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Abstract

High-throughput data generation methods and machine learning (ML) al-
gorithms have given rise to a new era of computational materials science by
learning the relations between composition, structure, and properties and
by exploiting such relations for design.However, to build these connections,
materials data must be translated into a numerical form, called a representa-
tion, that can be processed by an ML model. Data sets in materials science
vary in format (ranging from images to spectra), size, and fidelity. Predictive
models vary in scope and properties of interest. Here, we review context-
dependent strategies for constructing representations that enable the use of
materials as inputs or outputs for ML models. Furthermore, we discuss how
modern ML techniques can learn representations from data and transfer
chemical and physical information between tasks. Finally, we outline high-
impact questions that have not been fully resolved and thus require further
investigation.
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1. INTRODUCTION

Energy and sustainability applications demand the rapid development of scalable new materials
technologies. Big data and machine learning (ML) have been proposed as strategies to rapidly
identify needle-in-the-haystack materials that have the potential for revolutionary impact.

High-throughput experimentation platforms based on robotized laboratories can increase the
efficiency and speed of synthesis and characterization. However, in many practical open prob-
lems, the number of possible design parameters is too large to be analyzed exhaustively. Virtual
screening somewhat mitigates this challenge by using physics-based simulations to suggest the
most promising candidates, reducing the cost but also the fidelity of the screens (1–3).

Over the past decade, hardware improvements, new algorithms, and the development of large-
scale repositories of materials data (4–9) have enabled a new era of ML methods. In principle,
predictive ML models can identify and exploit nontrivial trends in high-dimensional data to
achieve accuracy comparable with or superior to first-principles calculations but with an orders-
of-magnitude reduction in cost. In practice, while a judicious model choice is helpful in moving
toward this ideal, such ML methods are also highly dependent on the numerical inputs used
to describe systems of interest—the so-called representations. Only when the representation is
composed of a set of features and descriptors from which the desired physics and chemistry are
emergent can the promise of ML be achieved.

Thus, the problem that materials informatics researchers must answer is, How can we best
construct this representation? Previous work has provided practical advice for constructing ma-
terials representations (10–14), namely that (a) the similarity or difference between two data
points should match the similarity or difference between representations of those two data points,
(b) the representation should be applicable to the entire materials domain of interest, and (c) the
representation should be easier to calculate than the target property.

Representations should reflect the degree of similarity between data points such that similar
data have similar representations and as data points become more different their representations
diverge. Indeed, the definition of similarity will depend on the application. Consider, as an exam-
ple, a hypothetical model predicting the electronegativity of an element, excluding noble gases.
One could attempt to train the model using atomic number as input, but this representation vi-
olates the above principle, as atoms with a similar atomic number can have significantly different
electronegativities (e.g., fluorine and sodium), forcing the model to learn a sharply varying func-
tion whose changes appear at irregular intervals. Alternatively, a representation using period and
group numbers would closely group elements with similar atomic radii and electron configura-
tions.Over this new domain, the optimal prediction will result in a smoother function that is easier
to learn.

The approach used to extract representation features from raw inputs should be feasible over
the entire domain of interest—all data points used in training and deployment. If data required to
construct the representation are not available for a particular material, ML screening predictions
cannot be made.

Finally, for the ML approach to remain a worthwhile investment, the computational cost of
obtaining representation features and descriptors for new data should be smaller than that of ob-
taining the property itself through traditional means, either experimentally or with first-principles
calculations. If, for instance, accurately predicting a property calculated by density-functional the-
ory (DFT) with ML requires input descriptors obtained from DFT on the same structure and at
the same level of theory, the ML model does not offer any benefit.

A practicing materials scientist will notice a number of key barriers to forming property-
informative representations that satisfy these criteria. First, describing behavior often involves
quantifying structure-to-property relationships across length scales. The diversity of possible

400 Damewood et al.



atomistic structure types considered can vary over space groups, supercell size, and disorder
parameters. This challenge motivates researchers to develop flexible representations capable of
capturing local and global information based on atomic positions. Beyond this idealized pic-
ture, predicting material performance relies upon understanding the presence of defects, the
characteristics of the microstructure, and reactions at interfaces. Addressing these concerns re-
quires extending previous notions of structural similarity or developing new specialized tools.
Furthermore, atomistic structural information is not available without experimental validation or
extensive computational effort (15, 16). Therefore, when predictions are required for previously
unexplored materials, models must rely on more readily available descriptors such as those based
on elemental composition and stoichiometry. Lastly, due to experimental constraints, data sets
in materials science can often be scarce, sparse, and restricted to relatively few and self-similar
examples. The difficulty in constructing a robust representation in these scenarios has inspired
strategies to leverage information from high-quality representations built for closely related tasks
through transfer learning.

In this review, we analyze how representations of solid-state materials (Figure 1) can be
developed given constraints on the format, quantity, and quality of available data. We discuss
the justifications, benefits, and trade-offs of different approaches. This discussion is meant to
highlight methods of particular interest rather than provide exhaustive coverage of the literature.
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Using AI to model and discover new catalysts to
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Figure 1

Summary of representations for perovskite SrTiO3. (Top left) 2D cross section of Voronoi decomposition. Predictive features can be
constructed from neighbors and the geometric shape of cells (17). (Middle left) Crystal graph of SrTiO3 constructed assuming periodic
boundary conditions and used as an input to graph neural networks (18). (Bottom left) Compositional data, including concentrations, and
easily accessible atomic features, such as electronegativities and atomic radii (19). Data taken from Reference 20. (Top right) Deviations
from a pristine bulk structure induced by an oxygen vacancy to predict formation energy (21). (Middle right) Representations can be
learned from large repositories using deep neural networks. The latent physical and chemical information can be leveraged in related
but data-scarce tasks. (Bottom right) Training of generative models capable of proposing new crystal structures by placing atoms in
discretized volume elements (22–25).
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We comment on current limitations and open problems whose solutions would have high impact.
In summary, we provide readers with an introduction to the current state of the field and exciting
directions for future research.

2. STRUCTURAL FEATURES FOR ATOMISTIC GEOMETRIES

Simple observations in material systems (e.g., higher ductility of face-centered cubic metals com-
pared with body-centered cubic metals) have made it evident that material properties are highly
dependent on crystal structure, from coordination and atomic ordering to broken symmetries and
porosity. For a computational materials scientist, this presents the question of how to algorith-
mically encode information from a set of atom types (a1, a2, a3, . . .), positions (x1, x2, x3, . . .), and
primitive cell parameters into a feature set that can be effectively utilized in ML.

For ML methods to be effective, it is necessary that the machine-readable representation of
a material’s structure fulfills the criteria outlined in Section 1 (10–14). Notably, scalar properties
(such as heat capacity or reactivity) do not change when translations, rotations, or permutations of
atom indexing are applied to the atomic coordinates. Therefore, to ensure representations reflect
the similarities between atomic structures, the representations should also be invariant to those
symmetry operations.

