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Abstract

The pace and efficiency of ribosomal subunit production directly impact
the fitness of bacteria. Biogenesis demands more than just the union of ri-
bosomal components, including RNA and proteins, to form this functional
ribonucleoprotein particle. Extra-ribosomal protein factors play a funda-
mental role in the efficiency and efficacy of ribosomal subunit biogenesis.
A paucity of data on intermediate steps, multiple and overlapping pathways,
and the puzzling number of functions that extra-ribosomal proteins appear
to play in vivo make unraveling the formation of this macromolecular as-
semblage difficult. In this review, we outline with examples the multinodal
landscape of factor-assisted mechanisms that influence ribosome synthesis
in bacteria. We discuss in detail late-stage events that mediate correct ri-
bosome formation and the transition to translation initiation and thereby
ensure high-fidelity protein synthesis.

193


mailto:anaganat@ur.rochester.edu
mailto:gloria.culver@rochester.edu
https://doi.org/10.1146/annurev-micro-041020-121806
https://www.annualreviews.org/doi/full/10.1146/annurev-micro-041020-121806

rRNA: ribosomal
RNA

SSU or 30S subunit:
the small subunit

r-proteins:
ribosomal proteins

LSU or 508 subunit:
the large subunit

Assembly,
biosynthesis,
biogenesis,
maturation: The
process of assembling
ribosomal subunits
from its components
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1. INTRODUCTION

In 1955, George Palade published the first article on the machines we now called ribosomes, en-
titled “A Small Particulate Component of the Cytoplasm” (65). Shortly after, these particles were
identified as ribonucleoprotein (RNP) particles and designated as the site of protein synthesis (86).
RNPs, and their two asymmetric subunits, were named based on sedimentation in a sucrose gradi-
ent. Each subunit of the ribosome is made up of ribosomal RNA (rRNA) and ribosomal proteins
(r-proteins) and is synthesized by a process often termed biogenesis, biosynthesis, assembly, or
maturation. An accurate ribosome maturation pathway is essential to ensure high-fidelity protein
synthesis by establishing the correct architecture of active sites within the ribosome. Moreover,
this process must be fast and robust, for allowing the fast doubling rates of certain bacteria
(31).

In the 1970s, elaborate in vitro experiments had demonstrated that ribosomes can self-assemble
from mature component parts (60, 88). (This review is focused on bacterial ribosome biogenesis;
thus, broad statements are meant to only apply to these organisms unless otherwise noted.) The in
vitro experiments paved the way to a hierarchical assembly model and were crucial, in combination
with advances in structural biology in the 1990s-2000s, to understand detailed structural aspects
of ribosomes (68). However, an important question has remained unanswered and has been the
focus of the last few decades of research—Why are there dozens of extra-ribosomal assembly
factors encoded in genomes if ribosomes are capable of self-assembly?

Prokaryotic ribosomes are made up of about 30% protein and 70% RNA (31). The small sub-
unit (SSU or 30S subunit) contains one rRNA molecule (16S rRNA is 1,542 nucleotides) and 21
r-proteins. The large subunit (LSU or 50S subunit) contains two rRINA molecules (23S rRNA is
2,904 nucleotides and 5S rRNA is 120 nucleotides) and 34 r-proteins (75). The precursor rRNA
is processed to remove sequences flanking each mature rRNA species. This is not accomplished
in a single step and occurs cotranscriptionally and in coordination with other events of folding,
r-protein binding, and RNA modification (75). In vivo pathways of rRNA processing have eluded
studies due to several reasons—similar phenotypes of mutant strains, nonessentiality of factors,
and the presence of thermodynamically stable intermediates in biogenesis-defective strains that
are not representative of the true intermediates. For example, why does the rRINA retain pre-
cursor sequences well into the late stages of biogenesis (35)? Is there one dominant pathway or
several equally preferred (or not) alternate pathways for ribosomal subunit maturation? How are
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mechanisms deployed to delay rRNA processing or r-protein binding? What triggers and what is
involved in quality control of functional ribosome synthesis? These questions have begun to be
addressed by slowing or blocking the maturation of ribosomes using nonstandard conditions or
creation of mutant strains.

In bacteria, over 40 auxiliary proteins have been categorized as ribosome biogenesis factors
(75). Despite extensive work on individual factors, there is a knowledge gap between the tradi-
tionally known hierarchical nature of assembly (60, 88) and the lesser-known kinetic bottlenecks
that impact this cascade-like process (21, 23). In this review we look at the process of bacterial
ribosome biogenesis with emphasis on auxiliary, nonribosomal factors that play a role in assembly
in vivo. We discuss the interwoven pathways leading to a mature ribosome, challenges associated
with studying them, the extent of interactions between factors, and new mechanisms that shed
light on this complex, highly evolved process.

