"\ ANNUAL
f\ ¥ REVIEWS

s CONNECT
—

www.annualreviews.org

* Download figures

* Navigate cited references

* Keyword search

* Explore related articles

* Share via email or social media

Annu. Rev. Med. 2021. 72:281-311

First published as a Review in Advance on
November 6, 2020

The Annual Review of Medicine is online at
med.annualreviews.org

https://doi.org/10.1146/annurev-med-073118-
011031

Copyright © 2021 Willem W. Overwijk et al. This
work is licensed under a Creative Commons
Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in
any medium, provided the original author and
source are credited. See credit lines of images or
other third-party material in this article for license
information

Annual Review of Medicine

Willem W. Overwijk, Mary A. Tagliaferri,
and Jonathan Zalevsky

Nektar Therapeutics, San Francisco, California 94103, USA; email: woverwijk@nektar.com

Keywords

interleukin-2, IL-2, autoimmunity, cancer, immunotherapy

Abstract

Interleukin-2 (IL-2) is integral to immune system regulation. Its opposing
immunostimulatory and immunosuppressive actions make it an attractive
therapeutic target for cancer and autoimmune diseases. A challenge in de-
veloping IL-2-directed anticancer therapies has been how to stimulate effec-
tor T cells (Teffs) without inducing regulatory T cells (Tregs) in the tumor
microenvironment; conversely, IL-2 therapy for autoimmune diseases re-
quires Treg induction without further stimulation of Teffs. High-dose IL-2
is approved for melanoma and renal cell carcinoma, but its therapeutic value
is limited by a need for frequent dosing at specialist centers, its short half-
life, severe toxicity, and a lack of efficacy in most patients. Re-engineered
IL-2 therapeutics are designed to have longer in vivo half-lives, target spe-
cific IL-2 receptor conformations to stimulate specific T cell subsets, or lo-
calize to target tissues to optimize efficacy and reduce toxicity. We discuss
recent studies that elucidate the potential of newly engineered IL-2-based
therapeutics for cancer and autoimmune diseases.
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INTRODUCTION

Interleukin-2 (IL-2) is a cytokine that plays an integral role in the maintenance and homeostasis of
the innate and adaptive immune responses. Upon activation by antigen-presenting cells, T effector
cells (Teffs) produce IL-2, which, in turn, promotes the survival and/or expansion of multiple
lymphocyte populations, including effector and memory T cells, natural killer (NK) cells, and
regulatory T cells (Tregs) (1).

IL-2 regulates the balance between immunostimulation and immunosuppression via multiple
pathways. IL-2 promotes immune responses by inducing CD4" T cell proliferation and differ-
entiation into helper T cells, including Thl and Th2 cells, and increasing the number and ac-
tivity of CD8™ Teffs and NK cells (1). Yet, IL-2 also simultaneously dampens immune responses
by promoting the development and maintenance of immunosuppressive CD4*Foxp3* Tregs (1).
Specifically, IL-2 induces STAT'S phosphorylation, among other pathways (Figure 1), which is
essential both for optimal activity of Teffs and for the expression of the Foxp3 transcription factor
required for the multiple immunosuppressive functions of Tregs (2).

The pleiotropic effects of IL-2 signaling are mediated through the variable structure of the
IL-2 receptor expressed by different immune cells (Figure 1) (3). The IL-2 receptor comprises
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Figure 1

The role of IL-2 in the immune response. IL-2 signaling is mediated by different IL-2R configurations that are expressed by different
immune cells. The high-affinity IL-2 receptor, IL-2Rapy., is constitutively expressed on Tregs and ILC2 cells and transiently expressed
on Teffs, activated B cells, and monocytes. The intermediate-affinity IL-2 receptor, IL-2RByc, is constitutively expressed on Teffs,
memory T cells, and NK cells. IL-2 signaling activates the JAK/STAT, RAS-MAPK, and PI3K/AKT pathways, which modulate target
gene expression and subsequently differentiation, proliferation, survival, and cellular function. Abbreviations: IL-2, interleukin-2;
IL-2R, interleukin-2 receptor; ILC2, type-2 innate lymphoid cells; NK, natural killer; Teffs, effector T cells; Tregs, regulatory T cells.
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three subunits: IL-2Ra (CD25), IL-2RB (CD122), and the common y-chain (y.; CD132). The
intermediate-affinity IL-2 receptor is the heterodimer IL-2RBy., which is expressed by naive
and memory CD4* and CD8* T cells, and NK cells; the high-affinity IL-2 receptor is the het-
erotrimer IL-2Rafy., which is expressed constitutively by Tregs and type-2 innate lymphoid cells,
and transiently by Teffs. Stimulation of these two IL-2 receptor conformations leads to different
downstream effects, making them promising targets for the development of therapeutics for can-
cer as well as autoimmune diseases (1).

CONNECTING BIOLOGICAL DIVERGENCE TO THERAPEUTIC
RATIONALE

Oncology

The immune system, with its many cell types and functions, can both promote and suppress the
initiation and progression of cancer. In general, Teffs and NK cells promote tumor killing, a pro-
cess inhibited by Tregs (4).

