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Abstract

Noncentrosymmetric (NCS) materials feature an exciting array of func-
tionalities such as nonlinear optical (NLO) responses and topological spin
textures (skyrmions).While NLOmaterials and magnetic skyrmions display
two different sets of physical properties, their design strategies are deeply
connected in terms of atomic-scale precision, structural customization, and
electronic tunability. Despite impressive progress in studying these systems
separately, a joint road map for navigating the chemical principles for NCS
materials remains elusive. This review unites two subtopics of NCS systems,
NLO materials and magnetic skyrmions, offering a multifaceted narrative
of how to translate the often-abstract fundamentals to the targeted func-
tionalities while inviting innovative approaches from the community. We
outline the design principles central to the desired properties by exemplify-
ing relevant examples in the field. We supplement materials chemistry with
pertinent electronic structures to demonstrate the power of the fundamen-
tals to create systems integration relevant to foreseeable societal impacts in
frequency-doubling instrumentation and spin-based electronics.
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1. INTRODUCTION

Noncentrosymmetric (NCS) materials, lacking spatial inversion symmetry in their structure, are
at the forefront of recent technological advances in optical frequency doubling and spintronics (1–
12). Nonlinear optical (NLO) crystals harness fundamental light–matter interactions to generate
an efficient exchange of energy from one frequency to another through the second-harmonic
generation (SHG) process (13–22).This unique property enables numerous photonic applications
of solid-state lasers in photolithography, photoemission spectroscopy, and medical and quantum
information technology (13–22). Although NLO materials have uses in a wide spectral window
ranging from infrared and near-infrared to visible, ultraviolet (UV), and deep-UV regions (19),
this review focuses on visible to deep-UV systems. The versatility of NLO complexes possessing
SHG at 1,064 nm offers powerful approaches for laser-based systems integration (3, 4, 19).On the
other hand, deep-UV NLO-active materials capable of producing coherent radiation, especially
those that can output 266 nm and 177.3 nm radiation with increased photon energy and high
spectral resolution, feature important functionalities including precise micromachining, sensitive
detection, and attosecond pulse generation (1, 14, 23–25). Two fundamental criteria required for
creating NLO materials are the chemistry of main-group elements or d 0/d10 cations and the lack
of inversion symmetry in the structure (3, 4, 19).

NLO crystals provide tremendous promise directly relevant to the current needs of advanced
energy and information technologies; nevertheless, this is not the singular benefit of functional
materials with broken spatial inversion symmetry. Integrating magnetism into NCS frameworks
through unpaired electrons of transition metals opens up a viable pathway to realizing topo-
logically distinct spin states (skyrmions), a prerequisite for spintronic architectures (7, 8). These
nanoscale topological particles in real space exhibit exceptional electronic properties attributable
to their capabilities to transmit, process, and store information with low-power operations (11,
12). The application of magnetic skyrmion materials has been envisaged in the fields of quantum
information science and spintronics as scientists seek topological protection, a unique state
wherein physical behaviors of spins are insensitive to perturbations such as lattice imperfections,
environmental fluctuations, and room-temperature operations (10). Systems possessing appre-
ciable Dzyaloshinskii–Moriya (DM) asymmetric exchange interactions facilitated by suitable
coupled fundamental physical entities such as spins, orbitals, and phonons (7, 8) underlie the
emergence of skyrmions in NCS magnets. Even though these topological phases have also been
realized in centrosymmetric magnets and thin-film heterostructures with different underpinning
mechanisms (26–35), this review capitalizes on the design considerations of bulk NCS magnetic
skyrmion materials.

Despite tremendous achievements in investigating these two NCS classes separately, scien-
tists still strive to unite atomic-scale precision with structural and electronic tunability to arrive at
innovative and novel functional systems pertaining to ongoing material challenges for both sci-
ence and instrumentation.While the two families of NLOmaterials and magnetic skyrmion hosts
may appear to be entirely isolated islands, their chemical design principles are in fact fundamen-
tally connected in terms of atomic-scale precision, structural customization, electronic adjustment,
frontier orbital filling, and ligand effects. Thus, having a combined overview of the design con-
siderations rooted in chemical logic for these two NCS material classes offers a multidimensional
elucidation of how to effectively translate the often-abstract fundamentals to tangible and use-
ful functionalities of interest (Figure 1). Furthermore, as light has been envisioned as a means
to modulate the spin state of quantum systems that are anticipated to solve complex problems
in computing, communicating, and sensing (36), this review intends to invite creative ideas and
new approaches from the materials community for harmoniously synchronizing spin and photon
degrees of freedom for previously untapped adventures in materials design and development.
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Figure 1 (Figure appears on preceding page)

