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Abstract

Structural materials have lagged behind other classes in the use of com-
binatorial and high-throughput (CHT) methods for rapid screening and
alloy development. The dual complexities of composition and microstruc-
ture are responsible for this, along with the need to produce bulk-like,
defect-free materials libraries. This review evaluates recent progress in
CHT evaluations for structural materials. High-throughput computations
can augment or replace experiments and accelerate data analysis. New
synthesis methods, including additive manufacturing, can rapidly produce
composition gradients or arrays of discrete alloys-on-demand in bulk
form, and new experimental methods have been validated for nearly all
essential structural materials properties. The remaining gaps are CHT
measurement of bulk tensile strength, ductility, and melting temperature
and production of microstructural libraries. A search strategy designed for
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structural materials gains efficiency by performing two layers of evaluations before addressing
microstructure, and this review closes with a future vision of the autonomous, closed-loop CHT
exploration of structural materials.

1. INTRODUCTION

Materials propel societies, and the rate at which societies move forward is linked to the rate of
materials advances. The mobile phone is a case in point: In just a dozen years, it has changed the
way societies communicate and live, and it was made possible by a host of materials innovations.
The interactive display alone includes liquid crystal display or organic light-emitting diode ma-
terials, optically transparent and electrically conductive indium-tin-oxide touchscreen materials,
and Gorilla® Glass for the protective outer layer. Dozens of other smartphone functions are en-
abled by new materials, such as temperature-compensated crystal oscillators that improve global
positioning system accuracy, dielectric piezoceramics for antennae that communicate with cell
towers and wireless networks, and quartz crystal sensor materials in accelerometers, barometers,
gyroscopes, hygrometers, light sensors, magnetometers, proximity sensors, and thermometers
(1). Similar connections between materials advancements and societal progress are found in the
transportation (nautical, rail, automotive, aeronautical, space), energy, communications, medical,
and industrial sectors. The industrial age, computer age, space age, and information age are all
intimately connected to materials innovations. More than simply enabling change, new materials
also propel economies.

The rate of materials advances has increased dramatically in the past several decades, and com-
binatorial and high-throughput (CHT) methods for characterizing new materials have played a
central role in this acceleration. Pioneering studies as early as 1955 (2–5) built the foundations
subsequently used to screen molecular libraries in biology, chemistry, and pharmaceutical fields,
and combinatorial methods were (re)introduced to materials science in 1995 (6).CHT evaluations
use materials libraries with either continuous composition gradients or an array of discrete com-
positions (7–10) that are characterized using methods that require minimal sample preparation,
can be conducted on very small sample volumes (miniaturization), can be automated, and allow
many measurements to be collected simultaneously (parallelization).

A wide variety of functional materials have been developed by CHT methods (9, 10). Struc-
tural materials support a vast array of human endeavors; a casual scan of the book Fifty Materials
That Make the World shows that roughly 70% of the materials that shape our world are primarily
structural (11). It may be surprising, then, that CHTmethods are essentially unused for structural
materials. Microstructure is the culprit. Structural properties are extremely sensitive to both
composition and microstructure, adding many orthogonal dimensions of complexity to CHT
evaluations. While varying a single parameter—composition—can significantly accelerate the
discovery and development of functional materials, many additional independent iterations may
be needed for structural materials. As a further complication, structural properties also depend
on sample size; properties measured on samples with any dimension less than about 1 μm can be
very different from bulk properties. This limits the options for structural materials because CHT
relies on miniaturization.

As another barrier, CHT methods often have larger errors than conventional tests and may
not produce or characterize materials under actual service conditions (9). In an age in which high
precision and accuracy are expected from increasingly sophisticated methods, such screening
efforts are sometimes viewed with disdain by researchers and funding agencies alike.Nevertheless,
screening remains an essential first step in the development of structural materials. High-entropy
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alloys (HEAs) and complex, concentrated alloys (CCAs) vastly increase both composition and
microstructure space, adding a new imperative to develop and employ effective CHT screening
methods.

Major movements in materials science support an emerging revolution in the rapid charac-
terization of structural materials. Integrated computational materials engineering (ICME) for-
mally adds computations to the materials characterization toolkit (12). Artificial intelligence and
machine learning add new dimensions to materials exploration. New experimental methods are
being reported to characterize materials, and new synthesis methods capable of making bulk ma-
terials libraries are rapidly advancing.New strategies are being proposed to address the additional
layers of complexity offered by structural materials. Finally, the Materials Genome Initiative in
the United States, and similar movements elsewhere, provides the initiative to connect ongoing
efforts in computations, new experimental tools, and the aggressive use of digital data (13).

The purpose of this review is to introduce the emerging capabilities for CHT characterization
of structural materials. The methods presented here are primarily intended for metallic and ce-
ramic materials. Experimental and (where appropriate) computational characterization methods
are described for each property. Emerging methods to produce materials libraries are described,
and a strategy to address the additional layers of complexity offered by structural materials is
presented. The review ends with a future vision for the closed-loop, autonomous evaluation of
structural materials.

2. HIGH-THROUGHPUT CHARACTERIZATION OF STRUCTURAL
MATERIALS PROPERTIES

This review is limited to properties considered most important for structural materials. Methods
that are automated and can perform many operations simultaneously significantly reduce acqui-
sition time and are much preferred. Attractive CHT methods are characterized by high spatial
resolution, short acquisition time, and low to modest levels of error or uncertainty; these values
are reported for eachmethod inTable 1. Standard characterization techniques and computational
methods that display few or none of these features are not discussed in this article.

2.1. Phase Identification, Microstructure, and Phase Equilibria

Composition and microstructure each influence structural properties. Microstructures consist of
phases, which are uniquely identified by their composition and atomic structure. Phase diagrams
and phase equilibria are essential tools for alloy design. CHT methods to quantify all of these
features are already widely available and commonly used (Table 1), and so only a brief coverage
of these topics is provided.

2.1.1. Composition. Modern energy-dispersive spectroscopy (EDS) systems have a silicon drift
detector (SDD) that, when combined with other features such as split detectors and thermal field
emission guns, are fully capable of meeting CHT composition measurement needs (14). EDS
spatial resolution is typically ≤3 μm, and measurement times on the order of milliseconds can be
achieved so that over one million compositions can be collected in less than 1 h. EDS-SDD accu-
racy depends sensitively on the elemental concentrations measured and the operating conditions
chosen. Using appropriate standards, accuracies of ±0.1 atomic percent (at%) can be achieved
for major and minor elements, and accuracies better than ±100 ppm by weight can be realized
for trace elemental analyses (14). EDS-SDD systems are included with most scanning electron
microscope (SEM) units, and automated beam control allows both local compositions of discrete
phases and the global composition of an alloy to be measured.
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X-ray fluorescence (XRF) is also used for high-throughput composition measurement (15). A
high-intensity beam such as that produced in a synchrotron generates characteristic fluorescent
X-rays in a sample, which are collected using wavelength-dispersive spectroscopy or EDS meth-
ods. Typical test capabilities use thin-film (≤1-μm thickness) materials libraries and have a lateral
spatial resolution of ∼1 mm, an accuracy of ∼3 at%, and an acquisition time of about 15 s, so
that up to 5,000 measurements can be made per day (16). Lab-scale XRF devices are not typically
used in CHT evaluations. Due to its low spatial resolution, XRF cannot measure compositions of
individual phases and is generally limited to measuring average compositions.

2.1.2. Crystal structure. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD)
are common CHT methods to measure crystal structure. XRD can be done using conventional
sealed-tube or rotating-anode devices, micro-XRD (μXRD) units, or high-flux beamlines. The
1D diffraction detectors are susceptible to incomplete crystal structure indexing in samples with
large grain sizes or crystallographic texture, often requiring additional scans to index a crystal. Area
detectors can reduce collection time by simultaneous 2D scanning in reciprocal space, eliminating
the need for additional scans (16–21). XRD spatial resolution is typically on the order of 1 mm,
and μXRD has an optional collimator that gives a spot with a 50–500-μm diameter. Scan times
for lab-scale units with a 1D detector are typically up to an hour, while μXRD units using 2D
detectors have collection times of 10–30 min (21, 22). Synchrotron beamlines using 2D detectors
have acquisition times that are typically tens of seconds up to aminute (16, 19), but limited facilities
often require a lead time of 6–12 months between proposal and experiment.

