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Abstract

Antigen-specific CD8 T cells are central to the control of chronic infections
and cancer, but persistent antigen stimulation results in T cell exhaustion.
Exhausted CD8 T cells have decreased effector function and proliferative
capacity, partly caused by overexpression of inhibitory receptors such as pro-
grammed cell death (PD)-1. Blockade of the PD-1 pathway has opened a
new therapeutic avenue for reinvigorating T cell responses, with positive
outcomes especially for patients with cancer. Other strategies to restore
function in exhausted CD8 T cells are currently under evaluation—many in
combination with PD-1-targeted therapy. Exhausted CD8 T cells comprise
heterogeneous cell populations with unique differentiation and functional
states. A subset of stem cell–like PD-1+ CD8 T cells responsible for the
proliferative burst after PD-1 therapy has been recently described. A greater
understanding of T cell exhaustion is imperative to establish rational im-
munotherapeutic interventions.
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INTRODUCTION

CD8 T cells are central components of adaptive immunity. When naı̈ve CD8 T cells recognize
antigenic peptides presented via major histocompatibility complex class I (MHC-I) through their
T cell receptors (TCRs), they are activated, undergo massive clonal expansion, and differentiate
into potent effectors. Effector CD8 T cells (a) express cytotoxic molecules such as perforin and
granzyme B, (b) produce effector cytokines like interferon (IFN)-γ and tumor necrosis factor
(TNF)-α, and (c) express chemokine and homing receptors necessary for migration into peripheral
tissues. Effector CD8 T cells kill target cells and secrete cytokines that help contain the spread
of pathogens and cancer. During antigen clearance, most effector CD8 T cells die by apoptosis,
but about 5–10% survive and differentiate into memory CD8 T cells. Memory CD8 T cells are
maintained long-term in the absence of antigens and can exert rapid effector functions in response
to previously encountered antigens (1, 2).

When host immune responses fail and antigens persist, antigen-specific CD8 T cells differenti-
ate into a state called T cell exhaustion, in which they are distinct from naı̈ve, effector, or memory
CD8 T cells. T cell exhaustion was first described in the mouse model of chronic lymphocytic
choriomeningitis virus (LCMV) infection, where virus-specific CD8 T cells exposed to continu-
ous antigen stimulation show reduced effector function and poor proliferative capacity compared
to functional memory CD8 T cells (1, 3–5). Exhausted CD8 T cells have unique transcriptional
and epigenetic signatures that include overexpression of several inhibitory receptors, dysregulated
cytokine signaling pathways, and altered metabolic fitness (1, 6–13).

Persistence of high levels of antigen is a major driver of T cell exhaustion (1, 14). Accordingly,
T cell exhaustion occurs during human chronic infections and cancer (6, 15, 16). T cell exhaustion
probably evolved to protect the host from immunopathology, but it results in limited control of
pathogens and cancer. There is now great interest in establishing strategies to rescue exhausted
CD8 T cells and reinvigorate immune responses. Understanding the basic mechanisms of T cell
exhaustion is crucial for clinical applications. The importance of such research is demonstrated
by the discovery of the role of programmed cell death (PD)-1 in CD8 T cell exhaustion during
chronic viral infection in mice (13) and other early basic and preclinical studies (17–19) that
drove clinical trials of PD-1-directed immunotherapy for cancer patients. Although CD4 T cell
exhaustion also occurs during chronic infections (6), this review focuses on CD8 T cells. We
describe several fundamental aspects of CD8 T cell exhaustion, potential strategies for restoring
function in exhausted CD8 T cells to achieve therapeutic benefits in chronic infections and cancer,
and novel findings regarding the existence of a stem cell–like PD-1+ CD8 T cell subset (20).

IMMUNE CHECKPOINT MOLECULES AND T CELL EXHAUSTION

A cardinal feature of exhausted CD8 T cells that persist during continuous antigen stimulation is
sustained expression of inhibitory receptors (Figure 1a,b) (6, 7, 13, 21–24). Most inhibitory recep-
tors are induced by T cell activation, and thus are also expressed in effector T cells but at lower levels
and in a transient manner. Inhibitory receptors vary in expression pattern, ligands, and signaling
motifs, and their mechanism of suppression is not well understood. In exhausted CD8 T cells, most
inhibitory receptors are coexpressed with PD-1 and provide a cumulative inhibitory effect (21–26).
Our knowledge and therapeutic applications are more advanced for PD-1 and cytotoxic T lympho-
cyte antigen (CTLA)-4, but other inhibitory receptors also have blocking agents in clinical trials.

