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Abstract

Cardiac pacing to treat bradyarrhythmias has evolved in recent decades.
Recognition that a substantial proportion of pacemaker-dependent patients
can develop heart failure due to electrical and mechanical dyssynchrony
from traditional right ventricular apical pacing has led to development of
more physiologic pacing methods that better mimic normal cardiac con-
duction and provide synchronized ventricular contraction. Conventional
biventricular pacing has been shown to benefit patients with heart failure
and conduction system disease but can be limited by scarring and fibrosis.
His bundle pacing and left bundle branch area pacing are novel techniques
that can provide more physiologic ventricular activation as an alternative to
conventional or biventricular pacing. Leadless pacing has emerged as an-
other alternative pacing technique to overcome limitations in conventional
transvenous pacemaker systems. Our objective is to review the evolution of
cardiac pacing and explore these new advances in pacing strategies.
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INTRODUCTION

Cardiac pacing has been the main treatment for patients with bradycardia due to various patholo-
gies, such as sinus node dysfunction or atrioventricular (AV) block. Technological advances have
been geared toward determining the optimal ventricular pacing site to best mimic normal hu-
man ventricular physiology and conduction. Long-term right ventricular (RV) pacing (RVP) can
lead to pacing-induced cardiomyopathy due to left ventricular (LV) mechanical dyssynchrony in
5.9-39% of patients (1). This risk has motivated the emergence of new pacing strategies for more
physiologic pacing (Figure 1a—c). These in turn have also been applied to patients with heart fail-
ure (HF) with dyssynchronous LV contraction related to conduction system disease. Conventional
pacing systems are also limited by the use of transvenous leads, as well as subcutaneously placed
pulse generators that can be prone to infection, vascular access challenges, and mechanical stres-
sors that can cause lead malfunction. Leadless pacing systems have been developed (Figure 1d),
which are progressing from single to dual chamber pacing capability and can now be integrated
with defibrillation and transvenous components.

CARDIAC PHYSIOLOGIC PACING

RVP was the initial pacing strategy for those requiring permanent pacemakers. However, since its
development, studies have shown that RVP produces nonphysiologic LV activation with creation
of left bundle branch block (LBBB)-like activation. Retrospective analysis of the Mode Selec-
tion Trial (MOST) reported that the risk of HF hospitalization and atrial fibrillation significantly
increased with higher pacing burden irrespective of pacing mode (2). The Dual Chamber and
VVI Implantable Defibrillator (DAVID) trial highlighted the negative consequences of ventric-
ular dyssynchrony with RVP in patients with reduced LV systolic function. One-year survival
free of the composite endpoint was 84% for patients treated with ventricular backup pacing
at 40 beats/min compared with 73% for patients with dual-chamber rate-responsive pacing at
70 beats/min, with higher rates of mortality and HF hospitalization in the dual-chamber rate-
responsive pacing group (3). The DAVID trial contributed to wide adoption of RVP avoidance
algorithms in patients who are not dependent on ventricular pacing. In addition to reduction of un-
necessary pacing, clinical practice has sought alternative strategies for more physiologic pacing to
improve LV dyssynchrony and clinical outcomes. These have included cardiac resynchronization
therapy (CRT) and more recently conduction system pacing (CSP), which includes His bundle
pacing (HBP) and left bundle branch area pacing (LBBAP).

Cardiac Resynchronization Therapy

CRT has emerged as one of the most remarkable advances in HF therapy and management.
Biventricular pacing (BiVP) with short atrioventricular delay was proposed as a supplementary
treatment of advanced HF in the 1990s (4, 5). Conduction disease, including LBBB or intraven-
tricular conduction delay, is present in a significant proportion of patients with HF, leading to
dyssynchronous ventricular contraction. CRT is typically applied with BiVP, most commonly
with a RV endocardial lead and LV pacing delivered via a lead in a LV branch of the coronary
sinus or less commonly a lead placed on the LV epicardium. CRT has been shown to improve
functional status and improve survival outcomes in selected patients with cardiomyopathy and
widened QRS durations reflective of LBBB or intraventricular conduction delay (6). Over the
past few decades, the evaluation of CRT has progressed rapidly from case studies to randomized
controlled trials (Table 1).