2. A RIBOSOME BIOGENESIS FACTOR GRID THAT IS
REPRESENTATIVE OF THE COMPLEX INTERCONNECTIVITY
OF THE BIOGENESIS SYSTEM

Despite the wealth of information gleaned from in vitro assembly studies, there are limitations to
these insights. In vitro ribosomal subunit biogenesis does not truly reflect physiological conditions
under which biogenesis happens for three reasons: (#) The large number of assembly factors avail-
able in vivo are not required in vitro; () in vitro experiments use mature components to initiate
assembly, not precursor or unmodified components as happens in vivo; and (¢) the optimum con-
ditions (like temperature and ionic strength) for in vitro reconstitution are vastly different from in
vivo conditions (60, 88). The Escherichia coli small subunit (SSU or 30S) can be fully assembled in
under a minute in vivo (23, 50), and healthy bacterial cells accumulate ribosomal intermediates at
the level of about 2% of the total RNA (50). Thus, the speed and plasticity of bacterial ribosome
biogenesis make it difficult to isolate and analyze in vivo—formed intermediates. To date, the use
of mutant phenotypes has been the most productive in vivo approach to understand ribosome
biogenesis. Unfortunately, heterogeneity and overlapping patterns exist in the intermediates that
accumulate in different biogenesis-defective mutant strains, adding to the difficulty of identifying
substrates and assigning precise functions to biogenesis factors (85).

In the last 10 years, it has become clear that the bacterial ribosomal biogenesis pathway has
many related functional nodes where factors act. These factors include r-proteins as well as those
that transiently bind, act, and leave (nonribosomal proteins). The identified nonribosomal proteins
include biogenesis factors, rRNA modification enzymes, GTPases, RNA helicases, and proteins
with other assigned roles in vivo like translation factors (75). Here, we present a schematic to reveal
known interactions and to allow for discussion of these interactions (Figure 1). This network is
not all-inclusive but provides a broad perspective of the pathway.

The characterization of individual interactions has shed light on some striking features of as-
sembly in E. coli ribosomes and enabled unraveling some of the intricacies of the in vivo process.
Table 1 provides a comprehensive list of the links shown in Figure 1 along with some com-
ments on interactions and the corresponding references. A list of all genes discussed along with
their known functions is provided in the Supplemental Appendix. We focus here on themes that
emerge from the network including, but not limited to, redundancy, suppressor mechanisms, and
quality control mechanisms. We also discuss late-stage events that delineate the end of biogenesis
and the beginning of translation initiation and, finally, the importance of multiple pathways that
kinetically favor efficient mature ribosome formation.
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Figure 1

A ribosome biogenesis factor grid that is representative of the complex interconnectivity of the biogenesis
system. The network is a representation of the complex web of interactions that are beginning to shed light
on the intricacies bacterial assembly. Ribosomal proteins are denoted by green dots, all biogenesis factors
(including helicases, rRNA modification enzymes, and GTPases) are denoted by red dots, ribonucleases by
blue dots, and canonical translational factors by yellow dots. Green dashed lines represent interactions of
ribosomal proteins with other factors. Black dashed lines indicate connections between biogenesis factors.
Blue dashed lines indicate links where one end is a ribonuclease. Interactions where both ends are
ribonucleases are denoted by solid black lines. Any interaction involving a translation factor is denoted by a
red dashed line. The links in the network involve proteins previously associated with biogenesis but does not
include direct protein-protein interactions or phenotypes with altered stoichiometry of proteins. The
phenotypes indicated in this figure and Table 1 are genetically identified, biochemically characterized, or
both. Some interactions are better-studied than others. All gene names are provided except those of
ribosomal proteins (green dots), for easy recognition. Alternate gene names and corresponding protein names
are detailed in Table 1 and in the Supplemental Appendix.
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Table 1 A noncomprehensive list of interacting partners involved in bacterial ribosome biogenesis®

