
Annual Review of Microbiology

Transcriptional Pausing
as a Mediator of Bacterial
Gene Regulation
Robert Landick
Department of Biochemistry and Department of Bacteriology, University of
Wisconsin–Madison, Madison, Wisconsin 53706, USA; email: rlandick@wisc.edu

Annu. Rev. Microbiol. 2021. 75:291–314

First published as a Review in Advance on
August 4, 2021

The Annual Review of Microbiology is online at
micro.annualreviews.org

https://doi.org/10.1146/annurev-micro-051721-
043826

Copyright © 2021 by Annual Reviews.
All rights reserved

Keywords

RNA polymerase, transcription, pausing, elemental pause, RNA structure,
swiveling, backtracking, gene regulation

Abstract

Cellular life depends on transcription of DNA by RNA polymerase to ex-
press genetic information. RNA polymerase has evolved not just to read in-
formation from DNA and write it to RNA but also to sense and process
information from the cellular and extracellular environments. Much of this
information processing occurs during transcript elongation, when transcrip-
tional pausing enables regulatory decisions.Transcriptional pauses halt RNA
polymerase in response to DNA and RNA sequences and structures at loca-
tions and times that help coordinate interactions with small molecules and
transcription factors important for regulation. Four classes of transcriptional
pause signals are now evident after decades of study: elemental pauses, back-
track pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In
this review, I describe current understanding of the molecular mechanisms
of these four classes of pause signals, remaining questions about how RNA
polymerase responds to pause signals, and the many exciting directions now
open to understand pausing and the regulation of transcript elongation on a
genome-wide scale.
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INTRODUCTION

RNA polymerase (RNAP) is the central enzyme of gene expression and is responsible for convert-
ing the stored information in DNA into active form as an RNA transcript. Thus, understanding
how RNAP is regulated has been a central focus of microbiology since bacterial RNAP was first
purified, in 1961 (20). Upon development of assays that could visualize specific RNA products, it
became obvious that RNA synthesis by RNAP is discontinuous (97). RNAP adds nucleotides to
the growing transcript rapidly at most DNA positions (in 10–50 ms) but takes much longer (sec-
onds to minutes) at other positions. These slow steps are called pauses. It was also immediately
clear that pausing is sequence dependent. RNAP dwells reproducibly at certain DNA positions
(i.e., all transcribing RNAPs recognize the same subset of DNA locations), causing buildup and
eventual decay of intermediate-length RNAs during synchronous transcription. Pausing is not a
universal property of polymerase enzymes but rather is an evolved feature of the multi-subunit
RNAPs responsible for cellular transcription (e.g., DNA polymerases do not exhibit extensive
sequence-dependent pausing). Once pausing was discovered, the key questions became, “What is
the function of these pauses?” and “What mechanisms explain pausing by multi-subunit RNAPs?”

In the broadest context, transcriptional pauses are timing signals in the information process-
ing system of life (Figure 1). Although we usually think of microbial life in terms of chemistry
(79) and chemistry explains molecular mechanism, life itself depends on constant processing of
information by cells (41)—both stored information read from DNA and information sensed from
cellular and extracellular environments via molecular interactions. RNAP functions at the center
of cellular information processing as both the retriever of information fromDNA and the receiver
of information from regulators. In this sense, RNAP is the cell’s CPU (central processing unit) and
can be viewed as a type of Turing machine, the classic conceptualization of a universal computer
(103).

To process information, RNAP must respond to it within windows of time and location
along DNA during which a decision to continue transcription is relevant. For example, if RNAP
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Transcriptional pausing as a timing signal for cellular information processing by RNA polymerase (RNAP). (a) A pausing delay enables
input to output processing. (b) Types of inputs and outputs processed by RNAP at pause sites. (c) Example of RNA folding as an output.
(d) Example of protein synthesis (translation) as output.

proceeds past an AUG start codon and a ribosome loads onto the nascent RNA, it may be too
late to alter the protein output. Although key decisions occur by controlling RNAP initiation at
promoters, evolution has expanded the information processing capacity of cells by equipping the
elongating RNAP with the ability to respond to regulatory inputs, including inputs sensed via
nascent RNA structures. Fundamentally, transcriptional pauses punctuate RNA synthesis to pro-
vide the time and location windows necessary for these regulatory decisions. Overriding a pause
event, conversely, may cause RNA synthesis to proceed too far for regulatory input to be useful.
For instance, if transcription continues past a 5′ untranslated region (UTR) and into the body of a
gene, ribosome loading onto the nascent RNAmay then commit the cell to expression of the gene.

A transcriptional pause is thus analogous to a timing loop in a computer program that instructs
the processor to wait until an instruction is received or tomove on after an interval if no instruction
is received. In the analog world of biological information processing, the precise duration of the
delay is specified stochastically within a probability distribution of possible dwell times at pause
sites. The inputs potentially received at pauses are diverse and can be sensed directly by RNAP
or indirectly via the nascent RNA (Figure 1b). The outputs are also diverse. For example, known
pauses can (a) allow time for a metabolite or signaling molecule to bind to a riboswitch aptamer
and control a termination decision in a 5′ UTR, such as flavin mononucleotide (FMN) binding
to the Bacillus subtilis ribD leader RNA (148, 153) (Figure 1c) or (b) allow time for a regulatory
protein to load onto RNAP to enable subsequent ribosome recruitment and translation of the
RNA into a protein product, like the Escherichia coli RfaH protein (3, 6) (Figure 1d). Although a
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Four classes of transcriptional pause signals. (a) Structure of the Escherichia coli EC (71). Nontemplate DNA in the transcription bubble,
shown as gray segments, is disordered in most structures. (b) SI3 locations in swiveled and active ECs (1, 52, 68). (c) Structures of the
NTP-bound and elemental paused forms of the EC (1, 52, 68). (d) The nucleotide addition cycle. Mg2+ (yellow circle) is associated with
NTP (green) during binding and PPi during release. (e) Four types of paused ECs. Abbreviations: BH, bridge helix; EC, elongation
complex; ePEC, elemental paused EC; PH, pause hairpin; PPi, inorganic pyrophosphate; SI1, sequence insertion 1; TH, trigger helix;
TL, trigger loop.

