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Abstract

The global population is rapidly aging, with predictions of many more peo-
ple living beyond 85 years. Age-related physiological adaptations predis-
pose to decrements in physical function and functional capacity, the rate of
which can be accelerated by chronic disease and prolonged physical inactiv-
ity. Decrements in physical function exacerbate the risk of chronic disease,
disability, dependency, and frailty with advancing age. Regular exercise pos-
itively influences health status, physical function, and disease risk in adults
of all ages. Herein, we review the role of structured exercise training in the
oldest old on cardiorespiratory fitness and muscular strength and power, at-
tributes critical for physical function, mobility, and independent living.
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INTRODUCTION

There is a global demographic shift toward an aging population. The number of people aged 65
and older will rapidly grow, with estimates of over 1.5 billion people by 2050 (1). Within this
population shift, individuals aged 85 years and older (the “oldest old”) are expected to triple in
number and represent one of the fastest-growing communities in the population (2, 3). Significant
advances in the detection and management of chronic health conditions have resulted in many
seniors living longer with complex health issues.

Physical function and exercise capacity deteriorate with advancing age, a deterioration that can
be accelerated by disease and lifestyle factors (4–6). In many elderly individuals, this decrement
may be substantial enough to render them unable to perform activities of daily living (ADLs)
without significant difficulties or assistance (7, 8). A loss of living independence comes with high
personal and societal costs. Therefore, it has become essential to develop effective lifestyle strate-
gies to preserve physical function, independent living, and self-efficacy late in life.

Aerobic and resistance exercise programs lasting several weeks to months partially reverse the
age-related deterioration of physical function and functional capacity in previously inactive aged
adults (9). However, because exercise-based studies in the oldest old subpopulation are rare, ex-
ercise recommendations are based on data extrapolated from “younger older” individuals (60–
75 years). Moreover, exercise studies in seniors have rarely assessed the specific training stimu-
lus or dose. Therefore, despite advances in our understanding of the beneficial effects of regular
physical activity (PA) and exercise on health status and physical function with advancing age, there
is little information on the dose that prevents or enhances these outcomes in the oldest old. These
data are essential for designing evidence-based exercise strategies to optimize health and physical
function in late life (10).

This review critically addresses the question, “How much exercise is too little in octogenari-
ans?”We briefly review three decades of findings concerning the effects of regular exercise training
on cardiorespiratory fitness (CRF) and muscular strength and power in elderly adults. These at-
tributes are central to ambulatory physical function, mobility, and independent living in elderly
adults and therefore are of great scientific and clinical interest.

DEFINITIONS OF KEY TERMS

Before discussing the research on the impacts of regular PA or exercise on the health status and
physical function in the oldest old, it is essential to distinguish between these two domains.Physical
activity (PA) refers to any bodily movement that results from muscular contraction and increases
energy expenditure above resting levels (11, 12). Exercise, while sharing many common elements
with PA, is a subcategory of PA that is structured, planned, and performed to improve health and
physical fitness (11–13).

Although there are several definitions of physical fitness, the term refers to a set of attributes
that contributes to the ability to perform physical work, such as cardiorespiratory fitness,muscular
strength and power, balance, flexibility, agility, and body composition (14). Functional capacity
reflects the ability to perform ADLs that require sustained aerobic metabolism and encompasses
many aspects of physical fitness (4).

Aerobic or endurance exercise involves repetitive dynamic skeletal muscle contractions in a
large muscle mass over a prolonged period. Resistance or strength exercise causes muscles to
repetitively work or hold against an applied force or weight (15, 16). Although there is a plethora of
evidence showing that aerobic and resistance exercise results in a broad array of health benefits, the
biological and physiological adaptations can differ significantly between these two exercise modes
(15). Flexibility exercise enhances the ability to move a joint through its full range of motion,
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while balance exercise increases the maintenance of the body’s equilibrium while stationary or
moving (16). Muscular strength refers to the ability of a muscle or muscle group to exert force,
while muscular power is the rate at which work can be applied (16). It is important to emphasize
that many activities contain both muscular strength and endurance exercise and have adaptations
commensurate with both types of training.