PD-1

PD-1 is a transmembrane protein receptor of the CD28 family (27). The PD-1 cytoplas-
mic region contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an
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Figure 1
Immune checkpoints. T cells express inhibitory receptors that bind ligands present on antigen-presenting cells, infected cells, or tumor
cells. (a) Immune checkpoints targeted by licensed therapies. (b) Immune checkpoints targeted by therapies in clinical trials.
Abbreviations: CEACAM1, carcinoembryonic antigen cell adhesion molecule 1; CTLA-4, cytotoxic T lymphocyte antigen-4; Gal,
galectin; Ig, immunoglobulin; ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor tyrosine-based switch
motif; ITT, Ig tail tyrosine motif; KIEELE, a conserved amino acid sequence motif that confers inhibitory function; LAG-3,
lymphocyte activation gene-3; LSECtin, liver and lymph node sinusoidal endothelial cell C-type lectin; MHC-II, major
histocompatibility complex class II; PD-1, programmed cell death 1; PVR, poliovirus receptor; TIGIT, T cell immunoreceptor with Ig
and ITIM domains; TIM-3, T cell Ig and mucin domain–containing-3.
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Figure 2
Regulation of T cell activation by PD-1. (a) TCR and CD28 ligations in the immunological synapse trigger
a cascade of phosphorylation events initiated by LCK that ultimately result in T cell activation. (b) PD-1
inhibits T cell activation by SHP2-mediated dephosphorylation of CD28 and other molecules downstream
of the TCR. Abbreviations: AP-1, activator protein 1; APC, antigen-presenting cell; LAT, linker for
activation of T cells; LCK, lymphocyte-specific protein tyrosine kinase; NFAT, nuclear factor of activated T
cells; NF-κB, nuclear factor kappa B; PD-1, programmed cell death 1; PI3K, phosphoinositide 3-kinase;
PLCγ, phospholipase C gamma; SHP2, Src homology 2 (SH2) domain–containing tyrosine phosphatase 2;
SLP76, SH2 domain-containing leukocyte protein of 76 kDa; TCR, T cell receptor; ZAP70, zeta-chain-
associated protein kinase 70.

immunoreceptor tyrosine-based switch motif (ITSM) (Figure 1a). When PD-1 binds its
ligands and is recruited to the immunological synapse, the tyrosines within ITIM and ITSM
motifs are phosphorylated (17, 27). Phosphorylated PD-1 recruits SHP2 [Src homology
2 (SH2) domain–containing tyrosine phosphatase 2], which then dephosphorylates several
mediators of T cell activation (28). Recent work with elegant cell-free biochemical analysis
demonstrated that SHP2 associated to PD-1 dephosphorylated CD28 with higher efficiency
than TCRs and other downstream components such as CD3-ζ, ZAP70 (zeta-chain-associated
protein kinase 70), and LAT/SLP76 (linker for activation of T cells/SH2 domain-containing
leukocyte protein of 76 kDa) (Figure 2) (29). The differential effect of PD-1 signaling on
CD28 phosphorylation compared to CD3-ζ was due to a higher rate of rephosphorylation of
CD3-ζ by LCK (lymphocyte-specific protein tyrosine kinase). Higher net dephosphorylation
of CD28 by PD-1 was further confirmed by in vitro cellular assays. Nevertheless, when
immunological synapses do not involve CD28/B7 interactions, PD-1 should still attenuate T
cell activation since SHP2 associated to PD-1 also targets TCRs and downstream molecules—
for example, during the interactions of cytotoxic CD8 T cells with B7– target cells (28, 29).

PD-1 has two ligands, both members of the B7 family: PD-L1 (also known as B7-H1 or
CD274) and PD-L2 (B7-DC, CD273) (27). PD-L1 is constitutively expressed by many different
cells of hematopoietic and nonhematopoietic origin. PD-L1 expression can be induced by type
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I and II IFN and other cytokines (27), and upregulation of PD-L1 in response to IFN-γ has
been described as adaptive resistance—a mechanism to dampen ongoing immune responses (30).
In several studies, PD-L1 expression in the tumor microenvironment, which is usually strongly
associated with CD8 T cell infiltration, increases the likelihood of clinical response to PD-1-
targeted immunotherapy (31). In contrast to PD-L1, PD-L2 expression is inducible and more
restricted. PD-L2 can be expressed by dendritic cells (DCs), macrophages, and B-1 cells, given
specific environmental cues, such as IL-4 and granulocyte-macrophage colony-stimulating factor
(GM-CSF) (27).

In T cells, PD-1 expression is induced and maintained by TCR stimulation, but can also be
modulated by cytokines and other signals (27). Furthermore, unlike memory cells, in exhausted
T cells the PD-1 promoter remains demethylated and poised, even in the absence of antigen
stimulation (32, 33).

