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Abstract

Secretion of cellular components across the plasma membrane is an es-
sential process that enables organisms to interact with their environments.
Production of extracellular vesicles in bacteria is a well-documented but
poorly understood process. Outer membrane vesicles (OMVs) are produced
in gram-negative bacteria by blebbing of the outer membrane. In addition to
their roles in pathogenesis, cell-to-cell communication, and stress responses,
OMVs play important roles in immunomodulation and the establishment
and balance of the gut microbiota. In this review, we discuss the multiple
roles of OMVs and the current knowledge of OMV biogenesis.We also dis-
cuss the growing and promising biotechnological applications of OMV.
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1. INTRODUCTION

Secretion of cellular components across the plasma membrane is an essential process that occurs
in all life-forms, enabling organisms to interact with their environments. One way cells accom-
plish this is by secreting vesicles, which are spherical, nanosized structures derived from lipid
membranes of the cell surface (21, 38). Production of extracellular vesicles is a well-documented
process that takes place in gram-positive and gram-negative bacteria. Outer membrane vesicles
(OMVs), which are released from the cell envelope of gram-negative bacteria, have been studied
for more than 50 years.However, little is known about OMV biogenesis. In this review, we discuss
the current knowledge of the biogenesis of OMVs in gram-negative bacteria, consider their roles
in bacterium-host interactions, and discuss their biotechnological applications. Finally, we briefly
address some of the reasons why some researchers remain skeptical about the physiological roles
of OMVs.

OMV production was first observed in 1965 in an auxotrophic Escherichia coli strain that re-
leased significant amounts of cell-free lipopolysaccharides (LPS) under lysine-limiting growth
conditions (17). Later, Knox and collaborators showed by electron microscopy that these secreted
cell-free LPS elements were part of membrane structures and proposed that these vesicles were
derived from the outer membrane (OM) (86). Rothfield & Pearlman-Kothencz (125) followed up
these observations and showed that chloramphenicol exposure and amino acid starvation promote
the secretion of these OM blebs in E. coli. Subsequent studies reported the observation and isola-
tion of OMVs from different gram-negative bacteria, like Veillonella parvula (106), Vibrio cholerae
(28), and Salmonella enterica ser. Typhimurium (125). Despite the increasing evidence of OMV
production by bacteria, OMVs were considered mere growth artifacts or cell lysis by-products for
several years. Later, OMVs were observed in cerebrospinal fluid samples from patients with acute
meningitis, suggesting that OMVs were not generated only in lab conditions (41). Since then, the
biogenesis of OMVs and their roles have gained interest.
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Figure 1

Roles of outer membrane vesicles (OMVs) in gram-negative bacteria. OMVs, which are released from the
cell envelope, range in size from 20 to 300 nm and function as a versatile secretion and transport mechanism.
OMV roles include intracellular and extracellular communication, quorum sensing, horizontal gene transfer,
interbacterial killing, toxin delivery, nutrient hydrolysis, and stress responses.

OMVs range between 20 and 300 nm and function as a versatile secretion and transport mech-
anism for bacterial cells (63).OMV composition in several species has been described and includes
lipids, LPS and OM proteins as well as encapsulated periplasmic content. The presence of cyto-
plasmic elements, like DNA and RNA, has also been reported, but it is unclear how these elements
are transported into the periplasm to be packed into OMVs (18, 36). Analysis of OM and OMV
fractions from different microorganisms revealed a distinct enrichment of proteins and lipids in
each fraction (1, 44, 62, 65, 71, 77, 92, 105, 122, 132). These findings favor the hypotheses that
bacteria possess specific sorting mechanisms and that OMV formation is a directed process and
not the result of cell lysis.

2. OMV ROLES

OMVs have been implicated in an array of physiological processes, including intracellular and ex-
tracellular communication, quorum sensing, horizontal gene transfer, interbacterial killing, toxin
delivery, polysaccharide hydrolysis, and stress responses (63, 66, 102, 130) (Figure 1).

2.1. OMVs in Pathogenesis

OMVs have been linked to pathogenesis.They can serve as long-distance delivery vehicles that can
promote host colonization and immune evasion. They carry an array of immunogenic molecules,
such as LPS, flagellin, and peptidoglycan, which stimulate the host immune system through Toll-
like receptors (TLRs) (13, 23). OMV-associated molecules include virulence factors related to
adherence, invasion, antimicrobial resistance, and modulation of host immunity. To highlight the
role of OMV in pathogenesis, we discuss examples in further detail below.

Enterotoxigenic E. coli (ETEC) is an important diarrheal pathogen that secretes several toxins,
including heat-labile enterotoxin (LT) (71, 145). This toxin disrupts the electrolyte balance in
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the gut endothelium and has been detected in OMVs (71, 85). ETEC OMVs can also deliver
the pore-forming cytotoxic protein cytolysin A (ClyA) (144). ClyA incorporated into OMVs
has higher cytotoxicity compared to the purified toxin in a mammalian cell model (144). This
finding has been attributed to an effect of the redox environment within the vesicles that allows
ClyA oligomerization (144). Cytotoxic necrotizing factor type 1 (CNF1) is a virulence factor
produced by uropathogenic E. coli contained in OMVs (87). Once this toxin reaches the host cells,
it alters actin cytoskeleton and promotes bacterial invasion of endothelial cells of the blood–brain
barrier.