A road map for navigating the design principles of NCS materials for NLO properties and magnetic skyrmion systems. Two main
pathways leading to NLO materials involve NCS anion units and/or central cations susceptible to SOJT distortions. For magnetic
skyrmion materials, the underlying mechanism is the DM asymmetric exchange interaction enhanced by integrating spins into NCS
lattices and by large SOC. The emergence of Néel-type skyrmions, Bloch-type skyrmions, and antiskyrmions is driven by the
underlying lattice symmetry of polar Cnv, chiral T or O, and the D2d point group, respectively. While examples of these NCS materials,
especially NLO crystals, are abundant, only a few of them are listed to exemplify the design principles and at the same time ensure
clarity for the reader. Abbreviations: DM, Dzyaloshinskii–Moriya; NCS, noncentrosymmetric; NLO, nonlinear optical; SOC,
spin–orbit coupling; SOJT, second-order Jahn–Teller; UV, ultraviolet.

In this review, we describe how the atomic-level design innate to the chemistry of NCSmateri-
als enables an exciting array of physical properties ranging fromNLO and deep-UVNLO crystals
to skyrmion systems (Figure 1). We start with guiding principles associated with each class and
then use examples to demonstrate how a particular chemical path leads to a specific property.We
highlight some challenges and opportunities for developing and converging the two optical and
magnetic pathways in NCS materials.

2. NONLINEAR OPTICAL MATERIALS

2.1. Guiding Principles

For functional frequency doubling to be realized in the solid state, a crucial step from a de-
sign consideration perspective is to identify the fundamental aspects necessary to generate NLO
and/or deep-UV NLO responses. One has to take into account materials requirements for SHG
phenomena and UV transparency. These key criteria can be translated into design parameters,
including broken spatial inversion symmetry, wide band gap, large SHG coefficient, appropriate
birefringence, and chemical stability.

2.1.1. Second-harmonic generation. An electric field from a light source interacts with the
solid to induce a bulk polarization, P, proportional to the strength of the electric field E (37),

P = ε0χi jk
(1)E. 1.

In nonlinear spectroscopy, the interaction of high-intensity electric fields generates a
polarization response, which is not linear but has contributions from higher-order terms (37),

P = ε0χi jk
(1)E + ε0χi jk

(2)EE + ε0χi jk
(3)EEE + . . . , 2.

where χ ijk
(2) and χ ijk

(3) are the second- and third-order susceptibilities.
Here we particularly focus on the second-order response to the polarization.The second-order

term χ ijk
(2) is crucial since it results in finite values of the susceptibility for systems wherein spatial

inversion symmetry is broken.
By taking into account the electric field E = E1cosωt, the second-order polarization can be

expressed as the equation

P(2) = ε0χijk
(2)(E1cosωt )2 = 1/2ε0χijk

(2)E1
2(1 + cos2ωt )2, 3.

where ω is the angular frequency of the light (37).
When the dipole oscillates at twice the frequency of the incident radiation, 2ω, this leads to a

phenomenon known as SHG. Equation 3 underlies the wavelength-dependent behavior of SHG.
The second-order susceptibility is often described as the SHG coefficient,

dijk = 1/2χijk
(2), 4.

where d is a tensor (37).
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The fundamental and second-harmonic waves travel at different speeds owing to the inverse
of their corresponding reflective indices. To maximize SHG efficiency, criteria such as appropri-
ate electronic structures and lattice symmetries are required to match the wave vectors and the
phases of fundamental and second-harmonic lights (37). A powder technique to evaluate the SHG
response of materials was proposed by Kurtz & Perry (38). Phase-matching occurs when the phase
velocity of the fundamental wave equals that of the second-harmonic wave. The phase-matching
behavior is observed when the SHG efficiency increases with the particle size and reaches a plateau
(38, 39). By contrast, nonphase matching occurs when the SHG efficiency achieves a maximum
and then decreases as particle size increases (38, 39).

Taken together, these fundamentals clearly demonstrate that materials that may feature NLO
behavior must crystallize in one of the NCS crystal classes. The cubic 432 point group never-
theless presents an exception (40). Although this point group is NCS, all the components of the
susceptibility tensor have equal and opposite magnitude, yielding an SHG-inactive response (40).
To enable the tunability of the SHG efficiency and phase-matching behavior of NLO materials,
one can adjust the lattice symmetry, frontier orbitals, electronic structure, and polarizabilities.
It is also worth keeping in mind that the NLO property goes hand-in-hand with the incident
wavelength; that is, the SHGoutput is fundamentally dependent on the radiation input (Figure 1).

