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Abstract

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and car-
diovascular disease, contributes significantly to morbidity and mortality on a
global scale. The gut microbiota has emerged as a potential target to benefi-
cially modulate CMD risk, possibly via dietary interventions. Dietary inter-
ventions have been shown to considerably alter gut microbiota composition
and function. Moreover, several diet-derived microbial metabolites are able
to modulate human metabolism and thereby alter CMD risk. Dietary inter-
ventions that affect gut microbiota composition and function are therefore
a promising, novel, and cost-efficient method to reduce CMD risk. Studies
suggest that fermentable carbohydrates can beneficially alter gut microbiota
composition and function, whereas high animal protein and high fat intake
negatively impact gut microbiota function and composition. This review fo-
cuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and
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dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition
and function in the context of CMD.

INTRODUCTION

Cardiometabolic disease (CMD) is an emerging term that mainly covers type 2 diabetes mellitus
and cardiovascular disease. The term highlights the strong interrelation between these diseases.
CMD is a typical consequence of (late stages of ) the metabolic syndrome, a spectrum of clinical
findings associated with increased CMD risk (1, 2).

CMD is amajor contributor tomorbidity andmortality worldwide.A recently published report
by the World Health Organization (WHO) estimates that 31% of all global deaths are related to
CMD (3). Optimization of existing and development of novel strategies to treat or prevent CMD
are therefore highly warranted.

The multifactorial etiology of CMD makes early detection, prediction, prevention, and treat-
ment notoriously complex. A fairly new player in the pathophysiology of CMD is the gut micro-
biota, which is often referred to as an additional organ, consisting of trillions of microbes living
in a symbiotic state with their human host (4, 5). The gut microbiota has been shown to influence
host metabolism and CMD development, for example by affecting the host immune system or by
producing biologically active metabolites from dietary components (e.g., trimethylamine N-oxide
from proteins or short-chain fatty acids from dietary fibers) (6–8). Multiple human cohort stud-
ies have shown that an imbalance in gut microbiota composition, in particular reduced number
and diversity of bacterial genes, associates with development, and possible progression, of obesity
and CMD (9–13). Indeed, obesity is characterized by a lower bacterial diversity and low micro-
bial gene richness (9–11). Also, in overweight/moderate obesity, low microbial gene richness is
associated with increased body mass index, as well as metabolic derangements including chronic
low-grade inflammation and insulin resistance. Moreover, a decreased gut microbiota diversity is
seen in 23–40% of overweight individuals and increases up to 75% in morbidly obese individ-
uals (11). Additionally, human obesity is characterized by increased bacterial strains that display
proinflammatory properties (9, 14).

Gut microbiota composition and function are regulated by several factors, such as diet, ethnic-
ity, past or current medication use, smoking, and gender (14–18). Diet is one of the main shaping
factors of the gut microbiota and can rapidly alter the gut microbiota, as exemplified by a short-
term dietary intervention study (five days) in humans, which elicited drastic changes in gut micro-
biota composition (19). Moreover, several human studies have shown that dietary interventions
can affect the gut microbiota composition and function and alter CMD risk, predominantly via
production of microbially derived metabolites by the gut microbiota (8, 9, 20, 21).

It is well known that dietary interventions that promote weight loss can reduce CMD risk.
Nevertheless, it is important to realize that most people are not able to maintain their reduced
weight in the long term (22). Dietary interventions that alter gut microbiota composition and/or
function provide a nonpharmacological method to prevent CMD or lower the burden on those
already affected,making this form of dietary intervention perhaps amore durablemethod than tra-
ditional weight loss. However, multiple studies have shown a highly individual response to dietary
interventions with regard to gut microbiota composition and/or function and subsequent CMD
risk (23–26). These findings suggest that a personalized approach is necessary, where baseline gut
microbiota composition predicts which individuals will benefit from a diet.
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Studies that link diet, via the gut microbiota, to CMD risk/development are mostly associa-
tive in design. Importantly, fecal microbiota transplantation (FMT) studies in humans confirm
rodent-derived evidence for causality between diet, gut microbiota, and CMD development (23,
27). However, designing nutritional studies in humans is a complex challenge, and it remains un-
clear what form of diet or dietary pattern is best suited to change the gut microbiota to improve
host health in general or cardiometabolic health in particular. This review aims to provide insight
into different dietary studies investigating the role of either specific macronutrients or dietary
patterns that can influence CMD via the gut microbiota.

