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1. INTRODUCTION: MACHINE LEARNING AND THE MATERIALS
DISCOVERY WORKFLOW

The discovery—or, preferably, the design—of new materials lies at the heart of technological
progress. Finding faster, more reliable methods for obtaining materials with the properties and
performance needed to realize manufactured products ranging from airplane wings, to cardiac
stents, to the next generation of computer chips remains one of the great challenges of modern
science and engineering. The Materials Genome Initiative (MGI) (1), a US government effort to
accelerate materials discovery, design, development, and deployment into manufactured products,
and numerous analogous efforts around the world are all seeking to find these faster, more reliable
methods and to lower the barriers to accessing such methods for manufacturers.

Of course, until very recently, the development of new materials was essentially relegated to
the domain of artisans. Many materials innovations were the product of serendipity. Yet beyond
these happy accidents that provided a leap forward, a more systematic approach to developing
new materials relied on an iterative, labor-intensive process of trial and error, where most of the
knowledge informing the development came from information handed down from master to ap-
prentice. Such processes are reliable, expensive, and slow. Improvements often occur over decades
(or generations).

With the advent of modern materials science and engineering, the situation was substantially
improved; the knowledge was often encoded in predictive physical models. Yet even with these ad-
vances, the complexity of materials systems has made broad use of these models, and of simulations
based on these models, challenging. In the past 20 years, however, the situation has significantly
improved. This can be attributed to several factors, including the advent of ever faster computa-
tional power, yielding predictive power with direct engineering relevance, as well as substantial
efforts to promote this paradigm shift, such as integrated computational materials engineering
(ICME) (2) and the MGL

The rise of the ICME paradigm reflects the availability of models that span the length scales
and timescales relevant to understanding the processing-structure-properties (PSP) linkages that
underpin materials design, as well as the intellectual and technical capacity to integrate these mod-
els into a predictive engine. With such tools one can, in principle, attack the inverse design prob-
lem, wherein the properties of the system are set by a designer and data and software tools can
then be used to determine the processing steps needed to create the material. ICME has become
a dominant approach in metallurgical materials design and has been making inroads in the design
of both ceramics and polymers. Indeed, the success of the ICME approach provided a substantial
impetus for the founding of the MGI. However, to date, one of the primary challenges with ICME
is the cost, in both human expertise and computational power, required for the significant return
on investment that can be realized from such techniques. It is in this context that the recent under-
standing of the potential of artificial intelligence (AI) to influence materials design has generated
substantial excitement.

In the traditional view of ICME, the computational models that undergird the approach are, at
their core, physics-based relationships that model specific phenomena. However, Al approaches
such as machine learning are, in essence, nothing more than computational algorithms to con-
struct a model relating inputs to outputs. Thus, a machine learning approach can replace a tra-
ditional physical model—albeit with specific risks, as its domain of applicability is often poorly
characterized and thus its failure is impossible to predict in advance. Nonetheless, such machine-
learning-based approaches come with several advantages: First, the algorithms can often provide
a model where none exists, and second, Al algorithms are often extraordinarily faster than tradi-
tional models. For these reasons, Al—and specifically machine learning—is emerging as a potent
tool for materials design (3) (Figure 1).
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Figure 1

Number of research articles written annually on machine learning in materials discovery from 2010 to 2018.
There has been a near-exponential growth in such publications since the start of the decade. Data were
retrieved from Web of Science in August 2019.

The use of the word genome in the MGI is by analogy with the Human Genome Initiative,
evoking the notion that knowledge of basic building blocks allows for scientific discovery. In-
deed, there have been quite a few genome efforts within materials science—for example, the ce-
ramic genome (4), glass genome (5), nanomaterials genome (6), nanoporous materials genome
(7), polymer genome (8), high-pressure materials genome (9), and structure genome (10). MGI
and machine learning for materials are intimately connected: One can discover and make materi-
als more quickly and inexpensively by determining quantitative structure-property relationships
(QSPRs)—materials genes, to abuse the analogy—through the use of machine learning.

Additionally, when combined with robotic laboratory systems, machine learning systems can
enable autonomous research. In this case, the desired properties of the materials system are inputs,
and the machine-learning-controlled setup can autonomously search processing and composition
space in a quest to discover the next material with the desired properties. These types of systems
promise to completely disrupt existing approaches to materials design and to more fully realize
the goals of truly intelligent, and automated, materials design (11).

Much of the potential upside to the application of machine learning to materials design seems
self-evident, but of course, challenges remain. There are significant impediments to implementa-
tion, beyond the need to address concerns that naturally arise when a new, unfamiliar technique
becomes prominent. Perhaps the most pressing need is the requirement for a robust data infra-
structure. The MGI is striving to make the maximum amount of research data widely available,
with sufficient metadata to make the data maximally useful (12). This requires many additional
considerations regarding metadata and the standards required for interoperability of disparate
materials data providers. While significant progress has been made, there is still much to be done.

According to Tom M. Mitchell (13), a pioneer of machine learning, learning is an approach
to improving problem-solving through prior knowledge. He defined machine learning as follows:
“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in 7, as measured by P, improves with
experience E” (13, p. 2). Aligning with Mitchell’s treatment, we focus on three major themes:
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1. learning to see (how machine learning can represent materials data for use in the production
of AT models);

2. learning to estimate (how, once materials data have been correctly represented, they can be
used to build powerful surrogate models that are cheap to execute yet accurate); and

3. learning to search (how, once we are able to estimate the properties of materials on the basis
of data, we can exploit this ability to build powerful and creative search strategies).

2. LEARNING TO SEE
2.1. Representations

Applications of machine learning to molecular species require as a first step some means to rep-
resent the molecules of interest in a manner appropriate for algorithmic ingestion or production.
The question of how best to construct such representations, which are typically either tensors of
numbers or strings of characters, has been a focus of research within the chemometrics commu-
nity (14), where there is a long history of investigation into how best to efficiently search chemical
databases for molecules matching specific substructures and how to construct QSPRs. In the latter
case, it has been recognized that the choice of representation has a greater impact than the choice
of which learning algorithm to apply (15, 16).

Representations typically subdivide into either carefully collated collections of handcrafted
one-dimensional descriptors, each of which is a single summary statistic (e.g., atom counts, bond
counts, molecular weight, experimental or computational properties), or more systematic repre-
sentations of molecular structure. The latter are a focus here.