The volume or dose of PA or exercise represents the interplay of three factors: frequency (how
often), intensity (how hard), and duration (how long). Frequency represents the number of daily,
weekly, or monthly exercise sessions, while duration reflects the amount of exercise exposure per
session. While frequency and duration are easily defined, the intensity component is more com-
plicated because of several different classification systems. Exercise intensity indices can be in ab-
solute terms, such as the total metabolic cost of the exercise, or relative terms, such as a function
of some percentage of measurable maximal capacity (13). Commonly reported objective indices of
exercise intensity are the metabolic equivalent of task (MET) and a percentage of maximal oxygen
uptake,maximal heart rate, or one-repetition maximal force.Commonly used subjective indices of
exercise intensity include the rate of perceived exertion, which involves a somatic rating of effort,
and the talk test, which gauges speaking comfort during exercise.

EXERCISE DOSE AND PHYSICAL FUNCTION, HEALTH STATUS, AND
CHRONIC DISEASE OUTCOMES

Over the last three decades, a large body of evidence has accumulated that supports a graded PA
and exercise dose-response relationship for health and clinical outcomes (13, 17). The mortal-
ity benefits obtained are substantial in those engaging in 60–180 min of moderate-to-vigorous-
intensity exercise weekly, and additional, although more modest, reduction in risk is observed with
increases in exercise dose to amedian of 420min per week (13, 16, 18). Some epidemiological stud-
ies have reported a J or U-shaped relationship between mortality and exercise dose, prompting
some level of concern that a very large or extreme exercise stimulus may mitigate the noteworthy
health and mortality benefits (13, 19, 20). However, recent studies have confirmed that a large ex-
ercise volume, generally accomplished for performance goals rather than health benefits, appears
neither incrementally better nor worse and still provides superior disease and mortality protection
compared to a sedentary lifestyle (13, 19, 20).

The exercise training dose that improves a specific health, clinical, or physiological outcome
varies considerably, with some outcomes requiring more activity while others require much less
(13, 21). This information needs to be carefully considered within the prescription framework
goals to target the desired intervention outcome.

Moreover, there is marked interindividual variability (and potentially sex differences) in the
magnitude of adaptations to a given PA or exercise program or exercise dose (21–23). An individ-
ual’s trainability in physiological outcomes such as maximal oxygen uptake (V̇O2max), resting and
exercise heart rate, and arterial blood pressure is determined by the complex interaction of genetic,
phenotypic, and environmental factors (22). The HERITAGE study showed that the trainability
of V̇O2max has an ∼50% genetic component involving a wide range of genes in healthy humans
(24).

There have been numerous discussions in the exercise physiology literature on the dichoto-
mous concept of responders/nonresponders to aerobic and resistance exercise training. Recent
findings by Montero & Lundby showed that a nonresponse in V̇O2max was abolished with an
additional increase in exercise training dose in healthy young adults (25). Therefore, in addition
to hereditary factors, a sufficient exercise dose is an important mediator of the adaptive response
in V̇O2max.
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Although the public health message should be for all adults to achieve or exceed the current
evidence-based PA levels recommended, measurable and clinically relevant benefits in CRF and
risk of mortality are obtained with an exercise dose lower than current guidelines. In elderly men,
60 min per week of either walking or cycling was associated with reduced cardiovascular mortality
(26), while being an occasional weekly exerciser (one exercise session per week) still conferred a
reduction in mortality (27). In a recent investigation of 441 very old adults (average age 87 years),
light weekly PA conveyed significant all-cause mortality benefits during a 6-year follow-up (28).
These findings are valuable for establishing activity levels that may motivate sedentary individuals
to initiate regular PA or exercise training.

BIOLOGICAL AGING AND PHYSICAL FUNCTION: A COMPLEX
INDIVIDUAL PROCESS

Aging encompasses a host of cellular-, tissue-, and organ-level changes that can be insidious and
deleterious to many domains of physical function and predispose individuals to geriatric syn-
dromes entailing sarcopenia, frailty, and disability. Biological aging does not occur at a uniform
rate for everyone, and therefore, individuals at the same chronological age can vary substantially
in health and disease status.

Biological aging can be modulated by genetics, environmental factors, dietary habits, and reg-
ular PA levels. Self-reported and accelerometry data clearly show that older adults engage in less
PA, whether moderate or vigorous, than younger adults during their day (29–31).

Similarities in the biological and physiological adaptations due to physical disuse and sedentary
aging have led to the speculation that PA and physical inactivity could heavily influence the rate
of systemic aging (14, 32). The pronounced age-related changes in physical function and capacity
may be accelerated by prolonged physical inactivity (33). The bedrest model has been useful in
investigating the physiological responses to strict physical inactivity. Numerous studies show that
even short-term bedrest decreases cardiorespiratory and musculoskeletal function (34–37). A 3-
week period of strict bedrest elicits effects on cardiorespiratory function and CRF comparable to
30 years of aging (38).

