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Abstract

The development of potent cholesterol-reducing medications in the last
decade of the twentieth century has altered the approach to prevention and
treatment of cardiovascular disease (CVD). Initial experience with statins,
and more recently with the addition of PCSK9 inhibitors, has proven that
human CVD, like that in animal models, can be halted and regressed. Avail-
able clinical data show that the lower the achieved level of low-density
lipoprotein cholesterol, the greater the regression of disease. Investigative
studies are now aimed to understand those factors that both accelerate and
impede this healing process. Some of these are likely to be modifiable, and
the future of atherosclerotic CVD treatment is likely to be early screening,
use of measures to repair atherosclerotic arteries, and prevention of most
CVD events.
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INTRODUCTION

Although the description of atherosclerosis as a disease associated with excess lipid, primarily
cholesterol accumulation within the artery, traces back to the nineteenth century, our understand-
ing that this disease can be cured dates to the mid-twentieth century. Studies in animals and in
occasional patients described the reduction of atherosclerosis and the opening of partially occluded
arteries with manipulations that markedly reduced circulating levels of cholesterol-containing
lipoproteins (1).

More recently, potent cholesterol-reducing medications and the development of improved
noninvasive methods to assess vascular disease have confirmed that it is possible to cure, or at least
reduce, atherosclerosis. To determine the mechanisms for this, investigative studies first required
an animal model that would develop high circulating levels of cholesterol and atherosclerotic le-
sions. Rats do not develop high levels of cholesterol when their dietary cholesterol is markedly in-
creased; this is because the rat liver reduces its cholesterol biosynthesis (2). In contrast, cholesterol-
fed rabbits develop atherosclerosis, in part due to a relative deficiency of hepatic lipase (3), the
final enzyme in chylomicron and VLDL (very-low-density lipoprotein) metabolism. Regression
was first illustrated in this model when investigators showed that a change back to a standard rab-
bit diet reduced cholesterol-rich arterial plaques (4). Subsequently, studies in monkeys and pigs
(1) confirmed the bidirectional changes in atherosclerotic plaque size associated with changes in
blood cholesterol (Figure 1). Studies in rabbits also illustrated that the size and/or the composi-
tion of lipoproteins was critical for atherosclerosis development. This was accidentally discovered
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Figure 1

Cholesterol effects on atherosclerotic lesion biology. Hypercholesterolemia, found in the circulation of most
adults in the western world, leads to lipid collection within the arterial wall (yellow arrow). This promotes or
is accompanied by the influx of inflammatory macrophages (indicated in red). But atherosclerosis is reversible
(gray arrow). Marked reductions in cholesterol reduce the lipid content of the atherosclerotic plaque. Repair
also requires the influx of alternatively activated or reparative macrophages (shown in blue) and an increase in
arterial collagen. A more stable lesion results, which in humans translates to a reduction in acute clinical
events.
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in an investigation of the relationship between atherosclerosis and diabetes; diabetic rabbits have
reduced disease despite increased circulating cholesterol and triglyceride levels (5). The reason for
this is that the circulating lipoproteins, primarily chylomicrons, are too large to enter the arterial
wall (6).

Mice can be genetically altered to lack apolipoprotein (Apo)E,which is required for clearance of
partially metabolized (remnant) lipoproteins; to lack the low-density lipoprotein receptor (LDLr);
or to overexpress ApoB. Such mice become hypercholesterolemic and develop atherosclerosis, es-
pecially when fed a diet that contains large amounts of cholesterol and saturated fat. These single
genetic variations are sufficient to create atherosclerosis in animals that are otherwise atheroscle-
rosis resistant. Thus, the only ingredient required to produce atherosclerotic lesions is an elevated
level of ApoB lipoproteins.

Within the past decade, a number of methods have been developed to explore the biology of
atherosclerosis regression in mice (7). Switching from a high-cholesterol to a chow diet allows re-
gression in some models, and usually requires blood cholesterol reductions to less than 200 mg/dl.
Transplant of aortic segments with lesions that have developed in hypercholesterolemic mice into
mice with low (i.e., normal) cholesterol levels leads to regression.Other regression methods entail
genetically reversing hypercholesterolemia (8, 9). As noted below, these experiments have defined
many of the biological processes involved in normal and defective regression.