EBSD offers major advantages over XRD andμXRD.Pattern collection times are on the order
of 1 ms (23), and the spatial resolution is ≤200 nm over a wide range of operating conditions (24).
Unlike XRD and μXRD, EBSD has sufficient spatial resolution to index individual phases within
a microstructure. EBSD can be integrated with commercial SEM systems so that composition
and crystal structure mapping can be done at the same time. Indexing of EBSD patterns is a
major bottleneck. For EBSD, the user must suggest expected structures to initiate commercial
pattern indexing algorithms. The presence of phases for which initial guesses cannot be made,
along with the issues mentioned below for XRD, can significantly delay EBSD pattern indexing.
For CHT studies involving hundreds or thousands of patterns, this is a major barrier and an
active area of research (16). For example, computations can deconvolve a large number of
multiphase XRD patterns to the minimum number of (typically single-phase) patterns needed to
describe the search space, significantly reducing the amount of user input (18). Machine-learning
algorithms have been developed that combine EBSD images with composition and lattice
parameters to autonomously identify crystal structures with fewer user decisions (25).

Indexing XRD patterns is also a barrier. Differences in lattice constants (peak positions) and
peak intensities between measurements and database entries for pure elements and ideal, stoichio-
metric compounds generally require manual intervention. Computational tools can automatically
solve XRD patterns (26–28). The first-principles-assisted structure solution (FPASS) (29) method
uses the experimental composition, density, and diffraction pattern—along with candidate space
groups obtained from Rietveld refinement of the diffraction pattern—as constraints. Using a ge-
netic algorithm and density functional theory (DFT) calculations, FPASS finds the structure that
best matches the XRD pattern. This method can reproduce known crystal structures without hu-
man intervention and identify previously undetermined structures from powder diffraction pat-
terns (26, 29). FPASS can solve the structure of line compounds with perfect ordering, but it needs
to be improved to tackle structures with partial occupancy.Machine-learning models, such as Ag-
ileFD (30), can also automatically identify constituent phases using compositional and structural
information from XRF/EDS and XRD measurements (28, 31).
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2.1.3. Microstructure. Image acquisition is fast in both optical microscope and SEMplatforms,
but classifying and quantifying microstructures requires substantial human input. Commercial
software packages can identify common microstructural features, such as grains, phases, precip-
itates, and defects. Standard analyses of area fractions and grain size distributions are available,
and phases can be distinguished based on morphology and validated with chemical information.
These commercial tools might be adequate to support some CHT microstructure evaluations.
Nevertheless, these software packages still require user input and supervision, and since the ability
to generate microstructural data sets far exceeds the ability to analyze them, even a small amount
of user input could become a large task in CHT analyses. Statistical modeling–based approaches
for microstructure quantification and classification are becoming popular (32–34). While the
microstructure of heterogeneous materials can be represented exactly with n-point spatial
correlations (also called n-point statistics), it becomes computationally intractable for n ≥ 3 (35).
Two-point statistics are usually adopted in practice. For instance, two-point spatial correlations
were used to identify primary alpha particles and secondary alpha colonies in α–β Ti-based alloys
with 95% accuracy (36). Recently, image texture recognition was employed to develop the set of
visual features that can capture the defining characteristics of individual microstructures without
human input (34). A support vector machine trained with visual features could classify images
into one of seven groups automatically with accuracy greater than 80%. Convolutional neural
networks (CNNs) can also assist with microstructure recognition (33, 37). Nearly 1,000 scanning
electron micrographs of ultrahigh carbon steel were labeled with their primary microstructure
constituents, and then a combined approach using CNNs and support vector machines classified
their microstructure with accuracy higher than 95% (33). Such data-driven microstructure
analysis can be extended to CHT characterization given enough training data.

2.1.4. Phase equilibria. The standard experimental approach to determine phase equilibria
can take up to a year. There is no shortcut to equilibration; annealing times become exponentially
longer the farther the temperature is from themelting temperature,Tm.Exposures on the order of
hundreds of hours are common near Tm, and anneals can last thousands of hours (several months)
near Tm/2. Nevertheless, significant acceleration can be achieved in synthesis and characteriza-
tion. Materials libraries, discussed later, synthesize many or all of the desired compositions in a
single, automated process. Additive manufacturing (AM) (38–41), vapor deposition of thick layers
(42, 43), and friction stir processing (FSP) (44) have all been used to produce materials libraries
for phase equilibria studies, but diffusion multiples have the advantage of combining material syn-
thesis and an equilibration anneal in the same step (45). Further, a single diffusion multiple set can
have many diffusion couples and triples. For example, as many as 10 diffusion triples have been
contained in a single library (46, 47). The dual-anneal diffusion multiple (DADM) approach pro-
vides phase diagram data at intermediate temperatures by adding a second annealing treatment
at a lower temperature (47–49). The initial, high-temperature anneal bonds the samples and pro-
duces the composition gradient, and the lower-temperature anneal produces equilibrium phases at
the lower temperature. The time to collect phase equilibria data is accelerated using CHT phase
identification methods described above for composition and crystal structure.

Computationally predicted phase diagrams have revolutionized alloy design. The Calculation
of Phase Diagram (CALPHAD) framework (50, 51) predicts phase equilibria based on thermo-
dynamic functions derived from experimental data that include phase formation enthalpies and
phase equilibria. Predictions are most reliable in compositional regions where large data sets exist,
for example, near commercial alloy families, and reliability decreases with increasing extrapolation
away from such spaces. To fill gaps in experimental data, CALPHADmodels are augmented with
thermodynamic parameters from materials databases, such as The Materials Project, the Open
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QuantumMaterials Database (OQMD), Automatic Flow for Materials Discovery (AFLOW), and
Novel Materials Discovery (NOMAD) (52, 53). For example, high-throughput DFT calculations
of binary or ternary disordered alloys can be performed using small, special, quasirandom struc-
tures (54) or by explicit enumeration of all possible symmetry-unique ordered configurations
within small supercells (55). These DFT energies can be combined with a cluster expansion
model to predict phase stabilities of alloys with four or more principal elements, accelerating the
search for quaternary and quinary solid solution alloys (56).

2.2. Structure-Insensitive Properties

Structure-insensitive properties depend primarily on alloy composition and not so strongly onmi-
crostructure. Screening of materials based on structure-insensitive properties is accelerated since
the influence of microstructure is marginal. The characteristics of these CHT tests are shown in
Table 1.

2.2.1. Melting temperature. Melting temperature is an essential property for structural
materials; it influences primary and secondary processing, and most properties scale with Tm.
Local melting is easily achieved via lasers, but an accurate, spatially resolved, high-throughput
method to measure Tm is currently unavailable. Local temperature can be measured with optical
pyrometry, but calibration for surface emissivity is required for each composition (57). Other ap-
proaches to measure Tm have been demonstrated and may also prove to have utility. For example,
an entire materials library was heated in a furnace, and phase transformations (including melting)
were determined by changes in optical contrast as a function of the furnace temperature (58). This
approach avoids the need for calibration and for making individual temperature measurements
(they are all equal to the furnace temperature), but it may be experimentally challenging to
apply at high temperatures. New research is recommended to develop the capability to measure
temperature using CHT methods.

Computational methods can predict Tm for metallic, ionic, and covalent systems (59, 60), but
these methods lack adequate atomic potentials and are computationally expensive, limiting their
use for CHT evaluations. SLUSCHI (Solid and Liquid in Ultra Small Coexistence with Hovering
Interfaces) is an automated code that uses DFT calculations to calculateTm (61). It has an accuracy
on the order of ±10% or better for metallic materials. Although computation times are on the
order of days, future improvements may make this a viable CHT tool.

2.2.2. Density. There are no CHT experimental approaches to measure density, but computa-
tions can evaluate it. First-principles databases provide rapid access to the theoretical density of
tens of thousands of stable and metastable phases with high accuracy. For instance, The Materi-
als Project provides access to densities of 5,257 binary and 6,192 ternary intermetallic phases. As
previously noted, these databases currently do not include disordered solid solutions, for which
the density can be estimated for a given composition using Vegard’s law.