CHANGES IN CARDIORESPIRATORY FITNESS AND MUSCULAR
STRENGTH AND POWER WITH AGING

CRF is a primary metric of functional capacity reflecting the coordinated integration of cardio-
vascular, respiratory, and neuromuscular organ system function in the distribution and utilization
of oxygen by active tissue during physical exertion (6). An extremely high CRF, as indicated by
V̇O2max relative to total body mass [>75 mL/(kg−1·min−1)], is characteristic of high-performing
endurance athletes. In contrast, a very low CRF [10–15 mL/(kg−1·min−1)] may be observed in
people with chronic disease or in severely deconditioned aged individuals (39).

Oxygen uptake per kilogram of total body mass is a commonly reported metric of CRF in stud-
ies comparing populations of different body sizes and compositions. The practice of using total
bodymass as the primary scaling factor is relevant for assessing functional capacity, as heavier indi-
viduals carry their entire body mass with them during PA (40). However, during vigorous physical
exertion, obese individuals may have normal or even superior cardiorespiratory performance be-
cause of a large muscle mass and a high metabolic cost of PA (41, 42). Given the sizable changes
in body mass and composition in both sexes with aging, careful consideration needs to be given
to the scaling practices used to examine exercise and physiological function and cardiorespiratory
performance in older adults during acute exercise and with exercise training (43).
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Extensive epidemiological and clinical research has shown that laboratory-based measures of
CRF duringmaximal or peak exercise [i.e., V̇O2max, peak oxygen uptake (V̇O2peak), orMETs] are
powerful predictors of cardiovascular and all-cause mortality irrespective of age, sex, and health
status (4–6, 13). Based on these observations, a recent scientific statement from an expert panel
emphasized that CRF should be established as a vital health sign of comparable (if not greater)
clinical importance and prognostic value for adverse risk as traditional cardiovascular risk factors
(5). Of particular importance to this review, CRF is strongly implicated in physical function in the
elderly population (5, 44–48).

Cross-sectional examinations show that CRF declines by 4–12% per decade in healthy indi-
viduals (49). However, longitudinal studies indicate that the decline in CRF accelerates markedly
with each successive decade of adulthood (50, 51), exceeding a 21% per decade reduction in those
over the age of 70 years (50). Consequently, V̇O2max (or V̇O2peak) at >70 years is typically only
approximately 25–35% of that at middle age (50, 52). It is widely accepted that the capacity for
oxygen delivery (circulatory capacity) is primarily responsible for the decline in CRF with ag-
ing, although impairments in skeletal muscle oxygen utilization may exert a larger impact with
advanced age or chronic disease (53, 54).

The marked reduction in CRF with aging can be further compounded by prolonged physical
inactivity, comorbidities, and chronic health conditions (e.g., cardiovascular disease, heart failure,
diabetes mellitus, obesity) associated with advancing age (5). Consequently, for many elderly in-
dividuals, CRF may reach a value at which ADLs require a significantly higher relative effort to
perform, or at which individuals are unable to complete the activity independently (55, 56). Un-
fortunately, these conditions may result in an individual avoiding physically demanding activities,
driving a debilitating cycle of physical inactivity and loss of living functionality.

In community-dwelling adults aged 65–90 years, a V̇O2peak of 18 mL/(kg−1·min−1)
(∼5 METs or fivefold resting energy expenditure) distinguished high from low physical function
(55). This CRF level might be higher than what is observed in many octogenarians, and therefore
they would be less likely to perform daily activities such as vacuuming (∼3.5 METs) and cooking
or preparing food (∼2.5 METs) (57, 58).

Sarcopenia is the accelerated loss of skeletal muscle mass with aging or immobility. This dis-
order can greatly diminish muscle force-generating ability. Skeletal muscle mass declines at a rate
of ∼1% per year from middle age, in severe instances reaching a loss of ∼50% by the eighth to
the ninth decade of life.While the numbers vary across studies, sarcopenia is reported in 11–50%
of those aged 80 and older (59–61). Chronic disease and physical inactivity escalate the decline
in muscle mass (62, 63). The complex etiology of sarcopenia involves nutritional intake, protein
synthesis, and systemic inflammation.