DESIGNING A DIETARY STUDY

There are several ways to design a nutritional intervention study. One approach is to focus on
macronutrients (i.e., carbohydrate, dietary fat, and protein). This is also how current nutritional
guidelines structure their recommendations on healthy food intake and how most studies investi-
gating the effect of diet on the gut microbiota are performed (28, 29). This reductionist approach
originates from a time when a majority of the population suffered from specific nutritional de-
ficiencies (e.g., lack of vitamin C leading to scurvy) (30). Nevertheless, such an approach can be
quite useful when deciphering the impact of specific macronutrients and performing hypothesis-
generating experiments. One important drawback to these studies is the substitution effect: We
unavoidably influence macronutrient composition when using isocaloric diets that focus on a spe-
cific macronutrient (31). For example, when comparing a high- versus low-protein diet, one is also
comparing a low-carbohydrate/low-fat diet to a high-carbohydrate/high-fat diet.

It is important to take the potential confounding role of the substitution effect into account
when interpreting results from dietary intervention studies aiming to affect a human phenotype
via the gut microbiota. For example, studies that focus on the production of beneficial short-chain
fatty acids (SCFAs) by the gut microbiota tend to focus on fiber intake as a dietary intervention.
However, SCFAs can also be produced from amino acids (32). It is therefore crucial to take the
intake of all macronutrients into account when interpreting the results of dietary intervention
studies, especially with regard to the gut microbiota, as all macronutrients can affect the gut mi-
crobiota composition and function.

Another method to design nutritional studies is to focus on dietary patterns, such as a vegetar-
ian or Mediterranean diet (33). Dietary pattern studies are informative, as they represent a more
holistic approach to nutritional intake and are more easily maintained in an intervention setting.
However, an important drawback is the difficulty of controlling for dietary intake (i.e., total com-
position of macronutrients) in such a design. Furthermore, the existence of multiple definitions
of a dietary pattern complicates the comparability of these studies.

DIETARY STUDIES FOCUSING ON MACRONUTRIENTS

Carbohydrates

The role of carbohydrates in gut microbiota composition and function, and their subsequent ef-
fects on human cardiometabolic health, are the focus of most dietary intervention studies in the
current literature (4, 34).Carbohydrates that are accessible to the gut microbiota, the vast majority
of which resides in the colon, consist mainly of dietary fibers. These carbohydrates are resistant to
breakdown by the digestive system of the host and are therefore not absorbed in the small intestine.

The breakdown of fibers and subsequent availability of fiber derivatives for the host depend
on carbohydrate fermentation by the gut microbiota. An example of these derivatives are SCFAs,
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which are key microbial metabolites (35, 36). The three major SCFAs produced by the gut mi-
crobiota are butyrate, propionate, and acetate. Several studies have shown that these SCFAs are
beneficial in the context of CMD (8, 37, 38).

A randomized controlled clinical trial in subjects with type 2 diabetes mellitus showed the po-
tency of a dietary intervention on the gut microbiota and CMD risk (8). In this study, the subjects
who followed a high-fiber diet showed a significant decrease in hemoglobin A1c, lipid levels, and
body weight compared to the control group. A high-fiber diet also led to increased butyrate levels
by promoting the abundance and diversity of SCFA-producing bacterial strains. SCFAs are also
described as playing beneficial roles in glucose homeostasis by increasing the production of the
gut-derived glucose-regulatory hormone glucagon-like peptide-1 (GLP-1) and peptide YY,which
enhances satiety (37, 39).

Interestingly, the overall gut microbiota richness decreased in the high-fiber group (8). Al-
though this finding goes against the current dogma that high gut microbiota diversity is associated
with improved clinical outcome in CMD, as was shown in a landmark study which found that a
high microbial gene count was negatively associated with CMD (10), in this setting, not gut mi-
crobiota diversity but SCFA-producing strains appear to have a greater impact on reducing CMD
risk.

To address causality, fecal samples of subjects with type 2 diabetes mellitus from both di-
etary groups were transplanted to germ-free mice (8). Mice that received FMT from the high-
fiber group had lower fasting plasma glucose levels than mice that received a transplant from
the control group. Importantly, the gut microbiota composition in receiving mice equaled the
composition of the donors, further strengthening the notion that this process is gut microbiota
driven. Adhering to fiber-rich diets can therefore be a simple method to increase SCFA levels
and decrease CMD risk.