2.1.2. Deep-ultraviolet nonlinear optical property. To take a functional NLOmaterial to the
deep-UV region (Figure 1), a few more requirements need to be met in addition to the lack of
spatial inversion symmetry as aforementioned.

� A wide-UV transparency window is an important ingredient for deep-UV NLO materials.
NLO materials ought to exhibit an absorption edge λ < 200 nm or energy gap Eg > 6.2 eV
(1, 2, 5). This implies that central metal cations having partially filled d or f states should
not be incorporated. However, cations with filled d or half-filled f states can be considered,
as their electronic structures hinder unfavorable electronic transitions. Main-group metals
make excellent choices for deep-UV NLO materials owing to their valence s and p states
often being at low energy, broadening the band gap.

� A large SHG coefficient, dij, plays an essential role to arrive at a deep-UV NLO property.
Materials having large SHG coefficients are capable of doubling photon energy with high
efficiencies. To achieve a functional NLO material in the deep-UV region, the SHG coeffi-
cient dij should be comparable to or greater than that of KH2PO4 (KDP, at 1,064 nm) and at
least 25% of that of β-BaB2O4 (at 532 nm) (1, 2, 5, 39). Maker fringe measurements, which
require sizable crystals, can be used to determine individual SHG coefficients dij values (41).

� Phase-matching in the UV and deep-UV region is a key parameter that is factored in the
capability of displaying efficient frequency doubling phenomena. To effectively produce co-
herent light through the SHG, the harmonic and fundamental wave ought to have the same
propagation speed, that is, the phase-matching behavior n(2ω) = n(ω), where n is the refrac-
tive index (42). In the UV and deep-UV region, while small birefringence �n does not meet
the phase-matching condition, large birefringence �n > 0.10 leads to unfavorable walk-
off processes. Thus, a moderate birefringence, 0.07 ≤ �n ≤ 0.10, is suitable for achieving
phase-matching (1, 2, 5, 42).

� Chemical stability and crystal quality are vital to the ability to incorporate an NLOmaterial
into operational constructs. Even when all the requirements discussed above are fulfilled,
high-quality, large NLO crystals with large laser damage thresholds are needed for inte-
grating them into functional instrumentation (1, 2, 5). This underlines the importance of
chemical stability, crystal quality, and processing of NLO materials.
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These fundamental guidelines described in Section 2.1 outline the criteria for designing NLO
and deep-UV NLO materials (Figure 1) while preparing for the discussion in Section 2.2 on
design strategies for translating the atomic-level chemistry of locally NCS anionic units and/or
central metals susceptible to second-order Jahn–Teller (SOJT) distortion into rationally produced
NLO materials (Section 2.2).

2.2. Design Strategies

Following the guiding principles for NLO and deep-UV NLO systems, the next step is to de-
termine the chemical design pathways feasible to bring about these physical phenomena in real
materials. The common chemical strategies for creating targetedNLOmaterials one can consider
areNCS building units (asymmetric anions andmixed anions) and SOJT (d 0 cations and lone-pair
electrons), which can be combined to produce SHG.

2.2.1. Noncentrosymmetric units. Asymmetric anions inherent to broken inversion symme-
try, such as borates, carbonates, nitrates, sulfates, and phosphates, can be used to induce locally
asymmetric entities into forming the extended NCS structure (Figure 1). This approach has been
demonstrated by extensive studies that successfully constructed worthwhile paths rooted in the
chemical diversity of these NCS anions for generating new NLO materials (43–58). Chen et al.
(59) proposed the anionic group theory based on the quantum-mechanical perturbation theory of
the NLO effect. This concept centers on how the microscopic anion constituents of NCS materi-
als, such as electronic polarization, spatial alignment, and density of states (DOS), impact macro-
scopicNLO responses (59). For example,β-BaB2O4 exhibits the coarrangement of BO3

3− trigonal
entities,mixing between B-p andO-p states near the Fermi level, and wide band gap (Figure 2), re-
sulting in large SHG susceptibilities in the deep-UV region (60). It has also been suggested that the
O-p states involved in NCS anion units and in the valence band maximum contribute significantly
to NLO effects while the energies of these orbitals are responsible for the SHG magnitude (60).

Mixed-anion approaches involve the combination of mixed anions to break spatial inversion
symmetry in the resulting structure, thus giving rise to SHG properties (Figure 1) (24, 61–79).
In addition, appropriate choices and custom alignment of anionic units can yield large NLO re-
sponses while widening the transparency window to the deep-UV region (Figure 1) (24, 61–79).
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3− asymmetric anions and (b) density of states (DOS) showing
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RbMgCO3F (a) crystal structure featuring mixed CO3
2− and F− anions bonded to Mg2+ and (b) density of states (DOS) showing the

significant contribution of the O-p states of the CO3
2− groups at both the valence band maximum and the conduction band minimum.