The PD-1 pathway affects T cell function in many aspects, including metabolism. PD-1 sig-
naling reduces Akt (protein kinase B) activation and thus inhibits mTOR (mammalian target
of rapamycin) activity, switching T cell metabolism from glycolysis to fatty acid oxidation (34–
36). An earlier study based on molecular signatures found that exhausted CD8 T cells were
defective in their metabolic fitness (7). Mechanistically, it was shown that PD-1 regulated early
glycolytic and mitochondrial alterations and repressed the transcriptional coactivator PGC-1α

(peroxisome proliferator-activated receptor γ coactivator 1α). Overexpression of PGC-1α im-
proved metabolism and function in exhausted CD8 T cells during chronic viral infection (12).
Therefore, the metabolic switch in exhausted T cells may play a core role in T cell dysfunction.
Decreased mTOR activation in PD-1+ CD8 T cells ensures increased activity of the transcription
factor FoxO1 (forkhead box O1), which sustains PD-1 expression and survival of exhausted CD8
T cells (35).

Therapeutic blockade of the PD-1 pathway reinvigorates exhausted CD8 T cell responses by
reprogramming the metabolism and promoting proliferation and increased expression of effector
molecules (perforin, granzymes and cytokines) (6). In numerous mouse models of cancer and
chronic infection, PD-1-targeted therapy suppresses tumor growth (18, 19) and reduces viral
load (6, 13). Similar results have been confirmed for chronic infections in nonhuman primates.
Blockade of PD-1 during chronic simian immunodeficiency virus (SIV) infection in macaques
enhanced SIV-specific CD8 T and B cell responses, improving viral control and survival (37). In
chimpanzees chronically infected with hepatitis C virus (HCV), one of three animals receiving PD-
1-targeted therapy demonstrated reinvigoration of HCV-specific CD8 and CD4 T cell responses
followed by 100-fold suppression of viremia during treatment (38).

In clinical trials, some advanced cancer patients (up to 30% depending on the cancer type)
experienced reduced tumor burden and improved survival following PD-1-targeted therapy (39,
40). In September 2014, the first anti-PD-1 blocking antibody was approved by the US Food and
Drug Administration (FDA) for second- and third-line treatment of metastatic melanoma, and
as of August 2017, several drugs targeting the PD-1 pathway have been approved for different
cancer types and for solid cancers sharing genetic abnormalities that confer higher numbers of
mutations, regardless of tissue of origin (Table 1). Cancer mutations generally increase the number
of neoantigens that can function as T cell epitopes to sustain antitumor T cell responses. Indeed,
in many studies the number of neoantigens has a positive association with clinical responses to
PD-1-targeted therapy (41).

Some cancers have a viral origin, and viral antigens provide immunogenic epitopes in addi-
tion to neoantigens generated by mutations. In the study that established a survival benefit of
PD-1 blockade over standard of care for platinum-refractory recurrent head and neck cancer,
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Table 1 FDA-approved clinical indications for checkpoint inhibitors

PD-1 targeted therapy FDA approved between 2014 and August 2017
for the following indications

Melanomaa,b

Non–small cell lung cancera,b,c

Head and neck squamous cell cancera,b

Renal cell carcinoma (kidney cancer)a

Urothelial carcinoma (bladder cancer)a,b,c,d,e

Classical Hodgkin’s lymphomaa,b

Merkel cell carcinomad

Colorectal cancer with microsatellite instability (MSI-high) or defects in DNA mismatch repair (MMR)a,b

Solid tumors MSI-high or MMR deficientb

CTLA-4 targeted therapy FDA approved in 2011

Melanomaf

aNivolumab (Opdivo®), hIgG4 anti-PD-1.
bPembrolizumab (Keytruda®), hIgG4 anti-PD-1.
cAtezolizumab (Tecentriq®), hIgG1κ anti-PD-L1.
dAvelumab (Bavencio®), hIgG1 λ anti-PD-L1.
eDurvalumab (Imfizi®), hIgG1κ anti-PD-L1.
fIpilimumab (Yervoy®), hIgG1 κ anti-CTLA-4.
Abbreviation: hIg, human immunoglobulin.

the survival benefit of PD-1-targeted therapy was higher in patients with human papillomavirus
(HPV)-positive tumors (42). Interestingly, the rates of response to PD-1-targeted therapy for
Merkel cell carcinoma—a skin cancer typically associated with Merkel cell polyomavirus—were
similar between viral antigen-positive and -negative tumors (43, 44). However, virus-negative
Merkel cell tumors harbor a higher number of neoantigens than virus-positive Merkel cell tumors
or even melanoma (45). These data so far suggest that either neoantigens or viral epitopes (both
potential targets for T cells) increase the response rate to immunotherapies.