In line with this finding, barley β-glucans fiber-enriched bread (BGB) was shown to improve
body weight, lipid levels, insulin resistance, and SCFA levels in subjects with (pre)metabolic syn-
drome, defined as having at least two of the five metabolic syndrome criteria (2, 40). Moreover,
gut microbiota diversity and total cholesterol levels were decreased in the BGB-supplemented
group compared to the control wheat bread group,without any significant changes to high-density
lipoprotein (HDL) or low-density lipoprotein (LDL) cholesterol levels (40). In addition, circu-
lating triglyceride levels were nonsignificantly lower in the BGB-supplemented group. This dis-
crepancy between total cholesterol levels and LDL/triglyceride levels was likely a statistical power
issue, as shown by a meta-analysis that studied the lipid-lowering effects of BGB, which showed a
decrease in LDL cholesterol (41).

The study did report that the beneficial effects of BGB fiber supplementation were stronger
in a subpopulation of subjects with a more severe form of metabolic syndrome (40). These find-
ings imply that this dietary intervention might not be suitable for all subjects with (pre)metabolic
syndrome, indicating a role for a personalized approach.

The notion of a personalized approach was also supported by a randomized crossover study in
which 20 healthy individuals followed a dietary intervention for one week (42). The study com-
pared industrial, low-fiber white bread with traditional whole-grain, high-fiber bread. Subjects in
both groups showed high interpersonal differences in postprandial glycemic response (PPGR) to
the different kinds of bread. Interestingly, a machine-learning approach revealed that the individ-
ual glycemic response to the bread could be predicted by baseline gut microbiota composition.
The beneficial effects of fiber intake on CMD risk are dependent on the gut microbiota, likely
via the formation of SCFAs. However, not all subjects respond equally well, and the next step is
elucidating what mechanisms drive or inhibit the response.
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Protein

Since the introduction of the Atkins diet, which advocates low carbohydrate but high protein and
fat intake, protein diets have gained much attention. Nevertheless, the effects of protein diets
on cardiometabolic health remain ambiguous (43). The breakthrough discovery of the protein-
derived microbial metabolite trimethylamine (TMA), a precursor of trimethylamine N-oxide
(TMAO), and TMAO’s strong association with CMD risk, put protein and amino acid intake
in the spotlight of microbiota/CMD research (7, 44).

A human intervention study has elucidated the pathway of TMAO synthesis and determined
the contribution of an important intermediary step, which is the formation of γ-butyrobetaine
(γBB) (45). The authors showed that the gut microbiota catabolizes dietary l-carnitine (found
mainly in red meat) to γBB, which is an intermediary product for the formation of TMA. TMA is
then converted to TMAO by hepatic flavin-containing monooxygenase 3 (FMO-3). This process
was shown to be markedly disturbed upon antibiotic treatment, indicating that the pathway is gut
microbiota dependent.

Recently, the gut microbiota–produced metabolite imidazole propionate (ImP) was associated
with insulin resistance (46). The gut microbiota of type 2 diabetes mellitus patients was shown
to produce more ImP from the essential amino acid histidine (mainly found in protein-rich food,
such as tuna) than the gut microbiota of healthy individuals. This finding further indicates that
the gut microbiota, at least in part, contributes to CMD risk via translation of dietary cues.Mech-
anistically, ImP was shown to increase insulin resistance by activating the mechanistic target of ra-
pamycin complex 1 (mTORC-1), which increased serine phosphorylation and subsequent degra-
dation of insulin receptor substrate (IRS).

The effects of dietary amino acids on gut microbiota composition and function have been
mainly studied in animal models. For instance, intermittent deprivation of leucine, an essential
branched-chain amino acid, was shown to improve insulin resistance in a genetic mouse model of
diabetes mellitus (47). Of note is that these mice did not display significant weight changes but did
have higher proliferation rates of β cells in the pancreatic islets. Furthermore, the gut microbiota
was also altered, as particularly exemplified by an increased Bacteroidetes/Firmicutes ratio, which
correlated with improved fasting blood glucose levels.

The metabolism of tryptophan, another essential amino acid, by the gut microbiota was shown
to play an important role in intestinal inflammation and barrier function (48, 49). Intestinal inflam-
mation can increase CMD risk by increasing production of bacterial lipopolysaccharides (LPSs).
LPSs can migrate into the systemic circulation and induce a state of endotoxemia, which increases
insulin resistance and triggers weight gain (50). The proposed mechanism of LPS migration into
the systemic circulation is by means of increased gut permeability. Indeed, a human study showed
that gut permeability is increased in subjects with type 2 diabetes mellitus compared to healthy
controls and that this increase positively correlates with markers of systemic inflammation and
CMD risk (44).