Early studies in the human dental pathogen Porphyromonas gingivalis also linked OMV secre-
tion to pathogenesis. The main virulence factors of P. gingivalis, gingipains, are enriched in OMVs,
which contributes to impairment of host cell function (65, 143). Moreover, hemagglutinins and
heat shock proteins, which are mainly involved in host cell attachment and invasion, are also se-
creted as OMV cargo (10). Consequently, OMV production increases bacterial adherence to host
cells, stimulating bacterial aggregation and leading to the formation of dental plaque (45, 62, 79).

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections mainly
in immunocompromised patients (97). Its OMVs carry multiple virulence factors, including
degradative and pore-forming molecules such as peptidoglycan hydrolase, phospholipase C, alka-
line phosphatase, protease, elastase, and hemolysin (33, 77). Additionally, P. aeruginosa OMVs fa-
cilitate bacterial competition during infection, being able to kill gram-negative and gram-positive
competitors in cocultures (78). Furthermore, P. aeruginosa elicits a potent destructive inflamma-
tory response via combined sensing of both LPS and protein components (47). In vitro assays
carried out in macrophages showed that OMVs led to a significant increase of MIP-2, TNF-α,
IL-1, and IL-6 transcriptional levels compared to exposure to LPS alone.

S.Typhimurium, the leading cause of gastroenteritis, also exploits OMVs to transport virulence
factors.This bacterium is able to produceOMVs even during its intracellular life, secretingOMVs
packed with cytolethal distending toxin inside infected epithelial cells (64). Interestingly, OMV
biogenesis in S. Typhimurium inside infected macrophages is triggered by the two-component
system PhoPQ (43).

V. cholerae, the causative agent of cholera, produces cholera toxin (CT) as its main virulence
factor (27). AlthoughCT is primarily secreted by the type II secretion system (T2SS),OMVs serve
as a secondary mechanism by which CT is secreted (27). In addition to CT, several other virulence
factors have been linked to OMVs, such as the pore-forming toxin Vibrio cytolysin (118) as well
as various serine proteases and metalloproteases (57, 124). These compounds were found to cause
cytotoxicity and induce an inflammatory response in host cells (109). Moreover, this bacterium
can alter the immunogenicity of OMV cargo by decreasing the expression of virulence factors
through quorum sensing (16).

2.2. OMVs in Commensalism

Gut microbiota–derived vesicles are an emerging topic of study and were first reported less than
ten years ago (80, 131). The functionality of microbiota-derived OMVs varies greatly depending
on the species releasing them. Proteomic studies on OMVs from gut commensal strains suggest
that OMV-associated proteins contribute to modulating host immunity, promote host coloniza-
tion, and act as public goods by degrading various carbon sources in the gut (1, 44, 120, 148).

Bacteroides is well known for secreting large amounts of OMVs and actively contributing to
gut symbiosis (68, 131). These bacteria secrete glycosylases and proteases, which degrade complex
polysaccharides and mucins (44, 68, 120). The generated degradation products can then be uti-
lized as nutrient sources by any other members of the gut microbiota (44, 68, 120). Thus, OMVs
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are considered public goods: Once OMVs are released, any member of the gut microbiota can
benefit from their degradative activity. However, not all the OMV cargo fulfills this altruistic role.
Recently, a family of peptide toxins that has broad-spectrum activity against Bacteroides has been
found as OMV cargo. The genes encoding these toxins are widely distributed throughout the
human gut microbiota (29, 35).

OMVs from commensal bacteria can also modulate the host innate immune system. For ex-
ample, Bacteroides fragilis polysaccharide A triggers TLR-mediated signaling that attenuates host
immune responses and promotes commensal gut colonization (103, 126). The constant and con-
trolled immune stimulation mediated by OMVs from commensals in the gut is linked to intestinal
health (23, 108). This cross talk between microbiota and host cells constitutes a key process in
maintaining gut homeostasis.

2.3. Production of OMVs by Plant Pathogens

OMVs have been investigated primarily in human pathogens and commensals. However, recent
studies show that OMVs produced by plant pathogens perform similar functions (72, 83, 135).
Plant pathogens deliver virulence factors, such as T2SS effectors and xylanase, as OMV cargo (72,
112, 135). The innate immune system of plants recognizes and responds to purified OMVs from
plant pathogens (7). Thus, when Arabidopsis thaliana seedlings were incubated with OMVs puri-
fied from several Xanthomonas species, three defense responses (defense gene activation, reactive
oxygen species burst, and medium alkalinization) were modulated (7). Still, it remains unexplored
whether OMVs play a role in plant symbiosis or in interkingdom cell-to-cell cross talk.