Within other fields, notably image and natural language processing, the deep learning revo-
lution has led to a move away from investigating different representations in favor of generating
simple, complete, basic representations that are then transformed during the training process into
a representation learned by the network that expresses features useful for the inference problem
at hand (see the sidebar titled Requirements of a Materials Descriptor). Thus, choice of archi-
tecture and choice of data set subsume choice of representation. Within materials and chemical
research, deep learning has shown considerable promise. Unlike for image processing, where the
objects of interest are intrinsically digital and an obvious simple, complete, basic representation
is readily available, in the case of molecules, even when deep networks are being used, questions
remain: how to construct the initial representation, whether to use the molecular graph or full
three-dimensional coordinates, and how to represent the atoms and/or bonds themselves. Fur-
ther nonneural methods making use of carefully constructed three-dimensional representations
still offer performance competitive with that of deep neural networks.

REQUIREMENTS OF A MATERIALS DESCRIPTOR

For a representation to efficiently capture materials information, a key requirement is obeying the physical prin-
ciples that are known to govern molecular species. The following principles are essential to correctly representing
molecules and materials:

1. The representation must be invariant to the order in which atoms are provided in the input.
2. The representation must be invariant to the order in which bonds are provided in the input.
3. The representation must be invariant to the order in which atomic pairs are labeled in the input.

In general, any learning algorithm using a representation that is not blind to these principles will possess the vari-
ational flexibility capable of distinguishing between physically meaningless differences.
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2.2. Nonneural Fingerprints

Two-dimensional representations encode a molecular graph specified by the identities of the atoms
along with the bonding that links those atoms together. As there is no encoding of coordinates,
two-dimensional representations are implicitly invariant to translation and rotation, and the re-
maining symmetry consideration is thus the order in which the atoms and bonds are provided.

A litany of such representations are possible (17); some of the most frequently used are the
simplified molecular input line entry system (SMILES) (18), the International Chemical Identifier
(InChI) (19), the Molecular Access System (MAACS) (20), and extended connectivity fingerprints
(ECFP) (21).

Both SMILES and InChlI are character-string-based representations. The SMILES string is
built up by traversing and recording the heavy atoms present in a modified version of the molec-
ular graph where rings have been broken and the atoms with broken bonds annotated to indicate
their presence. InChl, by contrast, is simply a layer-wise specification of the molecular formula,
connectivity, bound hydrogens, charges, stereochemistry, and isotopes and is not invariant to per-
mutation of atomic index. SMILES is invariant to these mutations, and due to its character-based
nature, it invites the use of modeling techniques appropriate for natural language processing. Cor-
respondingly, it has found popular usage within deep learning and in particular for the generation
of novel molecular species.

An alternative representation method is the use of binary vectors also known as chemical fin-
gerprints. Many such encodings have been developed as a means to search databases of molecules
according to the presence or absence of particular subgroups, and they have since been taken up
by the chemical machine learning community. MAACS keys are a 166-dimensional binary vec-
tor, where each element, or key, corresponds to some molecular feature such as the presence of
a particular functional group. ECFP is a member of a family of circular fingerprints that consti-
tute one of most widely used tensor-based topological representations. When building an ECFP
representation, the number of paths that pass through each atom within a particular cutoff ra-
dius is encoded for each atom, and the result is compressed via hashing to fit a predefined length.
This systematically characterizes each atom, in contrast to the predetermined molecular features
specified by the MAACS keys.

Due to the hashing present in ECFP and the fixed number of molecular features captured
by MAACS keys, neither constitutes a complete representation that allows full reconstruction of
the molecular graph it is encoding. This is in contrast to SMILES and InChlI, and they are thus
better suited to regression and classification problems than to the generation of novel molecular
species.

The state of the art for representation of a molecular graph has moved to the use of deep
learning, though there is still some research into nonneural methods such as the N-gram graph
representation (22). Within neural methods, the aforementioned representations—in particular
SMILES—are still in use as basic starting points from which deep networks can extract patterns.
They are complemented in this use by more basic representations that correspond to a matrix spec-
ifying the pairwise connectivity of atoms within the molecule and some set of vectors specifying
the atomic identities. This basic representation violates the invariance to permutation symmetry,
so enforcing this within the final learned representation falls to the neural architecture.

While encodings of the molecular graph are implicitly invariant to rotation and translation
(as these degrees of freedom are not present), the same is not true when one is attempting to
capture the full atomic coordinates. Thus, consideration of how to achieve symmetry invariance is
more challenging and is a key issue in the search for more expressive three-dimensional molecular
representations.
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An early three-dimensional representation constructed by Behler & Parrinello (23) encodes
atoms within the molecule via some number of radial and angular symmetry functions. A later
development following similar principles, designed by the Csanyi group (24), is the smooth overlap
of atomic positions.

Another early attempt at three-dimensional molecular representation, this time inspired di-
rectly by the molecular Hamiltonian, was developed by the von Lilienfeld group (25). Known
as the Coulomb matrix, this is a matrix representation where the off-diagonal elements corre-
spond to the Coulomb nuclear repulsion terms between atom pairs while diagonal elements en-
code the atomic charge. One downside of this design is a lack of permutational invariance. Fur-
ther work by the von Lilienfeld group that sought to overcome this shortcoming, and to increase
the accuracy of machine learning methods applied to ab initio computational data, led to the
bag of bonds representation (26); the bonds, angles, machine learning representation (27); the
FFLA crystal representation (28); the spectrum of London and Axilrod-Teller-Muto potentials
(29); and the molecular alchemical radial angular distribution along with histograms of distances,
angles, and dihedral angles (30). Overviews of the performance of the three-dimensional finger-
prints listed above for various different learning architectures can be found in Faber et al.’s 30)
work.

Just as string-based representations can allow for the application of language processing
machinery to molecular inference, representations that are based on the voxel—the three-
dimensional analog of the pixel—can allow for the application of three-dimensional scene pro-
cessing machinery to molecular inference. Along these lines, some voxel-based three-dimensional
molecular structure representations have started to appear (31, 32).