T cells represent up to 10% of cells within the tumor microenvironment (4), with different
T cell subsets associated with different outcomes. Typically, CD8" memory T cells and CD4*
Th1 cells are associated with good cancer prognosis, whereas Foxp3* Tregs, CD4" Th2 cells, and
Th17 cells are associated with poor cancer prognosis (5). The fact that lymphopenia substantially
reduces response to different cancer therapies, including checkpoint inhibitors (CPIs), underlines
the central importance of lymphocytes in cancer therapy (6). A key challenge in the therapeutic
targeting of IL-2 in oncology is therefore how to direct its activity toward immune supportive
Teffs and away from immunosuppressive Tregs.

Autoimmune Diseases

Autoimmune diseases are characterized by the breakdown of immunologic tolerance and exagger-
ated immune activity, with defects in Tregs contributing to this pathophysiological mechanism.
Mice deficient in components of the IL-2/IL-2R pathway develop overactive T cell proliferation
and autoimmunity (7), pointing to the nonredundant function of IL-2 in maintaining functional
Tregs. This finding generated considerable interest in therapeutically administering IL-2 to con-
trol autoimmune disorders.

Foxp3 is highly expressed in Tregs, and mutations in the human FOXP3 gene are associated
with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX,
also known as X-linked autoimmunity-allergic dysregulation syndrome) (8). Foxp3-deficient mice
also develop IPEX, and introducing Foxp3 ™ Tregs from healthy animals resolves the disease, high-
lighting their central role in preventing autoimmune diseases (9). Importantly, IL-2 directly in-
duces the expression of Foxp3 in Tregs, and administration of IL-2 increases Foxp3 ™ Treg num-
bers in mice and humans (10).

Given this close connection among IL-2, Tregs, and autoimmune disease, there is much interest
in using IL-2 to induce Tregs that can suppress autoimmune disease. For example, by boosting
Tregs, IL-2 could help to control local inflammation to reduce plaque formation in atherosclerosis,
suppress Teff-mediated killing of insulin-producing cells in type 1 diabetes mellitus (T1DM), and
control inflammatory joint destruction in rheumatoid arthritis, to name only a few possibilities.
Furthermore, IL-2 can also block T follicular helper cells and stimulate T follicular regulatory
cell differentiation, which could reduce autoantibody formation and immune complex deposition
in systemic lupus erythematosus (SLE) (11). For this approach to be successful, the stimulation of
Tregs by IL-2 should ideally not be accompanied by the proliferation and activation of Teffs.
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HISTORICAL OVERVIEW OF IL-2 THERAPIES
Oncology

The first proof-of-concept study with recombinant human (rh)IL-2 that demonstrated tumor re-
gression in patients with solid tumors, including melanoma and renal cell carcinoma (RCC), was
performed over three decades ago (12).

High-dose (HD)-IL-2 (aldesleukin) was approved by the US Food and Drug Administration
(FDA) for the treatment of RCC and melanoma in 1992 and 1998, respectively (13). Its approval
was based on objective response rates (ORRs) of 17-20% and complete responses (CRs) lasting up
to 91 months (14). However, widespread adoption of HD-IL-2 has been hampered by significant
toxicities, including vascular leak syndrome and clinical manifestations of a cytokine storm (11).
Because of its short half-life of 13—-85 min (15), HD-IL-2 must be administered over 5 consecutive
days as an intravenous infusion at a maximum dose of 720,000 international units (IU)/kg every
8h (15, 16). Consequently, HD-IL-2 causes substantial toxicities, with black box warnings in place
for vascular leak syndrome and infection (15). Because of the difficulties with tolerability, patients
with a lower performance status are excluded as potential candidates for HD-IL-2 treatment (15).
Patients are also required to receive treatment at specialist immunotherapy centers to manage the
significant side effects associated with HD-IL-2 treatment (15, 16). Attempts to mitigate toxicity
by lowering the dose resulted in a reduction in therapeutic effect (17). Finally, the lack of objective
responses to HD-IL-2 in >80% of cancer patients further hinders widespread clinical use. Nev-
ertheless, the pronounced durability of responses observed in patients with RCC and melanoma
spurred continued research into IL-2.

IL-2 has been used in combination with adoptive cell therapy (ACT). This involves the systemic
infusion of tumor-infiltrating lymphocytes (TILs), isolated from tumor specimens and expanded
ex vivo to large numbers, into the cancer-bearing host followed by IL-2 infusions to enhance the
antitumor activity of the transferred TILs (18). A series of early clinical studies by Rosenberg et al.
more than 20 years ago demonstrated the first objective responses with infused TILs combined
with HD-IL-2 in patients with melanoma (19-21), which triggered further research into how ACT
could be optimized for cancer treatment. Recent clinical studies have shown promising results in
melanoma, cervical cancer, and human papilloma virus (HPV)-associated malignancies and are
described later in this review.

Combining rhIL-2 with the anti-disialoganglioside (GD2) monoclonal antibody (mAb)
ch14.18 (dinutuximab) was found to augment antibody-dependent cell-mediated cytotoxicity
against GD2-expressing neuroblastomas (22). Granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) and isotretinoin were subsequently added to the regimen, leading to significantly
improved overall survival versus isotretinoin (23) and a 2015 FDA approval for the maintenance
treatment of pediatric patients with high-risk neuroblastoma (24). However, similar to HD-IL-2,
the administration schedule is burdensome, involving an intravenous infusion totaling 10-20 h
over 4 days. Furthermore, the US label carries black box warnings for life-threatening infusion
reactions and neurotoxicity (24). Thus, there is ample room for improvement of IL-2-based
therapies.