RbMgCO3F is a deep-UVNLOmaterial exhibiting large SHG responses, four times that of KDP
at 1,064 nm and 0.6 times that of β-BaB2O4 at 532 nm. The chemistry of this material poses a
suitable example for demonstrating the feasibility of this heteroanionic design strategy. Mixed
CO3

2− and F− anions with fundamentally different bonding characters are combined to effec-
tively improve acentric displacements in RbMgCO3F (61). The CO3

2− asymmetric anions with
conjugated π-bonding coalign in the ab plane, whereas the F− isotropic compact anion takes the
axial position along the c direction (Figure 3) (61). The top of the valence band and the bottom of
the conduction band of RbMgCO3F are mainly composed of the O-p states of the CO3

2− groups,
which contribute primarily to the wide energy gap and considerable optical anisotropy of this
material in the deep-UV spectrum (Figure 3) (61). Relevant examples and insights of heteroan-
ionic engineering in other functional and quantum materials to construct targeted properties by
modifying anions of dissimilar size, charge, and electronegativity have been experimentally and
computationally illustrated (80–82). These strategies can be adopted for use in accelerating the
discovery and development of NLO materials.

Proper assembly of locally asymmetric anionic entities or mixed anions resulting in an ex-
tendedNCS framework offers a viable strategy for producingNLOmaterials. Furthermore,metal
ions prone to SOJT perturbation make excellent choices for initializing the microscopic cation
environment with acentric displacements.

2.2.2. Second-order Jahn–Teller distortion. The SOJT effect is associated with changes in
structures attributable to a nondegenerate ground state mixing with a low-lying excited state; the
first-order Jahn–Teller distortion, on the other hand, gives rise to molecular distortions owing to
degenerate electronic ground states. The SOJT distortion occurs when the energy gap between
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) is narrow and the mixing of the HOMO and LUMO is symmetry-allowed.

Octahedrally coordinated d 0 transition metal ions, such as Ti4+, Nb5+, and Mo6+, are suscep-
tible to the SOJT distortion and are often found in distorted coordination environments wherein
the central cation is off-center from the octahedron of ligands. For these d 0 cations, overlapping
between the HOMO and LUMO is symmetry-allowed, and the degree of mixing of the HOMO
and LUMO tends to increase with the ratio of charge to radius of the d 0 cations (83). Using
BaTiO3 as an example, the SOJT distorted Ti4+ cation plays a vital role in the NLO response
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BaTiO3 (a) crystal structure featuring the second-order Jahn–Teller distorted Ti4+ (d 0) cation environment and (b) density of states
(DOS) showing the contribution of the Ti-d and O-p states of the distorted TiO6 octahedra at both the valence band maximum and the
conduction band minimum.

of this material (∼10 times that of KDP at 1,064 nm) (39). The DOS of BaTiO3 indicates that
the Ti-d and O-p states of the distorted TiO6 octahedra interact and make up the valence band
maximum and the conduction band minimum, responsible for frequency doubling under optical
excitation (Figure 4). Goodenough & Longo (84) demonstrated that a d 0 cation can distort
in three manners: along the C4, the C2, or the C3 axis. Additional insight into these distortions
was elucidated by Kunz & Brown (83), namely that the structural deformation is driven not
only by the d 0 electronic structure but also by other factors including bonding network, lattice
incommensuration, and cation–cation repulsion. This cooperative distortion enables a tunable
parameter at the cationic level while highlighting the dynamics between the chemistry of SOJT
and NCS anion building units in constructing NLO materials (Figure 1) (85–92).

In addition to the d 0 cations,metal ions having lone-pair electrons (s2), such as Sn2+, Sb3+, Bi3+,
Se4+, Te4+, and I5+, experience electronic instability, yielding the distorted coordination environ-
ments (92–94). This can also be explained by the SOJT perturbation. A strongly antibonding
HOMO, which is comprised of the s2 lone-pair electrons, overlaps with the p-derived LUMO
(s–p mixing), thus stabilizing the system and revealing stereoactive lone-pair electrons. This type
of SOJT distortion offers an alternative strategy for using the locally asymmetric coordination
environment of cations to construct globally NCS structures.