2.1. Local Descriptors

One strategy to form a representation of a crystal structure is to characterize the local environment
of each atom and consider the full structure as a combination of local representations.This concept
was applied by Behler & Parrinello (26), who proposed the atom-centered symmetry functions
(ACSFs). ACSF descriptors (Figure 2a) can be constructed using radial, G1

i , and angular, G2
i ,

symmetry functions centered on atom i,

G1
i =

neighbors∑
j �=i

e−η(Ri j−Rs )2 fc(Ri j ), 1.

G2
i = 21−ζ

neighbors∑
j,k�=i

(1 + λ cos θi jk )ζ e
−η(R2i j+R2ik+R2jk ) fc(Ri j ) fc(Rik ) fc(Rjk ), 2.

with the tunable parameters λ,Rs,η, and ζ .Rij is the distance between the central atom i and atom j,
and θ ijk corresponds to the angle between the vector from the central atom to atom j and the vector
from the central atom to atom k. The cutoff function fc screens out atomic interactions beyond
a specified cutoff radius and ensures the locality of the atomic interactions. Because symmetry
functions rely on relative distances and angles, they are rotationally and translationally invariant.
Local representations can be constructed from many symmetry functions of the type G1

i and G
2
i

with multiple settings of tunable parameters to probe the environment at varying distances and
angular regions. With the set of localized symmetry functions, neural networks can then predict
local contributions to a particular property and approximate global properties as the sum of local
contributions. The flexibility of this approach allows for modification of the G1

i and G
2
i functions

(27, 28) or higher-capacity neural networks for element-wise prediction (28).
In search of a representation with fewer hand-tuned parameters and a more rigorous definition

of similarity,Bartók et al. (12) proposed a rotationally invariant kernel for comparing environments
based on the local atomic density. Given a central atom, the Smooth Overlap of Atomic Positions
(SOAP) defines the atomic density function ρ(r) as a sum of Gaussian functions centered at each
neighboring atomwithin a cutoff radius (Figure 2b).The choice ofGaussian function is motivated
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Figure 2

(a) Examples of radial,G1
i , and angular,G2

i , symmetry functions from the local atom-centered symmetry function descriptor proposed
by Behler & Parrinello (26). (b) In the Smooth Overlap of Atomic Positions (SOAP) descriptor construction, the atomic neighborhood
density of a central atom is defined by the sum of Gaussian functions around each neighboring atom. A kernel function can then be
built to compare the different environments by computing the density overlap of the atomic neighborhood functions. Panel adapted
with permission from Reference 36 (CC BY-NC 4.0). (c) Voronoi tessellation in two and three dimensions. Yellow circles and spheres
show particles while the blue lines equidistantly divide the space between two neighboring particles. Polygonal spaces encompassed by
the blue lines are the Voronoi cells. Panel adapted from Reference 37 (CC BY 4.0). (d) Illustration of a Coulomb matrix where each
element in the matrix shows the Coulombic interaction between the labeled particles in the system on the left. Diagonal elements show
self-interactions. (e) The births and deaths of topological holes in (left) a point cloud are recorded on (right) a persistence diagram.
Persistent features lie far from the parity line and indicate more significant topological features. Panel adapted from Reference 38
(CC BY 4.0).

by the intuition that representations should be continuous such that small changes in atomic po-
sitions should result in correspondingly small changes in the metric between two configurations.
With a basis of radial functions gn(r) and spherical harmonics Ylm(θ , φ), ρ(r) for central atom i can
be expressed as

ρi(r) =
∑
j

exp−|r − ri j|2
2σ 2

=
∑
nlm

cnlmgn(r)Ylm(r̂), 3.

and the kernel can be computed (12, 29) as

K (ρ, ρ ′ ) = p(r) · p′(r), 4.

p(r) ≡
∑
m

cnlm(cn′ lm )∗, 5.

where cnlm are the expansion coefficients in Equation 3. In practice, p(r) can be used as a vector
descriptor of the local environment and is also referred to as a power spectrum (12). SOAP has
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demonstrated extraordinary versatility for materials applications both as a tool for measuring sim-
ilarity (30) and as a descriptor for ML algorithms (31). Furthermore, the SOAP kernel can be used
to compare densities of different elements by adding an additional factor that provides a definition
for similarity between atoms where, for instance, atoms in the same group could have higher sim-
ilarity (29). The mathematical connections between different local atomic density representations
including ACSFs and SOAP are elucidated by a generalized formalism introduced byWillat et al.
(32), offering a methodology through which the definition of new variants can be clarified.

Instead of relying on the density of nearby atoms, local representations can be derived from
a Voronoi tessellation of a crystal structure. The Voronoi tessellation segments space into cells
such that each cell contains one atom and the surrounding spatial region for which the contained
atom is closer than any other atom (Figure 2c). From these cells, Ward et al. (17) identified a
set of descriptive features including an effective coordination number computed using the area of
the faces, lengths and volumes of nearby cells, ordering of the cells based on elements, and atomic
properties of nearest neighbors weighted by the area of the intersecting face.When combinedwith
compositional features (19), their representation results in better performance on predictions of
formation enthalpy for the Inorganic Crystal Structure Database than partial radial distribution
functions (PRDFs) (33) (see also figure 1 in Reference 17). In subsequent work, these descrip-
tors have facilitated the prediction of experimental heat capacities in MOFs (34). Similarly, Isayev
et al. (35) replaced faces of the Voronoi tessellation with virtual bonds and separated the resulting
framework into sets of linear (up to four atoms) and shell-based (up to nearest neighbors) frag-
ments. Additional features related to the atomic properties of constituent elements were associated
with each fragment, and the resulting vectors were concatenated with attributes of the supercell.
In addition to demonstrating accurate predictive capabilities,models could be interpreted through
the properties of the various fragments. For instance, predictions of the band gap could be corre-
lated with the difference in ionization potential in two-atom linear fragments, a trend that could
be exploited to design the properties of materials through tuning of the composition (35).

2.2. Global Descriptors

Alternatively, to more explicitly account for interactions beyond a fixed cutoff, atom types and
positions can be encoded into a global representation that reflects geometric and physical in-
sight. Inspired by the importance of electrostatic interactions in chemical stability, Rupp et al.
(39) proposed the Coulomb matrix (Figure 2d), which models the potential between electron
clouds:

Mi, j =
⎧⎨
⎩
Z2.4
i for i = j
ZiZ j

|ri−r j | for i �= j
. 6.

Due to the fact that off-diagonal elements are dependent on only relative distances, Coulomb
matrices are rotation and translation invariant. However, the representation is not permutation
invariant since changing the labels of the atoms will rearrange the elements of the matrix. While
originally developed for molecules, the periodicity of crystal structures can be added to the repre-
sentation by considering images of atoms in adjacent cells, replacing the 1

|ri−r j | dependencewith an-
other function with the same small distance limit and periodicity that matches the parent lattice, or
using an Ewald sum to account for long-range interactions (11). BIGDML (40) further improved
results by restricting predictions from the representation to be invariant to all symmetry opera-
tions within the space group of the parent lattice and demonstrated effective implementations on
tasks ranging from H interstitial diffusion in Pt to phonon density of states (DOS). While this
approach has been able to effectively model long-range physics, these representations rely on a
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fixed supercell and may not be able to achieve the same chemical generality as local environments
(40).