Autoimmune Diseases

While IL-2 promotes the proliferation and function of Tregs, Teffs, and NK cells, it induces Tregs
at much lower concentrations because Tregs constitutively express the high-affinity IL-2Rafy.
receptor, whereas Teffs and NK cells mostly express the intermediate-affinity IL-2RBy. recep-
tor (25). Capitalizing on this feature, inducing preferential expansion of Treg populations via
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low-dose (LD)-IL-2 is a strategy that has been explored over the last decade for the treatment of
autoimmune diseases, with proof-of-concept studies in T1DM, SLE, and graft-versus-host disease
(GVHD) demonstrating treatment benefit without the toxicity associated with HD-IL-2 (26-28).

LD-IL-2 complexed with anti-IL-2 mAbs has been shown in preclinical models to preferen-
tially stimulate Tregs without modifying other effector cells (29). The anti-IL-2 mAb JES6 pro-
longed the half-life of IL-2 (30), while also blocking the interaction of IL-2 with IL-2Rp, leading
to increased Treg proliferation since binding to the high-affinity IL-2Rafy. was preserved (29).
However, until now, clinical adoption of antibody/cytokine complexes has been limited by diffi-
culties in manufacturing them and maintaining their stability (31).

Other research included a small study evaluating IL-2 (4.5 million IU three times per week)
plus rapamycin in patients with TIDM (32). However, despite an increase in Tregs, treatment
showed transient worsening of B cell function in all nine patients. Furthermore, the IL-2Ra-
blocking mAb daclizumab was approved for multiple sclerosis in 2016 after efficacy in reducing
disease activity was demonstrated in patients with relapsing multiple sclerosis (33). However, tox-
icities involving the brain, liver, and other organs resulted in its withdrawal in 2018 (34).

ENGINEERED IL-2 THERAPEUTICS IN DEVELOPMENT

There has been a long-felt need in the clinic to provide a therapeutic that isolates varied biologic
effects of the IL-2 pathway to address the significant shortcomings of existing IL.-2-based ther-
apies. Many strategies are being pursued to optimize the efficacy of drug candidates leveraging
the IL-2 pathway, while reducing the associated toxicities. IL-2-based investigational agents in
clinical studies in oncology and autoimmune diseases are summarized in Table 1 and Figure 2.

Oncology

PEGylated IL-2 agonists. In general, PEGylation can improve the solubility and pharmacoki-
netics (PK) of drug molecules through a variety of mechanisms (35). In addition, PEGylation at
specific sites of a protein ligand can lead to altered binding of specific molecular domains to spe-
cific domains on their cognate receptors. PEGylated IL-2 molecules that preferentially bind to
different IL-2R conformations are being explored in oncology to activate the IL-2 system in a
controlled way and to tilt the balance in the tumor microenvironment in favor of Teffs.

Bempegaldesleukin. Bempegaldesleukin was designed to improve the half-life, PK, pharmacody-
namics, efficacy, and tolerability of IL-2. It is currently the most advanced IL-2 pathway—targeted
agent in clinical development for oncology, with multiple active registrational phase III studies.
Bempegaldesleukin is an engineered PEGylated IL-2 agonist with an average of six conjugated,
releasable polyethylene glycol (PEG) molecules (36). Bempegaldesleukin is an inactive prodrug
when administered (i.e., with all six PEG moieties attached), and its bioactivity gradually increases
as the PEG molecules are slowly released following administration. Relative to native IL-2, the
PEGylated active IL-2 species preferentially bind to IL-2RBy., predominantly expressed on Teffs
and NK cells, over IL-2RaBy., expressed predominantly on Tregs (36, 37). The half-life of bem-
pegaldesleukin is 15.5 h in vivo versus aldesleukin’s 1.4 h in humans, which leads to the observed
controlled IL-2 activity with limited side effects (36, 38). Specifically, the greatly increased dura-
tion of drug exposure due to the prodrug design allows for much lower maximum plasma levels,
reducing toxicity while increasing efficacy (37).

In preclinical studies, bempegaldesleukin induced tumor regression by increasing the intratu-
moral proliferation, activation, and effector function of CD8" T and NK cells without expanding
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a Cancer therapy b Autoimmune disease therapy

High-dose IL-2
C>_ L2 ' IL-2Ra G— IL-2
PEGylated IL-2 agonists
Low-dose IL-2
IL-2Rp — ‘ — IL-2Ry. Non-PEGylated IL-2 agonists IL-2Rp —— — IL-2Ry,
I IL-2 muteins
IL-2 fusion proteins
IL-2/mAb complexes
IL-2/mAb complexes
Expansion and Orthogonal IL-2/IL-2Rp Expansion and
Teff activation of Teff cells mutant pairs Treg activation of Tregs
Immunostimulation to promote Immunosuppression to promote
an antitumor response immunologic tolerance
Figure 2

