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Abstract

Mycobacterium tuberculosis remains one of the most successful bacterial
pathogens, claiming over 1.3 million lives worldwide in 2013. The emer-
gence of multidrug-resistant and extensively drug-resistant isolates has
prompted the need for new drugs and drug targets. M. tuberculosis possesses
an unusual cell wall dominated by lipids and carbohydrates that provides a
permeability barrier against hydrophilic drugs and is crucial for its survival
and virulence. This large macromolecular structure, termed the mycolyl-
arabinogalactan-peptidoglycan complex, and the phosphatidyl-myo-inositol-
based lipoglycans are key features of the mycobacterial cell wall. Assembly
of these cell wall components is an attractive target for the development
of chemotherapeutics against tuberculosis. Herein, we focus on recent bio-
chemical and molecular insights into these complex molecules of M. tuber-
culosis cell wall.
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INTRODUCTION

A hallmark of mycobacteria is their intricate cell wall. Inhibition of cell wall assembly has proven
useful for tuberculosis chemotherapy; drugs such as ethambutol, isoniazid, ethionamide, and D-
cycloserine successfully target the synthesis of its various components. As a result, a complete
understanding of cell wall biosynthesis has been a major research objective over the last decade.
The cell envelope of Mycobacterium tuberculosis consists of three main structural components: (a) the
characteristic long-chain mycolic acids, (b) a highly branched arabinogalactan (AG) polysaccharide,
and (c) a cross-linked network of peptidoglycan (Figure 1). The entire complex, referred to
as mAGP, is essential for cell viability. In addition, an outer membrane segment that contains
solvent-extractable lipids, such as inert waxes and glycolipids, intercalates the mycolate layer of the
mAGP complex (87–89). Finally, an outermost capsule composed of polysaccharides and proteins
completes the cell envelope of M. tuberculosis. This review focuses primarily on mycobacterial cell
wall core assembly.

PEPTIDOGLYCAN

Structure of Peptidoglycan

Peptidoglycan (PG) is present in almost all bacteria, providing shape, rigidity, and osmotic stability
to both gram-negative and gram-positive bacilli (108). All PGs produced by bacteria share the
same basic core structure: a glycan backbone and short cross-linked peptide side chains (124). The
backbone of PG is typically made up of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNAc) linked via β(1→4) linkages (21). However, mycobacterial PGs possess one notable
structural modification: MurNAc is oxidized to N-glycolylmuramic acid (MurNGlyc) (Figure 2)
(76, 104). This modification is believed to be involved in increasing the overall strength of PG by
providing sites for hydrogen bonding, as well as in potentially decreasing susceptibility to lysozyme
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Figure 1
Schematic representation of Mycobacterium tuberculosis cell envelope. The capsular material is not represented
here. Abbreviations: Ac/Ac2PIM2, tri-/tetra-acylated phosphatidyl-myo-inositol-dimannoside; Ac/Ac2PIM6,
tri-/tetra-acylated phosphatidyl-myo-inositol-hexamannoside; AG, arabinogalactan; AGP, arabinogalactan-
peptidoglycan complex; DAT, diacyltrehalose; DPG, diphosphatidylglycerol; GalNH2, galactosamine
residue; k, keto; LAM, lipoarabinomannan; LM, lipomannan; m, methoxy; MA, mycolic acids; MIM,
mycobacterial inner membrane; MOM, mycobacterial outer membrane; PAT, polyacyltrehalose; PDIM,
phthiocerol dimycocerosate; PE, phosphatidylethanolamine; PG, peptidoglycan; PI,
phosphatidyl-myo-inositol; SGL, sulfoglycolipid.
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Figure 2
The biosynthesis pathway of peptidoglycan in Mycobacterium tuberculosis.

(21, 104). Tetrapeptide side chains are attached to the muramyl components of the backbone that
become cross-linked to provide a mesh-like structure. In M. tuberculosis, these side chains consist
of L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine that is cross-linked between meso-
diaminopimelic acid (m-DAP) and D-alanine (3→4), which means M. tuberculosis has an A1γ-group
PG, based on the classification system of Schleifer & Kandler (108). However, mycobacterial PG
also has a high number of m-DAP to m-DAP linkages (3→3), which increase in abundance when
the bacilli enter the stationary phase (up to 80% of cross-linkages) (Figure 2) (67). M. tuberculosis
has the ability to modify these cross-linkages from (3→4) to (3→3) without the requirement of de
novo synthesis of PG, which could provide the bacilli with protection from endopeptidases (67).
Another unique feature of mycobacterial PG is that it provides the site for AG attachment. The
6 position of some muramyl units of the PG backbone provides a site for a phosphodiester bond
to an α-L-rhamnopyranose-(1→3)-α-D-GlcNAc-(1→P) disaccharide bridge (78).