Factors with a direct role | Gene (protein) linked
in maturation to factor® Interaction® Reference(s)
ybeY (YbeY) nusA, nusB (NusA, YbeY plays a role in transcription antitermination. The | 33
® Endoribonuclease NusB) growth defect of AybeY is partially suppressed by
m 16S rRNA processing overexpression of Nus factors
m Stress regulation pnp (PNPase) Deletion of both pnp and ybeY” exacerbates 16S rRNA 20
m Transcription processing defects
antitermination 7nc (RNase I1I) Deletion of 77c exacerbates the growth defect and 20
worsens 16S rRNA processing in Aybel”
rnr (RNase R) Deletion of 7nr exacerbates the growth defect and B. subtilis, 5;
worsens 16S rRNA processing in AybeY. Deletion of E. coli, 20
rnr makes ygfG (ybeY homolog in Bacillus subtilis)
deletion viable
era (Era) Overexpression of Era suppresses growth and processing | 26
defects in Aybel”
rnc (RNase III) nus (Nus) Deletion of r7c suppresses cold sensitivity of zu#s mutants | 9
m Endoribonuclease 7psO (S15) Deletion of rnc partially suppresses cold sensitivity of 55
m Initial rRNA processing ArpsO
m Cellular mRNA ybeY (YbeY) Deletion of 77c exacerbates the phenotype associated 20
processing with AybeY
infA (IF-1) Deletion of 7n¢ suppresses cold sensitivity of an IF-1 6
mutant
pnp (PNPase) rne (RNase E) RNase E influences the transcription of pnp 36
m 3’-to-5 exoribonuclease | 7ub (RNase II) Overexpression of RNase II suppresses growth in 3,43
m 165 rRNA processing ArphApnp and Apnp strains
® mRNA degradation rnr (RNase R) ApnpArnr is not viable. Overexpression of RNase R 13,43
suppresses growth in a ArphApnp strain
ybeY (YbeY) Deletion of pnp and ybe) exacerbates 16S rRNA 20
processing defects in E. coli
rne (RNase E) An RNase E mutant suppresses growth of a AksgAApnp | Unpublished
ksgA (KsgA) strain datad
rne (RNase E) pnp (PNPase) RNase E influences the transcription of pnp 36
m Endoribonuclease rne (RNase E) An RNase E mutant suppresses growth of a AksgAApnp | Unpublished
m All RNA processing ksgA (KsgA) strain datad
® RNA degradation rnb (RNase II) A triple mutant of rne/pnp/rnb is viable 64
pnp (PNPase)
deaD/csdA (DeaD/CsdA) | Mutation in deaD suppresses an 77e mutant 83
rnr (RNase R) pnp (PNPase) ApnpArnr is not viable. Overexpression of RNase R 13,43
B 3’-to-5 exoribonuclease suppresses growth in a ArphApnp strain
B rRNA processing deaD/csdA (DeaD/CsdA) | Deletion of deaD exacerbates growth and ribosome 44
m mRNA and rRNA biogenesis defects in a A7zr strain
degradation srmB/rblA (SrmB/RhlA) | Deletion of srmB exacerbates growth and processing 44
defects in a A7z strain
ybeY (YbeY) Deletion of 777 exacerbates growth and 16S rRNA B. subtilis, 5;
processing in AybeY. Deletion of rnr makes ygfG (ybeY |  E. coli, 20
homolog in B. subtilis) deletion viable
(Continued)
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Table 1 (Continued)

Factors with a direct role | Gene (protein) linked
in maturation to factor® Interaction® Reference(s)
ksgA/rsmA (KsgA) era (Era) Overexpression of KsgA suppresses the cold sensitivity | 52
m 16S rRNA of an erz mutant
methyltransferase pnp (PNPase) An RNase E mutant suppresses growth of a Aksg4Apnp | Unpublished
® SSU maturation rne (RNase E) strain datad
rbfA (RbfA) Overexpression of RbfA exacerbates growth and 16
biogenesis defect in a AksgA strain
yjeQ/rsgA (YjeQ/RsgA) | Deletion of ksgA exacerbates growth of a AyjeQ strain 11
rrmf/rimE/FisF (Rrm]) rpmF (L36) Deletion of 7pm7 (1.36) exacerbates the growth defect of | 2
m 23S rRNA Arrmf
methyltransferase obgE/yhbZ/ctgA (ObgE) | Overexpression of ObgE suppresses growth and 84
m SSU maturation biogenesis defects in Arrmnf
Der/engA (Der/EngA) Overexpression of Der suppresses growth and 84
biogenesis defect in Arrmf
rpll (L9) Der/engA (Der/EngA) | Mutated der causes dependency on L9 56
m Large subunit ¢fp (EF-P) L9 improves growth in EF-P-deficient strains 57
ribosomal protein
rpsE (S5) rim¥ (RimJ) Overexpression of Rim]J suppresses the biogenesis 70,71
m SSU ribosomal protein defects of an S5 mutant
Der/EngA yibl (YihI) Overexpression of Yihl partially suppresses growth 56
m GTPase defect in a der mutant
® LSU maturation rpll (L9) Mutated der causes dependency on L9 56
reld (RelA) Overexpression of RelA suppresses growth defect of a 38
der mutant
rrmf (Rrm]) Overexpression of Der suppresses growth and 84
biogenesis defect in a Arv7¥ strain
bipA/typA ruC (RluC) Deletion of 77uC suppresses phenotypes in a AbipA strain | 48
B GTPase deaD/csdA (DeaD/CsdA) | Deletion of deaD exacerbates the phenotype of a AbipA | 15
® LSU maturation strain
mplT (L20) Overexpression of L20 (rpsT) restored growth and 14
ribosome processing defects of a AbipA strain
era (Era) rpsL (S12) Mutation in erz suppresses an 7psL. mutant 58
® GTPase ksgA (KsgA) Overexpression of KsgA suppresses an e7z mutant 52
® SSU maturation rbfA (RbfA) Overexpression of Era partially suppresses cold 39
sensitivity of a A7bfA strain
yjeQ/rsgA Overexpression of Era partially suppresses growth of a 11
AyjeQ strain
ybeY (YbeY) Overexpression of Era suppresses growth of a Aybel” 26
strain
yjeQ/rsgA lepA (LepA/EF-4) Deletion of yjeQ exacerbates the growth of a AlepA strain | 4,27
B GTPase ksgA/rsmA Deletion of ksgA exacerbates to growth of a AyjeQ strain | 11
m SSU maturation (KsgA/RsmA)
era (Era) Overexpression of Era suppresses growth and biogenesis | 11
defects in a AyjeQ strain
10fA (RbfA) Mutations of 7bfA suppress growth and biogenesis 30
defects in a AyjeQ strain
(Continued)
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Table 1 (Continued)