2.2.3. Elastic modulus. Many CHT methods measure modulus. For reasons described later
(see Section 2.3.3), tests using samples with micron or submicron dimensions are not discussed
here. Recent advances in laser-induced surface acoustic wave spectroscopy (SAWS) and instru-
mented indentation have replaced thin-film and micropillar compression methods to measure
modulus. SAWS was initially demonstrated in thin films (15) and has subsequently been extended
to bulk samples (62). This method is capable of evaluating Young’s modulus, elastic stiffness
constants (Cij), and Poisson’s ratio in isotropic and anisotropic materials (63). Instrumented
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nanoindentation also provides a high-speed modulus mapping capability (64–66). Measure-
ments are sensitive to surface conditions, and care is needed to minimize surface roughness and
chemical effects from environmental exposure to or reaction with polishing agents (15, 64, 66).
Standard procedures to calibrate frame compliance and to provide the indenter area function
have been established (67). In addition to the standard Berkovich nanoindenter, data collection
and analysis protocols have been established for instrumented spherical nanoindentation (68, 69)
and microindentation (70). Spherical indentation has a longer acquisition time and lower spatial
resolution but provides lower variability and better represents bulk properties (Table 1).

Spatial resolution is defined by the extent of the elastic zone under the indenter. For Berkovich
indenters, good accuracy is retained at indent spacings of 10h (h is the indent depth) (71), and
indent depths range from 15 to 1,000 nm (64, 66, 71), giving spatial resolutions from ∼150 nm
to ∼10 μm. For spherical nano- and microindentation, the indent radius at yield is ∼2–5% of
the indenter radius (68, 70), and the elastic zone is ∼10 times the indent radius (S.R. Kalidindi,
personal communication), so the spatial resolution is on the order of the indenter radius. Indenter
radii are commonly 1–100 μm for spherical nanoindentation (68) and on the order of millimeters
for microindentation (70). Errors in measured moduli depend on indent depth, the number of
indents collected, and proximity to features such as grain or phase boundaries. Relative errors can
range from ±8% to 24% for shallow indents, for a small number of measurements (64), or for
complex, multiphase microstructures (66). A much smaller error of ±0.7% has been reported for
large data sets in single-phase materials with deeper indents (71). A low variability for spherical
nano- andmicroindentation results from the larger elastic zone size and ranges from roughly±1%
to ±4%, even for small data sets (68–70). Acquisition rates for instrumented nanoindenters range
from ≤1 s−1 to 6 s−1 (64, 66, 71). Spherical indentation is less mature, and acquisition rates are
presently of the order of minutes (S.R. Kalidindi, personal communication).

First-principles databases such as The Materials Project provide the elastic moduli of nearly
2,000 inorganic compounds (72), a number that is continuously growing. Automated workflows
are available to rapidly calculate the elastic constants of compounds or solid solutions with mini-
mum user input (73). DFT-calculated elastic constants are typically within 10% of experimental
measurements. Machine-learning models trained with these databases enable even faster screen-
ing of candidates over broad composition and crystal structure design spaces (74).

2.2.4. Thermal properties. Time-domain thermoreflectance (TDTR) is a CHT method to
measure thermal conductivity (75, 76), and time-domain probe-beam deflection (TD-PBD), an
extension of TDTR, gives the coefficient of thermal expansion (CTE) (77). Extracting the CTE
from the measured signal requires the density and Young’s modulus of the tested materials; how-
ever, TD-PBD can independently measure Young’s modulus. The accuracy can be as good as
±6%. Calculating thermal conductivity from first principles is computationally intensive and,
hence, unsuitable for CHT methods. A method based on quasiharmonic Debye approximation
(78) improves the calculation efficiency, but it lacks accuracy. A three-phonon quasiharmonic ap-
proximation method (79) shows good consistency with experiments on metallic and nonmetallic
compounds. Its implementation in the AFLOW framework allows automated determination of
finite-temperature thermal properties with computation times of the order of hours.

2.2.5. Oxidation. CHT oxidation studies have been performed on thin (≤1 μm) (for example,
see 80) and thick (∼50–150 μm) (81–83) alloy films produced by sputtering and ion plasma depo-
sition (IPD), respectively. CHT studies generally screen for α-Al2O3 by oxidizing at intermediate
(≤700°C) (80, 84–86) or high temperatures (>1,000°C) (81–83, 87) in static (80, 82, 83, 85, 86,
88) or cyclic (81, 84, 87) conditions. A range of characterization methods have been used. Optical
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evaluation includes color change and the presence of spallation (80, 85). Oxide thickness has been
measured by X-ray photoelectron spectroscopy depth profiling (85) and automated mechanical
profilometry (80). EDS gives qualitative oxygen content in thin films (85, 86, 88), and Rutherford
backscattering provides oxygen levels in the surface oxide and at a specific depth below the oxide
(80). XRD (80, 84, 87), XRF (87), and Raman spectroscopy (84, 87, 88) are used to determine ox-
ide crystal structures. These techniques are typically restricted to observations within ∼1 μm of
the surface, but photostimulated luminescence spectroscopy can detect α-Al2O3 in (Co,Ni)-based
superalloys at depths up to 15–20 μm (82). It is not clear to what degree the characterization
methods in these studies are automated and/or parallelized, and CHT metrics such as spatial res-
olution, acquisition time, and reproducibility and/or error are reported infrequently. As a result
of attractive features that include high erosion rates and erosion depths, good chemical sensitivity,
and easy quantification for light elements (89), the glow discharge optical emission spectrometry
technique is now being adapted for CHT evaluations (A. Couet, personal communication).

2.3. Structure-Sensitive Properties

Structure-sensitive properties are strongly influenced by both composition and microstructure.
Properties such as hardness, strength, ductility, fracture, creep, fatigue, and corrosion behavior
clearly fit in this category.

2.3.1. Corrosion. Corrosion is complex and includes a range of attack mechanisms that depend
on the type and concentration of the electrolyte; the composition, microstructure, and defect
structure of the material; physical geometry; time and temperature; and the use of protection
strategies such as coatings, inhibitors, and/or anodic currents (90, 91). As a result of these com-
plexities, many CHTmethods have been devised. Libraries may display variations in the substrate
composition, the electrolyte, and/or the corrosion inhibitor.Microfluidic devices simulate a range
of corrosion conditions, including time-dependent changes in electrolyte concentration and
oxygen content. They also allow the effluent composition to be monitored continuously and are
amenable to automation. Clever characterization methods include using resistance measurements
as an indicator of reduced cross sections in thin wires resulting from corrosion (92) and optical
characterization of a corroded substrate (93, 94) or changes in the electrolyte (92).Due to the wide
range of corrosion mechanisms and CHTmethods, it is difficult to give characteristic acquisition
times, spatial resolutions, and reproducibility (Table 1). Nevertheless, significant acceleration is
achieved relative to standard tests. Exposure is usually conducted in parallel, reducing acquisition
time relative to standard tests by up to two orders of magnitude.

Due to the complexity of corrosion phenomena, a unifying computational model to predict
corrosion resistance is missing. Empirical corrosion models are available for limited systems. For
example, the pitting resistance equivalence number (95) is derived by empirically fitting to ex-
perimental Fe–Cr–Ni alloys and is unable to predict corrosion resistance in a new compositional
space. Using ICME in the development of a scientifically grounded rule to quantitatively predict
corrosion resistance for a given composition is being actively pursued (96).

2.3.2. Hardness. The indentation methods described above for modulus also provide hardness.
The spatial resolution for hardness and modulus are essentially the same for Berkovich indenters
(64, 71), and the spatial resolution for hardness using spherical nanoindentation and microin-
dentation is roughly 20% of the indenter diameter (S.R. Kalidindi, personal communication)
(Table 1). Nanoindentation hardness mapping is done at strain rates that are one to two orders
of magnitude higher than normal indentation tests, increasing hardness by as much as 37% (64).
Sample preparation should avoid plastic deformation, for example, from aggressive grinding
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and mechanical polishing. The search for improved hardness can be accelerated by combining
CHT-measured values with machine learning. For example, using elemental properties as
descriptors, an artificial neural network was trained with 91 experimental records (97). Hardness
was predicted for five HEAs in the AlCoCrFeMnNi system, and the best one had a hardness 20%
higher than known alloys with a good match between predicted and measured values.