Global representations have also been implemented with higher-order tensors. PRDFs are
3D non-permutation-invariant matrices gαβr whose elements correspond to the density of ele-
ment β in the environments of element α at radius r (33). The many-body tensor representation
(MBTR) provides a more general framework (10) that can quantify k-body interactions and ac-
count for chemical similarity between elements. The MBTR is translationally, rotationally, and
permutationally invariant and can be applied to crystal structures by summing over atoms in the
primitive cell. While MBTR exhibited better performance than SOAP or Coulomb matrices for
small molecules, its accuracy may not extend to larger systems (10).

Another well-established method for representing crystal structures in materials science is the
cluster expansion.Given a parent lattice and a decoration σ defining the element that occupies each
site, Sanchez et al. (41) sought to map this atomic ordering to material properties and proposed
evaluating the correlations between sites through a set of cluster functions. Each cluster function
� is constructed from a product of basis functions φ over a subset of sites. To ensure the rep-
resentation is appropriately invariant, symmetrically equivalent clusters are grouped into classes
denoted by α. The characteristics of the atomic ordering can be quantified by averaging cluster
functions over the decoration <�α>σ , and properties q of the configuration can be predicted as

q(σ) =
∑

α

Jαmα <�α >σ ,

where mα is a multiplicity factor that accounts for the rate of appearance of different cluster
types, and Jα are parameters referred to as effective cluster interactions that must be determined
from fits to data (42). While cluster expansions have been constructed for decades and provided
useful models for configurational disorder and alloy thermodynamics (42), cluster expansions as-
sume the structure of the parent lattice, and models cannot generally be applied across different
crystal structures (43, 44). Furthermore, due to the increasing complexity of selecting cluster func-
tions, implementations are restricted to binary and ternary systems without special development
(45). Additional research has extended the formalism to continuous environments (atomic clus-
ter expansion) by treating σ as pairwise distances instead of site occupancies and constructing φ

from radial functions and spherical harmonics (46). The atomic cluster expansion framework has
provided a basis for more sophisticated deep learning approaches (47).

2.3. Topological Descriptors

Topological data analysis has found favor over the past decade in characterizing structure in
complex, high-dimensional data sets. When applied to the positions of atoms in amorphous
or crystalline structures, topological methods reveal underlying geometric features that inform
behavior in downstream predictions, such as phase changes, reactivity, and separations. In par-
ticular, persistent homology (PH) is able to identify significant structural descriptors that are
both machine readable and physically interpretable. The data can be probed at different length
scales (formally called filtrations) by computing a series of complexes that each include all sets
of points where all pairwise distances are less than the corresponding length (48). Analysis of
complexes by homology in different dimensions reveals holes or voids in the data manifold,
which can be described by the range of length scales they are observed at (persistences) as well
as when they are produced (births) and disappear (deaths). Emergent features with significant
persistence values are less likely to be caused by noise in the data or as an artifact of the chosen
length scales. In practice,multiple persistences, births, and deaths produced from a single material
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can be represented together by persistence diagrams (Figure 2e) or undergo additional feature
engineering to generate a variety of descriptors as ML inputs (49).

While PH has been applied to crystal structures in the Open Quantum Materials Database
(50), the method is particularly useful in the analysis of porous materials. The identified features
(births, deaths, persistences) hold direct physical relevance to traditional structural features used to
describe pore geometries. For instance, persistent 2D deaths represent the largest sphere that can
be included inside the pores of the materials. Krishnapriyan et al. (38) have shown that these topo-
logical descriptors outperform traditional structural descriptors when predicting carbon dioxide
adsorption under varying conditions for metal-organic frameworks (MOFs), as did Lee et al. (51)
for zeolites for methane storage capacities. Representative cycles can trace the topological fea-
tures back to the atoms that are responsible for the hole or the void, creating a direct relationship
between structure and predicted performance (see figure 4 in Reference 38). Similarity methods
for comparing barcodes can then be used to identify promising novel materials with similar pore
geometries for targeted applications.

A caveat is that PH does not inherently account for system size and is thus size dependent. The
radius cutoff, or the supercell size, needs to be carefully considered to encompass all significant
topological features and allow comparison across systems of interest. In the worst case scenario,
the computation cost per filtration for a structure isO(N 3), whereN is the number of sets of points
defining a complex. Although the cost is alleviated by the sparsity of the boundary matrix (52), the
scaling is poor for structures whose geometric features exceed unit cell lengths. The benefit of
using PH features to capture more complex structural information has to be carefully balanced
with the cost of generating these features.

3. LEARNING ON PERIODIC CRYSTAL GRAPHS

In the previous section, we describe many physically inspired descriptors that characterize ma-
terials and can be used to efficiently predict properties. The use of differentiable graph-based
representations in convolutional neural networks, however, mitigates the need for manual en-
gineering of descriptors (53, 54). Indeed, advances in deep learning and the construction of
large-scale materials databases (4–9) have made it possible to learn representations directly from
structural data. From a set of atoms a1, a2, a3, . . . located at positions x1, x2, x3, . . . , materials can be
converted to a graphG(V,E) defined as the set of atomic nodesV and the set of edgesE connecting
neighboring atoms.Many graph-based neural network architectures were originally developed for
molecular systems, with edges representing bonds. By considering periodic boundary conditions
and defining edges as connections between neighbors within a cutoff radius, graphical representa-
tions can be leveraged for crystalline systems. The connectivity of the crystal graph thus naturally
encodes local atomic environments (18).

When used as inputs to ML algorithms, the graph nodes and edges are initialized with an asso-
ciated set of features. Nodal features can be as simple as a one-hot vector of the atomic number or
can explicitly include other properties of the atomic species (e.g., electronegativity, group, period).
Edge features are typically constructed from the distance between the corresponding atoms. Sub-
sequently, a series of convolutions parameterized by neural networks modifies node and/or edge
features based on the current state of their neighborhood (Figure 3a). As the number of convolu-
tions increases, interactions from further away in the structure can propagate, and graph features
become tuned to reflect the local chemical environment. Finally, node and edge features can be
pooled to form a single vector representation for the material (53, 55).

Crystal Graph Convolution Neural Networks (CGCNN) (18) and Materials Graph Net-
works (MEGNet) (56) have become benchmark algorithms capable of predicting properties
across solid-state materials domains including bulk, surfaces, disordered systems, and 2Dmaterials
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(a) General architecture of graph convolutional neural networks for property prediction in crystalline
systems. Three-dimensional crystal structure is represented as a graph with nodes representing atoms and
edges representing connections between nearby atoms. Features (e.g., nodal, edge, angular) within local
neighborhoods are convolved, pooled into a crystal-wide vector, and mapped to the target property. Panel
adapted from Reference 62. (b) Information loss in graphs built from pristine structures. Geometric
distortions of ground-state crystal structures are captured as differing edge features in graphical
representations. This information is lost in graphs constructed from corresponding unrelaxed structures.
(c) Ability of graphical representations to distinguish toy structures. Assuming a sufficiently small cutoff
radius, the invariant representation—using edge lengths and/or angles—cannot distinguish the two toy
arrangements, while the equivariant representation with directional features can. Panel adapted from
Reference 64. Abbreviation: CGCNN, Crystal Graph Convolution Neural Network.