Multisite Stimulation in Cardiomyopathy (MUSTIC) was the first randomized controlled
study on CRT. It showed that BiVP significantly improves exercise tolerance and quality of life
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Table 1 Major clinical trials of cardiac resynchronization therapy

Sample
Study Year size Endpoint Design Findings
MUSTIC-SR (7) 2001 48 6MWT, QOL, pVO,, Single-blinded, CRT-P improved 6MWT,
Hosp randomized QOL, pVO,; reduced
controlled, crossover, Hosp
6 months
MIRACLE (8) 2002 453 NYHA, QOL, pVO, Prospective, CRT-P improved NYHA,
randomized, pVO,, 6SMWT
double-blind, parallel
controlled
MUSTIC-AF (71) | 2002 131 6MWT, QOL, pVO;,, Single-blinded, CRT-P (high dropout
Hosp controlled, crossover, rate) improved all;
6 months reduced Hosp
PATH-CHEF (64) 2002 42 6MWT, pVO, Single-blinded, CRT-P improved 6MWT,
randomized, pVO;
crossover controlled
MIRACLE-ICD 2003 369 6MWT, QOL, Hosp Prospective, CRT-D improved all
(72) multicenter, compared to baseline
randomized,
double-blind, parallel
controlled
MIRACLE-ICD 2004 186 VE/CO;, pVO,, NYHA, Double-blinded, ICD CRT-D improved NYHA,
11 (73) QOL, 6 MWT, LV versus CRT-D, VE/CO3, volumes,
volumes/LVEF 6 months LVEF
COMPANION 2004 1,520 All-cause death or Hosp Prospective, CRT-P/CRT-D reduced
(10) multicenter, all-cause death and
randomized Hosp
controlled
CARE-HF (9) 2005 813 All-cause death or Hosp Prospective, CRT-P reduced all-cause
for major CV event and multicenter, death or Hosp from
death from any cause randomized major CV event and
controlled death from any cause
REVERSE (74) 2008 610 HF clinical composite Double-blinded, No change in HF clinical
response, LVESVi, randomized composite response or
HFH, mortality controlled, GDMT, mortality, reduction in
CRT-P £+ ICD, LVESVi and HFH
12 months
MADIT-CRT (75) | 2009 1,817 HF events or death and Randomized controlled, | CRT-D reduced HF
LVESVi CRT-P, CRT-D, events or death and
2.4 years LVESVi but no change
in mortality
RAFT (76) 2010 1,798 Death from any cause or Randomized controlled, | CRT-D reduced death

HFH, death from any
cause, death from CV
cause and HFH

ICD alone versus
CRT-D, 40 months

from any cause or
HFH, death from any
cause, and HFH

Abbreviations: 6MWT, 6-min walk test; CRT, cardiac resynchronization therapy; CRT-D, biventricular pacer with a defibrillator; CRT-P, biventricular
pacemaker; CV, cardiovascular; GDMT, guideline-directed medical therapy; HE, heart failure; HFH, heart failure hospitalization; Hosp, hospitalizations;

ICD, implantable cardioverter-defibrillator; LV, left ventricular; LVEF, left ventricular ejection fraction; LVESV], left ventricular end-systolic volume index;
NYHA, New York Heart Association functional class; pVO,, peak oxygen consumption; QOL, quality of life; VE/CO,, ventilation/carbon dioxide ratio.
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in patients with chronic HF and intraventricular conduction delay. Overall, 48 patients who had
severe HF [New York Heart Association (NYHA) class III] with normal sinus rhythm and QRS
duration of more than 150 ms were enrolled. They underwent CRT placement with leads in
the right atrium and each ventricle with a 3-month period of inactive pacing and a 3-month pe-
riod of active pacing. The primary endpoint, distance walked in 6 min, was significantly greater
with active pacing; secondary endpoints of quality of life measured by questionnaire, peak oxy-
gen consumption, and hospitalizations for HF were also superior in the active pacing group (7).
Subsequently, the Multicenter InSync Randomized Clinical Evaluation (MIRACLE) study was
published, with blinded assessment of the effects of CRT, including symptoms, quality of life, and
HF status. Similar to the MUSTIC trial, MIRACLE showed significant clinical improvement in
patients who underwent CRT pacing, when randomized to blinded BiVP “on” versus “off” for
6 months (8).