Factors with a direct role | Gene (protein) linked
in maturation to factor® Interaction® Reference(s)
infB (IF-2) Overexpression of IF-2 suppresses growth and 11
biogenesis defects in a AyjeQ strain
rimM (RimM) Deletion of 7imM exacerbates growth of a AyjeQ strain | 11
riuD (RluD) Deletion of 77uD exacerbates growth of a AyjeQ strain 11
LepA/EF4 yjeQ/rsgA (YjeQ/RsgA) | Deletion of 75gA exacerbates the growth of a AyjeQ 4,27
B GTPase strain
m SSU maturation
rimM (RimM) rpsM (S13) An S13 mutation suppresses growth and biogenesis 51
B GTPase defects in a ArimM strain
B SSU maturation 7psS (S19) An S19 mutation suppresses growth and biogenesis 51
defects in a ArimM strain
yjeQ (YjeQ) Deletion of 7imM exacerbates growth of a AyjeQ strain | 11
rbfA (RbfA) Overexpression of RbfA suppresses the growth and 10,51
biogenesis defects of a ArimM strain
rbfA (RbfA) era (Era) Overexpression of Era partially suppresses cold 39
B SSU maturation sensitivity of a ArbfA strain
ksgA (KsgA) Overexpression of KsgA exacerbates growth and 16
biogenesis defect in a ArbfA strain
yjeQ/rsgA (YjeQ/RsgA) | Mutations of 7bfA4 suppress growth and biogenesis 30
defects in a ArsgA strain
rim (RimM) Overexpression of RbfA suppresses the growth and 10,51
biogenesis defects of a ArimM strain
infC (IF-3) The expression of RbfA leads to toxicity in an IF-3 76
mutant strain
deaD/csdA (DeaD) 7psB (S2) Overexpression of deaD restores growth in a 7psB mutant | 54, 87
B RNA helicase rne (RNase E) Mutation in deaD suppresses a 77e mutant 83
B LSU maturation srmB, rbiE, rhIB, dbpA Deletion of all five helicases is viable 41
(SrmB, RhIE, RhIB,
DbpA)
Rnr (RNase R) Deletion of 7n and deaD exacerbates growth and 44
ribosome biogenesis defects
bipA (BipA) Deletion of deaD exacerbates phenotypes of a AbipA 15
strain
srmB/rblA (SrmB) rnr (RNase R) Deletion of srmB exacerbates growth and processing 44
m RNA helicase defects in a Ay strain
m LSU maturation rhIE (RhIE) Overexpression of RhIE exacerbates the growth defect | 42
of a AsymB strain
piX (L24) Overexpression of SrmB suppresses an .24 mutant 59
srmB, rhiE, rhIB, dbpA Deletion of all five helicases is viable 41

(SrmB, RhIE, RhIB,
DbpA)

Abbreviations: SSU, small subunit; LSU, large subunit.
*All genes and references are for Escherichia coli unless otherwise noted. Commonly used alternate gene names are also provided.

"The Supplemental Appendix provides a list of primary function for genes and proteins.

¢Some of the interactions are repeated to provide a complete list of links for each gene listed.

4A. Naganathan & G. Culver.
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Each interaction shown in Figure 1 is one of four types (factor 1 and factor 2 being the two
interacting partners in each node):

Loss of factor 1 alleviates the phenotype associated with the loss of factor 2.
Loss of factor 1 exacerbates the phenotype associated with the loss of factor 2.
Overabundance of factor 1 alleviates the phenotype associated with the loss of factor 2.

Overabundance of factor 1 exacerbates the phenotype associated with the loss of factor 2.

3. FUNCTIONAL REDUNDANCY AND SUPPRESSOR PHENOTYPES

In functional interactions that involve compensation of a biogenesis defect (the first and third
types listed in the previous section), we note that most phenotypes are only partially suppressed
[for example, Era/RbfA or RNase I11/515 (Table 1)]. Itis possible that in such partially suppressed
phenotypes, the loss of one factor produces intermediates that are more suitable for an alternate
maturation pathway. Partial suppression can also be explained by the high functional redundancy
of assembly factors. Most of these factors are nonessential for viability, and in many cases the
deletion of individual genes has little effect on fitness (Table 1). Hence, on-path intermediates
of ribosomal subunits that accumulate in a defective strain may be rescued partially or fully by
suppressor mechanisms depending on whether the alternate pathway is kinetically favored. Evo-
lutionarily speaking, partial suppression is not surprising (although not well understood) because
less-preferred pathways could serve an important function during stress or starvation, when speed
and efficiency may be compromised but ribosomes can be synthesized nonetheless. This hypoth-
esis remains to be tested.