Mechanism of action of IL-2 agents for the treatment of cancer and autoimmune diseases. (#) Cancer can be treated using agents that
target the intermediate-affinity IL-2RBy. receptor that is constitutively expressed on Teffs, memory T cells, and NK cells, while

() autoimmune diseases can be treated using agents that target the high-affinity IL-2Rafy. receptor that is constitutively expressed on
Tregs. Receptor stimulation by IL-2 triggers the differentiation, proliferation, and function of each immune cell population, leading to
immunostimulation by Teffs, memory T cells, and NK cells for the treatment of cancer and immunosuppression by Tregs for the
treatment of autoimmune diseases. Abbreviations: IL-2, interleukin-2; IL-2R, interleukin-2 receptor; mAb, monoclonal antibody; NK,
natural killer; Teffs, effector T cells; Tregs, regulatory T cells.

intratumoral Tregs, with a marked elevation of the CD8:Treg ratio in the tumor by day 7 of treat-
ment in a melanoma mouse model (37). Mirroring these results, a first-in-human study showed
that bempegaldesleukin increased peripheral and intratumoral CD8" T cell proliferation, num-
ber, and effector function without increasing intratumoral Tregs, and without causing serious tox-
icity, in previously treated patients with advanced solid tumors. Bempegaldesleukin transiently
increased Tregs in peripheral blood but not in the tumor (39), which may reduce autoimmune
phenomena in patients receiving concomitant immunostimulatory therapies.

Preclinical studies have demonstrated activity of bempegaldesleukin in settings of anti-PD-1
and anti-CTLA-4 CPI therapy, vaccination, and ACT (40, 41). All studies found a consistent in-
crease in the number and function of Teffs and superior antitumor activity, without increases in in-
tratumoral Tregs and without significant toxicities. Furthermore, three in vivo studies have shown
enhanced antitumor activity of bempegaldesleukin in combination with radiotherapy, radiother-
apy plus anti-CTLA-4 therapy, and radionuclide therapy in mouse models of brain melanoma
metastases, non—small cell lung cancer (NSCLC), and head and neck squamous cell carcinoma
(HNSCCO), respectively (42—44). Finally, bempegaldesleukin recently showed activity in a preclin-
ical model of cancer that was resistant to anti-PD-1 therapy due to a lack of f-2-microglobulin.
This defect is a known mechanism of anti-PD-1 resistance in human cancer and leads to a loss of
expression of major histocompatibility complex (MHC) class I on the cell surface, which in turn
leads to a loss of recognition by Teffs. Bempegaldesleukin was revealed to induce CD4" T cells
and NK cells that could recognize and destroy the tumor cells in an MHC class I-independent
manner (45). Taken together, these results demonstrate the synergy of bempegaldesleukin with
other immunomodulating approaches, including CPI therapy, to increase tumor control.

To this end, the PIVOT-02 trial of bempegaldesleukin and nivolumab in patients with locally
advanced/metastatic solid tumors established the recommended phase II dose as 0.006 mg/kg

www.annualreviews.org o Engineering IL-2 for T Cell Immunotherapy 299



300

bempegaldesleukin every 3 weeks plus nivolumab 360 mg every 3 weeks (46). Data have also
been reported for patients with melanoma (47), RCC (48), triple-negative breast cancer (49),
urothelial cancer (UC) (50), and NSCLC (48). The phase II dose was well tolerated and elicited
deep and durable responses in the first-line melanoma setting, with an ORR of 53% (z = 20/38)
and a CR rate of 34% (n = 13/38) observed after 18.6 months of follow-up (47). Responses in
melanoma, UC, and other tumor types occurred regardless of baseline PD-L1 expression (47,
49, 50). In contrast to HD-IL-2, multiple cycles of bempegaldesleukin can be easily administered
in the outpatient setting and, with the renewed generation of antigen-specific lymphocytes with
each subsequent cycle, greater tumor shrinkage in a larger proportion of patients is achieved in
combination with PD-1 checkpoint blockade compared with reported results for PD-1 check-
point blockade alone. Furthermore, bempegaldesleukin plus nivolumab elicited the conversion
of PD-L1-negative tumors to PD-L1-positive tumors in 7 of 10 patients (50), which is important
because increased tumor PD-L1 expression is associated with improved responses to CPIs (51).
This unique feature of bempegaldesleukin is particularly promising for the treatment of tumors
such as advanced cisplatin-ineligible UC, where there is a high unmet need for novel treatments
for patients with low-PD-L1-expressing tumors (52).

THOR-707. THOR-707 is a PEGylated IL-2 variant that lacks binding affinity for IL-2Ra,
achieved through the attachment of one PEG molecule at an unnatural amino acid introduced
in the IL-2 molecule (53, 54). THOR-707 demonstrated an extended half-life and high AUC in
mice and nonhuman primates versus HD-IL-2, with repeated dosing at 0.1 mg/kg showing sim-
ilar PK profiles when dosed every 2, 3, or 4 weeks in nonhuman primates (55). Activation and
proliferation of CD8" effector and memory cells and NK cells were also observed, with minimal
Treg expansion (53, 55). In CT-26 syngeneic mouse tumors, THOR-707 elicited the infiltration
of CD8" T cells, increasing the proportion and repertoire diversity of TILs (54, 55). Further-
more, vascular leak syndrome was not observed at any dose level (53, 54). Antitumor activity was
observed in combination with anti-PD-1 therapy (54, 55). The phase I/IIl HAMMER study of
THOR-707 as a single agent or in combination with pembrolizumab began in 2019 in patients
with advanced/metastatic solid tumors (56).