While deep neural representations for encoding full atomic structure are gaining popularity,
research into nonneural three-dimensional representations continues to thrive and indeed offers
comparable performance. More recent developments include the many-body tensor representa-
tion (33) and wavelet-transform-based methods (34), which, together with histograms of distances,
angles, and dihedral angles, offer competitive performance to neural methods.

2.3. Neural Fingerprints

The progress described above in the ability of machines to see molecules has required the cumu-
lative efforts of human researchers investigating and discovering useful representations. A com-
plementary approach is the use of deep neural networks to learn an effective representation.

In some sense, this passes the job of discovery to the algorithms themselves, albeit at the cost
of pushing the problem for researchers into the search for effective network architectures. The
promise of progress in automatic discovery of appropriate architectures (35) seems poised to re-
duce this barrier even further.

Neural fingerprints that encode the molecular graph were introduced by Duvenaud et al. (36).
Inspired by how ECFP worked, Duvenaud et al. adapted the convolution neural network architec-
tures previously used to learn representations of images by progressively extracting higher-order
structure from the raw image, finally learning representations of molecules by progressively ex-
tracting higher-order structure from the raw graph structure. This initial work was complemented
by Kearnes et al. (37), who added more sophisticated ways of dealing with permutational invari-
ance, and was further generalized within a message-passing framework (38).

The Behler & Parrinello (23) symmetry functions have been extended by Smith et al. (39)
in their neural network potential ANT to build single-atom atomic environment vectors as the
molecular representation for a richer embedding of local atomic information. An alternative ap-
proach, known as tensor field networks, operates on point cloud representations (40), and a close
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analog—deep tensor networks—operates on featurized interatomic distance matrices combined
with a vector of atomic identities (41, 42).

Neural fingerprints are generated by attempting to solve a particular inference task. In doing so,
the final fingerprint expresses molecular information suitable for solving the inference problem it
was trained on. Multitask learning, where multiple chemical properties are learned at once, allows
for the generation of more general transferable fingerprints. Perhaps counterintuitively, forcing
a fingerprint to express information suitable for multiple chemical tasks can often improve the
performance of the individual subtasks (43), a phenomenon well known in the machine learning
community (44). Any neural fingerprint architecture can be combined with multitask learning, so
the question of how to choose complementary tasks to control the information expressed within
the fingerprint has been investigated (45).

3. LEARNING TO ESTIMATE: BUILDING QUANTITATIVE
STRUCTURE-PROPERTY RELATIONSHIP MODELS
FOR MATERIALS DISCOVERY WITH MACHINE LEARNING

The crux of materials design and discovery is to identify mutuality of the four materials elements—
structure/composition, properties, synthesis/processing, and performance—which is often de-
picted by Flemings’s (46) tetrahedron. The four elements have been at the core of materials de-
sign in the name of QSPRs or PSP linkages in the materials community (47). As described in
Section 2, QSPRs are considered to be some of the fundamental building blocks of the MGI. The
high-dimensional, complex nature of QSPRs creates a vast search space where the use of machine
learning makes it effective to enhance navigation and linear/nonlinear mapping methods to find
or design new materials at much lower computational cost. Machine learning has a wide range of
applications to the development of QSPR models, and it is particularly useful when physics-based
models do not exist or when we need to link the different timescales or length scales in materials
modeling.

The differences between materials properties observed in the laboratory and those observed
in the simulated world can be addressed only through the close interaction between theory, com-
putation, and experiments. Materials discovery is not only about the new materials but also about
enhancement of existing materials. Thus, machine learning can provide capabilities that will in-
crease the speed of the discovery and development of materials through the QSPR estimation
tasks. For the sake of argument, in this section we briefly discuss only a few tasks to learn crystal
structure, microstructure, and materials characteristics. Other major machine learning tasks, such
as materials search via high-throughput screening or Bayesian optimization by navigating QSPR
space, property prediction, and synthesis optimization, are discussed in Section 4.

Materials property prediction starts with identifying the chemical composition and crystal
structure. In the early 1980s, there was a great deal of discussion about the use of materials descrip-
tors. For example, Zunger’s (48) early work using pseudopotential orbital radii to create structural
separation plots (i.e., stability maps that separate different structural types) helped to predict the
stable crystal structure of known AB-type binary compounds. This brute force type of classifica-
tion approach for structure recognition has extended to data-mining-based QSPR mapping (49),
and more recently, similar concepts were applied to deep neural network approaches. Thus, two
classical descriptors related to crystal stability and synthesizability—the Pauling electronegativity
and Shannon ionic radii—were used to construct deep neural networks that predict the density
functional theory (DFT) formation energies of C;A,D;0;, garnets and ABO; perovskites from
the identified relationship among composition, structure ordering, and energy (50). To avoid crude
and fuzzy structure classifications, more advanced learning techniques such as general recursive
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schemes are now used to automatically classify structures, making it possible to curate the mate-
rials structure genealogy (51). In parallel, machine learning has become a more attractive option
by offering tools such as the random forest algorithms to overcome the high cost of theoretical
calculations such as DFT or force field modeling for each crystal structure (52). For further infor-
mation, we refer readers to the recent review about structure prediction methods by Needs and
colleagues (53).

Materials observables such as the microstructure are related not only to materials properties but
also to the postsynthesis processing of a material, and mapping of a huge microstructure-property
space is thus a complex task. Therefore, identification of tailored or optimal microstructures for
desired materials properties remains a major challenge for inverse design. Recently, McCue et al.
(54) used data-mining-assisted automated image analysis of published nanoporous gold electron
micrograph images to explore PSP relationships. To identify the key microstructure represen-
tations, Wodo and colleagues (55) developed a surrogate method for compact microstructure-
property mapping by treating microstructures as graphs. According to recent work by Agrawal and
colleagues (56), deep neural networks such as generative adversarial networks (GANs) can learn
the mapping between latent variables and microstructures, leading to an optimal microstructure
with targeted material properties via optimization of the latent variables.