EVIDENCE FOR REGRESSION IN HUMANS

That atheroma can regress in humans has been suggested by autopsy studies after famine and in
the setting of chronic wasting disease, including cancer (10–13). Regression has been subsequently
confirmed by coronary angiography. As early as the mid-1960s, the first prospective, interven-
tional study of niacin therapy demonstrated improved femoral angiograms (14). Since then, lipid-
lowering therapy and intensive lifestyle changes have shown significant angiographic regression
of coronary atherosclerosis. The reductions in clinical events are greater than might be predicted
from the relatively small changes in lesion size (15–22), with >50% reduction in events in subjects
with metabolic syndrome and >80% reduction in others (23). This surprise may be explained by
the stabilization of high-risk, lipid-rich, thin-cap atheroma (vulnerable plaques), rather than sig-
nificant reduction in overall plaque area. This stabilization and reversal have been demonstrated
by several invasive and noninvasive imaging modalities (below), highlighting that compositional
changes in plaque independent of size changes may be worthwhile to achieve.

Some studies have evaluated only the most severe proximal lesions of the major vessels (24–27),
whereas others have included all lesions (28–31), comparing each lesion and/or a global change
score of all lesions. As can be expected, more dramatic regression has been noted when fewer,
more severe lesions were followed over time (32), which overall has made comparison of these
studies challenging. Regardless, regression has been visualized by coronary angiography and has
since been confirmed by other invasive and noninvasive imaging modalities as well.

Beyond angiography, intravascular ultrasound (IVUS) offers direct imaging of the artery wall,
including the intima, media, and external elastic lamina, with some ability to characterize plaque
composition and volume. In several large prospective randomized clinical trials of lipid-lowering
therapy in patients with stable coronary artery disease, IVUS has demonstrated plaque regression
as measured by percent atheroma volume (PAV) and total atheroma volume (TAV). Higher-
intensity statin therapy is associated with small but significant improvements in PAV and TAV
paralleling significant reductions in LDL cholesterol, particularly in the lowest LDL cholesterol
levels (below 88 mg/dl) (33–36). Addition of ezetimibe to statin therapy results in significantly
more regression than high-intensity statin therapy alone (37). More recently, a large randomized
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trial of the PCSK9 inhibitor evolocumab showed significant reductions in PAV and TAV with
mean LDL cholesterol below 40 mg/dl, as compared with progression on statin therapy with
mean LDL cholesterol of approximately 90 mg/dl (38). A meta-regression of 11 randomized trials
including >7,000 patients showed that at a median of 18 months of follow-up, the rates of plaque
volume regression were significantly associated with the incidence of myocardial infarction or
revascularization but not with major adverse cardiovascular events (39). Moreover, these IVUS
studies have shown evidence of greater regression as LDL cholesterol is lowered well below
70 mg/dl (40).

More limited outcomes benefit with plaque regression has also been demonstrated by carotid
ultrasonography. Carotid intima media thickness is a validated measure of carotid atherosclerosis
that predicts future cardiovascular events (41). Several randomized trials of lipid-lowering therapy
(particularly niacin) have shown significant regression of carotid intima media thickness (41–45)
with some associated reduction in clinical cardiovascular events (46); however, larger-scale studies
demonstrating reduction in events are lacking.

Other imaging techniques have shown regression as well but lack outcomes data. Optical co-
herence tomography is a newer intravascular imaging technique that provides higher resolution
than IVUS, especially in its ability to image the intima, and thus better visualizes high-risk, thin-
cap fibroatheroma, at the expense of poorer definition of the external elastic lamina. To date, one
prospective randomized trial has evaluated patients with angina and intermediate, lipid-rich plaque
by optical coherence tomography before and after therapy with ezetimibe and fluvastatin versus
fluvastatin alone. After nine months, fibrous cap thickness significantly increased in both groups,
but the change in cap thickness was significantly greater in the ezetimibe–fluvastatin group, sug-
gesting that greater LDL cholesterol reduction is associated with more favorable plaquemorphol-
ogy (47). Near-infrared spectroscopy is another intravascular imaging technique that can evaluate
the extent of plaque lipid content, reported as the lipid-core burden index. In a small prospective
randomized trial of short-term high-intensity statin therapy versus standard-of-care statin therapy
of patients with multivessel coronary artery disease referred for percutaneous coronary interven-
tion with at least one other severely obstructive lesion, median reduction in lipid-core burden
index (reduction in lipid content) was greater in the high-intensity statin group (89).