2.4. Other OMV Roles

OMV production is increased when cells are subjected to physical or chemical stress (3, 61, 95,
104). E. coli mutants lacking the proteases DegS and DegP exhibited a hypervesiculating phe-
notype, and the amount of vesicles released correlated with the level of protein accumulated in
the cell envelope (104). Furthermore, the increased vesiculation enhanced bacterial survival upon
challenge with stressing agents. These observations led to the hypothesis that vesicle overproduc-
tion is linked to the maintenance of the cell envelope (104, 137). Temperature is another factor
that can modulate the amount of OMVs generated. In vitro, Serratia marcescens produced signifi-
cant amounts of vesicles at 22°C or 30°C, whereas it produced negligible quantities at 37°C (131).
Moreover, inactivation of the synthesis of the enterobacterial common antigen resulted in hyper-
vesiculation in this strain, and this hypervesiculating phenotype was reverted upon inactivation
of the response regulator RcsB (131). Nutrient limitations have been also associated as a trigger
for OMV production. For example, under sulphate-depleted conditions,Neisseria meningitidis in-
creased its OMV biogenesis, while Haemophilus influenzae, V. cholerae, and E. coli increased OMV
production under iron-limited conditions (56, 122).

OMVs can also act as decoys to confront and attenuate antibiotic activity. E. coli OMVs
contributed to protection against the membrane-targeting antibiotics colistin and melittin (90).
The protective effect was not limited to E. coli, as these purified E. coliOMVs provided protection
against those antibiotics to P. aeruginosa and Acinetobacter radioresistens strains (90). However, the
protective effect of the OMVs could not be extended to other antibiotics, like ciprofloxacin, strep-
tomycin, and trimethoprim, indicating that OMVs appear to protect the bacterial community
mainly against antibiotics targeting the membranes (90), possibly by sequestering and reducing
the availability of the antibiotic. P. aeruginosa and other bacteria also secrete antibiotic-degrading
enzymes like β-lactamases in OMVs (34, 58). Similarly, OMVs secreted by V. cholerae acted as
decoys to increase resistance to antimicrobial peptides, such as polymyxin B and LL-37 (42).
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Furthermore, OMVs act as decoys during phage infections. OMVs irreversibly bind the phage,
highly reducing their ability to infect the bacterial cell (95, 101).

Recent studies have suggested that OMVs can harbor DNA and different types of RNAs,
mostly noncoding RNAs (18, 36, 59, 134). Intriguingly, many of these sequences align to inter-
genic noncoding regions of human DNA (26). The delivery of bacterial RNA through OMVs
could exert epigenetic changes in host transcription (26). However, it remains unclear how these
RNA molecules reach the periplasm prior to being packed inside OMVs.

OMVs are also pivotal in bacterial communication. Certain bacteria can regulate gene expres-
sion in response to quorum sensing. P. aeruginosa is able to secrete quinolone signal compounds
[Pseudomonas quinolone signal (PQS)] through OMVs, which provide a protective environment
to these highly hydrophobic molecules (102). PQS simultaneously stimulates OMV production
by intercalating into the OM, generating a positive-feedback loop (51). As PQS is found at high
concentrations in OMVs, the fusion of a single vesicle with a bacterial cell is enough to trigger
the quorum sensing response. Hydrophobic signal molecules related to quorum sensing were also
detected as OMV cargo in other microorganisms (20), thus suggesting a novel OMV-based mech-
anism for hydrophobic signal molecule trafficking.

3. REGULATION AND BIOGENESIS OF BACTERIAL OMVs

Bacterial OMVs have been studied extensively for decades. However, researchers have not yet
elucidated a definitive or universal mechanism to explain OMV production. Here, we address
several biogenesis mechanisms proposed to explain how OMVs are formed (Figure 2).

3.1. Membrane Cross-Links and OMV Production

One of the earliest models for OMV formation linked OMV biogenesis to a decrease in OM–
peptidoglycan cross-links at the site of vesicle formation (Figure 2b). Braun’s lipoprotein (Lpp),
outer membrane protein A (OmpA), and components of the Tol–Pal complex are OM proteins
found to be involved in this process. Lpp is an abundant OM protein in some bacteria that acts
as a molecular staple, linking the OM to the peptidoglycan layer. Inactivation of lpp results in
increased OMV production in P. aeruginosa, E. coli, and S. Typhimurium (12, 146). However, lpp
mutants have defects in the integrity of their OMs, so it is difficult to distinguish OMV production
from cell damage.

OmpA is another OM protein that associates noncovalently with the underlying peptidoglycan
layer. OmpA is a common component of OMVs (114, 140, 146). Regulation of OmpA impacts
OMV production, and its deletion induces hypervesiculation in many bacterial species (114, 140,
146). In V. cholerae, the small noncoding RNA VrrA is suggested to modulate OMV production by
acting as a negative regulator of OmpA. vrrA mutants were found to display a hypervesiculation
phenotype likely due to decreased OM–peptidoglycan interactions (136).

The Tol–Pal complex spans the inner membrane and OM of gram-negative bacteria and con-
sists of five proteins, TolA, TolB, TolQ, TolR, and Pal (55). TolA, TolQ, and TolR form a complex
in the inner membrane, whereas TolB is a periplasmic protein that interacts with Lpp, OmpA,
and Pal (147). Pal is localized to the inner leaflet of the OM, where it interacts directly with the
peptidoglycan layer and promotes membrane stability (55, 147). The Tol–Pal complex is proposed
to have many functions; however, its best-characterized role is in cell division (55, 147). Tol–Pal
proteins localize at invagination sites during cell division, and inactivation of the genes encod-
ing these proteins leaves the cell unable to divide (55, 147). However, Tol–Pal mutants displayed
increased bleb formation rates around invagination sites. It has been reported that the Tol–Pal
complex is involved in producing OMVs at sites of cell division and that these OMVs are distinct
from those generated at other sites on the cell (39).
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3.2. Periplasmic Accumulation and OMV Production