In concert with changes in skeletal muscle mass, age-related modifications of the neurogenic
components of force generation adversely impact overall muscular force generation (64).Reported
neurogenic changes with aging include a reduction in motor unit number, an increased excitatory
threshold of existing motor units, and increased instability at the neuromuscular junction (64).
Decrements in neuromuscular function (e.g., a decline in muscle strength and power) occur more
rapidly (3–4% per year) than the loss of muscle mass with aging (65, 66). The decline in muscular
strength and power has substantial effects on the performance of ADLs, as inadequate muscular
strength makes it difficult to lift and carry objects, while stair climbing is hindered because of
reduced lower limb muscular power (67). Accordingly, low levels of muscular strength and power
are accurate predictors of physical impairment in older adults (66).

Dynamic balance, underpinned by musculoskeletal and neurological function, declines with
aging. Dynamic balance is involved in many ADLs, such as walking and stair climbing, and con-
tributes to the risk of falls. Impairments in balance contribute to the increasing falls risk in the
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elderly. Therefore, age-associated alterations in dynamic balance are associated with health and
independent living consequences.

LIFELONG EXERCISE DELAYS THE MAJOR CONSEQUENCES
OF AGING: THE PHYSICAL CAPACITY AND PHYSIOLOGICAL
FUNCTION OF THE “FITTEST” SENIORS

Individuals who have engaged in aerobic and resistance exercise for most of their adult lives have a
substantially larger physical capacity and enhanced physiological function in many organ systems
compared to their untrained or inactive counterparts (68–77). Typical age-related impairments in
physical and physiological function are either forestalled or greatly diminished in highly trained
seniors. Based on these findings, previous commentaries have suggested that these individuals
demonstrate a physiological phenotype of exceptionally successful aging (69).

Arbab-Zadeh et al. found that carefully screened older adults (average age 70 years) who had
performed nearly daily vigorous aerobic exercise training and competed regularly in national and
regional endurance competitions for at least 25 years were indistinguishable in CRF and cardiac
compliance from untrained adults on average 4 decades younger (73). A subsequent series of re-
ports (74–76) from the same laboratory compared committed exercisers (defined as those who
participated in 4–5 weekly exercise sessions, at least 30 min per session, for >25 years), casual ex-
ercisers (2–3 weekly exercise sessions), and sedentary individuals (no more than 1 weekly exercise
session). Committed exercisers were relatively protected against the age-related changes in CRF
and cardiac and large vessel (aortic) vascular stiffening, while casual exercisers were not signif-
icantly protected compared to sedentary individuals. Collectively, these findings indicate that a
weekly exercise dose consistent with current weekly PA guidelines (at least 150 min weekly) di-
minishes age-related changes in cardiac or large vessel structure and stiffening, and therefore may
reduce the risk of developing impairments with senescence.

Recent studies have provided compelling evidence that reinforces the favorable effects of pro-
longed and vigorous endurance exercise training and competition on the exercise performance of
men and women in their late eighth to tenth decades of life (71, 72).CRF in these high-performing
octogenarian athletes was over 30% higher than in similarly aged untrained individuals and was
more comparable to untrained midlife adults (78, 79).While this higher CRF is likely due to ben-
eficial adaptations in multiple organ systems, muscle biopsies revealed a structural composition
that would facilitate greater oxygen utilization, such as a greater capillarization, enzyme content,
and mitochondria number (70–72). The cross-sectional nature of these studies does not permit
a causative relationship between training history and physiological adaptations to be established.
However, it is likely that decades of regular vigorous exercise elicited molecular-, cellular-, and
organ-level adaptations that would facilitate a higher level of exercise performance.

Observational studies and meta-analyses have shown that senior athletes with an extensive his-
tory of resistance or strength exercise training demonstrate higher muscular maximal strength
and power than aged-matched untrained peers (68, 77, 80, 81).Multiple aspects of skeletal muscle
structure, including lower and upper limb muscle mass, slow-twitch muscle fiber size, capillariza-
tion, and aerobic enzyme content, are all enhanced in endurance- and resistance-trained senior
athletes (70–72, 77, 80, 82–85). From a neurogenic perspective, there is evidence that lifelong ath-
letes exhibit a higher number of surviving motor units in a phase of life in which they typically
decline (86, 87).Collectively, these findings suggest that lifelong endurance and resistance training
preserve several physiological properties of neuromuscular structure and function with advanced
age, although the optimal dose of exercise that needs to be performed over a lifetime still needs
further clarification.
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While these observations are important as they stress the benefits of lifelong aerobic and re-
sistance exercise for cardiovascular, musculoskeletal, and neuromuscular function, many of these
lifelong exercisers initiate exercise training early in life, and their typical training stimulus is un-
realistic to promote on a population basis. Therefore, more feasible strategies for regular PA and
exercise promotion across the entire lifespan are required (74, 75).