Factors with redundant functions are sometimes highly conserved and seem to make unique
contributions to the pathway, yet specific roles have been hard to discern. For example, the en-
zymes that participate in rRINA maturation and processing are highly redundant (22), and despite
the presence of specific cleavage sites on precursor 16S rRNA, the absence of some ribonucle-
ases like RNase III and RNase G leads to no overt growth phenotypes in E. co/i. Additionally, in
these strains, 16S rRINA maturation can be completed effectively (46, 55). But a closer look at
the network (Figure 1) reveals that ribonucleases make diverse connections and that their rRNA
processing function is crucial to timely and accurate ribosome synthesis (40, 44, 55, 83) (Table 1).
Interestingly, the interconnectivity between ribonucleases (Figure 1) suggests a highly evolved
process and implicates them in correct rRNA processing with production of high-quality ribo-
somes. The connecting link between ribonucleases, YbeY, and RNase R led to the identification
of a quality control system that is responsible for the removal of immature ribosomal subunits (20,
40). Further investigation will reveal whether the nodes connecting these enzymes to other factors
in the network are suggestive of the same or a different regulatory mechanism. Another instance
of difficulty assigning function can be seen in terms of rRNA modification. The E. co/i ribosome
contains 22 known rRINA base methylations (73, 74). The impact of these methylations in matura-
tion is not clear, although there is strong evidence to suggest a quality control function, especially
for 16S rRNA methylations (73). The N6,N6-dimethyl adenosines (m®,-A1518, m%,-A1519) in
the SSU rRNA helix 45 stem-loop is the most conserved rRNA modification across kingdoms
(18, 66). The methyltransferase responsible for this methylation, KsgA (alternative bacterial name
RsmA and eukaryotic name Dim1p), is also universally conserved (67). However, KsgA function is
not essential in E. co/i, while Dim1p function appears to be essential (62). In the absence of ksgA or
KsgA methylation activity, mature SSUs can be synthesized, supporting the idea that biogenesis
can proceed in the absence of these conserved modifications and suggesting that other biogenesis
factors are critical in a ksgA deletion. The unique contributions made by KsgA in bacteria, how-
ever, come to light upon examining the interactions with Era, RbfA, and YjeQ, all of which have
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a putative biogenesis factor function (11, 17) (Table 1). Based on the individual functional inter-
actions of KsgA, the factor has been assigned a quality control function in late-stage biogenesis
(discussed further in the nextsection) (16, 17). Outside of the genetic interactions mentioned here,
structural data have shown that the binding region of KsgA on SSUs is coincident with that of
initiation factor 3 (IF-3), further supporting its role in the final steps of maturation and the impor-
tance of an interface between biogenesis and translation as a means of quality control (62). Thus,
functional redundancy and suppressor mechanisms provide the flexibility, plasticity, and dexterity
needed for in vivo ribosome biogenesis and for quality control.

4. QUALITY CONTROL MECHANISMS AND THEIR SIGNIFICANCE

A growing body of evidence has suggested that quality control mechanisms exist in later stages of
ribosome biogenesis and perform a gatekeeping function to prevent premature ribosomes from
initiating translation (2, 27, 30, 49, 69, 76). It is also well established that final subunit maturation
events can continue after the formation of the 70S initiation complex (77) and that final steps of
ribosome biogenesis are linked to successful translation initiation (9). There are two main ways
that these quality control mechanisms work—by directly, sterically blocking the association of
translation factors and by preventing key rRNA conformational changes necessary for function,
thereby creating a functional checkpoint to ensure initiation only occurs when ribosomal subunits
are prepared. The conformational changes required to pass the final checks are directly influenced
by the binding and dissociation of assembly factors in vivo.

Despite considerable variability in the composition of ribosomal subunits between bacteria and
eukaryotes, these organisms all share the common goal of ensuring that the functionally impor-
tant ribosomal centers are correctly formed (9). In eukaryotes, a test-drive mechanism has been
proposed where the pre-40S (SSU) subunit goes through a translation-like cycle to test associ-
ation to the 60S (LSU) subunit as well as translation factors (81, 82). As a result of this test-
drive, defective ribosomes can be targeted to degradation prior to authentic translation events. To
our knowledge, such a trial run for bacterial subunits has not been reported, but studies by the
Varshney group have identified a possible role of initiator tRINA in regulating 16S rRINA process-
ing in the context of the 70S ribosome initiation complex (77). Thus, delaying the final maturation
steps may itself serve a gatekeeping function. This close coupling of rRNA processing to the final
stages of biogenesis is further demonstrated by the functional links involving late-stage biogenesis
factors, ribonucleases, and initiation factors (e.g., YbeY/Era, YjeQ/IF-2, RbfA/IF-3) (Figure 1).
Therefore, the main elements of quality control seem to be conserved, although factors involved,
and the specific mechanisms, may differ.

