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