Noninvasive imaging techniques have similarly demonstrated atheroma regression and favor-
able changes in plaque composition. Coronary commuted tomography angiography (CCTA) can
visualize luminal stenosis as well as plaque composition (calcification versus noncalcification) and
arterial remodeling. Noncalcified plaque with spotty calcification, a surrounding ring of high at-
tenuation, positive remodeling, and low Hounsfield units are associated with high risk (48). In
one large retrospective study of patients being evaluated for coronary artery disease, those on
statin therapy had features of plaque regression with reduction in low-attenuation plaque, re-
duction in noncalcified plaque, and increase in calcified plaque (49). A randomized trial of lipid-
lowering therapy versus placebo in HIV patients showed a significant reduction in noncalcified
plaque volume and favorable remodeling of high-risk plaque features with significantly fewer low-
attenuation plaques and significantly less positive remodeling in the statin group, as measured by
CCTA at baseline and at one year of follow-up (50).

Other noninvasive imaging modalities have highlighted the ability to regress plaque as well.
UnlikeCCTA,magnetic resonance imagining (MRI) andmagnetic resonance angiography (MRA)
have trouble imaging coronary anatomy and plaque characteristics in detail, as motion artifact and
technical difficulties reduce contrast-to-noise ratio, spatial resolution, and volumetric coverage
(38). Therefore, the use of coronary MRA remains largely limited to the proximal portion of
all major coronary arteries (38, 51). Imaging of plaque characteristics by MRI has been more
successful than lumen analysis (51). No clinical trials to date have been completed to demonstrate
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coronary artery plaque regression with this technique. However, the use of MRI and MRA to
visualize carotid atherosclerosis is more feasible, given that the carotid arteries are of larger caliber
and stationary (38, 48). Randomized trials of lipid-lowering therapy have demonstrated significant
regression of carotid plaque as assessed by MRI after 18 months of therapy in terms of reduction
of vessel wall area and volume (52, 53), and after two years and three years of therapy in terms of
reduction in lipid-rich necrotic core (54, 55).

Both perfusion andmolecular imaging with cardiac positron emission tomography (PET) have
also demonstrated plaque regression. Prospective trials of intensive lifestyle intervention with and
without pharmacologic therapy demonstrated reduction in size and severity of perfusion abnor-
malities as compared to antianginal therapy alone. Progressively more aggressive lifestyle inter-
vention approaches were associated with fewer coronary events on follow-up (56, 57). Molecular
imaging of plaque inflammation has been validated by PET with the radiotracer 18F-FDG (fluo-
rodeoxyglucose) and has shown reduced inflammation associated with reduced clinical cardiovas-
cular events with use of statin therapy (38).

An important clinical goal should be to use clinical imaging, reductions in plaque size, and in-
dices of instability to predict individual response to therapy.Most vulnerable plaques likely rupture
without any clinical significance; therefore, focusing on isolated lesions, e.g., the most advanced
plaques, might not be predictive. In contrast, risk of cardiovascular events associates with cardio-
vascular risk factors, exclusive of imaging (58). Probably because of the multiplicity of lesions,
most of which are nonobstructive, medical therapy would be predicted to have advantages over
lesion-based therapy in patients with stable coronary artery disease. Thus, while patients with
angina have more rapid symptomatic improvement with surgery or stent placement, landmark
studies show that medical treatments offer similar long-term benefit (31, 59). This contrasts with
the great benefit of interventional approaches during an acute event.