It has been proposed that accumulation of periplasmic contents can induce vesicle forma-
tion (Figure 2a). For example, peptidoglycan fragments liberated in the periplasm during
growth could exert turgor pressure on the OM, leading to vesicle production (150). Studies in
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Figure 2 (Figure appears on preceding page)

Mechanisms of OMV production in gram-negative bacteria. (a) Curvature of the OM is induced by the local accumulation of
peptidoglycan fragments or misfolded proteins in the periplasm. (b) Removal of proteins anchoring the OM to the underlying
peptidoglycan increases OM fluidity, enabling the membrane to bend and form vesicles. (c) Owing to charge repulsion, local
enrichment of LPS species with anionic charges induces curvature of the OM and subsequent vesicle formation. Enrichment in
deacylated LPS species also promotes membrane curvature because lipid A deacylation changes the shape of LPS from cylinder-like to
an inverted cone. (d) The VacJ/Yrb ABC transporter is involved in retrograde transport of phospholipids from the OM.
Downregulation of this transporter leads to the accumulation of phospholipids in the outer leaflet of the OM. This causes the outer
leaflet to expand rapidly compared to the inner leaflet, which leads to membrane curvature and vesicle formation. (e) Once PQS is
produced, it is secreted from the cell and subsequently intercalated into the outer leaflet of the OM owing to its interaction with lipid A
and phospholipids. Insertion of PQS into the OM causes outer leaflet expansion that increases OMV production. Abbreviations: ABC,
ATP-binding cassette; LPS, lipopolysaccharide; OM, outer membrane; OMV, OM vesicle; PQS, Pseudomonas quinolone signal.

P. gingivalis demonstrated that mutants lacking an autolysin displayed increased OMV produc-
tion. Researchers explained this phenotype by claiming that the absence of the autolysin activity
prevented P. gingivalis from degrading periplasmic peptidoglycan fragments, which accumulated
in the periplasms and were therefore expelled via OMVs (67). Misfolded proteins might also
induce OMV production by exerting force on the membrane of bacteria with mutations in
envelope stress pathways, since these cells were unable to degrade the proteins (129). This claim
was supported by the fact that mutants grown at lower temperatures (30°C or 34°C), which cause
less protein misfolding, produced OMVs at comparable rates to wild-type cells (104).

3.3. Lipopolysaccharide Remodeling and OMV Production

Several reports have shown that altering LPS content impacts OMV production (Figure 2c).
P. aeruginosa produces two LPS types containing different O-polysaccharides, the A-band LPS
(neutral charge) and the B-band LPS (anionic charge). Remarkably, only B-band LPS has been
detected in the vesicles (77). This finding has led to the hypothesis that OMVs are generated
in regions where B-band LPS is more abundant and that the OM bends to alleviate the charge
repulsion between them (77).Mutants that only produce B-band LPSwere found to producemore
OMVs than wild-type organisms and mutants only able to produce A-band LPS (115). However,
the OMVs secreted by the wild-type and these mutant strains are different sizes, which indicates
that the overproduction of OMVs by strains producing only the B-band LPS could be the result
of an envelope stress–coping mechanism (111).

P. gingivalis also synthesizes two differentO-antigen chains, the A-LPS (anionic charge) and the
O-LPS (neutral charge). Contrary to LPS in P. aeruginosa, both LPS types are packed into P. gingi-
valisOMVs (65).Mutations affecting A-LPS synthesis or attachment of both O-antigens onto the
lipid A core did not affect OMV biogenesis, and all bacteria with LPS mutations produced OMVs
comparable in size to wild-type OMVs (65). Even though P. gingivalis packs both types of LPS
into OMVs, the lipid A compositions of the OM and OMVs are different (65). The lipid A sorted
into OMVs is deacylated compared to lipid A in the OM, suggesting that OMVs are generated
in specific OM regions because of compartmentalization or remodeling of the OM (66). In this
model, lipid A deacylation alters the configuration of LPS, increasing themembrane curvature and
consequently inducing OMV production.When the lipid A deacylase PagL was overexpressed in
S.Typhimurium, deacylated lipid A was preferentially packed into OMVs, which subsequently in-
creased OMV production (43). PagL is tightly regulated and is expressed inside macrophages
(113). Upon macrophage infection, PagL is required for OMV formation by intracellular S.
Typhimurium (43). Given that most of the lipid A–modification enzymes, such as PagL, are reg-
ulated and not expressed in normal lab conditions, which is the setting for extracting samples for
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lipid A analysis, it is possible that other bacteria produce OMVs with deacylated lipid A during
infection.

3.4. OMV Production and the Bilayer-Couple Model

The bilayer-couple model describes a mechanism where membrane curvature is initiated by the
insertion of biomolecules into the outer leaflet of the OM (Figure 2d,e). This is proposed to
cause the outer leaflet to expand faster than the inner leaflet, resulting in blebbing of the OM and
formation of OMVs (127). This model has been extensively studied in P. aeruginosa (Figure 2e);
however, a similar mechanism involving VacJ/Yrb ATP-binding cassette (ABC) transport has been
investigated in other species (Figure 2d).