Non-PEGylated IL-2 agonists. Non-PEGylated rhIL-2 agonists in the early stages of develop-
ment include MDNA-19, which is targeted to IL-2Rf, and Neo-2/15, which binds to IL-2RBy..
A nonhuman primate study demonstrated expansion of CD4* T cells, CD8" T cells, and NK
cells after treatment with MDNA-19, with limited effects on eosinophils and Tregs and an ex-
tended half-life versus rhIL-2 (57). MDNA-19 is expected to enter clinical trials in 2021 (58).
For Neo-2/15, results so far have demonstrated a higher CD8% T cell: Treg ratio compared with
wild-type mouse IL-2 and little or no immunogenicity in mice. Dose-dependent delays in tumor
growth were observed in melanoma and colon cancer mouse models with single-agent Neo-2/15,
with superior therapeutic activity and reduced toxicity shown following combination treatment
with anti-TRP1 mAb TA99 in the melanoma model compared with wild-type mouse IL-2 (59).
Most recently, Neo-2/15 targeted to engineered chimeric antigen receptor T cells (CAR-T cells)
increased CAR-T cell expansion and prolonged survival in a B cell tumor xenograft model com-
pared to CAR-T cells and nontargeted Neo-2/15 (60).

IL-2 fusion proteins. ALKS-4230 is an engineered protein of circularly permuted IL-2 fused
to the extracellular domain of IL-2Ra, which inhibits interaction with IL-2Ra and preferentially
binds to IL-2RBy. (61). In mice, ALKS-4230 stimulated greater expansion of NK cells and CD8*
memory T cells compared with rhIL-2 at doses that did not expand or activate Tregs, and it
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demonstrated superior antitumor efficacy in a B16F10 lung tumor model. The half-life of ALKS-
4230 was four- to fivefold longer than that of rhIL-2, and absorption was prolonged. Recent data
from ARTISTRY-1, a phase I/1I study investigating ALKS-4230 as monotherapy and in combina-
tion with pembrolizumab in patients with advanced solid tumors, have shown preliminary clinical
benefit and acceptable tolerability profiles (62). ALKS-4230 monotherapy at 6 pg/kg elicited a
partial response in one patient with metastatic urethral melanoma who had previously relapsed
on adjuvant nivolumab and demonstrated durable responses in heavily pretreated patients with
ovarian cancer combined with pembrolizumab (63). Other ongoing combination trials include
the phase Il ARTISTRY-2 study in patients with advanced/metastatic solid tumors and a phase II
trial in patients with HNSCC.

IL-2/mAb complexes. Complexing IL.-2 with a mAb can prevent the resulting complex from in-
teracting with IL-2Ra to preferentially stimulate intermediate-affinity IL-2Rpy-expressing cells,
as demonstrated in preclinical experiments with recombinant IL-2 complexed with the anti-IL-
2Ra mAb S4B6. IL-2/54B6 complexes expanded memory CD8" T cells and NK cells by 20-
40-fold and Tregs by only 2-5-fold, while causing less endothelial cell damage and vascular leak
syndrome in the lungs and liver of animals than HD-IL-2 (64). However, clinical evaluation of
this approach has not yet been undertaken.

A different approach to cancer therapy is the intralesional administration of targeted agents,
with the goal of killing tumor cells directly as well as stimulating a local and systemic antitumor
immune response (65). Daromun is an engineered immunocytokine combining the anti-extra do-
main B (EDB) mAb L19 and the IL-2 agent L19-IL-2 (darleukin) with L19-TNF-a (fibromun),
an immunocytokine in which L19 is fused to human tumor necrosis factor-a. The L19 antibody
recognizes EDB on the tumor angiogenesis marker fibronectin, which is present in the newly
formed vasculature of most tumors but absent in almost all healthy tissues (66). In syngeneic im-
munocompetent mouse models of cancer, complete remissions were observed following daromun
administration, whereas the two components alone did not lead to cures (67). These results led
to a phase II trial of intralesional daromun in patients with unresectable metastatic melanoma,
in which 32 lesions in 20 patients exhibited CRs. CRs were also observed in 54% of noninjected
lesions, demonstrating the ability of daromun to trigger systemic immune responses (68). The
phase III neo-DREAM trial is now under way in patients with resectable stage IIIB/C melanoma
(69). Darleukin is also being clinically investigated separately in NSCLC and lymphoma.

APN-301 is an anti-GD2 mAb covalently linked to IL-2, which has demonstrated potential
anticancer activity in melanoma and neuroblastoma mouse models (70, 71). Phase II clinical stud-
ies of APN-301 are now complete. APN-301 as a single agent demonstrated a 22% (n = 5/23)
CR rate in patients with recurrent/refractory neuroblastoma, with an observed duration of re-
sponse of up to 35 months (72). In the same population, APN-301 in combination with GM-
CSF and isotretinoin elicited a 16% ORR (73). In patients with resectable recurrent stage III/TV
melanoma, 33% (n = 6/18) of those receiving APN-301 remained recurrence free, with 24-month
recurrence-free and overall survival rates of 39% and 65 %, respectively (74). Both regimens ex-
hibited acceptable tolerability profiles across indications.