CURRENT PHYSICAL ACTIVITY AND EXERCISE
RECOMMENDATIONS IN THE ELDERLY

Public health organizations have called for adults of all ages to be more physically active and
reduce prolonged sedentary time. Current PA and exercise guidelines for the promotion of health
in older adults are not significantly different from evidence-based recommendations for young
adults: a threshold of at least 150min of moderate-intensity aerobic activity or 75min of vigorous-
intensity aerobic activity and 2 days of muscle-strengthening activities per week (15, 88, 89). For
older adults, balance and flexibility training, which can be encompassed within activities such as
tai chi, Pilates, or strength yoga, is recommended on at least 2 days per week (15, 88, 89). The
recommended types and the intensity of PA and exercise are generally very safe in older adults,
as exercise-based trials using these guidelines have reported only rare instances of serious adverse
events (90).

The American College of Sports Medicine and the American Heart Association have released
statements that encourage older adults to exceed the minimum recommendations for PA if there
are nomedical conditions or physical limitations that would preclude this (88, 91).However, if this
is not possible, they should be physically active as much as their abilities and medical conditions
allow.Participation above theminimum recommended amounts (>300min per week) is associated
with additional benefits in health and physical function and reduces the risk of inactivity-related
chronic diseases (15, 88, 89).

EXERCISE COUNTERS THE MAJOR CONSEQUENCES OF AGING

How much exercise is required to enhance or preserve CRF and skeletal muscle mass, strength,
and power in late-life exercisers?

Aerobic Exercise Training

Given its strong relationship to chronic disease and mortality, CRF has received significant re-
search attention in adults of all ages. The importance of CRF to physical function and day-to-
day functionality in the elderly is particularly relevant given the previously described aging- and
disease-related changes (5, 6). Moreover, improvements in CRF in the least aerobically fit adults
are associated with large health benefits and disease risk reduction (92).

A retrospective analysis of 53 studies involving over 2,000 individuals aged 70 years and older
found that CRF increased on average by 6–46% with aerobic exercise training programs that
were heterogeneous in training duration, frequency, and intensity (93). A recent meta-analysis of
41 trials showed that 30–40 weeks of training 3–4 days weekly at a moderate-to-vigorous intensity
(66–73% heart rate reserve) for 40–50 min per session was ideal for increasing CRF in previously
sedentary younger older (average age 67 years) adults (94).

In well-screened healthy adults 65 years and older, 12 months of progressive and vigorous
aerobic exercise training did not elicit a measurable effect on cardiac and large vessel structure
and stiffness despite a sizable increase in CRF (9, 95). In a subsequent study in healthy adults
60 years and older, 12 months of moderate-intensity aerobic exercise combined with a glycation
end-product breaker (alagebrium) resulted in approximately 15 years of restoration in cardiac
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stiffness, while no improvement was seen in the exercise-alone group (96). These findings suggest
that older adults may have reduced cardiovascular plasticity, which subsequently limits their ca-
pacity to respond to exercise training. A recent 2-year exercise-based study significantly improved
CRF and enhanced cardiac compliance in adults aged 45–64 years. These findings indicate a
potential sweet spot for exercise interventions to prevent/reverse the substantial age-related
changes in cardiovascular structure (79).

Well-controlled studies (e.g., prospective randomized trials) investigating aerobic exercise
training in those 80 years and older are much rarer than those in younger older age groups. Fur-
ther, those available generally involve small samples of subjects with multiple comorbidities and
a wide range of physical capacities. Despite the heterogeneity among prior research studies, a
similar relative mean improvement (14–15%) in CRF for exercise programs lasting 3–12 months
was reported (97–100). The exercise prescription generally involved 2–3 weekly sessions of up to
60 min of moderate-to-vigorous intensity aerobic exercise. Based on these findings, 120–180 min
of moderate-to-vigorous aerobic exercise weekly, for several weeks to months, appears to be an
exercise dose that results in a sizable increase in CRF, even in adults who initiated exercise training
late in life.

Although moderate-intensity aerobic exercise has become the standard exercise prescription
for improving CRF in older adults, there has been renewed interest in the health and performance
benefits of high-intensity interval training (HIIT) in aged and chronic diseased populations.There
is a growing body of literature supporting the effectiveness of HIIT in improving CRF and mea-
sures of cardiometabolic health in younger older adults (101–103), but this knowledge does not
extend to the oldest old, in whom there are currently no well-controlled, long-term efficacy and
safety studies.