Biosynthesis of Peptidoglycan

The sequential Mur ligase pathway is the major contributor to the biosynthesis of PG. MurA
(Rv1315) has enoylpyruvyl transferase activity that adds phospho-enol-pyruvate to UDP-GlcNAc
to form UDP-enoylpyruvyl-GlcNAc (59). MurB (Rv0482) then utilizes NADPH to reduce
the enoylpyruvyl moiety from the product of MurA, to a lactoyl ether moiety, to form UDP-
MurNAc (12). NamH (Rv3808) then hydroxylates UDP-MurNAc to UDP-MurNGlyc to pro-
vide both types of UDP-muramyl substrates (104). From this point, amino acid residues are
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attached to UDP-MurNAc/Glyc by the ATP-dependent Mur ligases, beginning with UDP-N-
acetylmuramoyl:L-alanine ligation by MurC (Rv2151c). This is followed by D-isoglutamate lig-
ation by MurD (Rv2155c), m-DAP addition by MurE (Rv2158c), and finally D-alanyl-D-alanine
ligation by MurF (Rv2157c) (Figure 2) (97). This produces Park’s nucleotide, the muramyl-
pentapeptide: UDP-MurNAc/Glyc-L-ala-D-isoglu-m-DAP-D-ala-D-ala (65). There have been
numerous reviews of the ATP-dependent Mur ligase pathway in recent years (8, 36, 117); for
M. tuberculosis, however, only MurC (75) and MurE (9) have been biochemically characterized.

Park’s nucleotide is transferred to decaprenyl phosphate by MurX (Rv2156c), also known as
MraY (19). This gives rise to what is known as Lipid I. MurG (Rv2153c) then attaches GlcNAc
from UDP-GlcNAc to Lipid I via a β(1→4) linkage between GlcNAc and MurNAc/Glyc
to form Lipid II, the final monomeric unit of PG synthesis (121). There is debate as to the
identity of the Lipid II flippase, which translocates Lipid II across the plasma membrane. It
was initially reported to be MurJ in Escherichia coli (Rv3910) by Ruiz (106), but this was later
disputed by Mohammadi et al. (94), who identified FtsW (Rv2154c) as having in vitro flippase
activity. However, Ruiz’s group (113) has recently reported in vivo data from E. coli that lend
more credence to the identification of the flippase as MurJ. Nonetheless, more research on both
enzymes is needed to fully characterize the mycobacterial Lipid II flippase.

After translocation of Lipid II across the plasma membrane, the bifunctional PonA1/PBP1
(Rv0050) and PonA2/PBP2 (Rv3682) transglycosylate Lipid II monomers by attaching the
GlcNAc moiety to the muramyl moiety of the growing PG chain (47). In addition to their
transglycosylation domain, PonA1 and PonA2 have transpeptidase activity, which forms the
classical (3→4) cross-linkages between m-DAP and D-ala, at the expense of cleavage between the
D-ala-D-ala peptide side chain (Figure 2) (23). Other domains of PonA1 and PonA2 include a
transmembrane helix and a PASTA (abbreviation for PBP and serine/threonine-kinase associated)
domain. However, it does not behave as a typical PASTA domain. It does not bind the expected
ligands; therefore, further characterization of this domain is required (22). When M. tuberculosis
enters dormancy, the number of (3→3) cross-linkages between m-DAP residues increases
through PG rearrangement by nonclassical L,D-transpeptidases (28). Five paralogs within
M. tuberculosis have been identified: LdtMt1 (Rv0116c), LdtMt2 (Rv2518c), LdtMt3 (Rv1433),
LdtMt4 (Rv0192), and LdtMt5 (Rv0483). However, only LdtMt1- and LdtMt2-deficient strains
have been shown to display phenotypic differences in PG structure (110). The L,D-transpeptidases
perform the conversion from (3→4) to (3→3) cross-linking by cleaving the remaining D-ala
residue from the donor chain, leaving behind a tripeptide chain in the stationary phase PG (107).

ARABINOGALACTAN

Structure of Arabinogalactan

This highly branched macromolecule is composed predominantly of galactose (Gal) and arabinose
(Ara) sugar residues, both in the furanose ( f ) ring form (80). In M. tuberculosis, about 10–12%
of the MurNGlyc residues of PG are covalently attached to AG via a specialized linker unit,
α-L-Rhap-(1→3)-α-D-GlcNAc-(1→P) (78). Specifically, this linker unit connects the galactan
domain of AG to the C-6 position of selected MurNGlyc residues (78). The galactan component
of AG is composed of a linear chain of approximately 30 alternating 5- and 6-linked β-D-Galf
residues (30). The highly branched arabinan chains, each containing roughly 30 Araf residues, are
connected to the linear galactan at C-5 of some of the β(1→6) Galf residues (14). Previous studies
in M. tuberculosis and in the closely related Corynebacterium glutamicum suggested that three
branched-chain arabinan units are attached to the galactan chain at positions 8, 10, and 12 (4, 16,

www.annualreviews.org • Assembly of the Mycobacterial Wall 409
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Structure of mycobacterial arabinogalactan and roles of key enzymes that are responsible for its biosynthesis.
Adapted from Reference 51 with permission from Future Medicine.