As previously mentioned, the molecule PQS is enriched in OMVs produced by P. aeruginosa,
and reduced OMV production was found in PQS-deficient mutants (102). Subsequent studies
found that PQS stimulates OMV production when it is secreted from the cell and intercalated
into the OM (51). PQS insertion causes the OM to expand rapidly, resulting in vesicle formation
(127) (Figure 2e). This mechanism appears to be limited to P. aeruginosa and related species that
produce PQS (70).

V. cholerae OMVs are enriched in phospholipids and carry large amount of enzymes associated
with phospholipid biosynthesis (122). It has been proposed that OMVs are formed as a result of
accumulation of phospholipids in theOM, forcing blebbing of themembrane (122).The VacJ/Yrb
ABC transport system is involved in the carriage of phospholipids from the OM (99). Disruption
of this system promotes OMV overproduction (99, 122). Similar results have been reported for
Chromobacterium violaceum, where VacJ/Yrb mutants hypervesiculated (9). Loss of VacJ/Yrb causes
an accumulation of phospholipids in the outer leaflet of theOM,which leads toOMexpansion and,
subsequently, vesicle formation (122) (Figure 2d). Accordingly, OMVs from VacJ/Yrb mutants
contain twice as many phospholipids as wild-type OMVs (122). In addition, during iron-limited
conditions, the VacJ/Yrb ABC transporter is downregulated by the ferric uptake regulator, causing
a hypervesiculation phenotype in H. influenzae, V. cholerae, and E. coli (122). Moreover, regulation
of VacJ/Yrb modulated OMV production in the presence of the bile salt sodium taurocholate
(37, 48). Since the VacJ/Yrb pathway has been shown to impact OMV production under various
conditions and in various organisms, this mechanism of OMV biogenesis could serve as a general
way to stimulate OMV production.

3.5. Proposed OMV Cargo Selection Mechanisms

Enrichment of specific protein and lipid cargo is an essential characteristic of OMVs. Vesicles
from pathogenic bacteria like P. aeruginosa, V. cholerae, P. gingivalis, and ETEC have been shown
to selectively pack virulence factors (19, 71, 77). OMVs from commensal Bacteroides are enriched
with glycoside hydrolases that enable the degradation of environmental polysaccharides (44). Sim-
ilarly, those from the predatory bacteriumMyxococcus xanthus are enriched in acidic hydrolases and
alkaline phosphatases, which aid the microbe in killing other environmental bacteria (11).The ob-
served OMV cargo selection requires extensive OM compartmentalization to generate patches in
the OM regions from which OMVs are secreted. In P. gingivalis, intact LPS is required to achieve
proper cargo selection (65). Mutant strains deficient in the synthesis of A-LPS produced OMVs
with aberrant cargo, packing a few additional proteins. Interactions of proteins with A-LPS could
shape the OM by partitioning proteins into OMVs or excluding them from OMVs (65). This in-
teractionmay be direct, in which case theOMV-specific proteins could have a domain to recognize
and interact with the O-antigen, promoting compartmentalization of the OM. Alternatively, the
interaction could be mediated by a yet unknown sorting factor, which would recruit the protein
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to the O-antigen-enriched region in the OMV.This proposed mechanism has an uncanny resem-
blance to the role of galectin in protein sorting in exosomes (40). In agreement with the sorting
model,B. fragilis and Bacteroides thetaiotaomicron utilize conserved protein sequences to specifically
direct proteins to OMVs (44). The OMVs of these organisms are enriched in a large subset of
OMV-unique proteins, which were found to be acidic lipoproteins (negatively charged), while
the majority of the OM proteins, β-barrel proteins, are positively charged (44). In Bacteroidetes,
lipoproteins that are abundant in OMVs were found to contain a conserved, negatively charged
amino acid motif known as the LES (lipoprotein export signal) domain (141). This domain is re-
quired for surface exposure of lipoproteins in Bacteroidetes (93).When it was mutated, lipoproteins
were less efficiently packaged into OMVs and were retained in the OM fraction (141). Although
many studies have analyzed the OMV proteomes from different bacteria, this is the first time that
a specific signal was shown to be linked to an OMV protein-sorting mechanism (141).

4. MECHANISMS OF OMV ENTRY INTO HOST CELLS

OMVs are long-distance delivery systems; however, the molecular mechanisms underlying OMV
internalization and cargo delivery into host cells are not fully understood. Two pathways have
been proposed: (a) direct cargo delivery via fusion to host cell membranes and (b) OMV inter-
nalization via the endocytic pathway (19, 53, 85, 116). During direct cargo delivery, OMV fusion
to host cell lipid rafts induces actin remodeling to allow OMV soluble cargo to diffuse directly
into the host cytoplasm. This is the mechanism proposed for P. aeruginosa, Legionella pneumophila,
and Aggregatibacter actinomycetemcomitans OMVs (19, 75, 123). Alternatively, delivery of OMVs
is facilitated by diverse mechanisms of endocytosis, including clathrin-mediated endocytosis,
caveola-mediated endocytosis, and clathrin- and caveola-independent endocytosis. After OMVs
have bound to lipid rafts, they are internalized through one of many endocytic pathways (19,
53, 85, 117). The pathway employed is organism-, or even strain-dependent (19, 53, 85, 117).
For example, OMVs derived from Helicobacter pylori, E. coli O157, non-O157 enterohemorrhagic
E. coli (EHEC), and nonpathogenic E. coli strains are internalized by clathrin-mediated endocy-
tosis (15, 49, 91), whereas the internalization of OMVs from ETEC, V. cholerae, P. aeruginosa, and
A. actinomycetemcomitans depends on caveola-mediated endocytosis (19, 27, 81, 85, 123). Finally,
P. gingivalisOMVs are internalized via clathrin- and caveola-independent endocytosis (53). Upon
entry, the OMV can follow multiple fates inside the host trafficking network. ETEC OMVs
containing LT accumulate in nonacidified compartments (85), whereas P. gingivalis and E. coli
O157 OMVs and nonpathogenic OMVs are routed to the early endosome, followed by sorting
to lysosomal compartments (14, 53, 74).