detailed description of pausing within a formalism of biological information processing would be
illuminating, my intention here is only to suggest why pausing evolved in cellular RNAPs and to
focus principally on its molecular mechanisms and roles in gene regulation.

STRUCTURAL FEATURES OF RNAP RELEVANT
TO TRANSCRIPTIONAL PAUSING

Several features of RNAP are key to understanding mechanisms of transcriptional pausing. First,
RNAPmakes extensive contacts to DNA and RNA in a deep cleft formed by its two large subunits
(Figure 2a). Duplex DNA (∼20 bp) bound in the cleft is separated 1 bp in front of the active site,
with the template strand forming a 9- to 10-bp hybrid with product RNA held deep in the cleft
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before reannealing passively with the nontemplate strand outside the cleft. In the ∼12-bp melted
transcription bubble, the nontemplate DNA stays on the outside surface of RNAP. A complex set
of mobile domains, modules, and loops that include the jaw, lobe, protrusion, shelf, clamp, rudder,
bridge helix, fork loop 2, switches, lid, zipper, and flap contact DNA and RNA and mediate their
movements. In every round of nucleotide addition, a polymorphous trigger loop–trigger helices
(TL–TH) module alternates between a random coil (TL) to admit NTP and a helical hairpin
(TH) to contact NTP and stabilize the transition state (Figure 2b,c). Most bacterial RNAPs also
contain lineage-specific surface modules that mediate regulation; E. coli RNAP contains three
called sequence insertions (SI1, SI2, and SI3). SI3, inserted in the TL, plays a key role in pausing.

RNAP Conformational Fluctuations and Pausing

The elongation complex (EC) remains flexible during transcription. Thermal energy causes small
movements of the domains, modules, and loops (34, 141, 158). These flexible RNAP movements
are necessary for transcriptional activity. Increasing the thermodynamic activity of water in a pres-
sure cell grinds RNAP to a complete but reversible halt (40), presumably because exposure of a
hydrophobic surface during RNAP movements becomes highly disfavored.

The ability of RNAP to fluctuate among multiple conformations helps explain a fundamental
feature of transcriptional pausing: Paused states arise in kinetic competition with bypass of pause
sites by EC rearrangement into a paused EC (PEC) conformation (73). Thus, pauses are charac-
terized by both a dwell time distribution (i.e., half-life) and an efficiency of pausing, defined as
the fraction of ECs passing a given template position that enter the paused state (89). In some
cases, multiple PEC conformations form and generate multiphasic dwell time distributions. Al-
though on-pathway pausing resulting from slow translocation of DNA rather than rearrangement
to off-pathway states has been proposed (7, 14), as a practical matter, on-pathway pausing cannot
be distinguished experimentally from highly efficient EC-to-PEC isomerization. Since isomer-
ization demonstrably competes with elongation at most pause sites (42, 60, 73, 76, 89, 135), it is
least confusing to simply define pausing as isomerization to an off-pathway state.

It is also crucial to appreciate that structural states of ECs and PECs are in constant thermal
motion on a nanosecond to microsecond time scale at biologically relevant temperatures (131). All
accessible states, even those less thermodynamically stable, are sampled stochastically (i.e., less-
stable states are sampled less often and for shorter durations). Active ECs and inactive PECs exist
as a fluctuating collection of different states. Thus, PECs may sample active states transiently but
not escape if they fluctuate back to an inactive state before NTP can bind and react. Structural
models shown here and elsewhere represent the most probable or average state among a dynamic
distribution of structures. From an information processing standpoint, this means that regulatory
decisions mediated by RNAP are probabilistic rather than absolute at a single-molecule level.

The Nucleotide Addition Cycle

Pauses disrupt the nucleotide addition cycle (NAC), which involves four main steps (Figure 2d):
(a) translocation of theDNA andRNA chains throughRNAP, from the pretranslocated conforma-
tion generated by the previous round of nucleotide addition to the posttranslocated conformation
in which a new templateDNA base is loaded into the active site; (b) binding of cognateMg2+·NTP
into the active site by rapid sampling among the four NTPs diffusing through the RNAP sec-
ondary channel and closure of the active site by TL-to-TH isomerization after the cognate NTP
binds; (c) catalysis of nucleotide addition that generates pyrophosphate in a reversible phospho-
ryl transfer reaction involving SN2 attack of the RNA 3′ oxygen on the NTP α-phosphorus via a
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trigonal bipyramidal transition state stabilized by the TH; and (d) isomerization of the TH back
to the TL with release of pyrophosphate from RNAP. Although these steps of the NAC are clear,
important questions remain, including how RNAP side-chain contacts to DNA and RNA change
to accomplish the steps and which domain, module, and loop movements accompany each step
(11). At pause sites, the NAC is interrupted by effects of RNA and DNA sequence on RNAP
conformation and on the energetics of base-pairing.