69). However, recently it has been proposed that only two arabinan units are attached per galactan
chain (15). The inner core of the arabinan domain contains a backbone of α-5-linked α-D-Araf
residues with key branching introduced by 3,5-α-D-Araf residues (30). Galactosamine (D-GalN)
and succinyl substituents were identified on the C-2 position of some inner 3,5-α-D-Araf residues
(16, 34, 69, 102). It was estimated that one D-GalN residue per AG is present exclusively in the
walls of slow-growing mycobacteria and that up to three succinyl esters per AG are present in
both slow- and fast-growing mycobacterial species. Interestingly, only nonmycolated arabinan
chains were succinylated, and none of the decorated arabinan chains possessed both substituents
(16). The nonreducing termini of the arabinan unit consist of a characteristic hexa-arabinoside
motif, [β-D-Araf-(1→2)-α-D-Araf]2-3,5-α-D-Araf-(1→5)-α-D-Araf, where position 5 of both
the terminal β-D-Araf and the penultimate 2-α-D-Araf serves as an attachment site for mycolic
acids (79). In M. tuberculosis, mycolyl units were shown to cluster in groups of four and occupy
only about two-thirds of the available attachment sites on the terminal hexa-arabinoside motif
(79). These structural features are summarized in Figure 3.
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Biosynthesis of Arabinogalactan

The biosynthesis of AG begins on the cytoplasmic side of the plasma membrane with the for-
mation of the linker unit that anchors the AG component to PG. WecA (Rv1302) initiates the
transfer of GlcNAc-1-P to decaprenyl-phosphate (C50-P) to form C50-P-P-GlcNAc (53, 85). The
linker unit is completed by the rhamnosyltransferase WbbL (Rv3265c), which transfers Rha from
dTDP-Rha to the 3 position of GlcNAc of C50-P-P-GlcNAc, yielding C50-P-P-GlcNAc-Rha (85,
86). The linker unit then serves as an acceptor for the cytoplasmic polymerization of the linear
galactan chain. GlfT1 (Rv3782) and GlfT2 (Rv3808c), both of which utilize UDP-Galf, have been
identified as bifunctional galactofuranosyltransferases (GalfT) responsible for the synthesis of the
galactan chain. Specifically, GlfT1 transfers a Galf residue to the C-4 position of Rha and a second
Galf residue to the C-5 position of the first Galf, resulting in C50-P-P-GlcNAc-Rha-Galf2 (1, 10,
83). The second enzyme, GlfT2, completes the synthesis of the galactan chain by the sequential ad-
dition of Galf residues in alternating β(1→5) and β(1→6) linkages, resulting in the production of
C50-P-P-GlcNAc-Rha-Galf30. (63, 105, 129). Recent studies have proposed a processive polymer-
ization mechanism by which GlfT2 controls the length of the galactan chain (71, 77). It is believed
that subsequent steps in AG assembly, including arabinan polymerization, take place on the outside
of the plasma membrane. Despite investigations into the nature of transport of mycobacterial cell
wall polysaccharides, proteins involved in these processes remain largely unknown (20, 32). Chem-
ical analysis of the mature lipid-linked galactan synthesized in vitro suggests that Araf residues are
transferred directly onto C50-P-P-GlcNAc-Rha-Galf30, utilizing decaprenyl-monophosphoryl-
D-arabinose (DPA) (130). DPA formation is catalyzed by phosphoribosyl-1-pyrophosphate syn-
thetase PrsA (Rv1017c), decaprenylphosphoryl-5-phosphoribose synthase UbiA (Rv3806c), and a
putative phospholipid phosphatase Rv3807c to form DPR. Decaprenylphosphoribose 2′ epimerase
composed of DprE1 (Rv3790) and DprE2 (Rv3791) subunits then catalyzes the epimerization of
the ribosyl unit of DPR, resulting in DPA (3, 4, 52, 82, 84). Recent studies described a transporter
Rv3789, which appears to reorientate DPA to the periplasm, thus positioning this arabinose donor
to be utilized in the synthesis of the arabinan domain of both AG and lipoarabinomannan (LAM)
(66). The number of ArafTs involved in the assembly of the arabinan domain in AG remains a mat-
ter of speculation, but the current structure of AG suggests at least six different ArafTs. Deletion
studies in C. glutamicum, where AG is dispensable, determined that AftA (Rv3792) transfers three
single Araf residues to the 8th, 10th, and 12th Galf residues of C50-P-P-GlcNAc-Rha-Galf30 (5).
It is speculated that further α(1→5) polymerization of the arabinan domain is catalyzed by EmbA
(Rv3794) and EmbB (Rv3795). Deletion of the singular emb gene from C. glutamicum demon-
strated severe reduction of arabinose, resulting in a truncated AG structure with only terminal
Araf residues, consistent with this hypothesis (4). Both EmbA and EmbB enzymes were also shown
to play a role in forming the characteristic hexa-arabinofuranoside motif (37). Deletion studies
in Mycobacterium smegmatis identified a branching enzyme AftC (Rv2673) that was responsible
for the α(1→3) branching of the internal arabinan domain of both AG and LAM (17, 18). AftD
was proposed as a second α(1→3)-branching enzyme involved in the synthesis of AG and LAM;
however, its precise function in the assembly of these components remains to be determined (116).
Finally, AftB was shown to catalyze the transfer of the terminal β(1→2) Araf residues from DPA
to the terminal hexa-arabinofuranoside motif at the nonreducing end of AG (111).