2.3.3. Strength and ductility. Strength is the distinguishing property of structural materials.
Ductility is also essential and allows strength to be used to its full advantage; with limited ductility,
a material often fails prematurely. Many CHT methods to evaluate strength and ductility make
major concessions; compression-loading and thin-film methods are two common compromises
(see the sidebar titled Compression Tests and Thin-Film Tension: Shortcuts and Compromises).
Here, we briefly discuss methods that can advance CHT evaluation of strength and ductility well
beyond current capabilities by overcoming these concessions.Thesemethods should evaluate both
strength and ductility, include a dominant tensile component, and provide bulk-like properties.
Tests that characterize structural properties at micron or submicron dimensions,while appropriate
for basic studies and for microelectromechanical systems, are less useful for the vast majority of
structural applications and are not included here. Hardness tests can provide accurate strength
values (98) and can give broad indications of postyield response (68), but they do not provide
tensile ductility values and are not described here.

Microtensile testing has been extensively studied (99, 100). Both strength and ductility have
been measured, and the uniaxial stress state simplifies analysis. Relative to standard tests, machin-
ing is accelerated by orders of magnitude usingmicroelectrical dischargemachining (99, 101), ion-
beam milling through a stencil mask (102), or deep reactive ion etching (99). Microtensile testing
can provide bulk-like properties since cross-sectional dimensions can be up to several hundredmi-
crons, and lengths range from hundreds of microns to millimeters. However, sample harvesting,
manipulation, and gripping can be time consuming (99, 100). One strategy to overcome this issue
is to produce sample arrays that remain connected to a common structure to ease handling (102,
103) and enable robust use of automation (103). AM avoids machining and can produce microten-
sile samples directly. Samples are larger, with cross sections typically measuring ∼1 mm × 1 mm.
AM can be integrated with an automated workflow that includes sample measurement, loading,

COMPRESSION TESTS AND THIN-FILM TENSION: SHORTCUTS AND
COMPROMISES

Tensile stresses are present in most structural applications, and tensile fracture often occurs before competing
failure modes. Compression tests suppress tensile fracture and can artificially elevate measured ductility, especially
in strong, brittle materials. Thin-film tension tests offer a different compromise. Mechanical properties depend on
the size of microstructural features and the specimen. Governed by the Hall-Petch relation, strengths measured
in 1-μm thin films can be two to five times higher than in bulk materials with average grain diameters of dgrain
∼100 μm, and thin-film strengths can be further elevated by submicron grain sizes. Micron-scale or submicron
dimensions in micropillar compression tests can give strengths and ductilities much higher than those of the bulk
material. To overcome length-scale issues, dgrain should be ≥1 μm, and the smallest sample dimension should be
≥10 dgrain. Compression and thin-film tension tests require much less material and machining time compared to
conventional tension tests, and compression tests are easier to run, but the compromises mentioned here seriously
limit their utility. Though both methods have been used for many years, neither has enabled the much-needed
combinatorial revolution for structural materials. New methods that overcome these compromises are needed.
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and data reduction (103), but it cannot yet reliably produce the defect-free samples needed for
tension testing. Microtensile testing is a promising area for future innovation, and aggressive use
of clever engineering, automation, and parallel processes may significantly reduce the time needed
to produce tensile data.

The small punch test (SPT) can evaluate a broad range of structural properties (104). A sample
is clamped between an upper and a lower die, and a load is applied to a spherical punch that
travels through the upper die and presses the sample into a hole in the lower die (Figure 1).
The tested volumes are large enough to give bulk properties, typically 0.2–0.5-mm thick with
a 3–4-mm diameter. In a typical SPT load-displacement curve (Figure 1), plastic deformation
initiates locally under the punch in region I; spreads throughout the sample in region II under a
mixture of bending and tensile forces; undergoes tensile membrane stretching in region III; and
displays damage initiation, propagation, and fracture in region IV.Yield and ultimate strengths and
tensile ductility are extracted from SPT load-displacement curves using empirical relations (105),
and a more direct method is now being established using an inverse solution that minimizes the
difference between experimental and finite element predictions of SPT load-displacement curves
(106). Thus, the SPT is another promising method for the CHT measurement of bulk, tensile
strength, and ductility. Future work is needed to strengthen the connection between SPT data
and uniaxial tensile properties for a broader range of structural materials, including materials with
limited tensile ductility. Efforts to automate the SPT are also suggested, which may include the
use of a sheet materials library with lateral dimensions that extend up to hundreds of millimeters
(104).Materials libraries roughly 30 mm on a side and 0.75-mm thick have already been extracted
from bulk materials to map the properties in the different microstructural regions associated with
a weldment (107).

Rapid alloy prototyping introduces automation and parallel processes to otherwise con-
ventional methods (108). Nine different material conditions were evaluated in 35 h. This
approach is appropriate for modest extensions of known alloy bases with sufficient experience
to support the selection of casting conditions and sufficient ductility to support rolling or other
thermomechanical processes.

To calculate the strength and ductility of a random alloy, the motion and interaction of disloca-
tions must be modeled. Such dislocation dynamics calculations are computationally intensive, but
strength alone can be calculated more quickly by considering other factors, such as precipitation
hardening and solid solution hardening. A high-throughput search for strengthening precipitates
for different alloy systems has been conducted using DFT calculations (109, 110). By evaluating
thermodynamic stability and lattice mismatch with the host lattice, about 200,000 compounds in
theOQMDwere screened as precipitate candidates for face-centered cubic (FCC), body-centered
cubic (BCC), and hexagonal close-packed alloys (109). A similar search for 2,224 ternary metallic
systems led to the discovery of 37 promising new superalloys (109). For solid solution harden-
ing, the Labusch model (111), which uses first-principles-computed interaction energies between
solute atoms and dislocations as inputs, has been used to compute the yield strength of multicom-
ponent alloys and shows good agreement with experimental values (112, 113). This model was
combined with CALPHAD (114) to create a multiobjective optimization genetic algorithm to
screen thousands of BCC HEAs for optimal stability and strength. One composition with excep-
tional hardness was validated experimentally. In addition, the yield strengths of nine quaternary
alloys were predicted with a standard error of 13% using the Suzuki model for substitutional solid
solution hardening in BCC alloys (115).

Stacking fault energy is widely used to predict deformation behavior of materials. A high-
throughput workflow for calculating the generalized stacking fault energies (116) is now available.
As an example, to enhance the ductility of lightweight Mg alloys, a high-throughput search for
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(a) Schematic of the small punch test geometry. (b) Illustration of a typical load-displacement curve with the four characteristic regions:
(I) plastic indent and elastic stretching and yield (at Py); (II) progressive propagation of plastic bending throughout the sample;
(III) biaxial, tensile membrane stretching; and (IV) development of failure micromechanisms, necking (at the maximum displacement,
dm, and load, Pm), and final failure. (c) Diagram drawn to scale showing a sample and the spherical punch. To provide bulk properties,
the sample thickness should be ≥10 d, where d is the average grain diameter. Sample thicknesses of 0.2–0.5 mm are commonly used.
(d) Actual load-displacement curves for a range of metallic alloys, illustrating the clear differences in Py, dm, and Pm values used to
determine tensile properties. Three tests were conducted for each alloy, and the high level of reproducibility is evident. The gray
load-displacement curves were used as a training set, and the red curves demonstrate the predictive capability obtained via inverse
solution. Panels a, b, and d adapted with permission from Reference 106.
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dopants (X with ∼1 at% concentration) in Mg-X alloys was performed, and 10 promising can-
didate elements were predicted to decrease the stacking fault energy by 25% compared to Mg.
An investigation of CoCrFeNi-based FCC HEAs (117) revealed that the addition of Ti or Mo
to CoCrFeNi-based HEAs increases the tendency of dislocation glide and deformation twinning
during plastic deformation, and the addition of Mn, Cu, and relatively high amounts of Al pro-
motes dislocation slip and martensitic transformation as deformation mechanisms.