Huge amounts of complex microstructure-related data about materials are being generated by
recent advancements in characterization techniques, including X-ray photoelectron spectroscopy
for mapping chemical images, electron backscatter diffraction for identifying grain boundary
types, and cathodoluminescence for studying the distribution of recombination centers. More-
over, the complexity of the image data becomes more significant when the microstructural re-
sponses are connected in terms of external environments such as stress. To handle this complexity
of morphological and crystallographic data (such as grain volume, grain shape, and orientation dis-
tribution regarding the morphology and spatial arrangement of grains), there are various efforts
across the materials community to identify or develop QSPRs via machine learning computations.
Among these, it is notable that a method based on deep neural networks finds its own applications
in the area of high-resolution electron microscopy. With the aid of deep neural networks, for ex-
ample, it is possible to identify the positions of atoms in a lattice and the types of atomic species in
real time and to detect and classify defects from scanning transmission electron microscopy data
(57). Convolutional neural networks (CNNs) were trained to classify atomic structures in high-
resolution transmission electron microscopy (58). Kalinin and colleagues (59) showed the effective
use of deep CNN:s for real-time phase analysis (i.e., phase formation and evolution mapping) to
automatically identify symmetry classes in atomically resolved images from electron and scanning
probe microscopies. Apart from their usefulness as a tool to detect structural features, such deep
learning algorithms can also be applied to automated high-resolution electron microscopy cali-
bration that aims at enhancing the robustness of measurement. For example, Xu & LeBeau (60)
showed how to extract electron microscopy parameters from position-averaged convergent-beam
electron diffraction patterns analyzed automatically by a CNN.

When we apply machine learning to materials discovery and design, the types of data from
which we can learn range from characterized results such as images, to modeling results, to pro-
cessing histories. In other words, a goal should be to collect data or develop databases to train from
various sources of information. The materials discovery and design community continues to de-
velop methodologies for collecting scientific information—in particular, to automatically collect
complex processing data—for insight into synthesis recipes for materials.

Natural language processing (NLP) is getting more attention from the literature as an au-
tomated data population tool. Olivetti and colleagues (61-63) successfully used NLP to under-
stand zeolite synthesis-structure relationships and created an autonomously compiled synthesis
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planning resource. Using NLP and semisupervised relationship extractions from the literature,
Court & Cole (64) developed an autogenerated database of chemical compounds including Curie
and Néel magnetic phase transition temperatures. Semiautomatic mining was used to tag pro-
cessing conditions and physical property information in the literature to establish the property-
processing relationship of oxide films in the pulsed laser deposition process (65). Similar ap-
proaches include automated image collection from the published literature and machine learning
training on a text corpus in scientific articles (54, 66). The key challenge in NLP or text mining
for automatic data collection is to accurately codify literature information, such as entire synthesis
routes, on the basis of synthesis ontology (67, 68).

While many literature information attempts report successful results, it is also just as important
to learn from failed attempts. As Norquist and colleagues (69) pointed out, failed experiments are
a great source of information for the next set of successful experiments. They trained a support
vector machine on a failed data set to predict reaction successes or failures, and the results were
remarkable.

Automated and/or autonomous materials discovery and design processes are essential to speed
up results and minimize human error, and there are many recent activities in this area. Good
examples include automated molecular and alloy design (70, 71), automated theoretical calcula-
tions such as ab initio calculations (72), and fully automated machine-learned potentials with active
learning (73). Robots are now used for autonomous assembly of materials such as van der Waals su-
perlattices (74). Autonomous manufacturing at the atomic scale (i.e., atomic fabrication processes)
is realized by using deep learning such as a CNN. Here, deep learning is used to identify surface
features to precisely pattern atomic structures (75). Aspuru-Guzik and colleagues (76) pointed
out that the immediate task in enabling smart automation in the materials discovery process is to
integrate autonomous synthesis planning, automated chemical synthesis, and autonomous exper-
imentation as a closed-loop workflow.

3.1. The Importance of Data

It is commonly understood that the power of machine learning is inherently tied to the quality of
the data sets. Unfortunately, the materials and chemistry communities often work with a limited
number of databases or small data sets. Compared with materials databases created by theoreti-
cal calculations or simulations, experimental databases containing synthesis procedures/history or
processing conditions are still too rare to allow understanding of QSPRs even in the community
(77). One way to overcome limited-data problems is to employ transfer learning by using a model
trained with extensive data for a new task with limited data. For example, transfer learning is be-
coming more popular in the microstructure reconstruction area. This is mainly because the area
aims at constructing statistically equivalent microstructures with very limited information about
the original structure (78). Zhang & Ling (79) proposed to approximately predict targeted prop-
erties by using nonexpensive modeling and then to use the estimation to establish machine learn-
ing models that enhance prediction accuracy. A limitation of transfer learning is that it requires
a very well-trained model to apply to specific target tasks (80). Other approaches to overcome
limited-data problems include meta-learning, neural Turing machines, Bayesian frameworks, fast
surrogate machine learning models, and machine learning models constrained with dimensional
analysis and scaling laws (81-83).

Additionally, heterogeneous data sets or scattered data from various sources are common in
the materials and chemistry areas. While integration of databases or scattered data sets is benefi-
cial for better understanding of QSPRs, it is possible to miss significant features. A recent paper
suggested approaches that individually model data from distinct sources first and then employ a
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stacked ensembling that combines simpler models by using two layers—the multiple-model layer
and the prediction layer—of machine learning (84). Similarly, the combination of different learn-
ing algorithms (for example, the combination of machine learning with evolutionary algorithms)
is possible. Transfer learning using ensemble neural networks is useful for addressing the issues of
heterogeneous data and quality (85, 86). Another approach to deal with a heterogeneous database
or scarce data is simultaneous multitask learning—such as the sure-independence screening and
sparsifying operator—that identifies key descriptors representing multiple target properties si-
multaneously (87).

3.2. Current Applications of Machine Learning Algorithms to Materials Design

Materials designers widely use machine learning for key tasks such as correlation, prediction, and
optimization of design parameters to precisely control processes and achieve target properties. A
more novel application, however, is the use of machine learning to integrate individual models
describing chemical and physical phenomena occurring at different timescales and length scales
to comprehensively understand QSPRs. The algorithms described in this section are examples of
the wide variety of machine learning algorithms used for materials discovery and design today.