The clinical advances of immunotherapy in the cancer field have not been matched for chronic
infections. Powerful antiviral drugs now manage chronic infections with relatively few adverse
events. However, treatment can be life-long for patients with HIV; HCV can rebound after
treatment; and treatment for chronic hepatitis B virus (HBV) infection is still not optimal. Since
clinical trials enrolling chronically infected patients need to be cautious about potential toxicities of
PD-1-targeted therapy in otherwise healthy individuals, trials have so far only assessed single-dose
regimens. Although there was only a modest response rate for chronic HCV, among 20 patients
receiving the highest anti-PD-1 dose (10 mg/kg), three patients displayed significant reductions in
HCV RNA (>10,000-fold drop), and in one patient, HCV was undetectable for at least one year.
Mild to moderate immune-related adverse events occurred in 6 of 54 patients but were resolved
without specific intervention (46). Single-dose PD-1-targeted therapy was also evaluated in HIV-
infected individuals on clinically effective combination antiretroviral therapy (47). Increases in
HIV-specific CD8 T cell responses were observed in the blood in 2 of 6 participants, but without
effects on viral load, possibly because the dosage of anti-PD-L1 antibodies was tenfold lower
than dosages selected for activity in patients with cancer. These clinical trials show that there is
potential to use PD-1-targeted therapy for management of chronic infections and that combination
treatments should be further evaluated.
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CTLA-4

Blockade of CTLA-4 (ipilimumab) was approved by the FDA in 2011 for the treatment of advanced
melanoma based on clinical trials that demonstrated increased overall survival (48, 49) (Table 1).
However subsequent studies have shown higher efficacy with PD-1 therapies than with ipilimumab
(50, 51). Nevertheless, combined CTLA-4 and PD-1 blockade achieved higher numerical response
rates than either monotherapy, and the combination was approved to treat metastatic melanoma in
2015 (50). Recent data on 3-year overall survival confirms the superiority of anti-PD-1 over anti-
CTLA-4, but whether combination therapy provides enough benefit over anti-PD-1 monotherapy
still remains to be fully resolved (52).

CTLA-4 is expressed constitutively in regulatory T cells (Tregs) and induced upon activation
in other T cells. CTLA-4 is mostly found in intracellular vesicles but is recruited to the immuno-
logical synapse when CTLA-4 binds to B7–1 (CD80) or B7–2 (CD86) (Figure 1a). CTLA-4
competes with the positive T cell costimulatory molecule CD28, and the cytoplasmic domain of
CTLA-4 may recruit phosphatases that attenuate TCR/CD28 signaling (53). Direct inhibitory
effects of CTLA-4 on exhausted CD8 T cells have been proposed. For example, in vitro blockade
of PD-1 did not restore function in hepatic PD-1+ CTLA-4+ HCV-specific CD8 T cells, but
combined blockade of CTLA-4 and PD-1 reinvigorated HCV-specific CD8 T cells in a CD4
T cell–independent manner (54). However, given the suggested role of Treg depletion for the
effectiveness of anti-CTLA-4 therapy in tumor models, an indirect effect on CD8 T cells may
play a major role (55–57). It is important to point out that in vivo blockade of CTLA-4 during
chronic viral infections (LCMV, SIV, and HIV) has failed to reduce viral load or increase CD8
T cell function (13, 58). Hence, further mechanistic studies are required to fully understand the
potential applications of CTLA-4 blockade.

POTENTIAL THERAPEUTIC TARGETS FOR MODULATING
T CELL EXHAUSTION

The efficacy of PD-1 and CTLA-4 blockade for cancer treatment has reinvigorated interest in
immunotherapies. Increased understanding of altered pathways and the molecular signature of
exhausted T cells has uncovered many opportunities for interventions. Due to the favorable safety
profile and broad action of therapies that block the PD-1 pathway, most clinical trials now focus on
combinations with PD-1-targeted therapy. Below we highlight a few of the promising strategies.

Other Immune Checkpoint Molecules

Exhausted CD8 T cells can express many inhibitory receptors that function as checkpoint
molecules. The success of immune checkpoint inhibitors targeting PD-1 and CTLA-4 has
prompted testing co-blockade with other inhibitory receptors. Drugs targeting at least three
other immune checkpoints are now in clinical trials (Figure 1b): LAG-3 (lymphocyte activation
gene-3), TIM-3 (T cell immunoglobulin and mucin domain–containing-3), and TIGIT (T cell
immunoreceptor with immunoglobulin and ITIM domains). Despite minimal effects of single
therapy, co-blockade of LAG-3, TIM-3, or TIGIT synergized with PD-1 pathway blockade in
chronic viral infection and tumor models (21–24, 59). However, signaling transduction of these
receptors on T cells remains largely undefined. It is still unclear whether the positive biological
outcome of blockade of these inhibitory pathways is due to direct effects on CD8 T cells, and
further mechanistic studies are warranted to provide a better understanding of the mechanism of
action for these new drugs.
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Costimulatory Molecules