(57, 58). Atomistic LineGraphNeural Network (ALIGNN) extended these approaches by includ-
ing triplet three-body features in addition to nodes and edges and exhibited superior performance
to CGCNN over a broad range of regression tasks including formation energy, band gap, and
shear modulus (59). Other variants have used information from Voronoi polyhedra to construct
graphical neighborhoods and augment edge features (60) or initialized node features based on the
geometry and electron configuration of nearest-neighbor atoms (61).

While these methods have become widespread for property prediction, graph convolution
updates based on only the local neighborhood may limit the sharing of information related to
long-range interactions or extensive properties. Gong et al. (63) demonstrated that these models
can struggle to learn materials properties reliant on periodicity, including characteristics as sim-
ple as primitive cell lattice parameters. As a result, while graph-based learning is a high-capacity
approach, performance can vary substantially by the target use case. In some scenarios, methods
developed primarily for molecules can be effectively implemented out of the box with the addi-
tion of periodic boundary conditions, but especially in the case of long-range physical phenomena,
optimal results can require specialized modeling.

Various strategies to account for this limitation have been proposed.Gong et al. (63) found that
if the pooled representation after convolutions was concatenated with human-tuned descriptors,
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errors could be reduced by 90% for related predictions, including phonon internal energy and
heat capacity. Algorithms have attempted to more explicitly account for long-range interactions
bymodulating convolutions with amask defined by a local basis ofGaussians and a periodic basis of
plane waves (65), employing a unique global pooling scheme that could include additional context
such as stoichiometry (66), or constructing additional features from the reciprocal representation
of the crystal (67). Other strategies have leveraged assumptions about the relationships among
predicted variables, such as representing phonon spectra by using a Gaussian mixture model (68).

Given the promise and flexibility of graphical models, improving the data efficiency, accuracy,
generalizability, and scalability of these representations is an active area of research. While our
discussion above of structure-based material representations relied on the translational and rota-
tional invariance of scalar properties, this characteristic does not continue to hold for higher-order
tensors. Consider a material with a net magnetic moment. If the material is rotated 180° around
an axis perpendicular to the magnetization, the net moment then points in the opposite direction.
The moment was not invariant to the rotation but instead transformed alongside the operation
in an equivariant manner (69). For a set of transformations described by the group G, equivari-
ant functions f satisfy g ∗ f (x) = f (g ∗ x) for every input x and every group element g (69, 70).
Recent efforts have shown that by introducing higher-order tensors to node and edge features
(Figure 3c) and restricting the update functions such that intermediate representations are equiv-
ariant to the group E3 (encompassing translations, rotations, and reflections in R3), models can
achieve state-of-the-art accuracy on benchmark data sets and even exhibit comparable perfor-
mance to structural descriptors in low-data [(O)100 data points] regimes (64, 69, 71). Further
accuracy improvements can be made by explicitly considering many-body interactions beyond
edges (47, 72, 73). Such models, developed for molecular systems, have since been extended to
solid-state materials and shown exceptional performance. Indeed, Chen et al. (74) trained an
equivariant model to predict phonon DOS and was able to screen for high–heat capacity tar-
gets, tasks identified to be particularly challenging for baseline CGCNN and MEGNet models
(63).Therefore, equivariant representationsmay offer amore general alternative to the specialized
architectures described above.

A major restriction of these graph-based approaches is the requirement for the positions
of atomic species to be known. In general, ground-state crystal structures exhibit distortions
that allow atoms to break symmetries, which are computationally modeled with expensive DFT
calculations. Graphs generated from pristine structures lack representation of relaxed atomic co-
ordinates (Figure 3b), and resulting model accuracy can degrade substantially (75, 76). These
graph-based models are therefore often most effective at predicting properties of systems for
which significant computational resources have already been invested, thus breaking the advice
from Section 1. As a result, their practical usage often remains limited when searching broad
regions of crystal space for an optimal material satisfying a particular design challenge.

Strategies have therefore been developed to bypass the need for expensive quantum calcula-
tions by using unrelaxed crystal prototypes as inputs. Gibson et al. (76) trained CGCNN models
on data sets composed of both relaxed structures and a set of perturbed structures that map to
the same property value as the fully relaxed structure. The data augmentation incentivizes the
CGCNNmodel to predict similar properties within some basin of the fully relaxed structure and
was demonstrated to improve prediction accuracy on an unrelaxed test set. Alternatively, graph-
based energy models can be used to modify unrelaxed prototypes by searching through a fixed
set of possibilities (77) or using Bayesian optimization (78) to find structures with lower energy.
Lastly, structures can be relaxed using a cheap surrogate model (e.g., a force field) before a final
prediction is made. The accuracy and efficiency of such a procedure will fundamentally rely on
the validity and compositional generalizability of the surrogate relaxation approach (75).
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4. CONSTRUCTING REPRESENTATIONS FROM STOICHIOMETRY

The phase, crystal system, and atomic position ofmaterials are not always available whenmodeling
materials systems, rendering structural and graphical representations impossible to construct. In
the absence of these data,material representations can also be built purely from stoichiometry (the
concentration of the constituent elements) and without knowledge of the geometry of the local
atomistic environments.Despite their lack of structural information and apparent simplicity, these
methods provide unique benefits for materials science researchers. First, descriptors used to form
compositional representations such as common atomic properties (e.g., atomic radii, electronega-
tivity) do not require computational overhead and can be readily found in existing databases (19).
In addition, effective models can often be built using standard algorithms for feature selection and
prediction that are implemented in freely available libraries (79), increasing accessibility to non-
experts when compared with structural models. Lastly, when used as tools for high-throughput
screening, compositional models identify a set of promising elemental concentrations. Compared
with the suggestion of particular atomistic geometries, stoichiometric approaches may be more
robust as they make weaker assumptions about the outcomes of attempted syntheses.

Composition-based rules have long contributed to efficient materials design. William Hume-
Rothery and Linus Pauling designed rules for determining the formation of solid solutions and
crystal structures that include predictions based on atomic radii and electronic valence states (80,
81). However, many exceptions to their predictions can be found (82).

ML techniques offer the ability to discover and model relationships between properties and
physical descriptors through statistical means. Meredig et al. (83) demonstrated that a deci-
sion tree ensemble trained using a feature set of atomic masses, positions in the periodic table,
atomic numbers, atomic radii, electronegativities, and valence electrons could outperform a con-
ventional heuristic on predicting whether ternary compositions would have formation energies
<100meV/atom.Ward et al. (19) significantly expanded this set to 145 input properties, including
features related to the distribution and compatibility of the oxidation states of constituent atoms.
Their released implementation, MagPie, can be a useful benchmark or starting point for the de-
velopment of further research methods (79, 84, 85). Furthermore, if a fixed structural prototype
(e.g., elpasolite) is assumed, these stoichiometric models can be used to analyze compositionally
driven variation in properties (86, 87).