While increasing the number of parameters in materials modeling, simulation, synthesis, and
characterization provides materials designers with additional design options (e.g., designers can
select or combine parameters to target certain properties), it also gives rise to the curse of di-
mensionality. To address this problem effectively, materials designers often use high-dimensional
visualization techniques. These techniques not only provide low-dimensional visual representa-
tions but also illuminate relationships between variables. Suh et al. (88) demonstrated the role
of various visualization techniques for N-dimensional data generated by high-throughput exper-
imentation. They introduced several techniques to the high-throughput experimentation com-
munity, including parallel coordinates, radial visualization mapping, heat maps, and glyph plots.
Recently, Rickman (89) used parallel coordinates to create materials property charts showing the
property correlations between different materials classes.

Dimensionality reduction algorithms are used to identify and visualize the structure of high-
dimensional data sets in low-dimensional space. One example of a traditional least-squares-loss-
based spectral decomposition algorithm is principal component analysis. Principal component
analysis is a linear dimensionality reduction method that finds directions of maximal variance in
data to preserve as much of the original high-dimensional data structure as possible. This method
serves as a major dimensionality reduction technique for dealing with various types of materi-
als data, such as powder X-ray diffraction patterns (90). Although most QSPRs are expressed
nonlinearly, attempts to nonlinearly capture high-dimensional data structure—such as manifold
learning, which focuses on local distances between features—have been quite rare for materials
problems. A good example of manifold learning for QSPRs is a diffusion map approach combined
with hierarchical clustering to learn optimal thin-film process conditions to develop an Al-doped
ZnO layer in copper indium gallium diselenide solar cells (91). Recently, similar types of manifold
learning, such as the t-distributed stochastic neighbor embedding (t-SNE) algorithm, are becom-
ing more pervasive for obtaining low-dimensional representations in a nonlinear way. The t-SNE
algorithm focuses on preserving the local distances of high-dimensional data while identifying the
data’s global structure. For example, Zakutayev et al. (77) demonstrated the power of the t-SNE
algorithm for visualizing the most common compositions in the High Throughput Experimental
Materials Database.

Ever since Li (92) showed the applicability and effectiveness of classification and regression
trees—or simply decision trees—for understanding materials behavior by using creep rupture
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data on austenitic stainless steels, the materials community has used this approach in various ap-
plications, such as microstructure optimization, due to its simple interpretability (93). However,
to avoid the overfitting problem in decision tree algorithms, a random forest algorithm can be
employed that simultaneously uses multiple decision trees. The random forest algorithm has nu-
merous applications, including capturing nonlinear dependencies in data and better predicting
properties such as the critical temperature of superconductors (94). Decision tree algorithms have
evolved over the years, leading to approaches such as the Monte Carlo tree search, which approxi-
mates optimal decisions in QSPR space (95). One of the most popular classification and regression
algorithms in materials design procedures, on the other hand, is a support vector machine (SVM).
SVMs find the best line or hyperplane that separates the data into classes. They use a type of
mathematical transformation called the kernel trick to find high-dimensional space where data
classes are linearly separable and then project the high-dimensional information to the original
low-dimensional space. SVM has been used for various types of classification and regression prob-
lems, such as predicting the voltage of electrode materials (96).

The goal of deep learning in materials design is to automatically identify complex relation-
ships between input and output in terms of QSPRs, making it more computationally efficient
than traditional learning algorithms. For example, Crystal GAN—a GAN-based architecture—
automatically generates chemically stable crystallographic structures, such as new ternary crystal-
lographic structures, by using existing binary information (97). Agrawal and colleagues (98) pre-
sented a deep neural network model called ElemNet. The model uses the elemental composition
of a compound as the input, captures the physical and chemical interactions between elements,
and predicts materials properties such as the formation enthalpies of compounds. Similarly, the
deep learning architecture SchNet allows one to perform various quantum chemistry tasks, such
as property prediction of molecules or materials, potential energy surfaces, and force fields (42).

4. LEARNING TO SEARCH

The ability to accurately model processes and properties by using data-driven techniques is cer-
tainly powerful and scalable, but it does fall foul of one of the tenets of successful research—
never stop learning. When we build a model and never update it, that model is frozen with the
knowledge—and associated biases—of a particular point in time, and from that moment it begins
to become stale.

Increasingly, materials discovery is being treated as an active learning problem, in which models
are continually updated as new information flows in. This, in itself, poses an interesting challenge:
How do we ensure that models built in this way do not themselves end up biased by the method-
ologies that were used to determine which data were collected? In the world of machine learning,
this is known as the exploration-exploitation trade-off. A purely exploratory approach to collect-
ing data (sometimes known as a diversity-driven approach) will try to build the most generally
applicable models by considering as wide a range of data points as possible. While this process is
much less prone to bias, the resulting models are often less predictive in any one specific case. A
purely exploitative approach to model building will result in a model that is fantastic for a specific
use case but does not transfer well to data beyond those used to train it. Clearly, the key is to
balance these two extremes to build an efficient materials search pipeline.

There are two major approaches taken when searching materials space: the active ranking and
reprioritization of an existing library, undertaken with the understanding that only a small per-
centage of the enumerated library will be tested, and the generative approach, where completely
new materials are dreamed up, often through decoding of a constructed latent space or through
an evolutionary approach. Both of these methods have their pros and cons; the construction of a
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library, for example, affords the user the close control over the kinds of materials suggested for
testing that is by definition lacking in the purely generative approach. This can, however, lead to
bias in library construction and to a subtle favoring of particular materials subclasses. Here, we
look at methodologies that fall into both camps, with particular attention to deep reinforcement
learning and Bayesian optimization.

4.1. Bayesian Optimization

Bayesian optimization is an efficient black-box optimization technique often used for the opti-
mization of expensive functions. In contrast to many other optimization techniques, Bayesian op-
timization does not require the formulation of gradients but instead formulates a response surface,
which itself is used as a surrogate function. Typically, this response surface will be generated using
a Bayesian model known as a Gaussian process, although other models, such as Bayesian neural
networks, have also been used, with notable successes.

Essential to the success of Bayesian optimization is the fact that the optimization algorithm
takes into account both the predictions of the model and the uncertainties in these predictions.
This combination of exploration and exploitation is encoded through an acquisition function,
which typically relies on the concept of improvement, usually formulated as

k@) — f*
)/(JC) - Uz(x) ’ 1

where f* is the best target value observed so far, uu(x) is the predicted mean, and o%(x) is the
corresponding variance.