In a therapeutic setting, increasing positive costimulation has been a focus for improving im-
mune responses (60). However, while the relationship between inhibitory receptors and T
cell exhaustion has been a major topic of investigation, the role of positive costimulatory
molecules in the differentiation or rescue of exhausted T cells remains mostly unexplored. Positive
costimulatory molecules vary in signaling motifs and intracellular adaptors, as well as in cellular
expression pattern and kinetics of the receptors and ligands. It is interesting that both PD-1 and
CTLA-4 interfere with CD28-mediated T cell activation (29, 61).

CD28 is a major costimulatory molecule for T cell priming, yet the requirements for CD28
costimulation vary according to antigenic strength and T cell differentiation status (62). The
intracellular tail of CD28 contains tyrosine-based signaling motifs (Figure 2) and recruits adaptors,
such as the lipid kinase PI3K, growth factor receptor-bound protein 2 (GRB2), and LCK, that
ultimately result in the activation of NFAT, activator protein (AP)-1, and NF-κB (62). CD28
signaling amplifies TCR signaling in addition to having effects independent of TCR, which may
include expression of IL-2 and B cell lymphoma (Bcl)-2, modulation of metabolism (63), and
epigenetic changes (62).

We recently demonstrated that during chronic viral infection, CD28 signals are necessary
for reinvigoration of virus-specific CD8 T cells that follows blockade of the PD-1 pathway (64).
Conditional deletion of the CD28 gene after establishment of chronic infection, but before PD-
1-targeted therapy, demonstrated that loss of CD28 precluded expansion of virus-specific CD8
T cells in a cell-intrinsic manner. Likewise, the efficacy of PD-1-targeted therapy to control CT-
26 tumor growth was also dependent on the CD28/B7 pathway (64). Based on these findings,
we propose that the CD28/B7 pathway may also determine success of PD-1-targeted therapy in
cancer patients. In support of our hypothesis, we found heterogeneity in CD8 T cells infiltrating
human non–small cell lung cancer: 10–80% of CD8 T cells were CD28−. Yet, CD8 T cells that
proliferated in the peripheral blood of lung cancer patients after PD-1-targeted therapy were
mostly CD28+ (64). These data imply a role for the CD28/B7 pathway in the efficacy of PD-1-
targeted therapy. In addition, our data and other studies suggest that T cell reinvigoration may
rely on T cell interactions with B7+ hematopoietic cells, such as DCs (65, 66).

Despite the expression of other positive costimulatory molecules in PD-1+ CD8 T cells (7, 20),
our data suggest that CD28 signaling plays a major and nonredundant role in T cell reinvigoration
by PD-1-targeted therapy (64). Directly targeting CD28 to improve immunotherapy may not be
feasible, given the broad expression profile of CD28 and severe immunotoxicity in a clinical trial
with CD28 superagonist (67).

A number of drugs targeting costimulatory molecules are in cancer clinical trials, including
members of the TNF receptor superfamily OX40 (CD134), CD27, and 4-1BB (CD137). However,
the basic research to understand the function of this new class of drugs still needs to address
signaling pathways as well as the target cell population (68, 69). Aside from immunotherapies that
directly target T cell activation, there is also interest in therapies that target antigen-presenting
cells (APCs) and thereby increase the availability of ligands to engage costimulatory molecules
in T cells (60, 70). A deeper understanding of costimulatory molecule function is necessary to
optimize therapeutic interventions.

Cytokines

Exhausted CD8 T cells have unique cytokine signaling pathways and cytokine receptor expression
profiles (1, 6, 7). For instance, exhausted CD8 T cells express lower levels of IL-7Rα (CD127) and
IL-2Rβ (also known as IL-15Rβ or CD122) than functional memory CD8 T cells. Therefore,
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unlike memory CD8 T cells, which rely on signals from IL-7 and IL-15 for homeostatic pro-
liferation and survival, exhausted CD8 T cells rely on antigenic stimulation for cell division and
maintenance (71, 72). Likewise, during chronic infection, virus-specific CD8 T cells downregu-
late IL-18Rα (CD218a) and have reduced responsiveness to certain combinations of inflamma-
tory cytokines such as IL-12, IL-18, and IL-21 (73). Furthermore, in contrast to acute infection
settings, IL-21 is vital for sustaining CD8 T cell responses during chronic viral infection, and loss
of IL-21R in CD8 T cells exacerbates exhaustion (74–76).