The paradigm shift to use of CRT in selected populations of patients with HF was solidified af-
ter large randomized clinical trials demonstrated improvements in primary endpoints of all-cause
mortality or HF hospitalizations. In the Cardiac Resynchronization—Heart Failure (CARE HF)
and Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure
(COMPANION) trials (9, 10), patients with NYHA class III and IV HF due to LV systolic dys-
function and ventricular dyssynchrony with QRS duration >120 ms on optimal guideline-directed
medical therapy were enrolled. CARE HF evaluated the role of CRT pacing (CRT-P), whereas
COMPANION investigated CRT with a defibrillator (CRT-D), with both endpoints of death
from any cause and unplanned hospitalizations for HFE. These trials showed that CRT decreases
HF hospitalizations and overall mortality (9, 10). Technical developments that have improved
delivery of CRT include multipolar leads, which enable delivery of LV pacing from different
electrode positions, and combinations, which can be advantageous in avoiding diaphragmatic
stimulation and achieving more basal stimulation.

The European Society of Cardiology and American College of Cardiology/American Heart
Association HF guidelines, as modified in 2013, assigned a class I recommendation for CRT in
patients with LV ejection fraction (LVEF) <35%, LBBB, QRS duration >150 ms, and NYHA
functional class III or ambulatory class IV chronic HF despite adequate medical treatment (11,
12). The 2023 Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin
American Heart Rhythm Society (LAHRS) Guideline on Cardiac Physiologic Pacing for the
Avoidance and Mitigation of Heart Failure (1) extended class II indications for CRT to select
patients with narrower QRS durations or LVEF 36-50% (Figures 2 and 3) (1).

Conduction System Pacing: His Bundle Pacing

About 30% of patients who undergo implantation of a CRT device do not improve their HF
symptoms, and the inability to stimulate severely diseased myocardium or myocardial scar without
a large stimulus to QRS latency is a major obstacle for CRT delivery (13). CSP that can reduce
intraventricular and atrioventricular dyssynchrony by providing a more physiologic pattern of
ventricular electrical activation has gained popularity over the past few years and has emerged as
a potential alternative to RVP and in some situations CRT.

The His-Purkinje system is essential for the maintenance of the synchronous ventricular con-
traction via endocardial to epicardial and apical to basal electrical activation. HBP emerged as an
alternative to BiVP with the goal of maintaining a physiologic pattern of ventricular activation
via the native His-Purkinje system (14). The His bundle lies within the membranous portion of
the interventricular septum surrounded by fibrous connective tissue and divides to form right and
left bundles as it enters the muscular septum (15). Initial studies were conducted in animal mod-
els (16, 17) and first described in patients in early 2000 by Deshmukh et al., who demonstrated
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Cardiac physiologic pacing strategies for patients with pacing indications. Adapted from Reference 1 with permission. Abbreviations:
CM, cardiomyopathy; CRT, cardiac resynchronization therapy; HBP, His bundle pacing; LBBAP, left bundle branch area pacing;

LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; V, ventricular.

that implanting a transvenous pacing lead to capture the His bundle has the potential to improve

cardiac function and LV dimensions compared to RVP (18).

With HBP, an active fixation pacemaker lead is affixed into the proximal intraventricular

septum (Figure 15). There can be selective capture of the His bundle, in which on
bundle is stimulated, or nonselective capture, involving fused capture of the His b

ly the His
undle and

adjacent ventricular tissues (19). Selective capture criteria include (#) pacing stimulus to QRS

onset interval equal to native His to QRS onset interval, (9) discrete local ventricular el

ectrogram

on the pacing lead, (c) paced QRS morphology matching native QRS morphology, and (d) single
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Cardiac physiologic pacing strategies for patients with heart failure indications. Adapted from Reference 1 with permission.

Abbreviations: CRT, cardiac resynchronization therapy; HBP, His bundle pacing; LBBAP, left bundle branch area pacing; LBBB, left

bundle branch block; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association functional class.
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capture threshold (His capture). Nonselective capture criteria include (#) pacing stimulus to QRS
onset interval usually zero, as there is no isoelectric interval between pacing stimulus and QRS,
which can lead to an appearance of a pseudodelta wave from local myocardial capture; (/) local
ventricular electrogram directly captured by pacing stimulus without a discrete component;
(¢) paced QRS duration longer than native QRS duration with concordant paced QRS electrical
axis and intrinsic QRS axis; and (d) two distinct capture thresholds—RV and His capture (20).
Selective capture results in greater reduction in QRS width; however, nonselective capture
appears to have a similar LV activation time and pattern (21).