For example, the stereoactive lone-pair electrons of Bi3+ and IO3
− have been thought to con-

tribute to the strong SHG of BiO(IO3) (∼12.5 times that of KDP at 1,064 nm) (95). The valence
band maximum and conduction band minimum of BiO(IO3) are mainly dominated by the lone-
pair electrons of Bi (Bi-s and Bi-p states), those of the IO3 group (I-s and I-p states), and the ligand
O-p states, which facilitate significantly large NLO responses (Figure 5) (95). The inclusion of
cations with lone-pair electrons has yielded fruition in the creation of NLO materials exhibiting
appreciable SHG susceptibilities (Figure 1) (95–103).

It is worth noting that the participation of d-states or sp-states of a d 0 cation or a cation with
stereoactive lone-pair electrons, respectively, typically occurs at high energy up in the valence band
maximum and conduction band minimum, narrowing the band gap. Thus, while central cations
with SOJT distortion make excellent choices for improving NLO responses at 1,064 nm, their
electronic contribution to band structure tends to preclude them from being SHG-active in the
deep-UV region (e.g., at 532 nm).

260 Huai • Tran



DOS (states/eV)

Bi-s
Bi-p

0.0 0.3

I-s
I-p

0.0 0.2

O-s
O-p

0 2 4

c
a

b –4

–2

0

2

4

En
er

gy
 (e

V
)

BiO(IO3) (space group Pca21)a b

O

Bi

I

Figure 5

BiO(IO3) (a) crystal structure featuring the second-order Jahn–Teller distorted IO3 and Bi3+ environments with stereoactive lone-pair
electrons and (b) density of states (DOS) showing the significant contributions of the lone-pair electrons of Bi (Bi-s and Bi-p states),
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Breaking spatial inversion symmetry in nonmagnetic NCS systems, guided by these aforemen-
tioned strategies, has led to the impressive progress in producing and developing NLO materials
that are capable of generating coherent light with double the energy of the incident radiation in
the targeted spectral region (Figure 1). This, however, naturally prompts the following questions:
What if spin degrees of freedom are incorporated into NCS extended frameworks, and does this
blaze an entirely new trail to achieving other novel functionalities while elevating NCS magnetic
materials to the cutting edge of spin-based electronics? To answer, we turn to NCS magnetic
skyrmion materials, which feature topologically nontrivial spin states.

3. NONCENTROSYMMETRIC SKYRMION HOST MATERIALS

3.1. Guiding Principles

The concept of skyrmions was first introduced in a nonlinear field theory by Skyrme (104, 105)
to exemplify topological protection; that is, the topological integer number of these particles is
unchanged even in the presence of continuous perturbations. The topologically protected prop-
erty of skyrmions renders them appealing choices for robust information carriers in spin-based
electronic architectures such as spintronics and quantum logic constructs (7, 8, 11, 106). The
fundamental principle underpinning much of this phenomenon in NCS magnetic skyrmion ma-
terials is the enhancement of DM asymmetric exchange (Figure 6) in the presence of Heisenberg
isotropic interaction (107, 108),

HDM = �<i j>Di j · (Si × S j ), 5.

where HDM is the spin Hamiltonian for DM exchange, Dij is the DM vector, and Si and Sj are
spins at neighboring sites i and j.

The DM anisotropic interaction is facilitated by strong coupling of spin, orbital, and lattice
components in the absence of spatial inversion symmetry in NCS magnets (7). These quantum
effects are strongly correlated with the relativistic spin–orbit coupling (SOC), which tends to
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(a) Dzyaloshinskii–Moriya (DM) asymmetric exchange Dij between Si and Sj spins at neighboring sites i and
j bolstered by broken inversion symmetry and large spin–orbit coupling (SOC). (b) Polar Cnv, chiral T or O,
and D2d lattice symmetry enhancing the DM interaction in noncentrosymmetric magnets.

rotate the mutual spin alignment (Figure 6). This gives rise to a cycloidal or helical structure at
zero field while potentially forming skyrmion phases in a certain range of applied magnetic fields
(7). It is worth noting that skyrmions emerge at finite field, and the evolution of these states of
matter is a field-driven phase transition at a certain temperature, typically in the vicinity of the
magnetic ordering temperature TC or TN (7). Critical magnetic field and temperature represent
an estimate of the strength of the driving force necessary for these vortex-like winding spins.
The experimental values of HC and TC in magnetic skyrmions are rather diverse and cannot
be explained by the simple model rooted in DM exchange alone (7). An intricate ensemble
of DM asymmetric interaction, Heisenberg symmetric exchange, SOC, and electron−phonon
coupling effects ought to be considered to determine the origin of these phenomena. This deep
understanding will enable the development of bottom-up assembly of spin-based architectures
with precision, tunability, and scalability.