From the perspective of immunotherapy, modulating the actions of cytokines on exhausted
CD8 T cells is a promising approach to improve biological outcome during chronic infections and
cancer. For example, IL-2 administration was approved by the FDA for treating metastatic renal
carcinoma in 1992 and for metastatic melanoma in 1998 after IL-2 therapy demonstrated some
efficacy in these diseases (77). However, our immunological understanding of the mechanism of
action of each cytokine in exhausted CD8 T cells is limited.

Earlier studies found that IL-2 or IL-7 administration improves virus-specific CD8 T cell
responses and accelerates viral clearance during chronic viral infection (78–80). IL-2 or IL-7
treatment also increased T cell numbers during SIV or HIV infection, but did not reduce viral
load (81–84). IL-2 and IL-7 increase the number of CD4 T cells, which are the primary targets
for SIV/HIV; thus, an increase in target cells might hamper the positive effects of IL-2 and IL-7
on the immune responses directed to these viruses. Similarly, IL-15 administration during SIV
infection increased SIV-specific CD8 T cell and natural killer (NK) cell numbers. However, the
treatment did not improve viral control; in fact, the viral set point increased (85, 86).

Blocking the actions of inhibitory cytokines, such as IL-10, is another promising approach.
Increased levels of IL-10 were found during chronic LCMV infection, and blockade of IL-10/IL-
10R improved virus-specific CD8 T cell responses and promoted viral clearance (87, 88). Given
that elevated IL-10 levels are also detected during human chronic viral infections (6), targeting the
IL-10/IL-10R axis may be a promising clinical approach. Conversely, the role of IL-10 in antigen-
specific CD8 T cells in cancer immunology is still controversial, and both immunosuppressive
and immunostimulatory activities are reported (89, 90). These observations might be context
dependent, and further studies are necessary.

Targeting the actions of cytokines is an attractive strategy to modulate exhausted CD8 T cells,
and establishing the effective combination of cytokine-targeted therapy and immune checkpoint
inhibitors is of great interest. IL-2 administration during chronic viral infection has striking syn-
ergistic effects with PD-1 blockade, enhancing virus-specific CD8 T cells and reducing viral load
(91). The synergy of exogenous IL-2 and PD-1 blockade combination therapy was also confirmed
in a cancer model in conjunction with tumor-antigen-targeting antibody and T cell vaccine (92).
Blockade of IL-10R also improved the efficacy of anti-PD-L1 treatment during chronic viral
infection, enhancing immune response and viral clearance (93). Given this variety of possible
combination therapies, it is critical to establish the immunological rationale to obtain synergistic
effects in modulating T cell exhaustion and improving biological outcomes.

EPIGENETICS OF T CELL EXHAUSTION

T cell exhaustion is regulated at an epigenetic level. Comprehensive whole-genome analysis of
chromatin accessibility has shown that exhausted CD8 T cells have a distinct epigenetic signature
(8–11, 94, 95). For instance, exhausted CD8 T cells lack several open chromatin regions present
at the Ifng locus in effector and memory cells (11). In contrast, open chromatin regions specific
to exhausted CD8 T cells were identified for immune checkpoint molecules such as PD-1 (8, 11).
The unique epigenetic landscape for exhausted CD8 T cells was similar in virus-specific CD8 T
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cells in mice and in humans during chronic viral infections, suggesting that epigenetic changes
associated with exhaustion are conserved (8).

The demonstrations that CD8 T cell exhaustion is heritable and associated with epigenetic
changes have important implications for therapies aiming to restore T cell function. Even though
treatment with anti-PD-L1 antibody restores some functions in exhausted CD8 T cells, the
epigenetic signature of reinvigorated CD8 T cells presents only minimal changes (11, 95). Con-
sequently, after cessation of PD-1 therapy, the gene expression profile in reinvigorated CD8 T
cells returns to the original exhausted state (11, 95). These data suggest that for long-term results
it is insufficient to simply block immune checkpoint molecules such as PD-1, and that exhausted
CD8 T cells may need to be epigenetically reprogrammed to achieve long-lasting reinvigoration.
A similar phenomenon of resilience due to epigenetic stability was previously reported for tolerant
T cells (96).

More recently, it was reported that DNA methyltransferase 3A (DNMT3A), which is respon-
sible for de novo genomic DNA methylation (97), is required to establish the exhausted epigenetic
program (98). This study also found that exhausted CD8 T cells within tumors underwent sig-
nificantly greater proliferation when anti-PD-L1 antibody was combined to DNA methylation
inhibitor decitabine (98). These data are the first to suggest that combining immune checkpoint
inhibitors with an epigenetic-targeted therapy may have a synergistic effect on T cell responses.
Currently, several drugs that target molecules with chromatin- or DNA-modifying activity are
undergoing clinical trials in different cancers (99). Whether and how these epigenetic modifying
compounds affect immune cells will be of great interest.