The connected nodes in Figure 1 (and Table 1) that link auxiliary factors and r-proteins to
translation factors (L9/EF-P, YjeQ/IF-2, RbfA/IF-3) have helped unravel some events in the tran-
sition from immature subunits or immature ribosomes to translationally ready ribosomes. For ex-
ample, IF-3 can displace the biogenesis factor RbfA from mature 30S ribosomal subunits (76). IF-3
can bind to both mature and immature SSUs but can only displace RbfA from mature 30S subunits
(76). A late-acting GTPase and 30S subunit biogenesis factor, YjeQ/RsgA, is also able to release
RbfA from mature 30S subunits (30). Additionally, discovery of a link between RbfA and KsgA
provided a crucial clue in understanding a series of biogenesis events (16, 17). The methylation of
16S rRNA by the universally conserved protein KsgA is not essential in E. co/i. Cells lacking KsgA
do not exhibit severe phenotypes; however, the expression of RbfA in a ksgA deletion is toxic (16).
Methylation by KsgA is not required for RbfA binding, suggesting that RbfA binding occurs prior
to or regardless of KsgA function in the assembly cascade (30, 76). KsgA-dependent methylation
is, however, required for GTPase-induced release of RbfA, indicating that YjeQ/RsgA and IF-3
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may act downstream of KsgA (76). Thus, the characterization of multiple links between RbfA,
IF-3, YjeQ/RsgA, and KsgA (Figure 1) in different studies culminated in identifying a mechanis-
tic web that was undecipherable 10 years ago. As shown in Figure 1, YjeQ/RsgA is connected not
only to RbfA but also to several other biogenesis factors, as well as translation factors IF-2 and
LepA. A closer, more mechanistically focused examination of individual interactions will further
clarify events associated with late-stage ribosomal subunit biogenesis in bacteria. In this example,
multiple checkpoints exist—both RbfA release and RsgA’s GTPase activation occur after KsgA
methylation. Each checkpoint here can be compared to a handoff in a multidirectional relay race.
In track relay races, each runner must hand off the baton to the next runner on the track (and
generally in their lane). In this analogy, the late-stage intermediate would be the baton and the
assembly factors, the runners. We know that in the absence of one of these factors (KsgA, RbfA,
or RsgA), biogenesis does not come to a halt—so the baton is moved from one lane on the track to
another that has a runner ready. How this nonstandard handoff occurs, in the absence of a runner
(assembly factor), is unclear; however, it is now well recognized that factor binding, function, and
then release are crucial at checkpoints (16, 17, 27, 28, 76, 85).

Some late-stage quality control mechanisms can regulate maturation even after subunit asso-
ciation via the 30S subunit (27, 77). Delay of 50S subunit biogenesis results in the accumulation
of precursor 30S subunits, indicating that there is cooperativity between the two assembly cas-
cades (14, 28, 35, 56, 72). Based on current evidence, the quality control checkpoints appear to be
predominantly driven via the SSU pathway. This is further supported by comparing the effect of
rRNA methylation profiles of 23S rRNA and 16S rRNA. 23S rRINA methylations appear to play
a structural role (32), whereas many 16S rRNA methylations (like m%,A-1518, m®-A1519, and
m’C967) have a role in quality control (73). Although there is evidence of a 50S subunit quality
control mechanism (61), it is likely that there are fewer subunit conformational changes that serve
as checkpoints in the 50S subunit compared to 30S subunits, but this remains to be established.
Future studies, and the availability of additional data of late 50S assembly event intermediates, will
be revealing.

To further illustrate quality control in bacterial ribosome biogenesis, we provide some exam-
ples in Figure 2 related to the late-stage steps. Experimental and modeling studies reveal that the
on-path ribosomal intermediates can take different routes based on thermodynamic stability (23,
34). Once pre-SSUs (Figure 2) have assembled, hypothetical biogenesis factors 1, 2, and 3 bind
in a specific order, but it is not unnatural for alternative pathways to take shape in the absence
of one or two factors. As illustrated, the binding of factor 2 requires that factor 1 first bind and
then be released (scenario 1). In scenarios 2 and 3, factor 1 is absent. Although there are conse-
quences to the absence of factor 1, there appears to be considerable latitude in how checkpoints
are utilized during biogenesis. In bacteria, it does not seem that every checkpoint is traversed
before ribosomes are sanctioned for translation. We conclude that the main function of quality
control in bacterial ribosome biogenesis is not to have every checkpoint cleared but to allow for
a broad survey of emerging ribosomal subunits so that certain structural requirements are met
before initiating translation. In some intermediates, biogenesis is delayed to a point where rRNA
degradation pathways can be triggered (Figure 2).

5. THE SIGNIFICANCE OF GTPase FUNCTION IN
RIBOSOME BIOGENESIS

The role of GTPases in ribosome biosynthesis is well established across kingdoms (8, 45). Several
GTPases in E. coli (YjeQ/RsgA, Der/EngA, Era, and YihA) are implicated in ribosome biogenesis,
yet many are nonessential for cell viability (8). Does the nonessentiality of a GTPase mean that
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other GTPases (or similar enzymes) can functionally substitute? This is not fully understood. The
example of suppressors of strains lacking 7777 reveals some of the issues with our understanding
of these roles. Rrm] is a late-acting, 23S rRNA methyltransferase that is crucial to 50S subunit
biogenesis (84). The overexpression of either of two GTPases, ObgE or Der, can suppress growth
and biogenesis defects in an 7777 null strain by unknown mechanisms (84). The suppression is
associated with GTPase function and does not alter Rrm]J’s ability to methylate, indicating that
the suppression mechanism directly impacts on-path intermediates. However, the overexpression
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Figure 2 (Figure appears on preceding page)