Even more subtle yet extremely expressive low-dimensional descriptors can be obtained by
initializing a set with standard atomic properties and computing successive algebraic combina-
tions of features, with each calculation being added to the set and used to compute higher-order
combinations in the next round. While the resulting set will grow exponentially, compressive
sensing can then be used to identify the most promising descriptors from sets that can exceed
109 possibilities (88, 89). Ghiringhelli et al. (90) found descriptors that could accurately predict
the relative stability of zinc blende and rock salt phases for binary compounds, and Bartel et al.
(91) identified an improved tolerance factor τ for the formation of perovskite systems (Table 1).
While these approaches do not derive their results from a known mechanism, they do provide

Table 1 Example descriptors determined through compressive sensing

Descriptor Prediction Variables
IP(B)−EA(B)

rp(A)2
Energy difference between
AB structure prototypes

IP, ionization potential
EA, electron affinity
rp, density of valence of p orbital

rX
rB

− nA(nA − rA/rB
ln[rA/rB]

) Stability of ABX3 perovskite nY, oxidation state of Y
rY, ionic radius of Y
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enough interpretability to enable the extraction of physical insights for the screening and design
of materials.

When large data sets are available, deep neural networks tend to outperform traditional ap-
proaches, and that is also the case for compositional representations. The size of modern materials
science databases has enabled the development of information-rich embeddings thatmap elements
or compositions to vectors as well as the testing and validation of deep learningmodels.Chemically
meaningful embeddings can be constructed by counting all compositions in which that element
appeared in the Materials Project (92) or learned through the application of natural language
processing to previously reported results in the scientific literature (93). These data-hungry meth-
ods were able to demonstrate that their representations could be clustered based on atomic group
(92) and could be used to suggest new promising compositions based on similarity with the best
knownmaterials (93). The advantages of training deep learning algorithms with large data sets are
exemplified by ElemNet, which uses only a vector of fractional stoichiometry as input. Despite its
apparent simplicity, when >3,000 training points were available, ElemNet performed better than
a MagPie-based model at predicting formation enthalpies (94).

While the applicability of ElemNet is limited to problem domains with O(103) data points,
more recent methods have significantly reduced this threshold. ROOST (95) represented each
composition as a fully connected graph with nodes as elements, and properties were predicted
using a message-passing scheme with an attention mechanism that relied on the stoichiometric
fraction of each element. ROOST substantially improved on ElemNet, achieving better per-
formance than MagPie in cases with only hundreds of training examples. Meanwhile, CrabNet
(96) forms element-derived matrices as a sum of embeddings of each element’s identity and sto-
ichiometric fraction. This approach achieves similar performance to ROOST by updating the
representation using self-attention blocks. The fractional embedding can take log-scale data as
input such that even dopants in small concentrations can have a significant effect on predictions.
Despite the inherent challenges of predicting properties purely from composition, these recent
and significant modeling improvements suggest that continued algorithmic development could
be an attractive and impactful direction for future research projects.

Compositional models have the advantage that they can suggest new systems to experimental-
ists without requiring a specific atomic geometry and, likewise, can learn from experimental data
without necessitating an exact crystal structure (97). Owing to their ability to incorporate experi-
mental findings into ML pipelines and provide suggestions with fewer experimental requirements
(e.g., synthesis of a particular phase), compositional models have become attractive methods for
materials design. Zhang el al. (97) trained a compositional model using atomic descriptors on
previous experimental data to predict Vicker’s hardness and validated their model by synthesizing
and testing eight metal disilicides.Oliynyk et al. (87) identified newHeusler compounds while also
verifying their approach on negative cases where they predicted a synthesis would fail. Another
application of their approach enabled the prediction of the crystal structure prototype of ternary
compounds with greater than 96% accuracy. By training their model to predict the probability
associated with each structure, they were able to experimentally engineer a system (TiFeP) with
multiple competing phases (98).

While researchers have effectively implemented compositional models as methods for ma-
terials design, their limitations should be considered when selecting a representation for ML
studies. Fundamentally, compositional models will only provide a single prediction for each
stoichiometry regardless of the number of synthesizable polymorphs. While training models to
only predict properties of the lowest-energy structure is physically justifiable (99), extrapolation
to technologically relevant metastable systems may still be limited. Additionally, graph-based
structural models such as CGCNN (18) or MEGNet (56) generally outperform compositional
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models (84). Therefore, composition models are most practically applicable when atomistic
resolution of materials is unavailable and thus structural representations cannot be effectively
constructed.

5. DEFECTS, SURFACES, AND GRAIN BOUNDARIES

Mapping the structure of small molecules and unit cells to materials properties has been a reason-
able starting point for many applications of materials science modeling.However,materials design
often requires understanding larger length scales beyond the small unit cell, such as in defect and
grain boundary engineering and in surface science (100). In catalysis, for example, surface activity
is highly facet dependent and cannot be modeled using the bulk unit cell alone. It has been shown
that the (100) facet of RuO2, a state-of-the-art catalyst for the oxygen evolution reaction (OER),
has an order-of-magnitude-higher current for OER than the active site on the thermodynamically
stable (110) facet (101). Similarly, small unit cells are not sufficient for modeling transport prop-
erties, where size, orientation, and characteristics of grain boundaries play a large role. In order
to apply ML to practical materials design, it is therefore imperative to construct representations
that can characterize environments at the relevant length scales.

Defect engineering offers a common and significant degree of freedom through which ma-
terials can be tuned. Data science can contribute to the design of these systems as fundamental
mechanisms are often not completely understood even in longstanding cases such as carbon in
steels (103). Dragoni et al. (31) developed a Gaussian approximate potential (104) using SOAP
descriptors for face-centered cubic iron that could probe vacancies, interstitials, and dislocations,
but their model was confined to a single phase of one element and required DFT calculations
incorporating O(105) unique environments to build the interpolation.

Considering that even a small number of possible defects significantly increases combinatorial
complexity, a general approach for predicting properties of defects from pristine bulk structure
representations could accelerate computation by orders of magnitude (Figure 4a). For example,
Varley et al. (102) observed simple and effective linear relationships between vacancy formation
energy and descriptors derived from the band structure of the bulk solid.While their model only
considered one type of defect, their implementation limits computational expense by demon-
strating that only DFT calculations on the pristine bulk were required (102). Structure- and
composition-aware descriptors of the pristine bulk have additionally been shown to be predictive

a  Point defects b  Surfaces c  Grain boundaries

DFT pristine structure

Valence band

Conduction band

DFT vacancy
formation energy

DFT pristine structure

DFT
adsorption energy

O2p Md

DOS

DFT structure
Pristine

Grain boundary

Grain
boundary
energy

Miller index

Figure 4

(a) Point defect properties are learned from a representation of the pristine bulk structure and additional relevant information on
conduction and valence band levels. Panel adapted with permission from Reference 102; copyright 2017 American Chemical Society.
(b) Surface properties are learned from a combination of pristine bulk structure representation, Miller index, and DOS information.
(c) Local environments of atoms near a grain boundary and atoms in the pristine bulk are compared to learn grain boundary properties.
Abbreviations: DFT, density-functional theory; DOS, density of states.
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of vacancy formation in metal oxides (105, 106) and site and antisite defects in AB intermetallics
(107). To develop an approach that can be used over a broad range of chemistries and defect
types, Frey et al. (21) formed a representation by considering relative differences in characteristics
(atomic radii, electronegativity, etc.) of the defect structure compared with the pristine parent.
Furthermore, because reference bulk properties could be estimated using surrogate ML models,
no DFT calculations were required for prediction of either formation energy or changes in elec-
tronic structure (21). We also note that in some cases it may be judicious to design a model that
does not change significantly in the presence of defects. For these cases, representations based on
simulated diffraction patterns are resilient to site-based vacancies or displacements (108).