2.3.4. Creep, fracture, and fatigue. Three different CHT approaches are available for creep
characterization. In the first, cantilevers are subjected to a constant load by a knife-edge fixture,
and a speckle pattern is deposited on one of the vertical sides to enable strain measurements with
digital image correlation (DIC) (Figure 2a). Stress varies with location, and strain varies with lo-
cation and time; profiles of the strain along the cantilever axis, εxx, are shown in Figure 2b. Ten
creep curves (five stress levels each for compression and tension) obtained at the locations indi-
cated in Figure 2b are shown in Figure 2c. The steady-state (minimum) creep rates from these
10 tests, ε̇ss, compare very well with data obtained from conventional, uniaxial tensile creep tests
(Figure 2d), demonstrating that the stress exponent, n, can be determined in a single CHT test
(118). Test equipment and methodologies, including DIC coatings and displacement measure-
ments, have been validated up to 750°C, and equivalence with tensile creep data has been demon-
strated (119). While CHT methods often use miniaturized test volumes, recent work shows that
a surface-affected region may restrict the minimum dimensions of creep samples to no less than
a few millimeters (120).

The second approach uses an SPT modified for long duration tests at elevated temperatures
(121). The minimum deflection rate under constant applied force and temperature in the SPT
shows a good correspondence with the minimum creep rate under constant applied load in con-
ventional creep tests (Figure 3a), and a similar correspondence is seen for the time to rupture
(Figure 3b). Comparison of the plots in Figure 3b reveals the relationship between applied creep
stress and applied SPT force, but determining the relationship between minimum creep rate and
minimum SPT deflection rate remains problematic (121). The SPT also shows a good ability to
reproduce trends in the Larson-Miller parameter (Figure 3c), a practical method that combines
the effects of stress and temperature on the time to rupture in a single plot. In the third approach,
a 2-mm-diameter sphere was levitated and rotated to nearly 5,000 revolutions per second at high
temperature. Strainwasmeasuredwith a video camera, allowing the steady-state stress exponent,n,
to be determined in a single test (122).This approach reduces the number of tests needed to deter-
mine n by nearly an order of magnitude but requires a levitation unit in line with a photon source.

Previous research has established the ability of SPT to represent fracture properties (105, 123).
An approach using SPT samples with machined notches is outlined in Figure 4a–e. Three anal-
ysis methods have been explored, and an approach using the area between SPT curves obtained
on samples with notches of different lengths gives the best results, showing good agreement with
fracture toughness measured using standard techniques on compact tension (CT) samples of
5-mm thickness (123). The time to run an SPT is not dramatically shorter than conventional
fracture toughness tests. Two tests are needed to obtain a single fracture toughness value, but the
machining time is likely much shorter, and the material volume is much smaller: Roughly eight
SPT samples can fit inside the notch machined from a single CT sample that is 10-mm thick. Us-
ing a standard SPT sample, the fracture energy is related to the area under the load-displacement
curve up to themaximum load, and a linear relation is found between the estimated biaxial fracture
strain (εqf) and fracture toughness (JIC) for ductile but not for brittle materials (Figure 4f ) (105).

Experimental and computational advances are evident for microscale fatigue testing (for exam-
ple, see 124). No work has been done on CHT fatigue testing of structural materials in bulk form.
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(a) Schematic of the cantilever bend creep test augmented by digital image correlation (DIC). (b) The speckle contrast deposited on one
side of a 304 stainless steel cantilever and the superimposed axial strains after a creep test at 750°C for over 20 h. The neutral axis is
indicated by the white line. (c) Creep curves obtained from the single sample in panel b, showing five representative curves for tension
and five for compression taken from the points shown as open white circles in panel b. σT and σC are the tensile and compressive creep
stresses, respectively. (d) Correspondence between the data obtained from curves in panel c with data obtained from uniaxial tensile
creep tests of 304 stainless steel at 750°C. Five uniaxial tensile creep tests were required to establish the steady-state creep stress
exponent, n, but only one DIC-augmented cantilever creep test was needed. Panels b–d adapted with permission from Reference 119,
and the uniaxial tensile data in panel d are from Reference 149.

2.4. Thermomechanical Processing

Microstructure exerts a primary influence on many structural properties, and thermomechan-
ical processing is used to control microstructure. For thermal treatments, microstructures
depend on temperature and time, and heating and cooling rates are also important. Two or more
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Figure 3

Comparison of the creep response of P91 chrome steel obtained via uniaxial tensile creep tests (blue symbols) and the small punch test
(SPT) (green symbols). Uniaxial creep tests were performed under constant load, and SPT data were collected under constant force.
Good correspondence between the two tests is shown for (a) minimum creep rates and (b) times to rupture. (c) Similar correspondence
is shown for a Larson-Miller plot, which includes temperature, stress, and time to rupture, tr, in a single plot. Figure adapted with
permission from Reference 121.

thermal treatments can be linked together; the processes of solutionizing, quenching, and aging to
produce precipitation-strengthened microstructures are well-known examples. For deformation
processing, important parameters include deformation temperature, strain, and strain rate. The
type of deformation matters as well; many deformation methods such as rolling, forging, and
extrusion yield anisotropic strains and can produce anisotropic microstructures, and additional
effort is often needed to produce isotropic microstructures. Process parameters are selected not
only to give desired microstructures and shapes, but also to avoid unintended microstructural
features, such as inclusions, unrecrystallized regions, crystallographic texture, or casting segrega-
tion, and to eliminate damage that can include cracks, pores, or residual stresses. Any number of
thermal and mechanical treatments can be linked together, giving a vast parameter space that can
be explored to produce a desired microstructure. As a result, CHT methods to rapidly design the
thermomechanical processing of structural materials are expected to have a major benefit.

Methods to rapidly evaluate microstructures (see Section 2.1) and properties (see Sections 2.2
and 2.3) have been discussed. Here, we consider CHT methods to evaluate the effects of ther-
momechanical process parameters, such as time at temperature; heating and cooling rates; and
deformation temperature, strain, and strain rate on microstructure and properties. This changes
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things around: In Sections 2.1 to 2.3, microstructure and properties were the primary outcomes
of CHT evaluations, with composition as the independently controlled input. Here, composition
is still independently selected, but now heat treatment and deformation parameters are also varied
as inputs in the production of materials libraries, and microstructure is the measured output. The
role of microstructure on mechanical properties is evaluated separately, perhaps using the same
material used to establish the effect of thermomechanical variables on microstructure.

A few standard methods are currently used to establish the influence of thermomechanical
process parameters through production of a microstructure gradient. The Jominy end-quench
test produces a microstructure gradient by heating a standard-sized steel rod above the austen-
ite transformation temperature and then quenching one end with a stream of water (125). The
fraction of austenite that is transformed to martensite decreases with increasing distance from the
quenched end. Solid samples with a controlled shape gradient have been used to produce strain
gradients after fixed deformation. For example, a double-cone sample consists of a right circular
disc with a truncated cone (shaped like a volcano) above and below. Upset forging of such a sam-
ple produces a radial gradient in deformation strain that can produce a graded grain size (126).
Similarly, a wedge-shaped plate can be forged or rolled to a constant final thickness, producing a
linear strain gradient that has been used to produce a grain size gradient (126).

Beyond these few established methods, little guidance is available for selection and design of
thermomechanical processing parameters for structural materials. Earlier articles have suggested
heating a material of fixed composition in a thermal gradient to produce microstructure gradients
(104, 127). In the simplest form, a 1D thermal gradient can be applied to a strip or rod, producing
a 1D microstructure gradient. A sheet with a composition gradient along one dimension can be
placed in a furnace with a thermal gradient along the orthogonal dimension, giving information
on annealing temperature and composition in a single library. A sheet of fixed composition can be
used to explore the effects of a two-step thermal treatment. For example, a thermal gradient along
one dimension of the sheet can explore a range of solutionizing temperatures. This sheet can be
removed from the furnace, quenched, and then rotated 90° and placed in a second furnace with a
thermal gradient representing a range of aging temperatures. A single sheet can then cover a wide
range of both solutionizing and aging temperatures. Approaches that vary time can be imagined;
for example, a series of strips could be placed in a thermal gradient and removed at different times.
Similar brainstorming is needed to explore approaches to vary deformation parameters in a single
library. The double-cone and wedge-shaped plate tests give total strain gradients, and analogous
approaches are needed for other important deformation scenarios, including varying strain rate or
varying deformation temperature. CHT methods capable of studying a wide range of important
conditions have not yet been conceived and require focused thought and effort.This is an essential
area for future innovation and research.