The size of skyrmions, typically ranging from 1 to 100 nm, can be estimated from the as-
sociated magnetic modulation wavelength, which is the ratio between the strength of the DM
exchange and the Heisenberg interaction (7). Three typical types of these topological spin tex-
tures are Néel-type, Bloch-type, and antiskyrmions. Néel-type skyrmions feature a radical spin
arrangement, whereas Bloch-type skyrmions exhibit a swirling spin configuration (Figure 1) (7).
The evolution of antiskyrmions is characterized by alternating Néel- and Bloch-type moment
rotations (Figure 1) (7).

These forms of topological spin phases are fundamentally driven by the crystallographic point
group symmetry that can be mathematically illustrated by Lifshitz invariants, a form of the free
energy to which the DM asymmetric exchange contributes (109),

L(k)
i j = mi∂kmj −mj∂kmi, 6.

where i, j, and k are an arbitrary choice of x, y, and z Cartesian coordinates.
This term enhances spin twisting in the ij plane and propagation along the k direction while

elucidating the core principle of how the underlying lattice symmetry influences theDMexchange
energy density and thus the vorticity of magnetic skyrmions.
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Even though skyrmions cast new light on topics of deep interest in the physics and materials
chemistry communities, only a limited number of NCS magnets hosting these topological phases
have been realized. As new skyrmion materials are discovered and developed, a more complete
set of design principles will be established. Nevertheless, the current repertoire of NCS skyrmion
materials can be classified into three main design strategies on the basis of the underlying lattice
symmetry: polarCnv, chiralT orO, andD2d point groups hostingNéel-type skyrmions,Bloch-type
skyrmions, and antiskyrmions, respectively (Figure 6).

3.2. Design Strategies

Following the aforementioned guiding principles underpinning the emergence of skyrmions, the
chemical design strategies across various skyrmion materials are the polar Cnv, chiral T or O, and
D2d point groups of the lattice symmetry.

3.2.1. Polar Cnv. GaM4Q8 (M = V or Mo, Q = S or Se) magnetic semiconductors, a family of
lacunar spinels wherein tetrahedral M4 clusters play a vital role in the polar achiral C3v symmetry
of these materials, have been demonstrated to host Néel-type skyrmions (Figure 1) (110–117).
Taking GaMo4Se8 as an example, it has been illustrated that the room temperature cubic structure
is susceptible to two competing Jahn–Teller distortions, resulting in the ground state R3m and a
metastable phase (114). The R3m phase of GaMo4Se8, which is analogous to that of GaMo4S8,
features two sets of Mo–Mo bonds in the tetrahedral Mo4 cluster with each Mo coordinated with
six Se(S) atoms (Figure 7). Spin-polarized density-functional theory calculations showed that the
valence band maximum of GaMo4S8 is mainly dominated by competing overlaps of the Mo-d–
Mo-d and Mo-d–S-p states (Figure 7) (118). This overlapping is tied to the observed magnetic
property; that is, the tetrahedral Mo4 clusters have both intracluster and intercluster interactions,
bolstering anisotropic exchange (118). These features of the crystal and electronic structure of
GaM4Q8 work in favor of increasing DM asymmetric interaction in the polar C3v lattice and thus
the emergence of a cycloidal magnetic ground state and Néel-type skyrmion under an applied
field (110–118).

In addition to C3v symmetry, the C4v point group offers an alternative route to stabilizing Néel-
type skyrmions as exemplified in VOSe2O5 (Figure 1) (119, 120). The polar crystal structure of
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this material consists of three distinct chains of the corner-shared VO6 octahedra running along
the c-axis direction that are linked by the SeO3 trigonal pyramids (121). The locally distorted
SeO3 coordination environment is governed by the nonbonded electron pair SOJT effect, and
the stereoactive lone-pair electrons of the SeO3 units reside in the Se-4sp states. Spin-polarized
density-functional theory calculations with electron–electron repulsion energy U resulted in sub-
stantial overlaps between the V-3d, O-2sp, and Se-4sp states around the Fermi level, giving rise
to appreciable intrachain and interchain magnetic interactions between the V4+ spins (Figure 8)
(121). VOSe2O5 exhibits a cycloidal magnetic state at zero field and an incommensurate spin tex-
ture at lower temperatures. Under a magnetic field, a Néel-type skyrmion is observed along the
polar c-axis (119). The results indicate that incorporating stereoactive lone-pair electrons in the
valence bandmaximum in the presence of partially filled d-states of transitionmetals enhancesDM
anisotropic interaction in the polar C4v lattice symmetry, thereby forming Néel-type topological
spin phases (119–121).