Like in defect engineering, ML for practical design of catalyst materials requires represen-
tations beyond the single unit cell. Design of catalysts with high activity crucially depends on
interactions of reaction intermediates with materials surfaces based on the Sabatier principle,
which argues that activity is greatest when intermediates are bound neither too weakly nor
too strongly (109). From a computational perspective, determining absorption energies involves
searches over possible adsorption active sites, surface facets, and surface rearrangements, leading
to a combinatorial space that can be infeasible to exhaustively cover with DFT. Single-dimension
descriptors based on electronic structure have been established that can predict binding strengths
and provide insight on tuning catalyst compositions, such as the metal d-band center for metals
(110) and oxygen 2p-band center for metal oxides (111). Additional geometric approaches include
describing the coordination of the active site (generalized coordination number inmetals, adjusted
generalized coordination number in metal oxides) (112). Based on the success of these simple de-
scriptors,ML models have been developed to learn binding energy using the DOS and geometric
descriptors of the pristine bulk structure as features (Figure 4b) (113).

However, these structural and electronic descriptors are often not generalizable across
chemistries (110, 114), limiting the systems over which they can be applied and motivating the
development of more sophisticated ML techniques. To reduce the burden on high-throughput
DFT calculations, active learning with surrogate models using information from pure metals and
active-site coordination has been used to identify alloy and absorbate pairs that have the highest
likelihood of producing near-optimal binding energies (115). Furthermore, when sufficient data
(>10,000 examples) are available, modifications of graph-convolutional models have also pre-
dicted binding energies with high accuracy even in data sets with up to 37 elements, enabling
discovery without detailed mechanistic knowledge (114). To generalize these results, the release
of Open Catalyst 2020 and its related competition (6, 9) have provided over one million DFT en-
ergies for training new models and a benchmark through which new approaches can be evaluated
(75).While significant advancements have beenmade, state-of-the-art models still exhibit high er-
rors for particular absorbates and nonmetallic surface elements, constraining the chemistry over
which effective screening can be conducted (75). Furthermore, the complexity of the design space
relevant for MLmodels grows considerably when accounting for interactions between absorbates
and different surface facets (116).

Beyond atomistic interactions, a material’s mechanical and thermal behavior can be signifi-
cantly modulated by processing conditions and the resulting microstructure. Greater knowledge
of local distortions introduced at varying grain boundary incident angles would give computational
materials scientists a more complete understanding of how experimentally chosen chemistries and
synthesis parameters will translate into device performance. Strategies to quantify characteristics
of grain boundary geometry have included reducing computational requirements by identifying
the most promising configurations with virtual screening (117), estimating the grain boundary
free volume as a function of temperature and bulk composition (118), treating the microstructure
as a graph of nodes connected across a grain boundary (54, 119), and predicting the energetics,
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and hence feasibility, of solute segregation (120). While the previous approaches did not include
features based on the constituent atoms and were only benchmarked on systems with up to three
elements, recent work has demonstrated that the excess energy of the grain boundary relative to
the bulk can be approximated across compositions with five variables defining its orientation and
the bond lengths within the grain boundary (Figure 4c) (121).

Further research has tried to map the local grain boundary structure to function. Algorith-
mic approaches to grain boundary structure classification have been developed [see, for example,
VoroTop (122)], but such approaches typically rely on expert users and do not provide a con-
tinuous representation that can smoothly interpolate between structures (123). To eliminate
these challenges, Rosenbrock et al. (124) proposed computing SOAP descriptors for all atoms
in the grain boundary, clustering vectors into classes, and identifying grain boundaries through
their local environment classes. The representation was not only predictive of grain boundary
energy, temperature-dependent mobility, and shear coupling but also provided interpretable ef-
fects of particular structures within the grain boundary. A related approach computed SOAP
vectors relative to the bulk structure when analyzing thermal conductivity (125). Representa-
tions based on radial and angular structure functions can also quantify the mobility of atoms
within a grain boundary (126). When combined, advancing models for grain boundary stabil-
ity as well as structure-to-property relationships opens the door for the functional design of grain
boundaries.

6. TRANSFERABLE INFORMATION BETWEEN REPRESENTATIONS

Applications of ML to materials science are limited by the scope of compositions and structures
over which algorithms can maintain sufficient accuracy. Thus, building large-scale, diverse data
sets is the most robust strategy to ensure trained models can capture the relevant phenomena.
However, in most contexts, materials scientists are confronted with sparsely distributed exam-
ples. Ideally, models can be trained to be generalizable and exhibit strong performance across
chemistries and configurations even with few to no data points in a given domain. In order to
achieve this, representations and architectures must be chosen such that models can learn to
extrapolate beyond the space observed in the training set. Effective choices often rely on inherent
natural laws or chemical features that are shared between the training set and extrapolated domain
such as physics constraints (127, 128), the geometric (129, 130) and electronic (131, 132) structure
of local environments, and positions of elements in the periodic table (133, 134). For example, Li
et al. (129) were able to predict absorption energies on high-entropy-alloy surfaces after training
on transition metal data by using the coordination number and electronic properties of neighbors
at the active site. While significant advancements have been made in the field, extrapolation of
ML models across materials spaces typically requires specialized research methods and is not
always feasible.

Likewise, it is not always practical for a materials scientist to improve model generality by just
collecting more data. In computational settings, some properties can be reliably estimated only
with more expensive, higher levels of theory, and for experimentalists, synthetic and characteri-
zation challenges can restrict throughput. The deep learning approaches that have demonstrated
exceptional performance over a wide range of tests cases discussed in this review can require at
least ∼103 training points, putting them seemingly out for the realm of possibility for many re-
search projects. Instead, predictive modeling may fall back on identifying relationships between a
set of human-engineered descriptors and target properties.

Alternatively, the hidden, intermediate layers of deep neural networks can be conceptualized
as a learned vector representation of the input data. While this representation is not directly
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interpretable, it must still contain physical and chemical information related to the prediction
task, which downstream layers for the network utilize to generate model outputs. Transfer
learning leverages these learned representations from task A and uses them in the modeling of
task B. Critically, task A can be chosen to be one for which a large number of data points are
accessible (e.g., prediction of all DFT formation energies in the Materials Project), and task
B can be of limited size (e.g., predicting experimental heats of formation of a narrow class of
materials). In principle, if task A and task B share an underlying physical basis (the stability of the
material), the features learned when modeling task A may be more informationally rich than a
human-designed representation (135).With this more effective starting point, subsequent models
for task B can reach high accuracy with relatively few new examples.