2.5. Technology Gaps and Opportunities

The previous sections illustrate a dynamic technological environment with many changes oc-
curring simultaneously in both computational and experimental methods. This provides a fertile
opportunity to conceive and develop emerging new capabilities. One such example is given here.
Mechanical properties typically depend strongly on microstructure, but the critical resolved shear
stress (CRSS) directly accounts for crystallographic orientation, and values are typically reported
for single crystals, eliminating grain size effects. CHT methods are emerging that may enable
the evaluation of the CRSS by coupling indentation methods, crystallographic orientation via
EBSD, and computations providing inverse solutions, similar to the approach described for the
SPT (68, 128–130). The CRSS values thus obtained could be used with crystal plasticity models
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to guide the exploration and characterization of additional materials. This is just one example to
spark additional creative thought to establish a new CHT capability, and readers are encouraged
to consider other possibilities.

3. MATERIALS LIBRARIES FOR STRUCTURAL MATERIALS

Rational design of structural materials requires data sets that link composition and microstruc-
ture to performance. However, quickly producing materials of sufficient quality to give reliable
structural properties poses challenges. Accelerated synthesis methods that can be coupled with
CHT property measurements are needed. CHT synthesis methods integrate controlled arrays of
diverse compositions and/or microstructures into a relatively small space—an alloy library—by
means of automated and parallel materials processing. In this section, we evaluate CHT synthesis
approaches designed to accelerate alloy fabrication while providing reliable data for structural ma-
terials. These methods offer an additional advantage over conventional serial synthesis methods,
since highly parallelized libraries eliminate uncontrolled variations in conditions during synthesis.
The techniques are summarized in terms of number of samples, composition range, length scale,
and compatibility with CHT characterization methods in Table 2.

3.1. Diffusion Multiples

A diffusion multiple involves interdiffusion between three or more blocks of different compo-
sitions that are brought into intimate mutual contact (15, 45, 47, 131). The contacting surfaces
must have good surface finish (roughness of <1 μm) and be free of contamination. Hot isostatic

Table 2 Comparison of CHT synthesis methods

CHT method Number of samples Length scale Required equipment Required time
Compatible CHT
characterization

Diffusion multiples Infinite (continuous)
over a complete range
of constituents

Microscale Vacuum furnace Lengthy heat treatment
(often >24 h)

SEM, EDS, EBSD,
nanoindentation,
oxidation

AM libraries Bulk samples Finite (discrete) desired
compositions

Macroscale Laser unit, inert
atmosphere control,
powder delivery
systems, etc.

Dependent on the
number, size, and
height of the samples,
roughly ranging from
15 min to several hours

All conventional
characterization
methods

Single-layer
discrete libraries

Finite (discrete) desired
compositions

Submillimeter
scale
(thickness)

SEM, EDS, EBSD,
indentation

Continuous
libraries

Infinite (continuous)
over a desired
composition

Microscale SEM, EDS, EBSD,
nanoindentation,
oxidation

PVD
libraries

Cosputtering thin
films

Finite or infinite desired
compositions

1–100 nm
(thickness)

Evaporating power
source, high vacuum
chamber, sensors for
precision control, etc.

Roughly ranging from 1
to 10 h, depending on
thickness

SEM, EDS, EBSD,
nanoindentation

IPD and EB-DVD
coatings

1–100 μm
(thickness)

Friction stir process Infinite (continuous)
over a desired
composition

Microscale Friction stir welder Dependent on the sample
size, roughly several
minutes

SEM, EDS, EBSD,
nanoindentation,
oxidation

Rapid alloy prototyping Finite (discrete) within
the same alloy system

Macroscale Vacuum furnace and
parallel molds for
serial casting

Lengthy heat treatment
and thermomechanical
processing (often
>24 h)

All conventional
characterization
methods

Abbreviations: AM, additive manufacturing; CHT, combinatorial and high-throughput; EB-DVD, electron beam–directed vapor deposition; EBSD,
electron backscatter diffraction; EDS, energy-dispersive spectroscopy; IPD, ion plasma deposition; PVD, physical vapor deposition; SEM, scanning
electron microscope.
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Figure 5

Two methods for producing bulk materials libraries for structural materials. (a) Illustration of a diffusion multiple (triple) in which A, B,
and C are either single-element or prealloyed metal blocks. (b) Illustrations of concentration profiles before and after heat treatment.
(c) Schematic of an additive manufacturing direct laser deposition process.

pressing provides good interface contact during bonding, followed by high-temperature annealing
to achieve local equilibrium by interdiffusion. Annealing time and temperature are selected to give
an interdiffusion zone of the order of ∼100 μm; this zone is small enough to minimize annealing
time yet large enough to map with spatially localized characterization techniques. In a DADM,
a second anneal is added to equilibrate the phases at a lower temperature (47–49). Depending
on the arrangement of the blocks, diffusion couples, triples, and quadruples can be created
(Figure 5a,b), and increasing the number of blocks includes more alloy systems in a single
library (46, 47). Connecting four or more blocks is rarely done due to dimensional challenges in
machining needed to produce intimate mutual contact.

Diffusion multiples are especially useful for constructing phase diagrams, since the local equi-
librium at the phase interfaces gives an accurate phase boundary (132, 133). This approach can
also determine diffusivity (134, 135), solid solution effects and elastic modulus (136), and precip-
itation kinetics (45) and can map microstructures and mechanical properties with composition
(133). Diffusion multiples can produce equilibrated solid solutions and intermetallic compounds
over a complete range of constituent compositions thanks to the extended heat treatment at high
temperature. This technique also has lower costs than other techniques. However, there are chal-
lenges. Since some phase fields transition over a scale of microns, these changes are difficult to
capture; for the same reason, diffusion multiples are not compatible with measurement techniques
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with low spatial resolution, such as XRD and XRF. This challenge is also observed in other CHT
methods that produce continuously graded libraries.

3.2. Additive Manufacturing

AM fuses metal and ceramic powder feedstock, often in complex shapes with no up-front tooling
and relatively little waste. Although first used as a prototyping method, AM has drawn increasing
interest as a combinatorial approach for rapid alloy development (131, 137). Two methods used
for materials libraries are selective laser melting (SLM) and direct laser deposition (DLD). In
SLM, a laser beam scans over a powder bed to melt and/or fuse the powder along a defined path,
after which a fresh powder layer is added to the bed and the process is repeated until the desired
final shape is produced. The powders may be prealloyed or consist of a blend of different powder
compositions.While it is challenging to produce compositional gradients using SLM, controlling
the laser parameters (power, path, travel speed) can vary the local thermal conditions and, thus,
microstructural development. Due to the typically rapid heating and cooling as the laser moves,
nonequilibrium microstructures are often produced.

DLD uses a laser to create a shallow melt pool on a workpiece, into which a stream of
elemental, blended, or prealloyed powders is directed (Figure 5c). The powders melt and are in-
corporated into the underlying material. Compared to SLM,DLD is more flexible for fabricating
compositional libraries. Current commercial DLD systems are equipped with four or more
powder reservoirs, which can mix powders in-line and transport them to the melt pool simulta-
neously. By independently changing the feed rate of each powder, the composition of the deposit
can be changed quickly over dimensions <1 mm. Like SLM, the thermal conditions during
processing can be controlled by adjusting the laser parameters, enabling both microstructure and
composition control.