HBP for patients needing a pacemaker. Retrospective and prospective studies report overall
success rates of 65-94% for HBP used in patients with pacemaker indications (Table 2) (22).
Pastore et al. sought to study the effects of HBP on left atrial (LA) function in patients with normal
cardiac function who needed permanent pacemaker implantation (23). Patients first underwent
3 months of His area pacing followed by 3 months of RVP with various echo parameters such as
systole-diastole (S-D) LV electromechanical delay, S-D intra-LV dyssynchrony, myocardial per-
formance index and mitral annular tissue Doppler early diastolic velocity (E'), and LA function
evaluated after each 3-month period. His area pacing showed more physiologic LV electrome-
chanical activation/relaxation with higher LA volumes pre-atrial contraction and improved total
emptying fraction and lower risk of atrial fibrillation progression compared to RVP (23). Another
large retrospective observational study examined clinical outcomes of HBP at one hospital ver-
sus RVP at a sister hospital (24). HBP was successful in 92% of patients. The primary composite
endpoint of death, HF hospitalizations, or upgrade to BiVP was significantly lower in the HBP
group; this difference was primarily observed in patients with ventricular pacing burden >20%
(24). Another multicenter study of 844 patients receiving HBP for pacemaker indications demon-
strated reasonable long-term success rates but highlighted high pacing thresholds as a limitation
of HBP, which necessitated device replacement due to battery depletion in 19.6% of patients over
a mean follow-up of 5.9 years and led to interruption of HBP in 7.6% (25).

HBP as an alternative to CRT. Several retrospective and prospective observational studies have
used HBP in cases where CRT was indicated but where resynchronization via the coronary si-
nus was not achievable (26). Success rates range from 56% to 95 % with significant improvements
reported in QRS duration, LVEF, and NYHA functional class (Table 2). A retrospective mul-
ticenter study of 106 patients using HBP for resynchronization therapy reported that HBP was
able to narrow the QRS in those with LBBB with improvement in LVEF and NYHA functional
class (27). In this study, HBP was attempted as a rescue strategy in patients with failed LV lead or
nonresponse to BiVP, or as a primary strategy in patients with AV block, bundle branch block, or
high ventricular pacing burden as an alternative to BiVP (27).

In light of high nonresponse rates for traditional CRT, a few small randomized clinical trials
have evaluated HBP in patients with CRT indications. His Pacing versus Biventricular Pacing in
Symptomatic HF Patients with Left Bundle Branch Block (His-Alternative) was a randomized
trial comparing two ways of achieving cardiac resynchronization (28). Fifty patients with LVEF
<35% with LBBB and NYHA class II-IV were randomized to His-CRT versus biventricular
CRT (BiV-CRT). For HF patients with LBBB, His-CRT provided similar clinical and physi-
cal improvement, including NYHA class improvement, higher LVEF, and lower LV end systolic
volume compared to BiV-CRT at the expense of higher pacing thresholds (28). The His-SYNC
(His Bundle Pacing versus Coronary Sinus Pacing for Cardiac Resynchronization Therapy) trial
was a multicenter randomized controlled trial where patients eligible for conventional CRT were
randomized to His-CRT or BiV-CRT with coronary sinus lead placement (29). Primary outcomes
were reduction in QRS duration, absolute improvement in LVEF and echocardiographic response
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Table 2 Major studies of His bundle pacing

Sample
Reference Year size Endpoint Design Findings
18 2000 18 LVEDD, LVESD, LVEE, | Prospective, patients Improvement in LV
functional status with chronic AF, dimensions, functional
LVEF <40%, QRSd status, cardiothoracic
<120 ms ratio, LVEF
77 2006 18 NYHA, 6MWT, QOL, Prospective, crossover, Improvement in NYHA,
hemodynamic patients with chronic 6MWT, QOL,
parameters AF, AV junction hemodynamic
ablation randomized parameters
to 6 months of RVP
versus para-Hisian
HBP
78 2010 | 91 Not reported Prospective, all patients No long-term clinical
with AV block as outcomes
pacing indication
26 2013 16 NYHA, LVEE, LV Prospective, HBP in Improvement in NYHA;
dimensions patients with failed LV improvement in LVEF
leads and LV dimensions
79 2014 38 LVEFE, NYHA, 6MWT, Prospective, crossover, Improvement in LVEF; no
QOL randomized patients significant improvement
with AV block, narrow in NYHA, 6MWT, QOL
QRS, LVEF >40%,
12 months HBP versus
RVP
80 2015 38 Pacing configurations Prospective, HBP in Lower pacing thresholds
patients with using bipolar HBP lead
indication for CRT and RV lead
configuration
81 2015 94 HFH, mortality and AF Prospective, patients Improvement in HFH; no
with PPM indication, significant improvement
HBP versus RVP in mortality or AF
24 2018 332 All-cause mortality and Retrospective, patients Improvement in composite
HFH with PPM indication, end point (all-cause
HBP versus RVP mortality, HFH, and
upgrade to BiV pacing)
with HBP
27 2018 39 NYHA, LVEF, CRT Retrospective, Improvement in NYHA,
response multicenter, HBP in LVEF, overall response
patients with RBBB, rate
CRT indication as
primary or rescue
strategy
82 2019 74 NYHA, LVEE, LV Prospective, HBP in Improvement in NYHA
dimensions patients with LBBB and LVEF; decrease in
and indication for LV dimensions
CRT