OMV size and cargo could determine which mechanism(s) of entry into the host cells is em-
ployed (76, 82, 104, 138). OMVs from pathogenic E. coli strains are internalized approximately
30% more rapidly and efficiently than those of nonpathogenic E. coli strains (117). Similarly,
OMVs produced and secreted by mutant strains lacking one virulence factor, such as LT, Cif,
or gingipains, cannot fuse with or enter host cells (19, 53, 85). Furthermore, a reduced OMV
entry ratio was observed in strains lacking O-antigen (117). Smaller OMVs preferentially enter
epithelial cells via caveola-mediated endocytosis (138). These findings suggest that the kinetics of
entry are cargo dependent; proteins and/or LPS carried by OMVs probably interacts with or bind
to receptors present on the lipids rafts that promote OMV attachment and entry (19, 53, 85, 117).

5. OMVs AS A PLATFORM FOR BIOTECHNOLOGICAL APPLICATIONS

In recent years, OMVs have gained attention as a platform for biotechnological applications.
Such applications take advantage of the fact that OMVs contain bacterium-derived antigens

618 Sartorio et al.



OVERVIEW OF OMV-BASED MenB VACCINES

For most N. meningitidis serogroups, the available vaccines consist of capsule polysaccharides coupled to a carrier
protein. However, the serogroup B capsule is homologous to molecular structures present in the human brain,
making it impossible to produce a glycoconjugate vaccine for this serogroup (69). Thus, OM proteins such as PorA
were considered as vaccine candidates. PorA, the main immunogenic protein in N. meningitidis and also present in
OMVs, is highly variable between strains (69). To overcome the problem of strain specificity, a novel MenB vac-
cine using OMVs derived from bioengineered strains expressing multiple PorA variants has been developed in the
Netherlands (69, 142). Most available OMV-based MenB vaccines (VA-MENGOC-BC, MenBvac, and MeNZB)
have succeeded in combating specific outbreaks of MenB-caused meningitis (in Cuba, Norway, and New Zealand),
with an efficacy of at least 70% (69). In 2016, the BEXSERO vaccine was approved for human use by the European
Medicines Agency and the FDA, as it provides protection against endemic disease (69).

and multiple pathogen-associated molecular patterns (PAMPs) and can modulate the immune
system. The best-known biotechnological application is the use of OMVs as vaccines (142, 107).
However, other applications have been proposed, such as drug-delivery systems (94).

5.1. OMVs as Vaccines

Bymimicking a pathogen but not causing the related diseases, vaccines induce humoral (antibody-
mediated) and/or cellular (immune cell– and cytokine-mediated) immunity and dramatically de-
crease infection and illness rates. As OMVs are nonreplicative entities that mimic immunogenic
properties of the producing bacteria, they are an attractive vaccine platform. Further advantages
of OMVs are their size, which enables their entry into lymph vessels and uptake by antigen-
presenting cells (APCs) (47). In addition, OMVs have natural adjuvant properties that strongly
stimulate the innate and, more importantly, the adaptive immune responses (46, 142). The high
stability of OMVs upon exposure to high temperatures and several chemical treatments further
points to them as attractive vaccine candidates (4). Two types of OMV-based vaccines have been
described: natural OMV and bioengineered OMVs.

5.1.1. Naturally secreted OMV-based vaccines. The vaccines against N. meningitidis group
B (MenB) are the most representative and successful OMV-based vaccines developed to date.
In the last 25 years, these vaccines have been developed and employed to combat outbreaks in
various countries (69) (see the sidebar titled Overview of OMV-Based MenB Vaccines). OMV-
based vaccines against V. cholerae, S. Typhimurium, and Shigella flexneri have been investigated in
animal models, but none has progressed to clinical trials (2, 22, 128).

OMVs have the intrinsic capacity to act as adjuvants. The immunogenic properties of OMV
cargo lead to protective mucosal and systemic bactericidal antibody responses. OMVs can easily
be phagocytized and processed by APCs, including dendritic cells (47). Then, the OMV-delivered
antigens are presented by APCs to CD4+ T cells, leading to the generation of antigen-specific
B cell responses (46, 100, 107, 142). LPS, a major component of OMVs, is a potent activator of
immune cells, such as monocytes/macrophages. Specific recognition by the TLR4/MD2 receptor
on these cells triggers NF-κB- and IRF3-dependent gene expression (98, 100). However, this
inflammatory activation can also result in high vaccine reactogenicity. In addition to LPS, OMVs
carry lipoproteins that are recognized by TLR2 and also modulate and activate innate immunity
(88, 100).
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Despite a few successful examples, some disadvantages of vaccines based on naturally released
OMVs need to be overcome before they are widely employed. The main concern is safety. OMVs
contain lipid A, an endotoxic component of LPS that can provoke a severe, even lethal, inflamma-
tory response in the host (113). Furthermore, OMV cargo varies between strains, which may in
some cases limit their applicability to a specific subset of strains. Finally, many strains secrete low
amounts of OMVs, which means that large volumes of pathogenic bacteria are needed. In the last
decade, bioengineering of OMV-producing bacteria has substantially progressed to address these
concerns.