Inspired by these insights, recent studies in polar NCS magnets of transition metal iodates
have illustrated the viability of linking stereoactive lone-pair electrons (I-s/p states) to increased
anisotropy of magnetic interactions (122, 123). In Fe(IO3)3, the polarized Fe-d states, responsible
for magnetism, overlap with the O-p and I-s/p states, contributing to the valence band maximum
(Figure 9). The DM asymmetric exchange of Fe(IO3)3 was estimated from neutron diffraction
experiments to be approximately 18% of the strength of the Heisenberg interaction along the
polar c-axis (122).The associated magnetic modulation period of the DM-driven incommensurate
order is 18 nm, suggesting that putative finite-field topological spin textures would have compact
size, comparable to the helix wavelength (122). The evidence of appreciable DM exchange and
the zero-field spiral antiferromagnetic magnetic ground state promises to enlarge the bottom-up
development of new skyrmion materials.

3.2.2. Chiral T or O. NCS magnets having chiral T or O point group symmetry, such
as B20 structures (MnSi, FeGe, Fe–Co–Si), β-Mn types (Co–Zn–Mn, FePd1−xPtxMo3N), and
Cu2OSeO3, are attractive materials for stabilizing Bloch-type skyrmions (Figure 1) (124–136).
The universal feature in these crystal lattices is chirality in which a left-handed and a right-handed
structure are not superimposed. This manifestation affords opposite spiral arrangement of atoms
in the structure, thus breaking spatial inversion symmetry.
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The crystal and electronic structure of MnSi, a seminal Bloch-type skyrmion host, can help
illustrate this concept (Figure 10) (137). Mn and Si atoms possess chiral stacking along the body-
diagonal [111] direction, which has been considered the critical factor for the enhanced DM
exchange (7, 137). This is supported by the spin-polarized DOS of MnSi, in which substantial
overlapping between the Mn-d and Si-p states is evident (Figure 10). TheMn-d derived states are
polarized, direct proof of Mn contributing to magnetism. The spin of Mn polarizes the Si-s and
Si-p electrons, enhancing the coupling of spin, orbital, and lattice degrees of freedom. This inter-
action twists the direction of every neighboring spin moment in MnSi, generating the evolution
of a helical magnetic ground state at zero field and a swirling Bloch-type skyrmion phase under
finite field (7).

Cu2OSeO3, the first example of an NCS magnetic insulator hosting skyrmions, adopts the
same space group with B20-structure MnSi (P213) (Figure 1); however, the arrangements of the
atoms in the structure are more complex (129). The magnetic Cu2+ cations take up two distinct
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between the polarized Mn-d and Si-s/p states.
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states (DOS) showing competing overlap between the Mn(1)-d–Mn(2)-d and Mn(1)-d–Rh-d/Mn(2)-d–Sn-p states.

sites with different symmetries, that is, Cu(1) in a square pyramidal coordination and Cu(2) in a
trigonal bipyramidal environment. The acentric structure of Cu2OSeO3 is in part attributable to
the contribution of the distorted SeO3 unit with the lone-pair electron effect. This leads to com-
plex competing magnetic exchange interactions in this material. Cu(1)–Cu(1) spins interact in a
ferromagnetic fashion while Cu(1)–Cu(2) sites communicate antiferromagnetically (129). Never-
theless, the magnetic phase diagram of Cu2OSeO3 bears considerable resemblance to those of B20
metallic magnets (129). At zero field, the magnetic ground state of Cu2OSeO3 displays a helical
structure with a long modulation period of 63 nm.Under a finite field along the [111] direction, a
Bloch-type skyrmion state emerges right afterTC = 60K.Thesemagnetic states of theNCS chiral
Cu2OSeO3 material are governed by an increased DM asymmetric exchange interaction (129).

3.2.3. D2d. Recent studies have expanded the family of NCS magnetic skyrmions by elegantly
showcasing antiskyrmions in Mn1.4Pt0.9Pd0.1Sn and Mn2Rh0.95Ir0.05Sn withD2d point group sym-
metry (analogous to the Mn2RhSn structure) (Figure 1) (138–141). This opens a worthwhile
avenue for exploiting the tunability of Heusler materials to stabilize the topological spin texture
that features varying Bloch- and Néel-type moment directions (138–140). The size of the anti-
skyrmion is quite large, ∼150 nm, comparable to the modulation period of the helix structure
(139). In the Mn2RhSn parent structure, Mn atoms occupy two crystallographic sites, Mn(1) and
Mn(2), featuring D2d symmetry (Figure 11) (142). At the Fermi level, there is competing inter-
action between the Mn(1)-d–Mn(2)-d and Mn(1)-d–Rh-d/Mn(2)-d–Sn-p states (Figure 11). This
electronic structure aids in the increase of asymmetric DM exchange interaction in theD2d under-
lying lattice, resulting in the unique vorticity of the antiskyrmion structure in Mn1.4Pt0.9Pd0.1Sn
and Mn2Rh0.95Ir0.05Sn (138–140).