Given some set of data already observed, the next data point to be acquired is found through
maximization of the acquisition function. The most commonly used acquisition function is known
as expected improvement (EI):

El(x) = pu(x) — f*@(r) + o @)p(y), 2.

where ® denotes the cumulative distribution function of the standard normal distribution, ¢ de-
notes the probability density function of the standard normal distribution, and y denotes the
improvement described in Equation 1.

After this data point is acquired, the Bayesian model is refitted to include the new data, and
the cycle repeats until either the user runs out of budget or the acquisition function becomes zero
(indicating no advantage to sampling any more data) (Figure 2).

Bayesian optimization is particularly conceptually suited to chemical search problems, as it
effectively mimics the scientific discovery process of hypothesize, test, observe, (re)evaluate (99,
100). Perhaps because of this, Bayesian optimization has been applied in a wide variety of areas,
facilitated by its black-box nature and its conceptual similarity to the scientific method, which aid
in its uptake in the scientific community.

Due to the similarities between Bayesian optimization and classic design-of-experiments (DoE)
methodologies, it is unsurprising that researchers have begun to find success in using this tech-
nique to tune experimental conditions for materials synthesis and processing. Venkatesh and col-
leagues (101) used Bayesian optimization to accelerate the synthesis of polymer fibers—a complex
challenge that had defied classical DoE approaches due to the high dimensionality and complex
interdependencies of the parameters. Through the use of automated synthesis techniques, the
researchers were able to automatically screen conditions, and they followed a multiobjective de-
sign protocol with experiments judged on deviations from ideal fiber length and diameter. The
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The cycle of Bayesian optimization: Models are continuously updated as new data are acquired, a process
determined by the acquisition function.

authors state that their procedure will never self-terminate—practically true, although Bayesian
optimization terminates when there is a global zero score for the acquisition function, which is rare
in high-dimensional search—and they recommend tracking the best found value for a termination
heuristic. When there has been a long plateau in the best found value, the search is terminated.

Meredig and colleagues (102) have also used Bayesian optimization for automating the
materials discovery process. Unlike in many applications of Bayesian optimization, they used
random forests for their underlying model. While these models are not inherently Bayesian,
as are the more traditionally used Gaussian processes, they are more scalable. In this study,
the uncertainty estimates necessary for a Bayesian optimization approach were calculated by
using bias-corrected infinitesimal jackknife and jackknife-after-bootstrap estimates, which were
proposed as a high-quality alternative methodology. The researchers tested their methodology
on a wide range of materials discovery and processing problems, including maximizing the
magnetic deformation of magnetocaloric materials, the critical temperature of superconductors,
the figure of merit of thermoelectrics, and the fatigue strength of steel. The methodology was
shown to outperform random search, an achievement that, while not often cited as a challenging
benchmark, was deemed to be significant because the materials and process parameters searched
over had already been deemed worthy of investigation, so random search over this biased set
should have produced reasonable results.

The similarity of Bayesian optimization to DoE methodologies has also been exploited in
the area of combinatorial library screening, an increasingly important tool in materials discovery.
Common Bayesian Optimization Library (COMBO), a toolkit developed by Tsuda and colleagues
(103), has been applied to the acceleration of materials discovery workflows. One metric for suc-
cess is the k recall, which measures how many of the top & candidates are found at a fixed budget.
With a budget of 300 iterations, and setting ¥ = 30, for instance, a random search has a score of
40%. When COMBO is used with the same configuration, this score is enhanced to 83%, which
is indicative of the power of these kinds of optimization techniques to drive efficiency.

In the real world, optimization problems are rarely sequential, instead requiring multiple evalu-
ations of an objective to occur simultaneously. One clear example of this is the connection between
Bayesian optimization and robotic screening. In a robotic screen or assay, there are a fixed number
of slots that can be used to obtain data, and there is no significant benefit to not using all available
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slots. Groves & Pyzer-Knapp (104) developed k-means batch Bayesian optimization (KMBBO)
and its high-dimensional analogy, KMBBO with compressed sensing (CS-KMBBO), to deal ef-
ficiently with this situation. In KMBBO, the acquisition function is split into sections by using a
k-means algorithm, with 4 determined by the number of slots available. The authors credit the
efficiency of this approach to its combination of peak picking via # means, which exploits the cur-
rent acquisition function, with the spherical repulsion term in the k-means clustering algorithm,
which ensures that any slots that do not correspond to peaks are instead filled with a diversity-
driven subset. On a drug discovery challenge, KMBBO achieved very low regret after only 10
epochs of sampling (for a total of 100 molecules), when the library being sampled consisted of
around 20,000 molecules.

Given the proven ability of Bayesian optimization techniques to rapidly winnow large chem-
ical libraries, it is unsurprising that there has been some significant success in their application
to high-throughput virtual screening. Pyzer-Knapp and colleagues (105) have demonstrated the
use of parallel and distributed Thompson sampling to rapidly screen quantum mechanical sim-
ulations of the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and
the power conversion efficiency to efficiently discover high-potential candidates for organic pho-
tovoltaics. In this study, the researchers were able to discover candidates with significantly high
power conversion efficiency around 30 times quicker than other search techniques, by exploiting
a new parallel Bayesian methodology to evaluate multiple candidates simultaneously.

Arréyave and colleagues (106) used Bayesian optimization to accelerate a high-throughput
search of the MAX ternary carbide/nitride space (where M is an early transition metal, A is an A-
group element, and X is C or N) through DFT calculations. In this study, bulk and shear modulus
were optimized separately as single-objective optimizations, and the results were then compared
with a multiobjective optimization process in which both were optimized simultaneously (see the
sidebar titled Single-Objective or Multiobjective Search?). In addition, in this study, a Bayesian
model averaging approach was used to automatically select features for inclusion in the model
driving the optimization, which was shown to be robust to the dimensionality reduction performed
in this way.

4.2. Reinforcement Learning

Reinforcement learning is a subfield of Al that is targeted at learning how to make decisions
that maximize a reward over a time horizon. In the reinforcement learning paradigm, agents learn
how to maximize this reward through interactions with their environment. In contrast to Bayesian
optimization, reinforcement learning is better considered as learning to control a process rather
than strictly optimize it. Reinforcement learning has shown great potential in learning to play
games such as the Atari suite and Go (107), as well as in simulation challenges such as protein

folding (108).