DISCOVERY OF A STEM CELL–LIKE CD8 T CELL SUBSET THAT
PROLIFERATES IN RESPONSE TO PD-1 THERAPY

We recently found that during chronic viral infection, the pool of virus-specific CD8 T cells
comprises two distinct PD-1-expressing subsets: one stem cell–like and the other terminally dif-
ferentiated/exhausted (Figure 3a) (20). The stem cell–like CD8 T cells have a transcriptional
program driven by TCF-1 (T cell factor 1)/Bcl-6 with a gene expression signature similar to those
of CD8 memory precursor cells, CD4 follicular helper T (TFH) cells, and hematopoietic stem cells.
In contrast, the more differentiated virus-specific CD8 T cell subset has the characteristic gene
signature of exhausted T cells. In addition to striking differences in transcription factors, effector
molecules, and chemokines, the two subsets also differ in the expression of inhibitory receptors
and costimulatory molecules. Although both subsets express PD-1, the stem cell–like CD8 T cells

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Regulation and maintenance of CD8 T cell exhaustion. (a) Two distinct subsets of PD-1-expressing CD8 T
cells make up the pool of exhausted CD8 T cells. A few of the important differences between stem cell–like and
terminally differentiated PD-1-expressing CD8 T cells are highlighted. (b) Lineage relationship and regulation
by PD-1 of stem cell–like PD-1+ and terminally differentiated PD-1++ CD8 T cell subsets. Stem cell–like
PD-1+ CD8 T cells undergo self-renewal and also generate terminally differentiated PD-1++ CD8 T cells.
The PD-1 pathway regulates proliferation/differentiation of stem cell–like PD-1+ CD8 T cells. Terminally
differentiated PD-1++ CD8 T cells migrate to sites of infection or tumor. The PD-1 pathway dampens
effector function of terminally differentiated PD-1++ CD8 T cells, hampering control of infections and
tumors. (c) PD-1 and CD28 regulation of exhausted CD8 T cell reinvigoration. TCR and CD28 signaling are
required for proliferation/differentiation of stem cell-like PD-1+ CD8 T cells during PD-1 therapy. However,
blockade of PD-1 inhibitory signals may improve the effector function of terminally differentiated PD-1++
CD8 T cells to eliminate target cells (infected/tumor) in a CD28-independent manner. Abbreviations:
APC, antigen-presenting cell; Blimp-1, B lymphocyte-induced maturation protein 1; PD-1, programmed
cell death 1; PD-L1, programmed cell death 1 ligand 1; TCF-1, T cell factor 1; TCR, T cell receptor.
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have low or no expression of the inhibitory receptors such as 2B4 and TIM-3, and they have higher
levels of costimulatory molecules like CD28 and ICOS (inducible T cell costimulator) compared
to the terminally differentiated CD8 T cells. The divergent transcriptional profiles of these two
virus-specific CD8 T cell subsets raise interesting questions about their epigenetic regulation. Fu-
ture studies are necessary to delineate how these two subsets are regulated at the epigenetic level.
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The stem cell–like CD8 T cells are critical for maintaining the pool of virus-specific CD8 T
cells during chronic infection. Not only do these cells undergo a slow self-renewal but they
also proliferate and differentiate into the more terminally differentiated CD8 T cells. Most
importantly, proliferative capacity is preserved predominantly in the stem cell–like CD8 T cells,
and it is this population that almost exclusively provides the proliferative burst seen after PD-1
blockade (Figure 3a,b). Our studies in chronic LCMV infection show that PD-1 therapy substan-
tially enhanced the proliferation and differentiation of stem cell–like CD8 T cells into terminally
differentiated CD8 T cells and also slightly increased the number of stem cell–like CD8 T cells
(Figure 3b,c) (20).

There are also interesting differences regarding the tissue distribution and localization of the
two CD8 T cell subsets. Stem cell–like CD8 T cells are present predominantly in the T cell zones
of lymphoid tissues and these cells are rarely detected in nonlymphoid tissues, whereas terminally
differentiated CD8 T cells localize at major sites of infection (and possibly in tumor) in both
lymphoid and nonlymphoid tissues. We hypothesize that stem cell–like CD8 T cells continuously
interact with DCs in the T cell zones, which may provide niches for maintaining this stem cell–like
subset by protecting it from exposure to the high levels of antigen present on infected or tumor
cells. The localization of stem cell–like CD8 T cells (in proximity to B7+ DCs in the T cell zone)
is consistent with the requirement of CD28 signals for T cell reinvigoration by PD-1-targeted
immunotherapy (64). Terminally differentiated CD8 T cells preferentially interact with infected
or tumor cells that lack B7 ligands and thus do not provide CD28 signals. Accordingly, stem cell–
like CD8 T cells have higher levels of CD28 expression than terminally differentiated CD8 T
cells (20). However, given that PD-L1 expression in infected nonhematopoietic cells was shown to
suppress viral clearance and prevent immunopathology during chronic viral infection (103), PD-
1/PD-L1 interactions may play a CD28/B7-independent role by inhibiting the cytotoxic activity
of the terminally differentiated CD8 T cells in the infected tissues or tumor (Figure 3c).