4. CHALLENGES AND OPPORTUNITIES

Based on the design principles for NCS compounds discussed in Sections 2 and 3, can new NLO
and skyrmion materials be rationally created using judicious strategies? The answer is probably
yes. While the fundamentals enable useful guidance on how the underlying chemistry of NCS
materials synchronizes with the rigorous criteria that must be fulfilled to generate the targeted
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physical properties, experiments sometimes have a different idea.Even thoughNLO andmagnetic
skyrmion materials exhibit different functionalities, these systems experience similar challenges in
synthesis andmaterials growth.This is in part attributable to the intrinsic constraints of simultane-
ously modulating both local and extended arrangements of atoms to break global spatial inversion
symmetry in the resulting structure. However, appropriately choosing synthetic techniques on
the basis of their predisposition toward chemically controlled synthesis and crystal growth can
improve the odds of attaining desired NCS phases (143–150). When design considerations and
proper experimental choices are taken into account, arriving at NCS materials of interest is still
inevitably uncertain. So then,why bother? There are at least two enormous advantages to contem-
plate when we are willing to let go of the pursuit of the absolute. First, constructing a worthwhile
pathway deeply rooted in materials chemistry to design and create new and useful systems with
desired functionalities will challenge the conventional trial-and-error wisdom, accelerating
the innovation of unprecedented materials pertinent to the current needs of advanced energy
and information technology research. Second, the research journey of applying and pondering
design strategies for NCS multifunctional and quantum materials will potentially unfold other
exciting and groundbreaking realizations outside of the original sphere that would not be possible
otherwise.

5. FUTURE PROSPECTS FOR NONCENTROSYMMETRIC
MATERIALS RESEARCH

The design principles for NCS materials, articulated in this brief review, provide a playground
to further explore new NLO crystals featuring large SHG responses in the spectral window of
interest and previously undiscovered magnetic skyrmion hosts with tunable conditions (temper-
ature, magnetic and electric fields) at which topological spin phases emerge. Although the focus
of this review is on the chemistry of NLO and skyrmion materials, the broad reach of research in
the field is astonishing, spanning from solid-state chemistry to materials science, engineering, and
condensed matter physics. In these areas, materials growth, theoretical computations, and deep
characterizations of structural, optical, electronic, and magnetic properties are rapidly progress-
ing. Yet there is value in taking a small step back to reflect on the fundamentals underpinning
many of these functionalities. In particular, the vital roles of chemical logic, orbital overlapping,
electronic structure, and underlying lattice symmetry have been emphasized.

In addition, modifying chemical customization and tuning electronic structure from NLO
crystals to skyrmion hosts and vice versa offer tremendous promise for achieving new classes of
multifunctional and quantum materials. Replacing transition metals in NCS magnetic skyrmions
with main-group elements can lead to an exciting frontier for developing new NLO materials
with tunable SHG efficiencies and spectral windows. On the other hand, the remarkable library
of reported NLO compounds can be translated into a jumping-off point for exploring previously
untapped NCS magnetic skyrmion materials. This crossing can be done by computationally
selecting NLO systems with the underlying lattice symmetry of polar Cnv, chiral T or O, or D2d,
a prerequisite for skyrmion formation, and then sensibly substituting central s/p cations with
d/f elements with partially filled valence shells to induce magnetism in these NCS frameworks.
A dialogue among scientists that have expertise in different areas such as machine learning,
materials chemistry, and condensed matter physics but share similar interests may prompt fruitful
partnerships in catalyzing a platform for uncovering many more exciting breakthroughs and
advancing new knowledge in the field. This review would be incomplete if we did not men-
tion recent studies of materials requirements for combining optics and electronics to improve
the control of quantum bits and the electromagnetic environment necessary for high-fidelity
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quantum operations (36). This quest poses another highly appealing prospect for bridging the
two seemingly parallel pathways of NCS optical and spin-based systems that will bring about
completely renewed and unmatched capabilities of integrated systems for addressing the grand
materials challenges directly relevant to future technological and societal impacts.

We hope that this brief review demonstrates the incredible progress made by scientists in the
field and at the same time sparks more cross-disciplinary investigations in contemporary mate-
rials research. Through fundamental design principles and concerted, collaborative studies, the
insights and knowledge necessary for innovative materials to transform the forefront of science
and instrumentation are within our reach.
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