AM has been used to produce bulk samples of designed compositions (41, 138–140). Much
of the research focuses on producing builds with homogeneous composition and defect-free mi-
crostructure. Reducing 3D build sizes to single-row thin-wall structures (141, 142) or single-layer
cladding patches (40) decreases preparation time and resources but compromises the sample’s
amenability to certain types of CHT measurements with low spatial resolution. Libraries with
controlled chemical gradients can provide a richer data set than discrete libraries (7), but the mag-
nitude of the composition gradient needs to be considered along with the sampling size of the
CHT characterization method to avoid significant composition changes within the tested vol-
ume. Such libraries are generally in a nonequilibrium state as deposited, and thermal annealing
is required to provide some degree of equilibration before characterization. Libraries consisting
of an array of discrete samples with individually specified compositions—alloys-on-demand—are
preferred in cases where a previous evaluation step has rejected portions of the initial search space
(see Section 4.1).

The sufficient mixing of powders within the melt pool is a major challenge, especially for high-
melting-point elements. This challenge can be addressed by performing several remelting passes
after deposition (41), but this can worsen substrate warping. It is also difficult to obtain the desired
composition with elemental powders, since the flow rate and amount of each powder incorporated
into the melt pool depend on powder density, size, shape, and laser absorptivity. To solve this
problem, prealloyed or preblended powders are used (38), but this compromises the flexibility
to produce compositionally graded libraries. The complex AM thermal history raises questions
regarding the extent to which the microstructure and properties represent materials produced by
conventional methods. Residual stresses and defects such as porosity, cracks, and compositional
segregation are also common. Annealing is sometimes necessary to produce stable phases and
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mitigate defects before characterization, although this may alter intended compositional and
microstructural gradients in the library. Finally, the lack of repeatability is a pervasive issue (143).

3.3. Physical Vapor Deposition Libraries

Physical vapor deposition (PVD) is a process in which the source material escapes from a target
surface as a vapor phase and condenses on a substrate. Combinatorial libraries with composition
gradients are produced by codeposition, the simultaneous deposition from two or more target
sources. One codeposition approach sequentially deposits multiple wedge-shaped layers of con-
tinuously varying thickness from the different targets and then applies a postdeposition anneal so
that the layers interdiffuse (131). Concentration gradients are produced due to the varying local
thicknesses of the layers from the different targets. In the second approach, composition gradients
are produced by simultaneous codeposition from two or more targets. Targets may be elemental
or prealloyed compositions and are evenly spaced and confocal on the center of the substrate.
Atomic-scale vapor mixtures are produced, and the local atomic fraction of each element across
the substrate depends on the distance from each target to the substrate position and on deposition
parameters at each target.

Sputtering produces thin films, while IPD and electron beam–directed vapor deposition (EB-
DVD) produce thicker coatings. Cosputtering is a well-established industrial process and research
tool and has long been used to produce CHT materials libraries (9, 131). It is adaptable to many
needs, has reasonably good control over composition profiles, and produces thin films at a rate of
several nanometers per minute. A vacuum arc vaporizes the target material in IPD, and the result-
ing high-pressure metal plasma discharges ions, atomic clusters, and nanoparticles that condense
on the substrate (81). In EB-DVD, the target material is melted and vaporized by a high-voltage
electron beam. IPD and EB-DVD can adopt a multitarget configuration to deposit multiple com-
ponents in CHT libraries. With deposition rates ranging from 10 to 100 μm/h, thicknesses can
easily exceed 100 μm, making them attractive candidates for structural materials libraries. IPD
and EB-DVD have been used to investigate the effect of composition on oxidation behavior in
alloys for thermal barrier coatings (42, 43, 82, 83).

There is a physical limitation in the number of targets that can be arranged around the substrate
without shadowing. Multicomponent targets can increase the number of elements in the final
product, although this limits the compositional range of the library. Finally, like AM libraries,
rapid quenching from the vapor phase may result in nonequilibrium phases, microstructures, and
defects, some of which may remain after subsequent annealing.

3.4. Other Synthesis Techniques

During FSP, a nonconsumable rotating tool is forced into a workpiece material and moved
laterally, producing localized severe shear deformation and frictional heating. The combined
shear stress and mass transport at high temperature produce a refined equiaxed microstructure.
FSP has been used to produce composition gradients in CHT evaluations (44). Improvements are
needed for further CHT application of this method. The compositional gradient can align only
with the linear groove made by the tool; thus, there is only one degree of freedom in composition.
Furthermore, the phases formed are metastable due to solid-state alloying. Nevertheless, this
method is less capital intensive than AM or PVD and will likely have utility.

Rapid alloy prototyping, initially designed to optimize the composition of steels (108), has also
been proposed as an approach for CHT synthesis of HEAs (131). This technique involves serial
casting of different compositions of the same alloy system in one operation, realized by a number
of parallel copper molds that can move stepwise. After each mold is filled with the molten base

www.annualreviews.org • Characterization of Structural Materials 153



alloy, the composition of the melt in the furnace is precisely altered by adding a precalculated
amount of alloying elements, and the next mold is filled. The batch of cast materials is hot rolled
and heat treated to produce homogeneous and defect-free microstructures.This method produces
bulk samples compatible with conventional characterization methods, but it can produce only a
limited number of compositions at a time.

3.5. Technology Gaps and Opportunities

Compositionally graded materials libraries are ingrained in materials science thinking by many
decades of use in CHTevaluations.However, structural materials also requiremicrostructural ma-
terials libraries. A few anecdotal examples such as the Jominy bar have been used (127), but a much
more expansive set of graded microstructure options are essential for progress. Postdeposition
AM laser scans provide one approach (39), but the high quench rates and complex spatiothermal
history of the AM process limit options. Annealing bars, strips, or sheets in furnaces with thermal
gradients has also been suggested (104, 127) and is discussed in more detail in Section 2.4. The
development of microstructural libraries is an area where creative thought and innovation are
needed. Discrete arrays of individually specified alloy compositions are also essential.Many CHT
evaluations occur after some initial screening, so the compositions that remain may not be com-
positionally contiguous. For example, a CALPHAD screening of over 135,000 equimolar phase
diagrams identified only 34 that passed a certain set of criteria (see 144, table 14). Each of these 34
alloys contained different combinations of 13 different elements, so an alloy-on-demand library
becomes the most efficient approach. AM shows great promise for this capability, but challenges
need to be addressed, including the ability to have a large number of elements available for
deposition.

4. A FUTURE VISION

The widespread use of any of the CHT methods described above may provide a significant ad-
vance.However, these individual capabilities can bemagnified by integrating them into a synergis-
tic CHT workflow. In this section, we give a future vision for the CHT exploration and screening
of structural materials.

4.1. Strategy and Experimental Planning

A new strategy has been proposed to overcome the dual challenges of composition and mi-
crostructure in structural materials (104). Structural materials have multiple design-critical
properties, and the order in which evaluations are performed has a major influence on workflow
efficiency. The first principle in this strategy is that no required property is intrinsically more
important than another, so there is no implicit evaluation order or hierarchy. This challenges
common practice, where mechanical properties are usually evaluated first and other required
properties come later. The current approach slows progress, since an alloy composition with
inadequate mechanical properties cannot be rejected until microstructure is also evaluated. The
second principle is that efficiency is maximized by doing first those evaluations that can eliminate
the largest number of candidates with the least amount of resources (including time). Since no
required property is intrinsically more important, a failure in any required property signals a fail-
ure of the alloy. This also challenges current methods, where an inordinate effort may be invested
to improve deficient properties of an alloy that excels in another property, such as strength. This
standard approach makes sense when the number of options is limited, but the vast expansion of
alloys via HEAs and CCAs offers a new reality: If one alloy does not show strong promise to meet
all requirements in an initial screening, a vast number of other candidates remain to be explored.
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Figure 6

A strategy to accelerate the exploration and screening of structural materials. The first evaluation consists of high-throughput
computations that can include physical or phenomenological models, ab initio calculations, data analytics, or machine learning. The
first experimental step evaluates properties that primarily depend on composition by using materials libraries with controlled
compositions (either continuous gradients or an array of distinct compositions). The final evaluation measures properties that depend
sensitively on both composition and microstructure. Evaluations may be performed on materials libraries of fixed composition and
controlled microstructure gradients. The resources invested in evaluating each alloy (including time) are smallest when the number of
candidates is the largest and vice versa. Only alloys that pass a stage are considered in subsequent stages, motivating the need for
materials libraries consisting of an array of discrete, individually specified compositions (alloys-on-demand) to skip over compositions
rejected by earlier stages of this strategy.