RG-7461 (RO6874281) is a recombinant fusion protein comprising a mAb directed against the
tumor-associated fibroblast activation protein linked to an rhIL-2 variant that does not bind to
IL-2Ra (75). The antibody portion mediates the retention and accumulation of the molecule in
malignant tissue given the strong expression of fibroblast activation protein on tumor-associated
fibroblasts; administration is accompanied by the activation and intratumoral accumulation of
CD8* T and NK cells but reduced activity of Tregs (75). In a phase I trial, single-agent RG-7461

www.annualreviews.org o Engineering IL-2 for T Cell Immunotherapy

301



302

demonstrated an acceptable safety profile; rapidly expanded Teffs and NK cells, but not Tregs, in
peripheral blood and tumors; and elicited long-lasting (>6 months) objective responses in three
patients with metastatic solid tumors (75). Several phase I/II trials of RG-7461 in combination
with other targeted therapies are currently recruiting.

Cergutuzumab amunaleukin (CA) is an anticarcinoembryonic antigen (CEA) mAb linked to
rhIL-2 with three mutations that prevent binding to IL-2Ra. CEA is a glycoprotein that is highly
expressed in certain solid tumor types, including colorectal cancer (95 %), pancreatic cancer (90%),
gastric cancer (80%), NSCLC (60%), and breast cancer (40%), compared with low levels in nor-
mal tissue (76). As a fusion protein, CA is designed for tumor targeting and an extended half-life
compared with IL-2. Indeed, in human CEA-transgenic C57BL/6 mice, CA demonstrated su-
perior PK and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine,
strongly expanded NK and CD8" T cells in the blood and tumor tissue, and demonstrated in-
creased survival in syngeneic MC38-CEA and PancO2-CEA models, without preferentially acti-
vating Tregs (76). Selective and targeted tumor accumulation was confirmed in a recent positron
emission tomography imaging study (77). Preliminary phase I data in patients with CEA-positive
advanced/metastatic solid tumors confirmed the expansion of CD8% T cells and NK cells and
the intratumoral accumulation of CA (78). Final results from this study, as well as results from a
combination study with atezolizumab, have not yet been published.

Adoptive cell therapy. Lifileucel is a cryopreserved autologous TIL therapy that comprises a TIL
infusion followed by up to six doses of IL-2. Lifileucel has recently demonstrated encouraging
efficacy in phase II trials in patients with previously treated metastatic melanoma and recurrent,
metastatic, or persistent cervical cancer. In melanoma, an ORR of 36% was observed (median
duration of response: not reached at 18.7 months of median study follow-up), and in cervical
cancer a 44% ORR (11% CRs) was reported (median duration of response: not reached) (79, 80).
Other phase II trials of lifileucel are recruiting in different malignancies, including HNSCC and
triple-negative breast cancer.

Recent proof-of-concept data have been published by the National Cancer Institute for an
ACT for the treatment of HPV-associated epithelial cancers. This approach mediated the regres-
sion of HPV-associated cervical cancer, oropharyngeal cancer, and anal cancer in a phase II trial,
with an overall ORR of 24% (n = 7/29) and CRs ongoing 67 and 53 months after treatment in
two patients with cervical cancer (81).

Engineered IL-2 represents a potential advancement over the use of native IL-2 (aldesleukin)
for ACT. Bempegaldesleukin showed superior activity over aldesleukin in a preclinical model of
ACT (41). In an alternative approach, modified IL-2 receptors can be directly engineered into
T cells and complemented with administration of a matched, engineered IL-2 protein variant,
which is discussed in the next section. Together, the advancement of industrial-scale TIL manu-
facturing, expansion into cancers beyond melanoma, and engineered IL-2 may help T cell-based
therapy gain a firmer foothold in solid tumor therapeutics.

Orthogonal IL-2/IL-2R mutant pairs. A new approach to recombinant IL-2 therapy has been
to develop orthogonal IL-2/IL-2Rf mutant pairs where a mutant IL-2 molecule selectively binds
to a mutant IL-2RB to transmit native IL-2 signals, but neither mutant binds to its wild-type
counterpart. This approach is thought to alleviate toxicity and activation of Tregs induced when
using native rhIL-2, by instead administering mutant IL-2 to patients receiving adoptive transfer
of T cells engineered to express a matching, mutant IL-2RB. Sockolosky et al. (82) have recently
developed orthogonal murine IL-2/IL-2RB mutant pairs which expanded T cells and promoted
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antitumor responses in an in vivo melanoma model. Additionally, the transfer of orthoIL-2Rp into
T cells demonstrated selective cellular targeting of ortholL.-2 to engineered CD4" or CD8* T
cells, as well as CD4* Tregs, but not to endogenous T cells expressing native IL-2Rs (82). This
approach, which has yet to be validated in the clinic, is aimed at specifically enriching ortholL-
2RB-engineered T cells by administration of ortholL-2.