SINGLE-OBJECTIVE OR MULTIOBJECTIVE SEARCH?

While many search problems may initially look to be single objective (i.e., maximizing some desired property), in
an industrial context, this is rarely the case. A material that is viewed as the best material from a single-property
perspective could be rejected due to processing concerns, toxicity concerns, or even financial concerns. Machine
learning techniques, through their general applicability, can offer a single framework that, given data, can model all
of these objectives, thereby allowing a simpler route to multiobjective optimization.
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DEFINITIONS FOR REINFORCEMENT LEARNING

Reinforcement learning is a terminology-driven literature, so it is worth defining some key terms.

Agent: Agent is the name for an entity that takes actions.

Action (4): The set {A} contains all possible actions that the agent can take.

Discount factor: The predicted future rewards are often adjusted by the discount factor to dampen their
effect on the agent’s choice of action.

Environment: The environment is the world through which the agent moves; it takes the agent’s current
state and action as input and returns as output the agent’s reward and next state.

State (S): A state is a concrete and immediate situation—that is, a specific place and moment—in which the
agent finds itself.

Reward (R): A reward is the feedback by which we measure the success or failure of an agent’s actions.
Policy (x): The policy is the strategy the agent employs to determine the next action from the current state.
Value (V): The value is the expected long-term return with discount, as opposed to the short-term reward R.
Q value: The Q value, also known as the action value, is conceptually similar to value except that it also takes
into account the current action 4.

The goal of reinforcement learning is to pick the best known action for any given state, and it is

therefore necessary to rank the actions and assigned values relative to one another (see the sidebar

titled Definitions for Reinforcement Learning). To achieve this, state-action pairs are mapped to
the values they are expected to produce with the Q function. The Q function takes as its input an
agent’s state (S) and action (4) and maps them to probable rewards. This can be calculated by the
Bellman equation:

Qnew (S, 4) = Q(S,4) + aR(S, 4) + y {max[(§', 4') — Q(S, D]}, 3.

where y is the discount factor and « is a learning rate.

Reinforcement learning is the process of running the agent through sequences of state-action
pairs, observing the rewards that result, and adapting the predictions of the Q function to those
rewards until it accurately predicts the best path for the agent to take.

If one is able to calculate the reward for any given action in any given state, then optimization
is simply implemented as a lookup table; this is known as a Q table. Unfortunately, the calculation
of the Q function, and construction of a Q table, can be formidably expensive (Figure 3). Deep Q
learning (sometimes referred to by the more general term deep reinforcement learning) replaces

the construction of a lookup table with the construction of a model that can relate states and

actions to estimated rewards. This model is often a deep neural network—hence the term deep

reinforcement learning—and can allow users to access a much larger and more complicated space
of potential actions.

Deep reinforcement learning lends itself to the challenge of materials design and process opti-
mization. For example, Popova et al. (109) have developed a computational design strategy based
upon deep reinforcement learning, which they term reinforcement learning for structural evolu-

tion (ReLeaSE). In their strategy, two deep neural networks are trained—one for generative tasks

and one for predictive tasks. These two networks are trained separately but are then combined and

used jointly to generate the desired chemical libraries. After training the separate networks by us-

ing traditional supervised techniques, ReLeaSE uses reinforcement learning to bias the generative

task so that molecules with desired functions and properties are generated. The authors found that
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the majority of compounds generated by the ReL.eaSE method were novel structures, displaying
significant differences from the molecules used to train the model; this creativity demonstrates
the potential for reinforcement learning to generate desirable targets outside of existing data sets.
In a similar manner, Olivecrona et al. (110) used deep reinforcement learning to design SMILES
strings that were predicted to have desirable materials properties. The authors demonstrated how
this approach generates strong results across a wide range of tasks that are relevant to materials
design, such as generating as yet unseen analogs to a given molecular structure and generating
novel structures predicted to have highly desirable properties.

Since reinforcement learning can easily be understood as learning to control, it is understand-
able that its use for controlling and optimizing reaction conditions has been investigated. One
particularly strong example is presented by Zare and colleagues (111). These authors used deep
reinforcement learning to discover optimal reaction conditions in a flow-chemistry setup. They
found that this methodology outperformed a state-of-the-art black-box optimization algorithm,
stable noisy optimization by branch and fit (SNOBFIT), by using 71% fewer steps on both simu-
lations and real reactions. As experiments are naturally expensive to evaluate in both time and cost,
they used simulations to bootstrap the learning, greatly decreasing the cost of the optimization.

4.3. Generative Models

While methods such as Bayesian optimization and reinforcement learning are extremely power-
ful on their own, it is arguable that the real evolution of the materials genome comes when these
techniques are combined with an element of creativity, generating new materials that have not
been conceived of by a scientist at all (112). These creative algorithms are referred to as genera-
tive models, as instead of predicting the behavior of a known input (material), they generate new
inputs (materials) that are predicted to have powerful properties. A more detailed review of the
application of generative modeling to molecular species can be found in Reference 113.

The most popular generative methods are variational autoencoders (VAEs) (114) and GANs
(115); the former have seen more use within molecular and materials science (113, 116).

VAEs are neural networks trained to reproduce their input but structured in two pieces: The
first is an encoder that takes a base representation and learns an effective neural fingerprint, and
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the second is a decoder that learns how to reconstruct the molecular species from the neural
fingerprint. The space spanned by the neural fingerprint is known as the latent space. After train-
ing, novel molecules can be generated by using the decoder and randomly sampling (or indeed
searching) the latent space. In this field, VAEs were first applied by Gémez-Bombarelli et al. (117)
by using SMILES as the base representation. Implicitly, what is desired is for the VAE to map
molecules to a latent space such that the latent space is densely populated (i.e., there are no gaps
where regions of the latent space do not correspond to meaningful chemical species) and such that
chemically similar molecules are close to one another. There are indications that autoencoders do
indeed achieve these aims (118). Notions of what precisely is meant by chemically similar can be
altered by cotraining the autoencoder alongside property predictions (119). This approach allows
for specialized use to generate molecular species with particular properties of interest, for exam-
ple, for drug discovery (120). One issue with the use of SMILES as the base representation is the
challenge of achieving a densely populated latent space; this is due to the ease with which one can
construct invalid SMILES strings that do not correspond to valid molecular structures. Attempts
to solve this have included introducing a grammar (116) to further constrain the generated strings
or switching to a different base representation. The main appeal of SMILES is its status as a com-
plete encoding of the molecular graph that does not violate any symmetry considerations. Both
NeVAE (121) and the junction tree encoder (122) are non-SMILES-based autoencoder architec-
tures. Like the two-dimensional neural fingerprints (36-38), NeVAE uses a base representation
composed of a matrix of bond orders and a vector of atom identities. This representation is not
implicitly invariant to permutation; however, the NeVAE architecture enforces this symmetry.
The junction tree encoder operates on a similar base representation but maps it into two pieces:
a traditional encoding of the graph connectivity alone, as in the two-dimensional fingerprints and
NeVAE, and an additional latent space representation known as the junction tree that encodes the
identities of clusters of atoms. These are then combined during reconstruction.