FOUR CLASSES OF TRANSCRIPTIONAL PAUSE SIGNALS

Four distinct pause conformations can be described with supporting structural and biochemical
data: (a) the elemental PEC, (b) the backtrack PEC, (c) the hairpin-stabilized PEC, and (d) the
regulator-stabilized PEC (Figure 2e).

The Elemental Pause Signal

The elemental pause was first hypothesized based on the observation that elimination of the pause
hairpin (PH) from the hairpin-stabilized his pause signal, which coordinates translation of a leader
peptide–coding region with transcription of the E. coli his operon attenuator, leaves a residual,
shorter pause that depends on the RNA and DNA sequences in contact with RNAP (22, 24, 87).
The name elemental pause was proposed in 2006 (87), prior to which the terms ubiquitous, basal,
and unactivated were used to describe sequence-dependent pauses for which neither hairpin sta-
bilization nor backtracking was evident (5, 22, 110). The existence of a non-backtracked elemental
pause state was initially debated based on different interpretations of the effect of applied force on
pausing (33, 44, 60) but was unambiguously resolved by mechanistic analyses (42, 127) and direct
imaging of elemental PECs (ePECs) (68, 147).

The elemental pause signal is multipartite. Formation and longevity of the elemental pause
depend on multipartite interactions of distinct parts of the RNA–DNA scaffold in contact with
RNAP (Figure 3). The multipartite nature of pause signals was first established for the hairpin-
stabilized his pause over two decades ago (22, 24). Similar multipartite components for the elemen-
tal pause became clear from their sequence signatures in precisely defined pause locations in the
E. coli genome by native elongating transcript sequencing (NET-seq) (90) (see the sidebar titled
What Is NET-seq?). The same sequence signatures were evident in vitro from single-molecule
analyses at single–base pair resolution (90). The similarity of the in vivo and in vitro signatures es-
tablished that pausing in live bacteria is controlled principally by RNAP–nucleic acid interactions
and base-pairing energetics rather than by regulators present in cells but not in vitro. Each pause
signal component is validated by pause-weakening substitutions in the conserved sequences (90,
127) (Figure 3a,b). The consensus elemental pause signal stimulates pausing by diverse bacterial
RNAPs and by mammalian RNAPII, suggesting that it affects fundamental RNAP–nucleic acid
interactions conserved during evolution. Attempts to define consensus eukaryotic pause sequences
using NET-seq were unsuccessful until recent improvements in analysis algorithms enabled suc-
cess and verified the similarities of eukaryotic pause sequences to the bacterial elemental pause
sequence (43). Minor deviations in the consensus are seen in Bacillus subtilis (90, 153), suggesting
that some changes in RNAP–nucleic acid interactions important for pausing have occurred dur-
ing bacterial evolution. However, pausing by only a few bacterial RNAPs has been studied. Given
the remarkable differences uncovered recently in mechanisms of initiation in different bacterial
lineages (27, 58, 142), examination of pausing in diverse bacteria is likely to provide new insights
into evolution of these interactions.
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WHAT IS NET-seq?

Native elongating transcript sequencing (NET-seq) determines the 3′ ends of nascent RNAs and thus the locations
of transcribing RNAPs and pause sites in vivo based on 3′ end abundances found by high-throughput sequencing of
RNAs recovered from ECs that are affinity captured after cryo-lysis of flash-frozen cells (30, 90). When combined
with nucleases that trim RNA to the RNAP upstream edge, a modified NET-seq method (rNET-seq) also can
detect backtracking by paused ECs (64, 153). Other methods exist to map EC and PEC locations in vivo (see 69),
but NET-seq has proven most suitable for bacterial transcription studies.

Elemental pause signal components stimulate pausing additively.The four components of
the elemental pause signal are (a) duplex DNA (∼8 bp) in contact with RNAP in the downstream
DNAcleft (contacting principally the clamp, lobe, bridge helix, and fork loop 2); (b) the nucleotides
forming the downstream fork junction, which correspond to the RNA 3′ nucleotide and incoming
NTP (C–G or, more broadly, pyrimidine–purine in the consensus sequence); (c) the RNA–DNA
hybrid; and (d) the upstream fork junction,which includes the first RNA nucleotide upstream from
the hybrid (G in the consensus) (64, 90, 127) (Figure 3a). The downstream fork junction–active
site sequence is the most highly conserved component and is easily detected in NET-seq exper-
iments that capture primarily stronger pauses (64, 144). However, this pause signal component
alone does not trigger pausing; changing the other components to sequences found least at pauses
while retaining the consensus active site C–G completely eliminates pausing (90). Substitutions
in each component individually decrease pausing (Figure 3b). Combining these substitutions ad-
ditively decreases pausing further (127). These additive effects are most easily explained if each
component affects the same rate-limiting step in the pause mechanism. Although the hybrid and
downstream DNA contributions are harder to detect by NET-seq (64, 144), all four components
are validated by multiple studies (13, 14, 22, 90, 127, 135). Exclusion of weaker pauses may explain
differences in pause sequence signatures (69).Not every pause needs all four components. Further,
the possibility of multiple hybrid and downstream pausemotifs cannot be excluded. Improvements
in bioinformatic analyses of high-accuracy NET-seq analyses may continue to improve our un-
derstanding of elemental pause signals.