The role of dietary protein and amino acids is gaining more attention; the field’s focus appears
to be switching from the effects of fibers to the effects of protein on gut microbiota composi-
tion and function, and thereby on human metabolism.Gut microbiota–derived metabolites are an
especially interesting area of research, since they represent functional and potentially targetable
products of the gut microbiota (51, 52).

Dietary Fat

Dietary fat has long been associated with increased CMD risk. Although recent large cohort stud-
ies have shown data contradicting these associations (53, 54), dietary studies have reproducibly
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shown that fat changes the composition of the gut microbiota and thereby possibly influences
CMD (55, 56).

In a randomized controlled dietary intervention study, subjects with extreme metabolic syn-
drome (i.e., scoring 5 out of 5 metabolic syndrome criteria) followed a low-fat diet for two years
(55). Simultaneously, a group of obese subjects without metabolic syndrome and a healthy control
group followed an identical diet.Gutmicrobiota dysbiosis (i.e.,microbial imbalance) was observed
at baseline in the metabolic syndrome group compared to the obese and healthy control groups.
Interestingly, gut microbiota dysbiosis was partly reversed in the metabolic syndrome group fol-
lowing the low-fat diet, showing a microbiota composition similar to those of the obese and con-
trol groups. The microbiota of the latter two groups remained relatively unaffected from baseline.
Although the study comprised only male subjects and adherence to diet was deduced from ques-
tionnaires instead of food diaries, these observations imply that a low-fat diet can beneficially affect
the gut microbiota composition and CMD risk in subjects with extreme metabolic syndrome.

A high-fat diet can increase CMD risk via the gut microbiota.This was shown in a mouse study
where the gut commensal Bilophila wadsworthia, a microbe associated with local inflammation, was
increased after a high-fat diet (57). B. wadsworthia was shown to influence bile acid composition,
resulting in more primary bile acid conjugates and a higher total level of bile acids. This is im-
portant because bile acids have critical properties for fat absorption and also function as signaling
factors in human metabolism (58).

The immune system has long been recognized to play an important part in the development
of CMD, as has been comprehensively reviewed elsewhere (59, 60). The gut microbiota has been
shown to directly influence the host immune system after dietary fat intake, as was shown in a rat
study (61). A high-fat diet modulated the intestinal immune system by decreasing Treg cells and
increasing Th1 cells, leading to a state of chronic inflammation (61, 62). A high-fat diet can also
increase gut permeability, giving rise to an increased circulating level of LPSs,which results in low-
grade inflammation and is associated with weight gain and type 2 diabetes mellitus progression
(63, 64).

In addition to deleterious effects, such as increased inflammation and altered bile acid signal-
ing via gut microbiota changes, dietary fat can have positive effects via medium-chain triglycerides
(MCTs) (64). MCTs are smaller than long-chain triglycerides and are digested faster. MCTs are
largely transported to the liver via the portal vein after digestion and are minimally transported
via chylomicrons through the lymphatic system. Several studies have shown that MCTs can in-
fluence the gut microbiota by preventing LPS-induced endotoxemia and by antimicrobial effects
on potentially harmful microbes (65, 66). Furthermore, a meta-analysis showed that increased di-
etary intake of MCTs (found in coconut oil, palm kernel oil, and bovine milk) can reduce CMD
risk by reducing body fat and weight; however, the meta-analysis did not take the role of the gut
microbiota into account (67).

In general, high-fat diets appear to have a negative effect on gut microbiota composition and
function, leading to an increased CMD risk.However, an important nuance is the source of dietary
fat, as MCTs have been reported to beneficially influence the gut microbiota. Future research
should focus on disentangling the effects of different fat sources on gut microbiota composition
and function.

DIETARY STUDIES USING DIETARY PATTERNS

Vegetarian and Vegan Diets

Vegetarian and vegan diets have become increasingly popular in industrialized society, likely due
to multiple favorable health outcomes associated with these diets (68, 69). A vegetarian diet is
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generally defined as a dietary pattern that excludes meat and meat products, whereas a vegan diet
is defined as abstinence from all animal-derived substances. A recent meta-analysis has shown
that both vegetarian and vegan diets lead to lower all-cause mortality and lower CMD risk (68).
However, it is important to note that very few randomized controlled trials have been conducted
where the distinction between vegetarian and vegan dietary composition was clearly defined. Fur-
thermore, nutritional deficiencies have been associated with these diets, and supplementation of
specific nutrients is advised (70).