5.1.2. BioengineeredOMV–based vaccines. BioengineeredOMV–carrying, heterologous re-
combinant proteins expressed in lab strains have shown potential. One strategy to effectively di-
rect heterologous antigens to the surface of the OMV is to fuse them with native OMV proteins.
Many groups have selected ClyA from E. coli as the fusion partner to deliver exogenous proteins
to OMVs (30, 54, 144). For example, ClyA has been fused to green fluorescent protein (GFP), to
the ectodomain of the influenza A matrix protein 2 (M2), and to the domain 4 moiety of Bacillus
anthracis protective antigen (30, 54, 121). As an alternative, antigens can be overexpressed and di-
rected to the periplasmic space, where they will be entrapped and packed into the OMV lumen
(84, 110). Several proteins from Streptococcus have been fused to the signal peptide of E. coliOmpA,
and once in the periplasm, they were successfully packed into OMVs (50). A similar approach was
employed to generate E. coli OMVs carrying the Chlamydia muridarum protein HtrA (8). Even
though these proteins were not surface exposed, they were able to elicit antigen-specific antibody
responses (8, 50, 110). The IgG antibodies generated had excellent functional activity in terms
of bacterial opsonophagocytic killing and protection in murine lethal infectious challenge assays
(50, 110).

Capsular polysaccharides (CPS) and LPS, which decorate the cell surfaces of pathogenic bac-
teria, are also good vaccine antigens. Unfortunately, vaccines consisting solely of polysaccharides
typically promote T cell–independent immune responses, which do not include IgM-to-IgG class
switch and fail to generate immunological memory (6). A common strategy to trigger immuno-
logical memory is to covalently couple the polysaccharide to a carrier. Capsule and O-antigen
biosynthesis gene clusters from pathogenic bacteria can be transferred into E. coli lab strains.
These glycoengineering techniques can be employed to display the glycans of choice as recombi-
nant LPS in nonpathogenic bacteria. The glycoengineered OMVs can be purified and employed
directly as conjugate vaccines. Streptococcus pneumoniae CPS (Sp-CPS) gene cluster was expressed
in E. coli. There, Sp-CPS was attached to the lipid A core and displayed on the bacterial surface
and glycoengineered OMVs (119). These glycoengineered OMVs raised specific IgG antibod-
ies against Sp-CPS in immunized mice and were shown effective in opsonophagocytosis assays
(119). In another example, the Francisella tularensisO-antigen polysaccharide gene cluster was also
successfully expressed in E. coli to produce glycoengineered OMVs decorated with F. tularensis
O-antigen (31). Mice immunized with these F. tularensis glycoengineered OMVs were protected
against lethal challenge with several strains of F. tularensis (31). Furthermore, to highlight the ver-
satility of this vaccine technology, glycosyltransferases and the enzymes from various organisms
required for the synthesis of nucleotide-activated sugars can be expressed in E. coli cells to produce
customized glycoengineered OMVs (139).

5.1.3. OMV-based vaccine detoxification alternatives. Several strategies have been de-
veloped to obtain OMVs with a low level of LPS toxicity. The first method is to reduce LPS
content by treating purified OMVs with detergents, such as deoxycholate and polyoxyethylene
10 oleyl ether (Brij-96) (69, 142). However, this approach has the disadvantage of a loss of
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lipoproteins, which are TLR agonists, thus reducing the adjuvant properties of OMVs (100). A
second detoxification method is based on the fact that less-acylated lipid A has reduced toxicity
(133). Monophosphoryl lipid A is a safe and effective vaccine adjuvant that is approved by the US
Food and Drug Administration for human use (25). Some naturally occurring Neisseria strains
produce penta-acylated LPS due to a mutation in the lipid A biosynthesis lauroyl acyltransferase,
encoded by lpxL1. Their secreted OMVs do not need the detergent extraction step because of low
endotoxic activity of the penta-acylated lipid A (52). Therefore, by modifying genes responsible
for lipid A synthesis, it is possible to obtain genetically detoxified strains and, consequently,
detoxified OMVs (100, 113). Inactivation of the genes encoding lipid A acyltransferases, such as
msbA,msbB, lpxL1, and lpxM, and/or overexpression of genes encoding lipid A deacyltransferases,
such as pagP, results in lipid A lacking an acyl chain and the concomitant reduced activation of
TLR4/MD2 (5, 43, 73, 113). An additional fine-tuning step can be accomplished by introducing
lipid A phosphatases, such as LpxE, to generate monophosphorylated penta-acylated lipid A (31,
113). Another alternative is to engineer nonpathogenic bacteria that naturally produce OMVs
that only pack monophosphorylated penta-acylated lipid A. Bacteroides OMVs contain only
monophosphorylated penta-acylated lipid A moieties, and these organisms can be engineered
to deliver antigens and drugs (24, 44). A balanced response that generates sufficient adjuvant
activity but prevents harsh side effects can be achieved by adopting any of the methods described
above.