482 Vajapey » Chung

(Continued)



Table 2 (Continued)

Sample
Reference Year size Endpoint Design Findings
83 2019 | 60 QRSd, LVEF Retrospective, HBP for Improvement in QRSd and
CRT in patients with LVEF
chronic RVP
29 2019 | 41 QRSd, LVEF at Prospective, randomized | His-CRT is not superior to
(His-Sync Trial) 6 months, time to controlled trial, BiV-CRT
cardiovascular Hosp or His-CRT versus CS electrocardiographic
death at 12 months BiV-CRT; crossover (QRSd) or echo (LVEF)
mandated for HBP if parameters
failed to achieve 20%
QRS narrowing, QRS
width <130 ms, or
high pacing thresholds
>5V/1 ms
28 2021 50 QRSd, NYHA, LVEF, Prospective, randomized | His-CRT provided similar
(His-Alternative LVESV trial His-CRT versus clinical and physical
Trial) BiV-CRT, with improvement compared
crossover permitted in to BiV-CRT at expense
patients with HF of higher pacing
thresholds

Abbreviations: 6 MW, 6-min walk test; AF, atrial fibrillation; AV, atrioventricular; BiV, biventricular; CRT, cardiac resynchronization therapy; CS, coronary
sinus; HBP, His bundle pacing; HFH, heart failure hospitalization; Hosp, hospitalizations; LBBB, left bundle branch block; LV, left ventricular; LVEDD,
left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic dimension; LVESYV, left ventricular
end-systolic volume; NYHA, New York Heart Association functional class; PPM, permanent pacemaker; QOL, quality of life; QRSd, QRS duration; RBBB,
right bundle branch block; RVP, right ventricular pacing.

(LVEF improvement >5%) at 6 months, and cardiovascular hospitalization or death at 12 months.
With a small sample size of 41 patients, study outcomes showed no significant differences in QRS
duration between the two groups, similar improvement in LVEF, and no significant differences
in cardiac hospitalization or death. HBP patients had higher pacing thresholds compared with
BiV-CRT. This trial showed that HBP was not superior to CRT; however, it suggested HBP
could be a reasonable alternative for patients undergoing CRT where coronary sinus anatomy is
unfavorable (29). HOPE-HF (His Optimized Pacing Evaluated for Heart Failure trial) (30) was
a multicenter prospective randomized double-blinded crossover study in 167 patients with LVEF
<40%, PR > 200 ms, and either QRS duration <140 s or right bundle branch block (RBBB). Pa-
tients had His bundle leads implanted and were randomized to 6 months of pacing and 6 months
of no pacing in a crossover design. Neither the primary endpoint of peak oxygen uptake during
symptom-limited exercise nor LVEF was increased with HBP, but quality of life improved signif-
icantly with HBP. Combined HBP with BiVP, known as His-optimized CRT (HOT-CRT), was
tested in a small feasibility study of 27 patients with indications for CRT; this study reported sig-
nificantly reduced paced QRS duration compared to BiVP alone and improvements in LVEE, LV
volumes, and NYHA functional class (31).

In patients with conduction system disease, the success of HBP depends on the location of
disease within the His-Purkinje system and, in patients with LBBB and HF, whether HBP can
correct the bundle branch block. A study by Upadhyay et al. (32) showed that among 72 patients
with a LBBB pattern, complete conduction block within the proximal left conduction system was
observed in 64% of patients and intact Purkinje activation was seen in 36%. HBP corrected wide
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QRS in 85% of those with complete conduction block [both left intrahisian and proximal left bun-
dle branch (LBB)], whereas no patients with intact Purkinje activation demonstrated correction of
QRS with HBP. Disease localized to left intrahisian block was most amenable to corrective HBP
by recruitment of latent Purkinje fibers (32). Intracardiac data might be more useful in predicting
response to HBP than surface electrocardiography.