We propose that PD-1 blockade modulates the T cell response in two distinct ways. First, PD-1
blockade induces the proliferation and differentiation of stem cell–like CD8 T cells in a CD28-
dependent manner into terminally differentiated CD8 T cells that will go to sites of infection or
tumor. This will result in a substantial increase in the number of antigen-specific CD8 T cells
in the infected tissues/tumor. Then blockade of the PD-1 pathway at the target site will unleash
effector functions of the antigen-specific CD8 T cells to efficiently kill virally infected cells or
cancer cells (Figure 3c). This increased effector function at the site of infection/tumor after PD-1
blockade would not be CD28 dependent, since virally infected nonhematopoietic cells and tumor
cells do not express B7-1/B7-2.

The PD-1+ stem cell–like CD8 T cells that we have defined during chronic LCMV infection
of mice may represent a specific adaptation of the CD8 T cell response to chronic antigenic
stimulation. In fact, several recent studies have described similar virus-specific CD8 T cells with
a TFH-like program in other chronic viral infection models of mice and nonhuman primates, and
also in human chronic viral infections (100–102, 104–108). It will be of considerable interest to
determine if similar stem cell–like CD8 T cells are present in cancer patients and, if so, whether
such cells are located in the tumor itself or only in draining lymph nodes and other lymphoid tissues.

CONCLUSION

During the past few years, our understanding of T cell exhaustion and the role of PD-1 has
shown great progress at the molecular and epigenetic levels. Now, the distinction between stem
cell–like and terminally differentiated cell subsets of exhausted CD8 T cells has been uncovered.
Given that these two cell subsets have distinct expression patterns of inhibitory receptors and
costimulatory molecules, delineating how each immunotherapeutic intervention influences these
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Figure 4
The future of immunotherapy. There are numerous opportunities to modulate immune response. Optimal
strategies will emerge when the specific biological effects of each intervention are understood at the cellular
and molecular levels. How each intervention modulates the newly described subsets of PD-1-expressing
CD8 T cells needs to be taken into account. Abbreviations: PD-1, programmed cell death 1; CTLA-4,
cytotoxic T lymphocyte antigen-4.

two subsets is important for understanding the mechanistic basis of the efficacy of current and fu-
ture immunotherapies that target exhausted CD8 T cells (Figure 4). Moreover, insights obtained
by basic research are fundamental to the development of novel CD8 T cell immunotherapeutic
strategies for a broad range of diseases.

SUMMARY POINTS

1. T cell exhaustion is a unique differentiation status of antigen-specific CD8 T cells dur-
ing chronic infections and cancer that is characterized by distinct molecular/epigenetic
signatures from naı̈ve, effector, or memory CD8 T cells.

2. Overexpression of inhibitory receptors such as PD-1 dampens function in exhausted
CD8 T cells, which can be partially restored by blocking this pathway using immune
checkpoint inhibitors.

3. A stem cell–like CD8 T cell subset is present among exhausted CD8 T cells during
chronic viral infection, and this population expands in response to PD-1-targeted
immunotherapy.
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4. Combining immune checkpoint inhibitors with agents targeting other coinhibitory/
costimulatory molecules, cytokines, or epigenetic programs is a promising approach to
improve immunotherapies.

5. More detailed understanding of T cell exhaustion, especially of the stem cell–like CD8
T cell subset, is essential to develop effective combination immunotherapies.

FUTURE ISSUES

1. How can we improve and prolong the reinvigoration of T cell responses?

2. Does a population of stem cell–like CD8 T cells also exist in cancer? Where are these
cells located (tumor, tertiary lymphoid structures in the tumor, lymph nodes, etc.)?

3. How are the different subpopulations of PD-1-expressing CD8 T cells (stem cell–like
and terminally differentiated exhausted cell subsets) generated and maintained?

4. How do stem cell–like and terminally differentiated CD8 T cells respond to different
immunotherapies?

5. What are the underlying reasons for PD-1-targeted therapy failure in cancer patients?

6. Why do most patients who respond to therapy not achieve complete responses?
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