Structure of the ePEC.Cryo–electron microscopy (cryo-EM) provided the key insight into the
structure of the ePEC by resolving a half-translocated state of the RNA–DNA scaffold in his
ePECs lacking a PH (52, 68) (Figure 3). The nascent RNA in the his ePEC is translocated, mean-
ing that the RNA 3′ end has shifted to the product subsite of the active site, whereas the DNA
template strand remains in the pretranslocated register. As a consequence, the RNA–DNA base
pairs are tilted ∼15° relative to an active EC, and the position into which NTPs must bind lacks a
free template base to recognize an incomingNTP.Thus, theNAC is blocked in a half-translocated
state, with the template base needed for the next round of nucleotide addition remaining paired to
the nontemplate strand on the active-site distal side of the bridge helix. Consistent with elemental
pausing being a universal regulatory feature of RNAP (90), this same tilted hybrid state also occurs
in mammalian RNAPII PECs (143). It is unclear whether translocation always occurs in two steps
(RNA first, then DNA) or the half-translocated state forms only at pauses.

Contribution of each elemental pause signal component to pausing.The additive contribu-
tions of each pause signal component suggest that each may contribute to a global RNAP con-
formational change that inhibits the completion of translocation. Indeed, a modest swiveling of a
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WHAT IS BACKTRACKING?

Backtracking refers to reverse translocation of RNA and DNA through RNAP.During transcription,DNA translo-
cates into RNAP from the downstream direction,melts at the downstream fork junction, and translocates away from
RNAP after reannealing at the upstream fork junction. The RNA–DNA hybrid translocates away from the active
site. RNA exits out a side channel after the hybrid separates at the upstream junction. During backtracking, these
translocation steps all occur in the reverse direction, resulting in the 3′ RNA separating from DNA and occupying
the NTP-entry pore. Pausing, nucleotide misincorporation, DNA-bound obstacles, DNA supercoiling, and a weak
RNA–DNA hybrid all can favor backtracking. RNAP is sometimes said to backtrack on the DNA. However, both
forward and reverse translocation require ∼36° per base pair rotation and are best viewed as DNA movements
relative to a stationary RNAP; in cells, RNAP attached to nascent RNA bound by ribosomes cannot easily rotate.

RNAP can cleave backtracked RNA hydrolytically in its active site. Cleavage is greatly stimulated by Gre factors,
which stabilize binding of Mg2+II, increase transcription fidelity, and rescue RNAP arrested after backtracking.
The ATP-dependent translocase Mfd can counteract backtracking by RNAP but also can push RNAP off DNA at
damage sites.

swivel module (described below for hairpin-stabilized pauses) occurs in the ePEC (52, 127). This
change may alter contacts made by the clamp, rudder, and switches to DNA in the hybrid, which
are more extensive than contacts to the RNA, enough to inhibit DNA translocation (52). Ad-
ditionally, a key Arg residue in fork loop 2 may inhibit release of the +1 template base from the
downstream base pair (127). Strong+1 base-pairing may inherently inhibit translocation, whereas
interaction of +1 nontemplate G with a core recognition element pocket after translocation re-
duces pausing (144).However,G–C base-pairing alone does not explain how the downstream fork
junction affects pausing. The B. subtilis consensus pause sequence features +1A or +1T in place
of +1G (90, 153). Finally, lobe–clamp contacts to downstream DNA and lid–clamp contacts to
−10,−11 Gs also may disfavor DNA translocation (64, 90).

Translocational interconversions in the ePEC.The half-translocated intermediate is just one
of several translocational states formed by a consensus ePEC (127) (Figure 3c). Backtracked and
pretranslocated states are detectable by transcript cleavage and pyrophosphorolysis reactions, re-
spectively (see the sidebar titled What Is Backtracking?). In the consensus ePEC, these states
equilibrate so quickly that inducing rapid transcript cleavage with GreA or GreB does not reduce
the pause dwell time (127). Rather, the strong kinetic barrier for escape of a consensus ePEC is the
shift from the half- to the posttranslocated state. This absence of kinetically significant backtrack-
ing is unlikely to be true for all ePECs; for many pause sequences additional states may become
kinetically significant (e.g., biphasic pausing when the hybrid is altered; Figure 3b). Elemental
and backtrack pausing may occur on a continuum rather than as discrete mechanisms (Figure 3c).
This model of rapidly interconverting ePEC states resembles descriptions of pausing for yeast
RNAPII (33, 63) and provides opportunities for pause modulation by regulators that favor or
disfavor backtracking (e.g., E. coliNusA or NusG, respectively) (8, 59, 140).

Backtrack Pause Signals

Although backtracking is not kinetically significant for some elemental pauses, it appears to be
the prevalent mode of pausing by eukaryotic RNAPII and could prove to be more dominant
in other bacterial lineages and in archaea. Backtracking can arise from initially formed ePECs
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(42, 127) but also may be triggered when RNAP encounters a barrier to translocation like a pro-
tein bound to DNA (39, 106), by misincorporation of a mismatched 3′ RNA nucleotide (136), by
DNA damage (67), or when transcribing RNAP encounters a DNA end. Once RNAP halts on
DNA in response to one of these triggers, the extent of backtracking is determined by the relative
stability of the RNA–DNAhybrids in the forward versus backtracked registers. An unstable hybrid
in the register occupied by RNAP will favor backtracking if backtracking results in a more stable
hybrid (112, 113). This model of backtrack pausing has been verified directly by genome-scale
analysis of pauses in E. coli, B. subtilis, yeast, and mammalian cells (64, 101, 153). Backtrack pausing
triggered by DNA damage or nucleotide misincorporation is thus the first step in transcription-
coupled DNA repair, when backtracked RNAP is either displaced by Mfd or driven back further
by UvrD to uncover the damage for repair, as well as in transcriptional error correction, when
backtracking enables GreA/B–TFIIS-stimulated removal of 3′ error–containing RNA (107).