Alimitation of HBP is its higher pacing thresholds compared to conventional RVP leads, which
may lead to lower pacemaker battery longevity, need for lead revision, and/or need for placement
of a back-up ventricular lead in patients who are pacemaker dependent.

Conduction System Pacing: Left Bundle Branch Area Pacing

In patients with prolonged His-ventricular interval or LBBB, HBP may not correct left bundle
conduction time because of more distal disease, in which case LBBAP may be more useful. LBBAP
(Figure 1c) is a newer technique, with a limited number of studies reporting clinical outcomes and
relatively short-term follow-up. Nevertheless, LBBAP leads can be easier to place than HBP leads
due to the wider target areas, and pacing thresholds are generally excellent, overcoming some of
the limitations of HBP. Achieving effective LBBAP with capture of the LBB or its fascicles or
capture of the left septum remains important to demonstrate (33).

The initial technique of LBBAP was developed by Huang et al. (34) in 2017. The lead tip is
advanced into the deep septum from the RV septal endocardium to the subendocardial LV septum
to directly stimulate the left bundle area. Optimal sites of fixation are generally 1-1.5 cm distal
to the His bundle. Paced QRS morphology changes from LBBB toward a RBBB pattern as the
lead is advanced into the septum (34, 35). LBBAP capture can be confirmed with various criteria,
which include (#) paced QRS morphology that shows an 1’ pattern in the V1 lead, (b)) peak LV
activation time measured from onset of pacing spike to peak R wave in leads V5-6 < 80 ms,
(¢) LBB potential with sharp high-frequency deflection distance 15-30 ms to onset of surface
QRS, (d) retrograde His or anterograde distal LBB potentials, (¢) demonstration of differential
septal and LBB capture thresholds, potentially with programmed stimulation, and (f) differential
thresholds of selective LBBAP capturing only LBB or nonselective LBBAP capturing both LBB
and adjacent local septal myocardium (36).

LBBAP in patients with pacing indications. Retrospective or prospective observational studies
in patients with pacemaker or CRT indications report success rates of 85-97% for LBBAP with
improvements in QRS duration, LV synchrony, NYHA functional class, LVEF, and LV dimensions
(Table 3) (37). Long-term safety and feasibility of LBBAP were demonstrated by a prospective
study where LBBAP was attempted in 632 patients with a 97.8% success rate. At 2-year follow-
up, patients had low lead complication rates, which were defined as a rise in LBB threshold >3V
or loss of capture, lead dislodgments, or right bundle branch injury. Patients with LBBB had
significant decreases in QRS duration, and postimplant LVEF improved in patients with QRS
>120 ms (38). In the Geisinger-Rush CSP registry, 703 patients undergoing pacemaker implanta-
tion for bradycardia were divided into LBBAP (z = 321) and RVP groups (z = 382) with a primary
outcome of composite all-cause mortality, HF hospitalization, or upgrade to BiVP. LBBAP com-
pared to RVP was associated with lower composite outcomes of mortality and HF hospitalizations
among patients with pacing burden >20% (39). LBBAP was evaluated in patients with HF with
persistent atrial fibrillation undergoing AV junctional ablation, showing a decrease in HF hospital-
izations, death, and inappropriate implantable cardioverter-defibrillator therapies (40). However,
randomized trials remain limited to small feasibility studies.

LBBAP as an alternative to CRT. LBBAP may be comparable or even preferable to CRT in
some patients with its ability to correct LBBB and reverse LV dyssynchrony. There have been
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Table 3 Major studies of left bundle branch area pacing

Sample
Reference Year size Endpoint Design Findings
84 2019 | 85 LV mechanical synchrony | Retrospective, LBBAP LV mechanical synchrony
(on SPECT MPI) versus HBP in patients similar in HBP and
with AV block LBBAP
85 2019 33 LV synchrony (echo Prospective, LV synchrony improved at
strain analysis), QRSd observational in 3-month follow-up
patients with AV block compared to baseline,
improved QRSd
43 2019 11 NYHA, NTproBNP, Retrospective, in patients | Improvement in NYHA,
LVESD, LVEF with CRT indication NTproBNP, LV size and
function
44 2021 137 LVEE NYHA, pacing Observational, patients HBP and LBBAP had
threshold with indication for greater improvement in
CRT assigned to LVEF and NYHA than
LBBAP versus HBP BiV pacing. Pacing
versus BiV pacing threshold lower in
LBBAP than HBP
86 2020 63 NYHA, LVESV, LVEF Prospective multicenter Improvement in NYHA,
observational study in LVESV, LVEF
patients with
indication for CRT
41 2021 325 QRSd, LVEE clinical (no | Retrospective, Improvement in QRSd,
HFH and multicenter in patients clinical and
improvement in with indication for echocardiographic
NYHA) and CRT response
echocardiographic
responses (>5%
improvement in LVEF)
38 2021 632 QRSd, LVEF, LBB Prospective, LBBAP had high success
capture threshold, lead observational study, in rate with low
revision patients with complications during
attempted LBBAP for follow-up up to
bradycardia or HF 24 months
indication
87 2022 40 LVEE, LVESYV, Prospective, randomized, | LBBAP had better LVEF
(LBBP- NTproBNP; LBBAP versus BiV improvement, greater
RESYNC NYHA, 6MWT, QRSd pacing in patients with reduction in LVESV and
Trial) NICM, LBBB, and NTproBNP versus
NYHA II-1V for BiV-CRT;