Winter et al. (123) created an autoencoder-like architecture; their innovation was to focus
on translation between different base descriptors rather than simply reconstructing a single base
descriptor in an attempt to extract more chemically meaningful content that is less biased.

An alternative to VAEs, GANs operate on the basis of networks that again divide into two
components. Instead of an encoder and decoder trained to reproduce molecules, GANs operate
via a generator and discriminator. The latter receives outputs from the generator as well as real
examples of training molecules and is trained to distinguish between the two, while the former
receives an initial vector that plays the role of the representation/latent space and is trained to
produce outputs that fool the discriminator. Once trained, the generator can be used in place of
the VAE decoder to generate new molecular species, though unlike in a VAE, the inverse trans-
formation, which maps a molecule to its representation, is not possible. While pure GANs have
not seen much application to materials generation, some examples exist (124), and combinations
of VAEs and GANSs have seen some usage (31, 120, 125).

A different approach to the generation of new materials is to use an evolutionary algorithm.
Evolutionary algorithms have been inspired by mechanisms found in biological evolution, such as
reproduction, mutation, recombination, and selection. Berardo et al. (126) applied evolutionary al-
gorithms to the construction of tetrahedral cages with applications as porous materials. They used
crossover and mutation operations to successfully build libraries of cage molecules that were op-
timized for porosity, window size, and symmetry—a fitness function that was determined through
a survey of the existing literature on successful porous organic cages.

Evolutionary algorithms are typically bottlenecked by the computational expense of evaluating
the fitness function (127), so in the materials domain, it is more usual to see common fitness
functions, such as relative energy, evaluated by using cheaper semiempirical potentials than to
see them evaluated by more accurate methods such as DFT. Jennings et al. (86), however, used
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a machine-learning-based surrogate model to improve the description of the fitness surface at
a low computational cost, reducing the total number of energy minimizations required to fully
search the convex hull of local minima from 16,000 to 300. Another example of the fusion of
genetic algorithms with machine learning models was undertaken by Simmons and colleagues
(128). These authors employed a deep learning approach to build a model that biases the evolution
of a genetic algorithm, with fitness evaluations performed using both simulation and experimental
approaches. This is a particularly powerful approach, as it gives the evolutionary algorithm the
ability to continuously learn and draw inferences from its experience to accelerate the creative
and generative processes.

5. OUTLOOK

As the field of machine-learning-aided materials research and development quickly evolves, the
materials and chemistry community recognizes that more integrated efforts will play a signifi-
cant role in advancing materials discovery and design procedures. There are various technical
reviews—for example, reviews of materials informatics (129), the history of high-throughput ex-
perimentation and combinatorial approaches (130), machine learning applications in continuum
mechanics of materials (131), deep learning for molecular design (132), deep materials informatics
(133), and deep learning in chemistry (134), as well as a community-wide road map (135)—that
describe the community’s accomplishments and future directions. As outlined in the Future Di-
rections, the community focuses on understanding fundamental behaviors of materials by using
machine learning, establishing data sharing and integration, and increasing our experience via a
convergence approach. For example, pioneering machine learning work toward fundamental ma-
terials problems includes automatically identifying material phase transitions (136), understanding
microstructurally small fatigue-crack-driving forces (137), and predicting fracture propagation
and failing modes (138). To accomplish these tasks, it would be powerful to perform machine-
learning-based inverse design instead of forward modeling (112, 139). The lack of a robust method
or standard protocol for exchanging data between data sets or databases using complex schemas
makes data integration and sharing difficult. The use of more standardized methods—such as cat-
egorical query language, an XML-based data schema such as the NanoMine polymer nanocom-
posite schema, or machine-readable formats and open collaborative frameworks—would be use-
ful to reduce data-sharing problems and facilitate identifying QSARs (140-142). Convergence
approaches to realize the materials genome include the National Institute of Standards and Tech-
nology’s High-Throughput Experimental Materials Collaboratory (HTE-MC). In collaboration
with the National Renewable Energy Laboratory, HTE-MC is focusing on combining high-
throughput materials synthesis, processing, and characterization (i.e., physical systems) with data
management (i.e., virtual processes) (143). Similar concepts exist, such as the concepts of inte-
grated collaborative environments, online high-throughput computational infrastructure, or high-
performance cloud computing, to effectively explore quantitative structure-property relationships

(144, 145).

1. Artificial intelligence is revolutionizing materials discovery.

2. We have moved beyond use cases of the quantitative structure-property relationship
type that simply map inputs to predictions, and we can see impacts in many stages of the
discovery process.
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3. Linking different types of data will enable a significant shift in the paradigm of materials
discovery.

4. Itis important to control, or at least understand, bias in the methods and indeed within
the data themselves.

5. Through learning to see, estimate, and search with artificial intelligence, we can begin to
emulate the scientific process, enabling a smart, automated materials discovery workflow.

1. Insights into the fundamental behaviors of materials should be sought. While most ma-
chine learning tasks are focused on the prediction of materials properties, it is equally
important to use learning techniques to focus on understanding materials behaviors and
performance as a result of collected properties.

2. We should increase our experience via data integration. Integration of scattered data
from different sources of information is important for deeper understanding of quanti-
tative structure-property relationships.

3. We should increase our experience via convergence approaches. Integration of virtual
and physical systems will be powerful in accelerating the discovery of new materials.
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