Backtracking requires that single-stranded RNA be available to move into the RNA exit chan-
nel. Thus, nascent RNA structures can block backtracking (156) and antisense DNAs or RNAs
that create nascent structures can be used to assess the contribution of backtracking to pausing (4).
Extensive backtracking leads to EC arrest, from which it is important to rescue or remove RNAP
(e.g., by GreB-stimulated transcript cleavage or by Mfd) to avoid collisions with replication that
cause double-stranded breaks in DNA (132). Thus, backtrack pausing plays central roles both in
maintaining information in DNA and in accurately copying information to RNA.

Hairpin-Stabilized Pause Signals

Hairpin-stabilized pauses were first discovered in the leader regions of gammaproteobacterial
amino acid biosynthesis operons regulated by attenuation (23, 151). These pauses synchronize
transcription of the attenuator with translation of a leader peptide–coding region because a trans-
lating ribosome melts or blocks formation of the pause RNA hairpin. Most pauses in E. coli ap-
pear to be elemental or backtrack pauses rather than hairpin-stabilized pauses (90), but hairpin-
stabilized pauses are nonetheless widespread among diverse 5′-proximal regulatory regions (26,
157), can involve pseudoknots rather than simple stem-loop structures (149), and also occur in
B. subtilis (152, 153). The difficulty of predicting complex and alternative nascent RNA structures
accurately has prevented a genome-scale accounting of hairpin-stabilized pausing. Solving this
experimental challenge is a key need in the field.

The cryo-EM structure of the his PEC revealed that hairpin stabilization of swiveling by the
clamp, shelf, jaw, SI3, and β′C, which rotate as a unit, explains the mystery of how hairpin stimu-
lation of pausing in E. coli depends on the 188–amino acid insertion in the TL called SI3 (52, 68)
(Figure 2). PHs form 11 or 12 nucleotides from the nascent RNA 3′ end. Nascent RNA struc-
tures leaving >12 or <11 3′ nucleotides do not stimulate pausing but can inhibit backtracking
and, when leaving 7–8 3′ nucleotides, destabilize an EC (e.g., at intrinsic terminators) (22, 137).
Deleting E. coli SI3 ≥50 Å away from the PH, or even altering SI3 structure, greatly reduces PH
stimulation of pausing (31, 150). PH stabilization of swiveling explains this long-distance effect.
Swiveling shifts the interface between SI3 and the core RNAP so that the SI3 movement required
for TH formation creates steric clash (52, 68) (Figure 2).

Swiveling is also seen in backtracked PECs (1) and in a hairpin-containingThermus thermophilus
EC, which lacks SI3 (128). Thus, PHs that stimulate pausing in B. subtilis RNAP (152, 153), which
also lacks SI3, might do so simply by stabilizing the swiveled state.

Key questions now include whether and how the PH-remodeled RNA exit channel, which
contacts PH phosphates via conserved basic residues (68), aids PH formation and nascent RNA
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folding. Formation of biologically active RNA often requires cotranscriptional folding, but the
interplay between pausing and RNA structure formation remains incompletely understood (157).

Regulator-Stabilized Pause Signals

Regulators known to aid transcriptional pausing include NusA, the initiation factor σ70, RfaH in
E. coli, and NusG in bacterial lineages that include B. subtilis, T. thermophilus, and Mycobacterium
tuberculosis. More pause regulators may await discovery as diverse bacterial lineages become more
fully explored. Two mechanisms of regulator-stabilized pausing can be described.

NusA-stimulated pausing.TheNusA type of pause stimulation depends on interactions with the
nascent RNA that may aid PH formation, stabilize PHs, or aid backtracking (52, 53, 57, 102, 159).
NusA contains four RNA-binding domains [N-terminal domain (NTD), S1, KH1, and KH2].
Although the hairpin loop potentially contacts the S1 domain, only the NTD (when supplied
at high concentration) is required for the full effect of NusA on the his pause (53). The other
NusA domains increase NusA affinity for the PEC. Key current questions include which NusA
interactions are required to promote backtracking, whether additional NusA–RNA interactions
play roles in modulating more complex RNA structures (149) or in aiding terminator hairpin
formation (53), and the potentially broader role of NusA in promoting cotranscriptional folding
of nascent RNAs (157).

σ70-RfaH-NusG-stimulated pausing.The σ70-RfaH-NusG class of pause enhancement de-
pends on interactions of the regulator with the nontemplate DNA strand. NusG, the only elon-
gation regulator found in all domains of life, binds ECs via its conserved NGN (NusG NTD)
and ribosomes, ρ, or other regulators via its C-terminal domain. Only one type of housekeep-
ing NusG ortholog (found in firmicutes, mycobacteria, and other lineages; hereafter referred to
as B. subtilis–like NusG) exhibits pause enhancement via sequence-specific binding of the NGN
to the nontemplate strand. E. coli–like NusG orthologs suppress pausing and backtracking upon
binding to ECs and lack affinity for nontemplate strand bases. However, many bacteria encode
one or more NusG paralogs that bind non–template strand bases and stimulate pausing (e.g., E.
coli RfaH).Mutational analysis of B. subtilisNusG reveals an Asn/His-Thr motif in the NGN that
aids non–template strand T recognition and may distinguish the two types of housekeepingNusG
orthologs (99, 153–155). RfaH recognizes a non–template strand DNA hairpin (70), whereas σ70

stimulates EC pausing by binding to a −10-like sequence similar to the promoter Pribnow box
(117). Pause stimulation by σ70, RfaH, and NusG is strikingly similar, making σ70 an excellent
paradigm to understand how regulators in this class work.