An illustration of possible pathways for bacterial ribosome biogenesis with a focus on late-stage events of 30S subunit biogenesis.
Biogenesis begins as soon as rRNA is transcribed as a primary transcript (fop) consisting of 16S rRNA (blue), 23S rRNA (green), and 5S
rRNA (yellow). A toolkit of extra-ribosomal factors is responsible for ensuring proper rRINA processing, modification, and folding along
with r-protein (black dashes) binding. For simplicity, only 30S subunit biogenesis is illustrated here. A series of pathways results in the
formation of pre-30S ribosome intermediates (blue circles). Factors 1,2, and 3 are representative of three hypothetical biogenesis factors
that act on late intermediates and are assumed to bind in a specific order (1, 2, and then 3). Scenario 1 represents a genotypically
wild-type pathway where all factors are available. In the absence of factor 1 (due to deletion or inactivation of function), biogenesis may
be briefly delayed, but in at least some (if not all) cases the intermediates achieve full maturation. This is hypothesized to happen in
several ways: Intermediates progress to stages that allow factor 2 binding (scenario 2) or factor 3 binding (scenario 3). These scenarios
are indicative of the multiple avenues of quality control in 30S subunit assembly based on recently discovered mechanisms. They are
not a complete representation of all events occurring in late-stage biogenesis.
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of Era (a GTPase closely related to Der) is unable to rescue defects in an 77727 null strain (84)
(Table 1). Interestingly, the overexpression of Era can suppress defects in 744, yjeQ, and ybeY
deletion strains (Table 1), clearly indicating that despite overlapping chemistry, specific GTPases
may have unique ribosomal substrates in biogenesis.

The coupling of specific GTPase function to the ribosomal subunit assembly process has been
recently characterized. In most cases, the GTPase activity is stimulated by binding to ribosomal
subunit intermediates (YjeQ, Der, Era) (8). In some cases (e.g., YjeQ/RsgA), it has been shown that
the activation of the enzyme sanctions the intermediate to the next step in the assembly line. The
binding of RbfA alters helices 44 and 45 of 16S rRNA such that RbfA-bound pre-SSUs are not
suitable for translation initiation (19, 76). For RbfA-bound intermediates to progress to the next
stage, GTPase YjeQQ/RsgA needs to bind in the helix 44 region to reverse the structural alterations
to helix 44 made by RbfA binding. This reversal releases RbfA and promotes GTP hydrolysis in
YjeQ/RsgA (30, 69, 85). Thus, GTPase activity is closely coupled to this checkpoint, ensuring
that immature 30S subunits do not prematurely initiate translation when major structures have
not been formed. The connecting links between GTPases and other members of the biogenesis
pathway (Figure 1) will help to further reveal gatekeeping mechanisms.

The abovementioned GTPases are different from the translational GTPases (trGTPases) that
have a direct role in translation (e.g., IF-2, EF-Tu, RF3, and EF-G) (9). More recently, trGTPases
LepA and BipA have been implicated in SSU and LSU biogenesis, respectively (4, 27, 28). Unlike
GTPases whose function are generally coupled to individual maturing subunits (e.g., YjeQ-SSU,
Der-LSU, and Era-SSU), BipA and LepA bind to 50S and 30S subunits, respectively, but their
GTPase activity is highly stimulated in the context of 70S ribosomes. The similarity in the pro-
tein composition and structure of intermediates in the absence of /epA4 or yjeQ strongly suggests
overlapping function in late-stage biogenesis (27). Although the GTPases (LepA and YjeQ) seem
to have a similar function, the timing of their action might be crucial. It has been hypothesized that
LepA is employed to assist in quality control in the context of 70S whereas RsgA may act on SSUs
before subunit association (27). These findings indicate that GTPases drive forward important
events during biogenesis at different stages.

6. STUDY OF BIOGENESIS AND ANTIMICROBIALS

A large fraction of antibiotics bind to ribosomes and interfere with protein synthesis (89). Studies
on antibiotics have been crucial to understanding fundamental mechanisms underlying decoding
and peptide bond formation (63). Because of the complexity of interactions within the ribosome
that are functionally crucial, the ribosome is a rich source of antimicrobial targets. Given the
coupling between translation and ribosome biogenesis, it is not surprising that the inhibition
of translation has an observable impact on rRNA processing and maturation (12). Whether
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antibiotics directly influence biogenesis or their effects are merely a secondary effect of transla-
tional inhibition is debated (12, 24, 78). Several studies by the Champney lab have demonstrated
that ribosome biogenesis can be directly influenced by antibiotics, making it a suitable target
for antibiotic action (12, 24, 25). Interestingly, the ribosomal phenotypes of antibiotic-treated
cells closely resemble that of biogenesis-defective mutants (24, 78). Moreover, sensitivity to
antibiotics is influenced by changes to rRNA processing, modification, or disruptions to the
maturation cascade (57, 76, 80, 91). For example, erythromycin results in a reduced population
of free 50S subunits and inhibits biogenesis of LSUs (12, 89). Therefore, ribosome assembly has
been more carefully considered as an antimicrobial target (53). Other antibiotics can directly bind
to ribosomal intermediates (12). They bind in the context of a 70S ribosome, meaning that it is
likely that rRNA nucleotides and r-proteins are themselves less important for antibiotic action
than the secondary and tertiary structures formed in the intermediates (53). Bacterial RNases
and biogenesis factors are currently being explored as potential targets of ribosome assembly (7,
25). A study by Yassin et al. (90) identified putative antibiotic-binding regions in 16S rRNA that
were previously not known to be important. Therefore, shedding light on truns-acting biogenesis
factors could be crucial to a deeper understanding of underlying mechanisms of biogenesis and
antibiotic action and thus benefit the development of novel antimicrobials.