While marked cholesterol reduction will reduce and remodel atherosclerotic lesions in the ma-
jority of patients, it is important to identify patients who require additional approaches. Subgroup
analysis of the IVUS studies has assessed a number of markers associated with increased CVD and
greater inflammation. However, neither higher C-reactive protein (60) nor lipoprotein (a) (61)
levels negate the benefits of reducing LDL cholesterol to induce regression. Although patients
with diabetes also benefit from marked LDL reduction (62), higher on-treatment LDL levels,
hypertension, hyperglycemia, and elevated triglycerides continue to contribute to atherosclerosis
progression (33, 35, 62).

MOUSE MODELS AND THE BIOLOGY LEARNED FROM THEM

Animal models allow for elucidation of the pathophysiology underlying the benefits of cholesterol
reduction. IVUS studies in humans suggest that cholesterol reduction leads to a rapid reduction
in necrotic core and lipid infiltration of the lesions (60), and multiple methods have been de-
veloped in mouse models to reproduce this biology, obtain more detailed molecular dissection
of the pathology, and identify interventions that improve or inhibit regression. These methods
include the transplantation of atherosclerotic aortic segments from a hypercholesterolemic to a
low-cholesterol recipient mouse (63), genetic conditional induction of defective liver production
of ApoB lipoproteins (64), and transient inhibition of LDL receptors using antisense oligonu-
cleotides (9).These studies have shown that marked cholesterol reduction leads to a rapid decrease
in vascular lipid and initiates multiple inflammation-resolving programs in the immune system.
For example, the inflammatory (M1) and often cholesterol-loaded macrophages can exit the le-
sions, and most of the remaining macrophages, which continue to be recruited from monocytes
in the circulation, are required for tissue remodeling and creation of a vascular scar (65, 66). As in
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humans, the regressed lesion may not be altered in size, but its pathology, as reflected by cellular
composition and extracellular matrix content, is markedly altered.

From these models, we can learn of many metabolic and cellular factors that prevent normal
regression. Increased atherogenesis, however, due to diabetes has been difficult to reproduce in
mice. One reason for this is the exacerbation of the hypercholesterolemia in ApoE–/– and LDLr–/–

mouse models, which likely swamps out effects of diabetes per se. Experiments in which early
lesions are assessed in non-hypercholesterolemic mice have illustrated a role of the receptor for
advanced glycation endproducts (RAGE) (67) and the fatty acid metabolizing enzyme acyl CoA
synthetase 1 (ACSL1) (68) in enhancing lesion formation in diabetic mice.

In contrast to the confounding effects of extreme hypercholesterolemia in diabeticmousemod-
els of atherosclerosis progression, in regression studies a simpler setting is possible, because to
initiate plaque resolution, plasma lipids are returned to normal in both the normoglycemic and
hyperglycemic mice (e.g., 69). The defect in atherosclerosis regression due to diabetes is very
robust, ∼50% impairment (69, 70), and has been tied to hyperglycemic activation of the bone
marrow (71). Defective regression is exacerbated by overexpression of the human form of the
aberrant glucose metabolizing enzyme aldose reductase (72) and is ameliorated by increasing the
production of ApoA-I (73), the major protein of high-density lipoprotein (HDL), which in certain
contexts suppresses the proliferation of bone marrow precursors of neutrophils and monocytes
(74).

ApoA-I also promotes the regression of atherosclerosis in nondiabetic mice (75). Presumably
this is related to its ability to form functional HDL particles, as the lowering of ApoB-containing
lipoproteins was ineffective in promoting regression when ApoA-I (and HDL) was deficient (75).
Consistent with this was the finding that infusions of functional, but not dysfunctional, HDL
promoted plaque regression in ApoE–/– mice (76). These types of studies emphasize the differ-
ence between HDL particle functionality and HDL cholesterol. The former is still considered
clinically important as an atheroprotective factor by many, and the latter is now considered to be
an inadequate marker in intervention trials, despite its inverse association with CVD in obser-
vational studies. Besides promoting cholesterol efflux from plaque macrophages, other protective
properties of HDLmay be promoting these cells to adopt anM2-like state, which is inflammation
resolving (65), and reorganizing lipid rafts to make macrophages less responsive to inflammatory
stimuli (77–79).