The most straightforward methods to implement transfer learning in the materials science
community follow a common procedure: (a) train a neural network model to predict a related
property (task A) for which >O(1,000) data points are available (pretraining), (b) fix parameters
of the network up to a chosen depth d (freezing), and (c) given the new data set for task B, either
retrain the remaining layers, where parameters can be initialized randomly or from the task A
model (fine-tuning), or treat the output of the model at depth d as an input representation for
another ML algorithm (feature extraction) (136, 137). The robustness of this approach has been
demonstrated across model classes including those using only composition [ElemNet (135, 137),
ROOST (95)], crystal graphs [CGCNN (138)], and equivariant convolutions [GemNet (139)].
Furthermore, applications of task B range from experimental data (95, 135) to DFT-calculated
surface absorption energies (139).

The sizes of the data sets for task A and task B will determine the effectiveness of a transfer
learning approach in two ways. First, the quality and robustness of the representation learned for
task A will increase as the number of observed examples (the size of data set A) increases. Secondly,
as the size of data set B decreases, data become too sparse for an ML model to learn a reliable
representation alone, and prior information from the solution to task A can provide an increasingly
useful method to interpolate between the few known points. Therefore, transfer learning typically
exhibits the greatest boosts in performance when task A has orders-of-magnitude more data than
task B (135, 138).

In addition, the quality of information sharing through transfer learning depends on the phys-
ical relationship between task A and task B. Intuitively, the representation from task A provides a
better guide for task B if the tasks are closely related. For example, Kolluru et al. (139) demon-
strated that transfer learning from models trained on the Open Catalyst Dataset (6) exhibited
significantly better performance when applied to the absorption of new species than energies of
less-related small molecules. While it is difficult to choose the optimal task A for a given task
B a priori, shotgun transfer learning (136) has demonstrated that the best pairing can be cho-
sen experimentally by empirically validating a large pool of possible candidates and selecting top
performers.

The depth d from which features should be extracted from task A to form a representation can
also be task dependent.Kolluru et al. (139) provided evidence that to achieve optimal performance,
more layers of the network should be allowed to be retrained in step (c) as the connection between
task A and task B becomes more distant. Gupta et al. (137) arrived at a similar conclusion that the
early layers of deep neural networks learned more general representations and performed better
in cross-property transfer learning. Inspired by this observation that representations at different
neural network layers contain information with varying specificity to a particular prediction task,
representations for transfer learning that combine activations from multiple depths have been
proposed (139, 140).
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When tasks are sufficiently different, freezing neural network weights may not be the optimal
strategy, and instead representations for task B can include predictions for task A as descriptors.
For instance, Cubuk et al. (141) observed that structural information was critical to predict Li
conductivity but was only available for a small set of compositions for which crystal structures
were determined. By training a separate surrogate model to predict structural descriptors from
the composition and using those approximations in subsequent Li conductivity models, the fea-
sible screening domain was expanded by orders of magnitude. Similarly, Greenman et al. (142)
used O(10,000) time-dependent DFT calculations to train a graph neural network, the estimates
of which could be used as an additional descriptor for a model predicting experimental peaks
in absorption spectra. Representations have also been sourced from the output of generative
models. Kong et al. (143) trained a generative adversarial network (GAN) to sample electronic
DOS given a particular material composition. Predictions of absorption spectra were improved
by concatenating stoichiometric data with the average DOS sampled from the generative model.

7. GENERATIVE MODELS FOR INVERSE DESIGN

While, in principle, ML methods can significantly reduce the time required to compute material
properties, and material scientists can employ these models to screen for a set of target systems by
rapidly estimating the stability and performance, the space of feasible materials precludes a naive
global optimization strategy in most cases. Generative models including variational autoencoders
(VAEs) (1, 144),GANs (145, 146), and diffusion models (147, 148) can be trained to sample from a
target distribution and have proven to be capable strategies for optimization in high-dimensional
molecular spaces (1, 149). While some lessons can be drawn from the efforts of researchers in
the computational chemistry community, generative models face unique challenges for proposing
crystals (150, 151). First, the diversity of atomic species increases substantially when compared
with small organicmolecules. In addition, given a composition, a properly defined crystal structure
requires both the positions of the atoms within the unit cell and the lattice vectors and angles
that determine the system’s periodicity. This definition is not unique, and the same material can
be described after rotations or translations of atomic coordinates as well as integer scaling of
the original unit cell. Lastly, many state-of-the-art materials for catalysis (e.g., zeolites, MOFs)
can have unit cells including >100 of atoms, increasing the dimensionality of the optimization
problem (150, 151).

One attempt to partially address the challenges of generative modeling for solid materials
design is a voxel representation (150), in which unit cells are divided into volume elements and
models are built using techniques from computer vision. Hoffmann et al. (22) represented unit
cells using a density field that could be further segmented into atomic species and were able to
generate crystals with realistic atomic spacings. However, atoms could be mistakenly decoded
into other species with a nearby atomic number and most of the generated structures could not
be stably optimized with a DFT calculation. Alternate approaches could obtain more convincing
results, but over a confined region of material space (154). iMatgen (Figure 5a) invertibly
mapped all unit cells into a cube with Gaussian-smeared atomic density and trained a VAE
coupled with a surrogate energy prediction. The model was able to rediscover stable structures
but was constrained over the space of vanadium oxides (23). A similar approach constructed a
separate voxel representation for each element and employed a GAN trained alongside an energy
constraint to explore the phases of Bi–Se (155). In order to resolve some of the limitations of
Hoffmann et al. (22), Court et al. (24) reduced segmentation errors by augmenting the repre-
sentation with a matrix describing the occupation (0,1) of each voxel and a matrix recording the
atomic number of occupied voxels. Their model was able to propose new materials that exhibited
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Approaches for crystal structure generative models. (a) Models based on voxel representations defined positions of atoms by
discretizing space into finite volume elements but were not applied generally over the space of crystal structures (22–25, 154). Panel
adapted with permission from Reference 23. (b) Restricting the generation process to be invariant to permutations, translations, and
rotations through an appropriately constrained periodic decoder (PGNNDec) results in sampling structures exhibiting more diversity
and stability. Panel adapted with permission from Reference 152. (c) When features of the material can be assumed, such as a finite
number of possible topologies connecting substructures, the dimensionality of the problem can be substantially reduced and samples
over larger unit cell materials can be generated. Panel adapted with permission from Reference 153. Abbreviations: AE, autoencoder;
VAE, variational autoencoder.

chemical diversity and could be further optimized with DFT, but its analysis was restricted to
cubic systems. Likewise, compositions of halide perovskites with optimized band gaps can be
proposed using a voxelized representation of a fixed perovskite prototype (25).