7. DISCUSSION

Broadly, ribosomal subunit maturation begins with the initial cleavage of the primary rRINA tran-
script (containing 16S rRINA, 23 rRNA, and 5S rRINA), perhaps by RNase III, which is followed
by each rRNA species undergoing a sequence of folding, protein binding, modification, and cleav-
age events that results in functional 30S and 508 subunits and then 70S ribosomes (75). However,
many folding and protein-binding events begin as soon as the rRINA is transcribed. Cotranscrip-
tional 16S rRNA folding begins even before the pre-23S rRNA transcript is released by RINase 11T
cleavage (9). These intricate rRNA processing pathways produce mature-length rRNAs, but the
sequence of cleavage events and directionality of rRINA processing does not occur via one defined
pathway (34, 79). Kitahara & Suzuki (47) have shown that the 5’-to-3’ directionality of transcrip-
tion is not compulsory for ribosome biogenesis in E. coli. Moreover, the individual domains of the
30S subunit can be assembled in the absence of several r-proteins in vivo (1). While there is some
degree of hierarchy to protein binding and the formation of intermediates, efficient biogenesis in
vivo is achieved through a multifaceted landscape of events and pathways occurring parallelly. As-
sembly factors play an important role in this landscape to prevent misfolding and to avoid kinetic
traps, even though they are only briefly part of a ribosomal intermediate during assembly. In this
review, we highlight the cooperative and synergistic nature of #rans-acting biogenesis factors and
discuss the significance of quality control processes driven by these factors in biogenesis. We dis-
cuss genetic links that have identified new and previously uncharacterized functions by uncovering
links between proteins where an obvious functional connection was lacking.

The absence of one or more biogenesis factors creates kinetic bottlenecks in the assembly cas-
cade that to a large extent are overcome via alternate pathways or by the action of stand-in assembly
factors (1, 10, 11, 14, 23, 28, 34, 85). Thus, ribosome synthesis is feasible in the absence of most
biogenesis factors, and it appears that compensatory mechanisms play an important role in driving
biogenesis forward. For example, a deletion strain lacking five genes encoding five RNA helicases
(DeaD, SrmB, DpbA, RhIE, and RhIB), each of which has been implicated in biogenesis, is viable
(41). RNA helicases have overlapping functions, and it is not fully clear what unique contribution
each one makes. Therefore, the characterization of links between these enzymes and other factors
(like those shown in Figure 1) will be crucial to dissecting redundant and overlapping functions.
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7.1. Current Challenges and Future Directions

Many remaining challenges impede advancement in our understanding of the ribosomal subunit
biogenesis process. First, precursor intermediates that accumulate in the absence of assembly fac-
tors are not wild-type substrates. They are thermodynamically stable, on-path intermediates; sub-
strates with limited downstream options; dead-end intermediates; or a combination of these. Thus,
isolation and visualization of biogenesis substrates formed in wild-type cells have been difficult.
Second, despite high conservation of the composition of the ribosome and the fundamental pro-
cess of translation, the biogenesis process is quite dissimilar between bacteria and eukaryotes. The
biogenesis pathways in E. co/i and B. subtilis exhibit distinctive rRNA processing and cleavage path-
ways (5, 22). Some bacteria (e.g., M. tuberculosis) have only one rRNA operon, compared to seven
rRINA operons in E. coli. Although cotranscription of precursor rRNA species is a significant reg-
ulator of biogenesis, in Thermus thermophilus, the SSU and LSU rRNA transcription units are
unlinked (29, 37). These differences within the bacterial kingdom suggest that environment and
cellular conditions may have played an important role in the evolution of biogenesis processes
and thus need to be taken into consideration while studying these processes, especially if there is a
potential for antimicrobial development. Finally, ribosome biogenesis is closely coupled to other
cellular processes in bacteria. Functional interactions between ribosomal and/or nonribosomal
factors involved in maturation have helped to elucidate salient features like gatekeeping mecha-
nisms of biogenesis. But how can we integrate data from individual studies to distinguish biogen-
esis function from a secondary effect? Identification of more links between factors will add to the
network (Figure 1) and only reveal it to be even more interconnected. Genetic and biochemical
studies combined with structural insights provide crucial pieces of information on phenotypes of
biogenesis mutants. Techniques such as quantitative mass spectrometry high-throughput analysis
of RNA folding and modification and structural data from cryo—electron microscopy all have been
powerful to garner details about possible intermediates in these mutants. However, many ques-
tions remain unanswered. The path that a ribosomal intermediate takes during maturation may
be influenced by clustering of functionally aligned factors. This idea is supported by the nodes
in Figure 1. Studies by various groups on these clusters of interactions have shed light on new
quality control mechanisms, beginning an exciting new chapter in the field of bacterial biogenesis.
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