6 months follow-up

NYHA, 6MWT, QRSd

similar in both groups

Abbreviations: 6MWT, 6-min walk test; AF, atrial fibrillation; AV, atrioventricular; BiV, biventricular; CRT, cardiac resynchronization therapy; HBP, His
bundle pacing; HE, heart failure; HFH, heart failure hospitalization; LBB, left bundle branch; LBBB, left bundle branch block; LBBAP, left bundle branch
area pacing; LV, left ventricular; LVEDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-
systolic dimension; LVESV, left ventricular end-systolic volume; MPI, myocardial performance index; NICM, nonischemic cardiomyopathy; NTproBNP,
N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association functional class; QRSd, QRS duration; RBBB: right bundle branch block;

SPECT, single photon emission computed tomography.
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a few observational studies involving CRT-eligible patients who had LBBAP (Table 3). LBBAP
in patients with HF with LBBB achieved reduction in QRS duration, shortened LV activation
time, and improved LVEF and LV dimensions (41, 42). In comparison to BiVP, NYHA class,
plasma N-terminal pro-brain natriuretic peptide (NTproBNP) levels, and LV size and function
were significantly improved. LBBAP achieved a greater increase in LVEF compared to BiVP, with
much lower pacing threshold and higher sensing than with HBP (43, 44).

Recent small studies suggesting potential benefit of LBBAP for patients in need of CRT include
Left Bundle Branch Pacing Versus Biventricular Pacing in Cardiac Resynchronization Therapy:
A Randomized Controlled Pilot Trial (LBBP-RESYNC Trial). This was a prospective study of
nonischemic cardiomyopathy patients with LBBB randomized to LBBAP or BiVP with 6-month
follow-up. The primary endpoint was difference in LVEF improvement between the two groups.
The LBBAP-CRT group demonstrated greater LVEF improvement (mean difference 5.6%) than
the BiVP-CRT group with improvement in LV end-systolic volume, NTproBNP level, NYHA
class, and 6-min walk distance (45).

Recent studies have also demonstrated LBBAP as a viable alternative option for CRT in
patients who failed traditional BiVP due to coronary sinus lead implantation failure or failure to re-
spond to BiVP (46). CSP with HBP or LBBAP compared to BiVP was studied in an observational
nonrandomized cohort of 477 patients with class I or II indications for CRT; the investigators
reported that CSP was associated with significantly lower mortality and HF hospitalization (47).
The Left Bundle Branch-Optimized CRT (LOT-CRT) study, from an international LBBAP col-
laborative group, assessed LBBAP-optimized CRT combined with a coronary venous LV pacing
lead with conventional BiVP [RV and coronary sinus (CS) leads] versus LBBAP alone (without a
CS lead). LOT-CRT was associated with a narrower QRS duration than BiVP or LBBAP alone
and showed improved LVEE, LV volume, and NYHA class compared to baseline. The authors
concluded that LOT-CRT is a feasible option and could be an alternative when suboptimal elec-
trical resynchronization is obtained with BiV-CRT (48). Pivotal randomized clinical trials for CSP
compared to CRT in patients meeting indications for CRT are ongoing or planned. These include
the Left versus Left Randomized Clinical Trial (NCT05650658), which will compare His or LBB
pacing to BiVP in >2,000 patients with HF (LVEF < 50%) and either with a wide QRS (=130 ms)
or with/anticipated >40% pacing. The need for continued assessment of long-term outcomes was
highlighted by a European MELOS registry of LBBAP outcomes in 2,533 patients that reported
an 8.3% incidence of complications specific to the ventricular transseptal pacing route (49).