Multiple studies have shown that vegan and vegetarian diets influence gut microbiota composi-
tion (71–73). The gut microbiota composition of children from a western European country, with
a western omnivorous diet, was compared to the gut microbiota composition of children from a
rural African village, where the diet was mainly vegetarian (71). The gut microbiota composition
of these groups was highly distinct, with a greater diversity in the gut microbiota of rural African
children.Furthermore, the children from the rural African village had higher levels of fecal SCFAs.
Both factors are associated with reduced CMD risk (9, 35).

As described above, lower TMAO levels have been associated with lower CMD risk. The gut
microbiota of vegans/vegetarians produces markedly less TMA, and subsequently less TMAO,
from γBB, and this contributes to a lower CMD risk (45). Although it was speculated that the gut
microbiota from vegan/vegetarian individuals simply lacks the bacterial strains to convert γBB to
TMA, this was not directly determined in the study.

In contrast, a recently published double-blind randomized controlled trial did not show effects
of vegan microbiota composition on TMAO production. In this trial, FMT from vegan donors
to recipients with metabolic syndrome did change recipients’ gut microbiota composition toward
the donor composition, but failed to elicit a response in TMAO levels (72). An explanation for this
finding could be that a single vegan FMT is insufficient to induce functional changes in TMAO
production.

Nevertheless, the gut microbiota likely plays a crucial part in mediating the beneficial effects of
a vegetarian/vegan diet to reduce CMD risk.Mechanistically, these diets raise levels of SCFAs and
lower TMAO, since fiber intake is increased and animal protein intake is decreased. Low SCFAs
and high TMAO have been implicated in CMD development (36, 45). Furthermore, these diets
comprise plant protein, which has been associated with reduced CMD risk, rather than animal
protein (74).

Mediterranean Diet

TheMediterranean dietary pattern is characterized by low intake of meat and high intake of fruit,
vegetables, legumes, and olives (75). The diet has been associated with reduced CMD and mortal-
ity (75, 76). One study found that Greek-born Australians showed lower mortality rate and lower
CMD than the general Australian population, despite a higher prevalence of risk factors for CMD,
such as obesity, dyslipidemia, and hypertension (77). This paradox can possibly be explained by
the gut microbiota composition and formed metabolites, as the Mediterranean diet comprises
high fiber and low animal protein intake. As mentioned above, this likely increases production
of beneficial SCFAs and lowers production of TMAO, which is associated with higher CMD
risk.

Interestingly, a Mediterranean diet did not lead to differences in gut microbiota diversity in a
human observational study (78). However, the diet did lead to higher levels of SCFA-producing
bacteria and consequently higher fecal SCFA levels, which have been associated with a decrease in
CMD risk. Moreover, the subjects who adhered poorly to a Mediterranean diet had higher levels
of urinary TMAO, which is associated with an increased CMD risk.
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The finding that aMediterranean diet did not influence gut microbiota diversity was surprising
but was independently reproduced by a human intervention study (55).This study, discussed above
with regard to dietary fat, compared three groups: subjects with severe metabolic syndrome, obese
subjects without metabolic syndrome, and healthy controls. All subjects followed aMediterranean
diet for two years. The authors did not find a discrepancy between gut microbiota diversity among
these groups. Moreover, no differences were observed between the gut microbiota compositions
of the two groups without metabolic syndrome. However, as mentioned, the gut microbiota com-
position of subjects with metabolic syndrome differed from the other two groups at baseline, and
two years of a Mediterranean diet altered the composition to mimic the non–metabolic syndrome
groups.

Although a Mediterranean diet has been associated with reduced mortality and CMD risk, it
remains difficult to assess the role of the gut microbiota. To date, no FMTs have been done using
donors who followed a Mediterranean diet. Furthermore, a clear definition of a Mediterranean
diet is lacking, which makes comparisons between studies difficult.