Autoimmune Diseases

Unlike in oncology, the overall goal of targeting IL-2 is to dampen the immune response,
with a focus on selectively enhancing immunosuppressive Tregs via the high-affinity IL-2Rofy.
while limiting Teff cell proliferation driven by engagement of the intermediate-affinity receptor
IL-2RBy..

Low-dose IL-2. Following a short-term study of LD-IL-2 in patients with SLE that showed in-
creased Tregs and decreased disease activity (83), a recent phase II pilot study reported significant
response rates with LD-IL-2 versus placebo (66% versus 37%; p = 0.027) as well as complete
remission in 54% of patients with lupus nephritis (84). There were no serious infections reported,
in contrast to the increased infection risk associated with standard SLE therapies. The recent
TRANSREG study of LD-IL-2 aimed to establish which autoimmune diseases could be selected
for further clinical development. LD-IL-2 was administered to 46 patients with one of 11 autoim-
mune diseases, including rheumatoid arthritis, ankylosing spondylitis, SLE, psoriasis, and Crohn’s
disease. LD-IL-2 led to Treg expansion and activation in all patients without impacting Teffs, and
there were no serious drug-related adverse events. Clinical Global Impression and disease-specific
scores also improved over the course of treatment, indicating potential clinical benefit (85). These
results warrant further clinical investigation of LD-IL-2 versus standard treatments in various
autoimmune conditions. The phase II DIABIL-2 trial is recruiting patients to assess LD-IL-2
in T1DM, and the LUPIL-2 phase II study in SLE was completed in 2019 with results eagerly
awaited. However, determining the most appropriate dose of IL-2 to optimize clinical efficacy
in autoimmune conditions remains a challenge, as its short half-life means that an inconvenient
dosing schedule is required (1 million IU for 5 days, then every week or every 2 weeks for up to
12 months). Since native IL-2 also stimulates Teffs in a dose-dependent manner, IL-2 conjugates
and fusion proteins and IL-2/antibody complexes are being explored to more selectively expand
Tregs with minimal impact on Teffs (86).

IL-2 conjugates and fusion proteins. An alternative approach to stimulating IL-2-mediated
effects has been the generation of IL-2 variants in which the protein is altered by changing one or
more key amino acids or by conjugation or fusion to proteins or other macromolecules to create
a molecule with novel properties. Early work focused on IL-2 muteins with attenuated binding to
IL-2RP to mitigate IL-2-induced toxicity. Although these agents did not demonstrate decreased
toxicity in clinical trials, they showed significant selectivity for high-affinity IL-2Rs and Tregs (86,
87), which prompted further refinement of this approach.

NKTR-358 is a PEGylated IL-2 molecule that selectively induces the proliferation and acti-
vation of Tregs. PEGylation attenuates the affinity of NK'TR-358 for IL-2R relative to recombi-
nant IL-2, rendering Tregs with high-affinity receptors more sensitive to NKTR-358 than Teffs
(88). In a BALB/c mouse model, a single injection of NKTR-358 stimulated a greater magnitude
and duration of Treg mobilization than five daily administrations of recombinant IL-2 and sup-
pressed antigen-driven inflammation. Efficacy was also observed in an SLE mouse model (88).
Initial results from a first-in-human study showed that NK'TR-358 is safe and well tolerated and
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that it elicits substantial dose-dependent expansion of Tregs with no measurable changes in CD4*
and CD8* T cells (89). These results have been extended in a recent phase I study in patients with
SLE, in which NK'TR-358 increased the mean peak Treg:CD8 ratio 12-fold in the 24 pg/kg group
(90). A phase II study of NKTR-358 in SLE has recently been initiated, with other phase I studies
in psoriasis and atopic dermatitis ongoing.

THOR-809 is a covalently bound mono-PEGylated IL-2 variant with a PEG molecule at-
tached to an unnatural amino acid, introduced at a site on IL-2 where affinity at the By chain of
the IL-2 receptor is reduced, and is designed to increase half-life and enhance selectivity for IL-
2Rafy. (91). In C57BL/6 mice and cynomolgus monkeys, a single subcutaneous dose of THOR-
809 conferred the expansion and activation of Tregs, but not Teffs, and increased markers of Treg
differentiation and function (91). Further studies are awaited.

Efavaleukin alfa (AMG592) is another IL-2 fusion protein being pursued in the clinic. This
is a variant form of IL-2 fused to a human Fc molecule, which increases its stability and half-life
(92). In a first-in-human trial, dose-dependent expansion of Tregs (a four- to fivefold increase)
peaked at day 8 and was elevated above baseline until day 29. The phenotype of expanded Tregs
included elevated IL-2Ro and Foxp3, as well as higher proportions of PD-1 (93). Phase I/11 trials
are ongoing in SLE and GVHD.

RG-7835 (RO7049665) is a conjugate of the IL-2 mutein N88D, which has reduced binding
to IL-2RBy, fused with human IgGI. In cynomolgus monkeys, RG-7835 elicited a 10-14-fold
increase in CD4* and CD8* Foxp3* Tregs with no effect on CD4" or CD8* memory T cells
(94). A phase I trial has been completed in healthy subjects, and a phase Ib trial in ulcerative colitis
is under way.