The regulator-induced pausing cycle.The pioneering analysis of σ70-stabilized pausing by Jeff
Roberts and coworkers provides paradigmatic insight into this class of pause regulators. Its discov-
ery in the early 1990s came as a surprise (125); like many regulatory paradigms, this insight arose
from studies of gene regulation in the coliphage λ. To allow time for binding of antiterminator
Q to RNAP, which enables λ late gene expression, RNAP pauses at +16,17 downstream from
the λPR′ promoter. Elemental pauses at +16,17 become long-lived when σ70 relocates from λPR′

contacts to a −10-like element exposed in the nontemplate strand of the PEC (13, 124, 125, 135)
(Figure 4). Once bound, σ70 traps the nontemplate strand while nucleotide addition proceeds,
causing the DNA strands to scrunch rather than reanneal as needed for continued transcription.
This scrunching resembles an expansion of the transcription bubble that also occurs prior to pro-
moter escape in the open complexes (123).Once bound,σ70 captures RNAP in a regulator-induced
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pausing cycle (135) (Figure 4). The scrunched PEC is destabilized by increased DNAmelting and
possibly by steric strain from the scrunched DNA strands. This strain is relieved either by release
of the σ70 contacts and escape from the pausing cycle or by backtracking of the PEC to prolong the
pause and shrink theDNAbubble (116),which can be detected byGre-induced transcript cleavage
(100, 134). This pausing cycle involving PEC capture via nontemplate DNA binding, scrunching,
backtracking, and transcript cleavage may be a common mechanism for the σ70-RfaH-NusG class
of pause stimulators. It also may operate at pauses associated with physical barriers, topological
barriers, or DNA ends.

σ70-Stimulated pausing via the pausing cycle occurs after many E. coli promoters, including lacP
(56, 111), and extends to at least some alternative sigma factors (119, 130); its extent remains in-
completely defined (117, 119). Although σ70 can transfer from promoter contacts to PEC contacts
(124), σ70 also can be retained persistently by a fraction of ECs (9, 35, 54, 55, 72, 104) or can rebind
ECs and stimulate pausing far downstream from promoters (45, 105).

Both RfaH and B. subtilis–like NusG induce pausing via nontemplate strand binding mech-
anisms that resemble the σ70-induced pause cycle, although with interesting variations. RfaH
enhances pausing at its recognition sequence (ops), but once the EC escapes ops, RfaH re-
mains stably bound in a pause-suppression mode that inhibits RNAP swiveling (70) and may
guide the nontemplate DNA, aid translocation, and inhibit backtracking (109). The stably
associated RfaH aids ribosome recruitment to nascent RNA and the resulting ribosome–
RfaH–EC complexes suppress termination and aid translation in long operons that encode
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lipopolysaccharide-synthesizing enzymes (17). RfaH loads on unscrunched ePECs paused at U11
of ops (GGCGGUAGCGU11GC13GUUU; underline, ops consensus; bold, DNA hairpin bound
by RfaH) (109). RfaH suppresses the U11 pause but dramatically enhances pausing at C13 and
to lesser extents at G14 and U15, consistent with entry in a σ70-like pausing cycle (6, 12). Pause
escape appears to be triggered by rearrangement of the nontemplate strand, possibly triggered
by stress from scrunching, into a path over the surface of the RfaH NGN that could explain
processive RfaH retention and exclusion of σ70 and NusG.

B. subtilisNusG alsomay function similarly to σ70-stimulated pausing (154).B. subtilisNusG en-
hances pauses that allow time for RNA folding or interactions with ligands in vivo (152). TnTTT
in the exposed nontemplate strand interacts with the NusG NGN (153, 155). Pausing at trpL
U144, which provides time for binding of the Trp RNA-binding attenuation protein (TRAP) (2,
152), occurs in the same window observed for σ70- and RfaH-stimulated pausing (Figure 4), but
a PH that increases pausing in concert with NusA may inhibit extension and backtracking prior
to pause escape. Interestingly, NusG-stimulated pausing occurs at many B. subtilis intrinsic termi-
nators just after the mapped termination points (e.g., ktrDt; Figure 4). It is tempting to speculate
that cycles of scrunching, backtracking, and cleavage might help explain NusG action at these ter-
minators. Whether B. subtilis NusG causes pause cycling is unknown, but it is intriguing that the
transcript cleavage factor GreA, which can facilitate escape from σ70 pause cycles (100), reduces
promoter-proximal pausing in B. subtilis (83).

The remarkable similarity of regulator-induced pausing by σ70, RfaH, and B. subtilis–like NusG
raises several interesting questions. Conversion of RfaH into a processively bound form upon
pause escape is well established, but the mechanism of RfaH retention remains unclear. Simple
topological trapping of RfaH by the nontemplate strand is an attractive hypothesis.Might the non-
template DNA topologically trap σ70 or NusG in some situations (e.g., to explain σ70 retention)?
Does retained σ70 suppress pausing andNusG binding like RfaH?Howwidespread among diverse
bacteria is the involvement of sigma factors in pausing and elongation? Might some conforma-
tion of B. subtilis–like NusGs suppress pausing similarly to RfaH? Finally, NusG–RfaH orthologs
and paralogs are ubiquitous in diverse bacterial lineages controlling a variety of functions (19,
25, 46, 47, 115). Do all these regulators function like NusG or RfaH, or do additional modes of
pausing-based regulation remain to be uncovered?