Though LBBAP has been the latest approach introduced for cardiac physiologic pacing,
LBBAP has been emerging as a dominant approach over HBP due to its superior technical perfor-
mance with lower pacing thresholds, better sensing, and larger implant target. Recommendations
for CSP, including HBP and LBBAP, are reported in the 2023 HRS/APHRS/LAHRS Guide-
line on Cardiac Physiologic Pacing for the Avoidance and Mitigation of Heart Failure and are
summarized in Figures 1 and 2 (1).

LEADLESS PACING

Leadless pacemakers were recently introduced to address lead- and pocket-related complications
in conventional transvenous pacemaker systems. Transvenous leads can cause complications, such
as venous obstruction, tricuspid regurgitation, and endocarditis, with transvenous lead-related en-
docarditis mortality rates up to 12-31% (50-52). Pocket-related complications can include skin
erosion, pocket infection, and potential sepsis (53, 54). To address these issues with transvenous
pacemaker systems, a leadless pacemaker was initially conceptualized in the 1970s (55) and im-
planted in 2014 (56). The first approved devices are single-component systems that can provide
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single-chamber RVDP, sensing, and delivery of rate response. One of the single-chamber devices
has an algorithm to sense atrial contractions, enabling a degree of AV synchronous pacing. Lead-
less pacemakers are implanted via a percutaneous femoral catheter-based approach to advance the
pacemaker into the RV.

One of the first trials in leadless pacing enrolled 33 patients at three centers to evaluate clinical
safety and performance of a RV leadless pacing system. The device was successfully implanted
in 97% of patients with overall complication-free rate of 94%, adequate electrical performance,
and no device-related complications at 12-month follow-up (56, 57). A second clinical study en-
rolled 526 patients with implantation success rate of 96%, with device-related complications (such
as pericardial effusion, vascular complications, and device dislodgment) reported in 6.4% of pa-
tients (58). At 12-month follow-up, the complication rate was 71% lower than that of transvenous
systems (59). Using another RV leadless device, another study enrolled 725 patients; the device
was successfully implanted in 99% of patients, with major complications such as cardiac injury
and vascular access issues occurring in 4% of patients (60). Short-term complications of lead-
less pacemakers and transvenous pacemaker systems were comparable (61). Long-term, 12-month
follow-up of leadless pacemakers compared to propensity-matched transvenous system controls
showed a 48% lower risk of major complications and 82% lower occurrence of revisions or rein-
terventions (62, 63). Longer-term outcome data are needed for leadless pacemakers, as at the end
of service, either devices are extracted and replaced, if possible, or an additional device(s) is placed.
A dual-chamber leadless pacemaker system was recently approved by the FDA.

Leadless LV endocardial pacing has also been studied for CRT in prospective multicenter
observational studies (63, 64). One such system consists of a subcutaneous ultrasound trans-
mitter/pulse generator and a rice-sized receiver electrode implanted in the LV endocardium.
Ultrasonic energy is delivered to the LV endocardial receiver electrode to achieve BiVP. Studies
have included patients who failed conventional CRT due to failed CS lead cannulation or non-
responders to traditional CRT. However, significant complications include cardioembolic stroke,
pericardial effusion, catheter-induced ventricular fibrillation, electrode embolization, and femoral
artery access issues (65-70).

FUTURE DIRECTIONS

Conventional CRT has evolved over the years into a highly effective therapy for HF patients with
LBBB. CSP has emerged as an alternative pacing strategy for those patients in whom conventional
CRT does not produce satisfactory clinical response, when there is difficulty with CS lead place-
ment, or as an alternative to RVP. Recent studies have shown comparable and in some cases more
effective electrical and mechanical resynchronization with CSP with HBP or LBBAP compared
to BiVP, although the evidence base for CRT includes randomized controlled trials showing im-
proved survival and reduction in HF hospitalizations in selected patients with HF and widened
QRS duration, particularly with LBBB and QRS duration >150 ms. Although CSP reestablishes
physiologic ventricular activation, it has lagged the evidence base of CRT with a lack of large ran-
domized controlled trial data. However, large randomized clinical trials are launching and should
provide guidance as to the suitability of CSP for HF patients. Leadless pacemakers have emerged
recently with promising efficacy and safety and could be potentially used for dual-chamber pac-
ing or resynchronization therapy. Leadless cardiac pacemakers may potentially transform cardiac
pacing; however, long-term data are needed to verify device safety, performance, and extractability.
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