Voxel representations can be relaxed to continuous coordinates in order to develop methods
that aremore comprehensively applicable over crystal space.Kim et al. (156) representedmaterials
using a record of the unit cell as well as a point cloud of fractional coordinates of each element.The
approach proposed lower-energy structures than iMatgen for V–O binaries and was also applica-
ble over more diverse chemical spaces (Mg–Mn–O ternaries). Another representation including
atomic positions along with elemental properties can be leveraged for inverse design over spaces
that vary in both composition and lattice structure. In a test case, the model successfully generated
new materials with negative formation energy and promising thermoelectric power factor (154).
While these models have demonstrated improvements in performance, they lack the translational,
rotational, and scale invariances of real materials and are restricted to sampling particular materials
classes (152, 156).

Recently, alternatives that account for these symmetries have been proposed. Fung et al.
(157) proposed a generative model for rotationally and translationally invariant atom-centered
symmetry functions from which target structures could be reconstructed. Crystal diffusion VAEs
(Figure 5b) leveraged periodic graphs and SE(3) equivariant message-passing layers to encode
and decode their representation in a translationally and rotationally invariant way (152).They also
proposed a two-step generation process during which they first predicted the crystal lattice from a
latent vector and subsequently sampled the composition and atomic positions through Langevin
dynamics. Furthermore, they established well-defined benchmark tasks and demonstrated that for
inverse design their method was more flexible than voxel models with respect to a crystal system
and more accurate than point cloud representations at identifying crystals with low formation
energy.

Scaling solid-state generative modeling techniques to unit cells with 104 atoms would enable
inverse design of porous materials that are impossible to explore exhaustively but demonstrate

416 Damewood et al.



exceptional technological relevance. Currently, due to the high number of degrees of freedom,
sampling from these spaces requires imposing physical constraints in the modeling process. Such
restrictions can be implemented as postprocessing steps or integrated into the model represen-
tation. ZeoGAN (158) generated positions of oxygen and silicon atoms in a 32 × 32 × 32 grid
to propose new zeolites. While some of the atomic positions proposed directly from their model
violated conventional geometric rules, they could obtain feasible structures by filtering out diver-
gent compositions and repairing bond connectivity through the insertion or deletion of atoms.
Alternatively, Yao et al. (153) designed geometric constraints directly into the generative model
by representing MOFs by their edges, metal/organic vertices, and distinct topologies (RFcodes)
(Figure 5c). Because this representation is invertible, all RFcodes correspond to a structurally
possible MOF. By training a VAE to encode and decode this RFcode representation, they demon-
strated the ability to interpolate between structures and optimize properties. In general, future
research should balance more stable structure generation against the possible discovery of new
motifs and topologies.

8. DISCUSSION

In this review, we introduce strategies for designing representations for ML in the context of
challenges encountered by materials scientists. We discuss local and global structural features as
well as representations learned from atomic-scale data in large repositories. We note additional
research that extends beyond idealized crystals to include the effects of defects, surfaces, and
microstructure. Furthermore, we acknowledge that in practice the availability of data can be
limited both in quality and in quantity.We describe methods to mitigate this including developing
models based on compositional descriptors alone or leveraging information from representations
built for related tasks through transfer learning. Finally, we analyze how generative models have
improved by incorporating symmetries and domain knowledge. As data-based methods have
become increasingly essential for materials design, optimal ML techniques will play a crucial
role in the success of research programs. The previous sections demonstrate that the choice of
representation will be among these pivotal factors and that novel approaches can open the door
to new modes of discovery. Motivated by these observations, we conclude by summarizing open
problems with the potential to have a large impact on the field of materials design.

8.1. Trade-Offs of Local and Global Structural Descriptors

Local structural descriptors including SOAP (12) have become reliable metrics to compare envi-
ronments with a specific cutoff radius and, when properties can be defined through short-range
interactions, have demonstrated strong predictive performance. Characterizing systems based off
of local environments allows models to extrapolate to cases where global representations may
vary substantially (e.g., an extended supercell of a crystal structure) (14) and enables highly scal-
able methods of computation that can extend the practical limit of simulations to much larger
systems (159). However, Unke et al. (160) notes that the required complexity of the representa-
tion can grow quickly when modeling systems with many distinct elements, and the quality of ML
predictions will be sensitive to the selected hyperparameters, such as the characteristic distances
and angles in atom-centered symmetry functions. Furthermore, it is unclear if these high-quality
results extend to materials characteristics that strongly depend on long-range physics or the peri-
odicity of the crystal. On the other hand, recent global descriptors (40) can more explicitly model
these phenomena but have not exhibited the same generality across space groups and system sizes.
Strategies exploring appropriate combinations of local and long-range features (161) have the po-
tential to break through these trade-offs to provide more universal models for material property
prediction.
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8.2. Prediction from Unrelaxed Crystal Prototypes

If relaxed structures are required to form representations, the space over which candidates can be
screened is limited to those materials for which optimized geometries are known. Impressively,
recent work (162, 163) has shown that ML force fields, even simple models with relatively high
errors, can be used to optimize structures and obtain converged results that are lower in energy
than those obtained using Vienna Ab initio Simulation Package (164). Their benchmarking on
the OC20 (6) data set and lower accuracy requirements suggest that the approach could be gen-
eralizable across a wide class of material systems and thus significantly expand the availability of
structural descriptors. Similarly,Chen&Ong (165) demonstrated that a variant ofMEGNet could
perform high-fidelity relaxations of unseen materials with diverse chemistries and that leveraging
the resulting structures could improve downstream ML predictions of energy when compared
with unrelaxed inputs. The strong performance of these approaches and their potential to sig-
nificantly increase the scale and effectiveness of computational screening motivates high-value
research questions concerning the scale of data sets required for training, the generalizability over
material classes, and the applicability to prediction tasks beyond stability.

8.3. Applicability of Compositional Descriptors

Compositional descriptors are typically readily available as tabulated values, but even state-of-
the-art models do not perform as well as the best structural approaches. However, there is some
evidence that the scale of improvement when including structural information is property depen-
dent. System energies can be conceptualized as a sum of site energies that are highly dependent on
the local environment, and graph neural networks provide significantly more robust predictions
of materials stability (84). On the other hand, for properties dependent on global features such as
phonons (vibrations) or electronic band structures (band gap), the relative improvement may not
be as large (99, 166, 167). Identifying common trends connecting tasks for which this difference
is the least significant would provide more intuition about which scenarios compositional mod-
els are most appropriate for. Furthermore, in some modeling situations, structural information
is available but over only a small fraction of the data set. To maximize the value of these data,
more general strategies involving transfer learning (141) or combining separate composition and
structural models (85) should be developed.

8.4. Extensions of Generative Models

Additional symmetry considerations and the implementation of diffusion-based architectures led
to generative models that improved significantly over previous voxel approaches.While this strat-
egy is a promising direction for small unit cells, efforts pertaining to other parameters critical to
material performance including microstructure (168), dimensionality (169), and surfaces (170)
should also be pursued. In addition, research groups have sidestepped some of the challenges
of materials generation by designing approaches that only sample material stoichiometry (171).
While these methods limit the full characterization of new materials through a purely compu-
tational pipeline, there may be cases where they are sufficient to propose promising regions for
experimental analysis.
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