Pausing by single-subunit RNAPs. Although pausing by single-subunit RNAPs has been de-
scribed, available data suggest these single-subunit RNAPs evolved different pausing behaviors
and sequence dependencies than multisubunit RNAPs. For example, T7 RNAP recognizes a spe-
cific DNA sequence directly in addition to pausing on U-tracts (94); Qß RNA-dependent RNAP
pauses when it encounters template RNA structures (85); and backtrack pausing by SARS-CoV-2
RNAP has been proposed to mediate template switching (98). However, more detailed and exten-
sive studies are needed to understand these mechanisms.

GENOME-SCALE REGULATORS OF PAUSING

An in-depth description of the diverse roles pausing plays in cellular information processing is
beyond the scope of this review. Many that involve pausing at specific locations are covered well
in other recent reviews (10, 69, 101, 138, 154, 157). However, pausing also supports cellular in-
formation processing via global inputs to RNAP that affect its responses to broad sets of pause
sites or even pausing genome wide. We know less about the global regulation of pausing, despite
its importance. To encourage future studies to fill this knowledge gap, I conclude this review by
describing what is known and what we need to know about the global regulation of pausing in
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bacteria, with specific attention to small-molecule regulators of pausing, the interplay of pausing
and DNA topology, and the effects of bacterial chromatin proteins on pausing (Figure 5).

Small-Molecule Regulators of Pausing

Although most cellular regulators of transcriptional pausing are macromolecules (proteins or
RNAs), small molecules also interact with RNAP and modulate transcriptional pausing. These
small molecules can interact either in the active site to affect catalysis or at other locations to
affect RNAP structure allosterically.

NTP concentration.The most obvious small-molecule regulators of pausing are the substrates
for transcription,NTPs.Although enzyme substrates are not typically considered regulators,NTP
levels directly connect RNAP pausing to cell physiology because pause durations depend onNTP
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levels that vary as a function of cellular state (154). NTP-sensing pauses are most clearly illus-
trated by the trailblazing work of Charles Turnbough on the E. coli pyrBI attenuator (36, 138,
139). Here, pauses at sites of UTP addition delay RNAP to allow time for ribosome loading on
a leader peptide–coding region when UTP levels are low. Translation by the ribosome then sup-
presses intrinsic termination at the pyrBI attenuator, enabling transcription of the genes encoding
the pyrimidine biosynthetic enzyme aspartate transcarbamoylase. More broadly, changes in NTP
levels will alter dwell times at all pause sites, slowing transcription when NTP levels are low. For
example, less pausing when NTP levels are high will increase rates of RNA production where
translational capacity is greater even without direct coupling of ribosomes and RNAP.

(p)ppGpp regulation of pausing. In some bacteria (e.g., E. coli), pausing by RNAP is tied more
directly to translation by the signaling molecule (p)ppGpp (Figure 5). (p)ppGpp is synthesized
by the ribosome-binding enzyme RelA when the ribosome A site is empty (16) and binds E. coli
RNAP at two sites, termed site 1 and site 2 (126). Site 1 is at the interface of the ω and β′ sub-
units, whereas site 2 is formed when the dissociable regulator DksA binds in the RNAP secondary
channel. (p)ppGpp regulation of transcription initiation is largely worked out (48). Although less
studied, it has long been known that (p)ppGpp also functions to stimulate pausing by RNAP in the
absence of DksA (i.e., via site 1) (73, 75). (p)ppGpp-stimulated pause sites are found throughout
genes (82), but the underlying mechanism is incompletely understood. (p)ppGpp has been shown
to stimulate backtracking (67). In contrast, the hairpin-stabilized hisPEC, in which backtracking is
blocked by the PH, is unaffected by (p)ppGpp (R. Landick, unpublished observation). (p)ppGpp
appears to stabilize partial clamp opening in σ70 holoenzyme (38); if also true for ECs, clamp loos-
ening could explain increased backtracking. Global stimulation of pausing by (p)ppGpp appears
to be a central circuit in regulation of cell physiology in E. coli–like bacteria where the aggregate
effect of (p)ppGpp on pausing can significantly reduce transcription rate both in vitro and in vivo
(18, 133) and is proposed to couple the rates of chain elongation by ribosomes and RNAP without
requiring direct ribosome–RNAP interactions (160).

Cellular osmolality and water activity. (p)ppGpp may be only one example of a broader impact
of small molecules on pausing by RNAP. For example, some osmolytes may alter pausing non-
specifically by affecting the relative stability of particular RNAP conformations (e.g., swiveling
and TL folding) either electrostatically or via changes in the thermodynamic activity of water (21,
40). These types of effects have been characterized for initiation (78), including in vivo (49, 91),
but they remain to be studied systematically for elongation and pausing. In addition to effects
on RNAP, effects on pausing via effects on nascent RNA folding also are possible. Both changes
in pH and changes in Mg2+ concentration are known to modulate pausing through effects on
nascent RNA structures (61, 108). Bacterial cells respond to changes in their environments with
large changes in intracellular solute composition (122), but the impacts of these changes on RNAP
structure, activity, and pausing are largely unexplored areas in need of research.

Transcription–Translation Coupling

Ribosomes translating nascent RNAmay affect pausing by forming complexes with RNAP termed
expressomes, either directly through a tight coupling interface or more loosely though interfaces
mediated by NusA, NusG, or both (77, 114, 145, 146) (Figure 5). These ribosome–RNAP inter-
actions explain how ribosomes suppress hairpin-stabilized pausing by inhibiting or melting PHs
(88) but also raise many questions. Some nascent RNA structures may be able to form in loosely
coupled expressomes (28, 145). It is currently unclear which expressome conformations are present
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during which stages of transcript elongation and pausing in vivo. The presence of pause regula-
tors NusA and NusG at the ribosome–RNAP interface creates the potential for complex effects
on pausing depending on expressome conformation; the plasticity of NusA and NusG is evident
from their different configurations in antitermination complexes (62). The extent to which ex-
pressomes versus (p)ppGpp coordinates transcription and translation in E. coli–like bacteria (121,
160) and whether pausing within genes is important in B. subtilis–like bacteria that appear to use
neither expressome-like nor (p)ppGpp-mediated coupling (66) remain unclear. These questions
about coupling should drive high-impact research for the next decade or longer.