SUMMARY AND FUTURE PERSPECTIVES

The gut microbiota has emerged as a pivotal player in the development of CMD, such as type 2
diabetes mellitus and cardiovascular disease. Dietary interventions can influence gut microbiota
composition and function and therefore affect CMD risk (79). An overview of how diet can influ-
ence CMD risk via the gut microbiota is depicted in Figure 1. In general, fermentable carbohy-
drates have been shown to reduce CMD risk via microbial production of SCFAs. Animal protein
has been shown to increase CMD risk by increasing production of microbial metabolites such as
TMAO and ImP. High fat intake can increase CMD risk by promoting systemic inflammation
through increased endotoxemia and gut permeability.

However, it is important to note that studies performed to date mainly used 16S RNA tech-
niques to decipher the gut microbiota composition. The 16S RNA technique, in contrast to
metagenome sequencing, is restricted in its resolution and is not able to look at functionality or
species level of the gut microbiota in detail (80). The next step in elucidating the effects of dietary
intervention on gut microbiota composition and function and subsequent CMD risk is designing
human intervention studies focusing on gut metagenome sequencing and metabolite production
in relevant human CMD models.

Nutritional studies focusing on the role of gut microbiota composition and function in CMD
risk are complicated by the fact that the individual response to dietary interventions is highly
variable (9, 13, 77, 78). It is still unclear what distinguishes these so-called responders and non-
responders. Host characteristics, such as baseline microbiota composition, might underlie these
response discrepancies. In addition, particular features of the intervention (FMT, mucosal adher-
ence of probiotics, or dietary interventions) (23, 81–83) may alter gut microbiota response and
susceptibility to the intervention. For example, the effect of FMT in altering recipients’ gut mi-
crobiota composition and function might be influenced by donor gut microbiota diversity (84).

These studies imply that a “one size fits all” solution for use of dietary interventions to target
gut microbiota composition/function and affect CMD risk does not exist. Rather, the future is in
personalized approaches and taking baseline microbiota composition of subjects into account in
order to enhance efficacy of intervention.

One landmark study in which the concept of a personalized approach was introduced in hu-
mans showed a high variability in PPGR to similar meals. The PPGR correlated with gut mi-
crobiota composition. The authors then devised a machine-learning approach where the PPGR
could be predicted per individual by taking gut microbiota composition into account (25). This
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Figure 1

Macronutrients affect cardiometabolic disease (CMD) risk via modulation of the gut microbiota. The three
macronutrients (i.e., carbohydrate, protein, and fat) alter gut microbiota composition and/or function,
thereby affecting CMD risk. The following pathways are the best studied, but others likely exist. (a) Dietary
animal proteins that contain l-carnitine or histidine are converted by the gut microbiota to eventually yield
trimethylamine N-oxide (TMAO) and imidazole propionate (ImP), respectively. These metabolites have
been shown to increase CMD risk. (b) Microbiota-accessible carbohydrates (mainly fiber) can be
metabolized by the gut microbiota to yield beneficial short-chain fatty acids (SCFAs) butyrate, propionate
and acetate, which have been shown to reduce CMD risk. (c) Dietary fat leads to increased systemic low-
grade inflammation, a well-recognized risk factor for CMD, by increasing gut permeability. Increased gut
permeability enhances passage of the bacterial wall component lipopolysaccharide (LPS), which has been
shown to increase systemic inflammation and alter the gut mucosal immune response. Dietary patterns (e.g.,
vegetarian/vegan, Mediterranean diet) are characterized by preferential intake of specific macronutrient(s)
and will therefore follow the same pathways as described above with regard to gut microbiota modulation
and altered CMD risk.

personalized approach paved the way for upcoming use of machine-learning approaches that take
into account individual gut microbiota data to effectively construct personalized dietary interven-
tions to lower CMD risk.

Similarly, mucosal adherence of a probiotic with presumed effects on CMD health was shown
to be highly variable, adhering to the gut mucosa of some but not all human subjects; the respon-
ders and nonresponders could be predicted on the basis of individual host and microbiota features
(83). The developed algorithm can be used to predict which individuals may experience beneficial
effects of probiotic use. Nevertheless, it is important to recognize that these algorithms have been
developed with data on healthy volunteers from a fixed ethnic and geographic group. Health sta-
tus, ethnicity, and geography can all influence the gut microbiota composition (15, 85). Therefore,
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multiple independent studies are needed worldwide, in groups of different ethnic background and
disease status, to create an algorithm that can take these crucial factors into account. Only then
can we achieve a personalized approach to reducing CMD by developing dietary strategies that
affect gut microbiota composition and function.
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