5.2. OMVs as Cancer Immunotherapy Agents

In the last decades, multiple preclinical and clinical studies involving cancer vaccines have been
performed. Unfortunately, these vaccines have had an overwhelmingly low rate of efficacy (less
than 5%) (149).However, promising results for the use of liposomes have been reported lately (89).
Considering the immunomodulatory role of OMVs, they can be engineered to express cancer-
specific epitopes or to carry small noncoding RNAs (60, 149). Furthermore, OMVs induced a
durable antitumor immune response that inhibited tumor growth in multiple tumor models (32,
149). The caveat, again, is the toxic effect of LPS. However, some of the detoxification meth-
ods mentioned above are promising and worthy of exploration to improve the cancer therapies
available.

6. SKEPTICISM ABOUT OMVs AND THEIR PHYSIOLOGICAL
RELEVANCE

OMVs were described for the first time in the 1960s (17, 86). However, for several reasons, a
number of scientists are still skeptical about their biological relevance. The story of OMVs re-
sembles that of eukaryotic extracellular vesicles, or exosomes, which have also been a matter of
controversy. Many concerns stem from the fact that despite more than 50 years of research, we
have yet to elucidate the mechanism(s) for their formation. Pieces of the puzzle regarding OMV
biogenesis have been uncovered in different species, however, and none of the working models
has been confirmed to be universal.

It has been proposed that DNA and RNA are packed inside OMVs (18, 36, 134). None of
the current models for OMV biogenesis specifically accounts for the packing of nucleic acids, as
these molecules would need to be translocated into the periplasm and across the peptidoglycan
layer to be included in an OMV. On the contrary, RNA and DNA are released upon cell lysis
and could easily contaminate OMV preparations. A feasible explanation for how DNA or RNA is
transported into the bacterial periplasm would support the biological function of these molecules
in OMVs.
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Multiple mutant strains presenting hypervesiculating phenotypes have been described (104,
117, 140, 146). Although some of these mutations appear to regulate OMV formation, many mu-
tations also affect membrane stability. Consequently, the material produced by these strains that
is considered OMVs may result from lysis or membrane destabilization. No mutants unable to
produce OMVs have been identified. Those who believe in the relevance of OMVs explain this
by postulating the essentiality of OMV biogenesis. Because vesicles formed as by-products of lysis
have the same composition as the membrane from which they are derived, the fact that protein
and lipid cargo selection has been shown argues against the notion that OMVs are simply bacte-
rial debris. Many secreted proteins, such as flagellins, pilins, and T3SS effectors, may aggregate
and copurify with OMVs. Therefore, claims of cargo selection have to be considered with caution
when these are the proteins that are presumably enriched in OMV preparations. In any case, cargo
selection has been conclusively demonstrated in a few bacterial species, with proteomics indicating
that, at least in these species, OMVs do not result from lysis (19, 44, 65, 71, 77, 141, 143).

Numerous functions have been proposed for OMVs. In most reports appearing in the litera-
ture, OMVs are purified from bacteria cultured in large volumes under standard lab conditions
with regard to media, temperature, and aeration (27, 47, 91, 96, 109, 134). In some studies, OMVs
were obtained from up to 1.5 L of culture and concentrated by a factor in the hundreds before
their biological properties were tested. Although this might suggest that OMVs are produced in
negligible amounts, OMV biogenesis is likely stimulated in vivo. However, the results of these
experiments have to be carefully interpreted, as the composition of OMVs produced during in-
fection can be very different from that of OMVs produced in culturing media.

Part of the problem is that the vesicle biogenesis process is very difficult to investigate. Bona
fide OMVs and lysis-derived vesicle-like structures are extremely difficult to differentiate by bio-
physical and biochemical methods. We recognize the limitations of current studies involving the
biogenesis and functions of OMVs. It is possible that some of the published works contain arti-
facts. However, there is substantial evidence to assert that at least some bacteria under particular
conditions produce bona fide OMVs as a result of an orchestrated process. Given recent technical
advances in mass spectrometry and microscopy, it will be possible to investigate the vesiculation
process in relevant clinical strains and in infection models to decipher OMV biogenesis mecha-
nisms and establish their true biological significance.

SUMMARY POINTS

1. Outermembrane vesicles (OMVs) constitute a universal secretion system that is found in
all gram-negative bacteria and that results from a directed and selective cellular process.

2. OMV composition can be differentiated from that of the outer membrane, as OMVs are
enriched with a specific subset of proteins and lipids.

3. At least five mechanisms have been proposed to explain OMV formation.

4. OMVs can have offensive and defensive roles in bacterium–bacterium and bacterium–
host interactions.

5. Engineered OMVs carrying customized cargo and detoxified lipopolysaccharide could
be used to improve current vesicle-based vaccines and drug-delivery platforms.
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FUTURE ISSUES

1. Is there a universal mechanism for OMV biogenesis?

2. How is protein cargo selected?

3. What is the composition of the cargo of OMVs secreted in vivo?
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