DNA Topology

Another key but poorly researched area of cellular transcriptional regulation is the connection
between DNA topology and pausing. Transcription is inextricably linked to changes in DNA
topology because neither RNAP nor DNA freely rotates within cells, even though one or the
other must rotate 360° for every ∼10 base pairs of DNA threaded through RNAP. The inabil-
ity to rotate causes accumulation of positive DNA supercoiling in front of the EC and negative
supercoiling behind it, which is known as the twin-supercoiled domain model of transcription
(93) (Figure 5). The accumulated supercoiling is manifest as changes in either DNA twist, which
generates a torsional force along the DNA helix, or DNA writhe, which relieves the torsional
stress. In topologically closed DNA, the sum of twist and writhe is constant. These topological
effects of transcription have been validated both in vitro (95) and in vivo (74). They explain how
multiple ECs cooperate without requiring physical interactions of RNAP (74). Changes in DNA
topology can either increase or decrease pausing by RNAP (81). Increases in negative and positive
torsion upstream and downstream of RNAP, respectively, generate a force that favors backtrack-
ing of PECs (Figure 5); correspondingly GreA, which helps ECs recover from backtrack pauses,
increases EC resistance to stalling in response to torsional force (96).

In cells, the accumulation of DNA supercoiling from transcription is relieved by topoiso-
merases. In E. coli, DNA gyrase relieves positive supercoiling in front of ECs and topoisomerase
I relieves negative supercoiling behind ECs. Intriguingly, E. coli topoisomerase I appears to bind
directly to RNAP (29). Combined, they maintain a modest negative supercoiling of the E. coli
genome on average, but gene-by-gene supercoiling levels remain ill-defined. Differences in pso-
ralen binding suggest that supercoiling varies considerably across the genome (86), but higher-
resolution assays are needed to define supercoiling levels and effects on pausing in individual
genes. GapR from Caulobacter crescentus, which binds positive twist in DNA (51), offers one attrac-
tive approach.

An interplay among negative supercoiling, pausing, and formation of nascent RNA structures
also will impact R-loop formation (Figure 5). R-loops, in turn, impact both transcription and
DNA replication (37, 84). Effects on pausing of R-loops upstream or downstream of PECs require
study.New genome-scalemethods are needed to define relationships among supercoiling, pausing,
R-loop formation, and gene regulation.

Bacterial Chromatin, DNA Topology, and Pausing

In bacteria, transcriptional pausing functions not on the naked DNA templates used for nearly
all mechanistic studies to date but instead on complex nucleoprotein complexes colloquially re-
ferred to as bacterial chromatin (129). Bacterial chromatin is complex; its protein components
are diverse and generate more heterogeneous structures than nucleosomes in eukaryotic chro-
matin (32). Both the structures of bacterial chromatin and the ways they affect pausing require
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more study. Two points deserve highlighting. First, bacterial chromatin is not necessarily an im-
pediment to transcription. The most abundant chromatin protein in rapidly growing E. coli, HU,
colocalizes with RNAP on actively transcribed genes (120). HU, which is also the most widely
conserved bacterial chromatin protein, constrains negative supercoiling as writhe (50). Thus, HU
may reduce both backtrack pausing and R-loop formation by relieving negative torsion upstream
of ECs (Figure 5). Another abundant and widely distributed chromatin protein, Dps, binds all
DNA in stationary phase but does not inhibit transcription (65). Thus, some bacterial chromatin
proteins may turn out to aid transcription, but their direct effects on transcriptional pausing re-
main to be elucidated.

Second, the best-characterized bacterial chromatin protein involved in transcriptional silenc-
ing, H-NS in E. coli–like bacteria, can form different types of nucleoprotein filaments with dif-
ferent effects on transcriptional pausing (15, 80). Linear H-NS filaments, in which one H-NS
polymer binds one DNA duplex, inhibit promoter binding but do not pose barriers to transcript
elongation in vitro (Figure 5). In contrast, bridged H-NS filaments, in which one H-NS poly-
mer binds two DNA duplex segments, trap ECs in a topologically closed domain that stimulates
pausing at sites where backtracking is possible while having little if any effect at elemental pause
sites where backtracking does not occur (80). Thus, switching between linear and bridged H-NS
conformations may govern H-NS stimulation of pausing and ρ-dependent termination, which is
crucial to silencing of laterally transferred DNA (118). The distributions of linear versus bridged
H-NS filaments in vivo and the abilities of other regulators of pausing and topology to act on
topologically trapped PECs are unknown and offer fertile ground for future study.

CONCLUSION

The study of transcriptional pausing has advanced from the stage of discovery and the search
for function and mechanism to one of understanding how pausing mediates cellular information
processing in different ways at an organismal scale. Much remains to be discovered both at the
mechanistic level of signal processing within RNAP and at the global level of how regulators
mediate information flow to and from PECs. Emerging approaches like time-resolved cryo-EM
and massively parallel single-molecule and single-cell analyses may provide key tools for these
discoveries. Human ingenuity and collaboration will provide the driving force.
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