While the magnitude may not be as substantial, an exercise dose lower than the PA recom-
mendations may still confer benefits on CRF. A recent randomized controlled trial showed that
75 min of moderate-intensity aerobic exercise weekly for 26 weeks increased CRF by 7% (104).
Likewise, a smaller dose of aerobic exercise may still confer mortality benefits, even in the absence
of measurable changes in cardiovascular structure (13).

Resistance/Strength Exercise Training

Due to the central role of skeletal muscle in maintaining physical function and mobility, resistance
or strength training in frail and nonfrail aged individuals has been an area of intense investigation
for over two decades. Resistance exercise has been successful in reversing the typical age-related
changes in skeletal muscle mass, power, and strength in older populations. Even frail individuals or
those aged over 85 years can achieve measurable improvements in muscular strength and power
with several weeks to months of resistance training (105–107).

When resistance or strength exercise is integrated into a multimodal exercise program, favor-
able effects are also observed in other physical function aspects such as CRF, balance, and gait
(108). Despite resistance training being well tolerated in most populations, only 14.6% of adults
aged 75–84 years and 10.4% aged 85 years and older regularly participate in musculoskeletal
strengthening activities as part of their leisure time (109).

Data from 25 randomized controlled trials in over 800 healthy adults aged 65 years and older
(mean age of 70.4 years) provided preliminary findings of a dose-response effect for resistance
training on muscular strength and morphology parameters (110). Performing a single weekly re-
sistance exercise session has been reported to promote beneficial changes in muscular strength in
older adults (111, 112). A recent review took a minimal-dose approach and reported that perform-
ing resistance exercise for at least 2 days weekly for 60 min or less appears to be appropriate for
improving muscular function in older adults (113).
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Detraining or reduced training studies provide important information on the exercise dose re-
quired to maintain physical fitness attributes once they are established. Once strength and muscle
mass gains are achieved, a single weekly maintenance resistance exercise session of a sufficient vol-
ume and intensity appears to be effective in preserving skeletal muscle mass and strength in older
adults (114). Exercise intensity may also play an important role in preventing physical detraining.
One study demonstrated that muscular strength and physical mobility were preserved through-
out 48 weeks of detraining following high-intensity resistance training, although this effect was
not observed with low-intensity training (67). Thus, the minimal effective dose for increasing and
then preserving muscle mass in older adults through resistance training is likely a very manageable
exercise dose.

The optimal resistance training modality for enhancing muscular hypertrophy and strength/
power outcomes in the oldest old has not been established.There is a growing body of literature as-
sessing the safety and efficacy of resistance training approaches such as low-volume, high-intensity
training and blood flow restriction training in healthy, frail, and diseased populations.While a few
investigations have reported positive findings on muscular hypertrophy and strength/power out-
comes in the elderly, further large-scale efficacy studies in the oldest old are required to determine
the optimal individual dose of exercise to maximize the application of these training protocols in
this population (115, 116).

CONCLUSION

Given the global changes in age demographics, the role of PA and exercise in preserving or im-
proving physical function, health, and disease risk in the oldest old is a ripe area of future research.
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Figure 1

Even in the absence of disease, exercise capacity declines with aging. In many seniors, exercise capacity can
fall to a level that results in a loss of functional independence (solid red line). Lifelong exercise consistent with
or above current physical activity recommendations is associated with a greater exercise capacity even in the
oldest old (solid blue line). Regular multimodal exercise training initiated in middle age results in
cardiovascular and skeletal muscle structural adaptations and functional improvements (dashed green line).
Exercise training started late in life (age >65 years) results in functional improvements despite only limited
structural adaptations (solid green line). The training response (trainability) is likely influenced by the exercise
dose performed (yellow area). The optimal exercise dose that improves and preserves exercise capacity in the
oldest old remains unknown.
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This research could contribute enormously to the translation of scientific and clinical informa-
tion into notable lifespan health, function, and quality-of-life benefits for aged humans. Figure 1
provides an overview of how prolonged and regular exercise training influences exercise capacity
during adulthood.

Despite accumulating evidence of the favorable effects of aerobic and resistance exercise train-
ing on physical fitness and function in the oldest old, the types and dose of PA or exercise required
to improve or preserve these outcomes are still unknown and require further investigation. It is
also unclear whether the training dose required to improve or preserve health and physical perfor-
mance outcomes differs in those with chronic disease, multiple comorbidities, or frailty compared
to their healthier peers.
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