The third principle deconstructs evaluation into three stages with a downselect at the end of each
(Figure 6). Computational evaluations (including physical and phenomenological models, data
mining, and machine learning) are done first, since they can most rapidly evaluate vast numbers of
candidates with minimal resources. Structure-insensitive properties are measured next, since only
composition needs to be considered. Experiments are performed on only a fraction of the initial
candidates, since computations have significantly reduced the search space. As a result, materials
libraries may favor discrete arrays of alloys-on-demand to skip over rejected compositions. CHT
evaluations of structure-sensitive properties are done in the final stage, in which the number
of candidates has been drastically reduced by the first two steps. Tests may be conducted on
materials libraries of fixed composition with microstructure gradients (104, 127).

Experimental planning within this strategy considers the evaluations to be performed, the or-
der of evaluations, definition of test conditions and pass/fail criteria, and acknowledgment of un-
certainty and likelihood of false positive or negative results. It is not necessary to evaluate all
required properties for an application. The order of experiments considers not only the ability to
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reject candidates with minimal effort, but also whether an evaluation is destructive or nondestruc-
tive. Test parameters may not match service conditions, and so setting pass/fail criteria that can
accurately reflect a material’s performance during service requires careful thought. Finally, exper-
imental planning should evaluate uncertainties associated with the CHT methods and recognize
the risk of false positive or negative results. An example of this experimental planning has been
given for high-temperature structural metals (127).

The risk and uncertainty associated with CHT methods may cause concern, but they must be
compared against a complete assessment of competing search strategies before drawing conclu-
sions. CHT methods may have lower accuracy and higher risk, but the overall risk is significantly
reduced by covering a vastly larger portion of search space. Current evaluation methods and stan-
dardized tests may provide higher accuracy and lower risk, but the overall risk is nevertheless
much greater because the search space that can be evaluated is many orders of magnitude smaller.
Students have a keen insight into this dilemma: In a timed test with 100 questions, is it better to
be 70% certain of answers to all questions or to be 99% certain of the answer to one question?

4.2. Integrated Workflow

The envisioned future state integrates materials library synthesis with multiple CHT evaluations.
This requires a materials library geometry that is common to many or all of the CHT test plat-
forms. Current examples of an integrated workflow include those described in References 20,
40, 41, and 140. CHT methods for structural materials are still evolving, and there are no stan-
dard devices to constrain a common library geometry, so this is a good time to think holistically.
The SEM is perhaps the single exception; it is used for CHT characterization of composition,
crystal structure, and microstructure, so SEM chamber sizes should be considered in designing
a materials library geometry. Examples of multistation, multimodal automated workflows have
already been developed (145). In one, a robotic arm transports samples via a specially designed
kinematic holder between characterization stations that include automated optical microscopy
(Robo-Met.3D®) and an SEM with composition and EBSD mapping capabilities. The Alinstante
platform builds on this concept with a robotic arm and adjacent workstations that are designed
to be modular, expandable, and reconfigurable. Designing the CHT workflow for maximum effi-
ciency may present challenges; for example, the high sample tilt required for EBSD has inspired
a unique materials library configuration (140). Further, it may be desirable to remove individual
samples from a library for some CHT evaluations, such as strength and ductility via SPT. To ad-
dress these challenges, the materials library may be designed to break into smaller segments or to
enable removal of individual samples.

4.3. Autonomous, Closed-Loop Iteration

The final component of this future vision links the first two through autonomous, closed-loop
iteration. The current CHT workflow is relatively static, and the opportunity to apply new infor-
mation occurs infrequently—after data analysis of iteration I and before experimental planning
of iteration I + 1. All samples in each iteration are synthesized, characterized, and analyzed
based on the knowledge available at the experimental planning phase. In the envisioned future
state, an iteration may consist of a smaller number of samples or perhaps a single sample. The
sample(s) in this reduced library is synthesized and characterized, and the new data update the
knowledge base and devise the next iteration. The larger number of iterations accelerates learning
by updating models and knowledge more frequently. As an essential feature, the workflow is done
in an autonomous, closed-loop fashion using unsupervised machine learning. Such closed-loop,
autonomous operation has already been demonstrated (146), and increased iterations through
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Bayesian learning have reduced the number of experiments by a factor of 60 (147). While a great
step forward, existing demonstrations have been limited to materials that can be synthesized
on the fly, such as polymers and carbon nanotubes. With emerging synthesis capabilities such
as AM, autonomous, closed-loop iteration is now conceivable for bulk metallic and ceramic
structural materials. Further, existing validations focus on a single objective function, such as
carbon nanotube growth rate (146) or structural toughness (147). The vision here is to build the
capability to explore and screen structural materials against multiple objective functions. This is
a challenging, long-term vision that requires focused research on a number of topics, including
materials synthesis, CHT experimentation, models linking composition and microstructure to
properties, and unsupervised machine learning algorithms capable of optimizing across multiple
(and sometimes competing) objective functions and of recommending subsequent, high-value
alloys and experiments. This vision has been captured by the compelling question, “What if we
were able to have a Moore’s law for the speed of research?” (148).

SUMMARY POINTS

1. Combinatorial and high-throughput (CHT) evaluation of structural materials lags be-
hind other fields due to the dual constraints of composition and microstructure, as well
as the strong influence of sample and microstructure length scales on many structural
properties. Samples and microstructures with a minimum dimension on the order of
∼1 μm or less have limited ability to represent many important bulk structural
properties.

2. Bulk-like materials libraries are needed to overcome issues associated with submicron-
sample or microstructure dimensions. Additive manufacturing (AM) is an enabling
technology that can rapidly make bulk materials libraries as continuous composition
gradients or as an array of discrete alloys-on-demand. However, processing defects cur-
rently render AMmaterials inadequate for many mechanical properties, and eliminating
these defects is a major area of research. Diffusion multiple libraries are especially
well suited for phase equilibria studies and also provide a platform for other CHT
evaluations. New approaches for producing materials libraries with fixed composition
but controlled microstructure gradients are needed not only to explore the influence
of microstructure on properties, but also to rapidly evaluate and establish candidate
thermomechanical processes needed to produce new structural alloys.

3. High-throughput computations are an integral part of the CHT workflow. These
computations are an important first step because they evaluate some properties more
quickly than can be done experimentally, with adequate accuracy, and they are the only
method to rapidly evaluate properties such as density. Computations are also coupled
with experiments, extending capabilities and providing new synergies. Computations
can automate many aspects of data analysis, and computational methods such as unsu-
pervised machine learning are essential for achieving the future goal of autonomous,
closed-loop integration.

4. CHT measurements for composition, crystal structure, microstructure, and phase
equilibria are well established and are already integrated into scanning electron
microscopes. Feasibility has been demonstrated for CHT measurements of nearly
all essential structure-insensitive and structure-sensitive properties, but work is still
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required to improve spatial resolution and accuracy and to reduce acquisition time. The
small punch test seems particularly adaptable and has been used to measure tensile,
creep, and fracture properties. The largest future impact is expected for establishing
and reducing to practice CHT measurements for tensile strength and ductility of bulk
materials. Microtensile testing and the small punch test are promising candidates. CHT
measurement of melting temperature is another important need.

5. A CHT strategy for structural materials accelerates the workflow by specifying the order
in which evaluations are performed. Evaluations (usually computations) that can reject
the largest number of candidates with the least amount of resources (including time)
are done first; structure-insensitive properties, which depend primarily on composition,
are done next; and structure-sensitive properties are done last, as the combined influence
of composition and microstructure often requires the largest investment of resources.
A downselect at the end of each phase reduces the number of tests performed in
subsequent, more time-intensive evaluations.

6. A future vision looks beyond simply reducing the number of tests to practicing individual
CHT methods and acknowledges a growing trend to intentionally design a materials li-
brary platform that maximizes compatibility with subsequent evaluation platforms. This
vision further recognizes advancements in other disciplines that can enable autonomous,
closed-loop integration of the CHT workflow. This is a grand challenge for the future.
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