The effect of HDL on macrophage phenotype is a reminder of the broad role of macrophages
in atherosclerosis. Historically, they have been shown to be the central cell in the formation and
progression of atherosclerotic plaques, and we refer the reader to other reviews for more com-
prehensive information (e.g., 80–82). One highlight for the purposes of the present review is that
the recruitment of CCR2+ circulating monocytes (termed LY6Chi in mice or CD14+CD16−

in humans) to the plaque is a major step in atherogenesis because these cells become plaque
macrophages. This explains why CCR2 inhibitors have attracted attention as anti-inflammatory
agents of potential value in atherosclerosis and other inflammatory diseases (e.g., 83, 84).

What is less well appreciated is that to resolve inflammation in atherosclerotic plaques, the
recruitment of CCR2+ cells is also required—even with a dramatic lowering of plasma levels of
ApoB-containing lipoproteins (65). In contrast to the fate of the cells recruited in a progression
environment, in regression, the LY6Chi monocytes become macrophages with M2-like proper-
ties, which then exert processes that serve to dampen inflammation (e.g., by secretion of IL-10)
and to clean up dead and dying cells (by efferocytosis). There have been other inflammatory
diseases (e.g., 85) in which newly recruited CCR2+ (LY6Chi) monocytes become inflammation
resolving. Although these monocytes have traditionally been thought to become only M1 cells,

196 Goldberg • Sharma • Fisher



ME71CH14_Goldberg ARjats.cls December 24, 2019 12:59

atherosclerosis regression may be an example of the hypothesis (86) that a “burst” of inflammatory
cells is required to jump start the inflammation resolution process.

A series of elegant studies (reviewed in 87) has shown the importance of efferocytosis in plaque
pathology. It has been known for some time that as plaques advance, macrophage apoptosis is
part of a homeostatic mechanism to regulate the population size of these cells. In early stages of
atherosclerosis, apparently there are enough healthy macrophages to efferocytose the dying ones,
which protects the plaque microenvironment from the release of inflammation-inciting damage-
associated molecular patterns (DAMPS), prothrombotic tissue factor, and a variety of chemo-
and cytokines. As plaques advance, however, efferocytosis efficiency wanes, which promotes the
formation and expansion of the necrotic core. Thus, by the time a regression stimulus is applied
in the typical mouse models, this process of failed efferocytosis and necrotic core expansion is
well entrenched. The favorable change in the plaque microenvironment from the rapid reversal
of hyperlipidemia apparently allows the newly recruited LY6Chi monocytes to polarize toward
the M2 state and exert robust efferocytosis activity. In the diabetic setting, both in vitro and in
vivo, assumption of the M2 state by macrophages is inhibited despite lipid lowering (69, 71). This
defect in macrophage biology is a likely contributor to the impaired regression in diabetic mouse
models of atherosclerosis.

CONCLUSIONS

Information obtained from animal experiments and the effects of marked cholesterol reduction
in humans have changed our view of the natural history of atherosclerosis. A reversal of the hy-
percholesterolemia that commonly develops in humans in the United States andWestern Europe
initiates the repair of the vessel. This process, termed regression, is responsible at least in part for
the marked reduction in angina and acute events in patients with coronary artery disease. Regres-
sion involves loss of lesional lipids, but for success, there also has to be infiltration and conversion
of macrophages from an inflammatory to a reparative phenotype, and increased collagen accumu-
lation.That these processes are integral to themaximal response to the regression stimulus of lipid
lowering is clear frommouse studies, in which reversal of hypercholesterolemia alone did not fully
accomplish favorable plaque remodeling, especially in diabetic mice. A similar phenomenon may
be reflected in the CANTOS study, which revealed that in some subjects, CVD risk reduction was
observed with aggressive lipid lowering and an anti-inflammatory therapy (88). Thus, augmenta-
tion of each of these processes should reduce plaque vulnerability and reduce CVD events.
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