CC-92252 (DEL-106) is an IL-2 mutein Fc fusion protein. A phase I randomized study of
CC-92252 in healthy adult subjects and adults with psoriasis is currently recruiting.

IL-2/mAb complexes. The IL-2/JES6-1 complex is an anti-mouse IL-2 mAb which has pro-
vided preclinical proof-of-concept evidence that certain IL-2/IL-2R mAb complexes increase the
number of IL-R2a-expressing Foxp3* Tregs in mice without significantly affecting CD8* T cells
(29). Several preclinical studies have shown promising results for IL-2/JES6-1 in the treatment
of autoimmune diseases, including T1DM and GVHD (95, 96).

The anti-rhIL-2 mAb F5111.2 complexed with IL-2 has recently demonstrated similar findings
in animal models of T1DM, autoimmune encephalomyelitis, and GVHD. A substantial increase
of Foxp3, CD25, and p-STAT' signals occurred without an effect on Teffs (97). Further studies are
warranted to translate the application of IL-2/F5111.2 for the treatment of autoimmune diseases
in the clinic.

FUTURE DIRECTIONS

After many years of limited use of IL-2 for the treatment of metastatic melanoma and RCC,
multiple re-engineered IL-2 molecules are currently in clinical development, and many more are
moving through preclinical studies toward clinical testing. In oncology, the focus is on improved
PK, reduced toxicity and frequency of administration, reduced induction of Tregs, and increased
activation of Teffs and NK cells for strong therapeutic efficacy, especially in combination with
CPIs. Future work will focus on these important questions: What is the impact of partial versus
complete loss of IL-2Ra binding on antitumor efficacy versus the risk of increased autoimmunity?
Does tumor targeting of IL-2 increase its tolerability while maintaining its efficacy? What are
the impacts of IL-2 modifications on the induction of antidrug antibodies, and do those impair
therapeutic efficacy? Can engineered IL-2-based regimens induce meaningful clinical activity in
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cancers beyond those that are responsive to current forms of immunotherapy, such as melanoma,
RCC, and UC? Is engineered IL-2 critical for the success of ACT in solid tumors? What are the
best combinations of engineered IL-2 with other immunologic or conventional modalities? And
what pretreatment biomarkers can predict outcome in patients receiving these regimens?

In autoimmune disease, the use of low-dose native IL-2 to induce Tregs is continuing while
new, engineered IL-2 molecules are emerging. Development of the new molecules seeks to im-
prove ease of administration, tolerability, and the differential induction of Tregs without activation
of autoreactive Teffs. Future work will focus on convenient dosing and scheduling, preventing in-
duction of antidrug antibodies in settings of chronic administration, the theoretical long-term
risk of infection or malignancy, combinations with other immunosuppressive agents, and expan-
sion into other autoimmune and inflammatory conditions.

CONCLUSION

IL-2-targeted therapy has been rejuvenated by the development of re-engineered agents that pro-
mote or block the actions of IL-2 with improved efficacy and tolerability profiles versus historical
use of the unmodified cytokine. Achieving the optimal balance between activating Teffs and acti-
vating Tregs has been an ongoing challenge for IL-2-targeted therapies in cancer and autoimmune
diseases, but new strategies directed toward different IL-2R conformations are showing promis-
ing results in the clinic. With results from ongoing trials anticipated to establish the role of newly
engineered agents in the treatment of cancer and autoimmune diseases, as well as their potential
in other indications where the modulation of lymphocytes could have clinical benefit, an exciting
future lies ahead for IL-2 therapeutics.

1. IL-2 is a cytokine that regulates the balance between immunostimulation and immuno-
suppression to preserve immune homeostasis.

2. IL-2 stimulates immunity by inducing the proliferation and activity of effector and mem-
ory CD4* and CD8" T cells as well as NK cells, but it also suppresses immunity by
promoting the proliferation and activity of CD4*Foxp3* Tregs.

3. The downstream effects of IL-2 are mediated by the different conformations of the
IL-2 receptor. These include the intermediate-affinity heterodimer IL-2RByc, mostly
expressed by CD4" and CD8* T cells and by NK cells, and the high-affinity het-
erotrimer IL-2RaByc, mostly expressed by Tregs and type-2 innate lymphoid cells and
transiently expressed by activated T cells.

4. The variable structures of the IL-2 receptor make them attractive targets for the treat-
ment of cancer via the stimulation of Teffs and the treatment of autoimmune diseases
via the suppressive action of Tregs.

5. Historical approaches have centered on rhIL-2, which has demonstrated activity in can-
cer and autoimmune disease, but were limited by either toxicity or inconvenient dosing
regimens.

6. Re-engineering IL-2 to preferentially bind to different IL-2 receptor conformations
has generated novel IL-2 formulations, including PEGylated IL-2 agonists, IL-2/mAb
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complexes, and IL-2 fusion proteins, that selectively enhance different immune cell
populations and have demonstrated promising activity in preclinical and clinical studies.

Ongoing studies aim to establish the role of engineered IL-2 therapeutics in the treat-
ment of cancer and autoimmune diseases, as well as other diseases where the modulation
of lymphocyte populations could have clinical benefit.
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