The addition of succinyl and GalN substituents to the inner regions of arabinan completes
the primary structure of AG (16, 34, 115). Although enzymes involved in the transfer of the
succinyl residues remain unknown, key components required for the synthesis and addition of
the GalN substituent have been recently elucidated (115). PpgS (Rv3631) catalyzes the formation
of polyprenol-P-D-GlcNAc, which is deacetylated by an unknown deacetylase, before or after
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translocation across the plasma membrane. Rv3779 then transfers the GalN unit to the C-2
position of the 3,5-branched Araf residue of AG (115). It is speculated that the protonated D-GalN
may interact with anionic substances, such as negatively charged succinyl residues or phosphates of
glycolipids, thus contributing to the rigidity and tightness of the AG structure (16, 34). Moreover,
the D-GalN unit, which is found only in slow-growing mycobacteria, was proposed to serve a role
during host infection (115). However, the precise function of both D-GalN and succinyl residues
remains to be established. Very little evidence has been obtained on how or when mycolic acids
are directly transferred onto the AG. In vitro enzyme assays in combination with site-directed
mutagenesis studies identified the antigen 85 complex as responsible for the transfer of mycolic
acids onto trehalose, yielding trehalose monomycolates (TMM) and trehalose dimycolates (TDM)
(11, 48). Inactivation of antigen 85 in M. tuberculosis led to reduced transfer of mycolates to the
mycobacterial cell wall (48). However, the precise mechanistic details of their involvement in AG
mycolation remains to be firmly established.

PHOSPHATIDYL-MYO-INOSITOL MANNOSIDES, LIPOMANNAN,
AND LIPOARABINOMANNAN

Structure of Phosphatidyl-myo-Inositol Mannosides, Lipomannan,
and Lipoarabinomannan

These noncovalently linked glycophospholipids [phosphatidyl-myo-inositol mannosides (PIMs)
and their more related glycosylated end products, lipomannan (LM) and lipoarabinomannan
(LAM)] are abundant in the inner and outer membranes of all Mycobacterium species (39, 101,
103). In conjunction with their physiological function, these distinct glycoconjugates play a key
role in modulating the host immune response during infection (74, 92, 100, 109). PIMs are unique
glycolipids composed of a phosphatidyl-myo-inositol (PI) unit, one to six α-D-mannopyranosyl
(Manp) residues, and up to four acyl chains (Figure 4). The PI unit is based on a sn-glycero-
3-phospho-(1-D-myo-inositol) that is further glycosylated with single Manp residues at the O-2
and O-6 positions of myo-inositol resulting in a mannosyl phosphate inositol (MPI) anchor (6,
7, 39, 98, 112). The structure of the MPI anchor is highly heterogeneous, with variations in the
number, location, and nature of acyl chains. Four potential sites of acylation are available on
the MPI anchor: 1-OH and 2-OH of the glycerol unit, 3-OH of the myo-inositol residue, and
6-OH of the Manp residue attached to myo-inositol at the O-2 position (58). The most abundant
species of PIMs in mycobacteria are the tri- and tetra-acylated phospho-myo-inositol dimanno-
sides (Ac1PIM2 and Ac2PIM2, respectively) and tri- and tetra-acylated phospho-myo-inositol hexa-
mannosides (Ac1PIM6 and Ac2PIM6, respectively). Both Ac1PIM2 and Ac1PIM6 contain two acyl
groups on the glycerol moiety and an additional acyl group at either the 3-OH of myo-inositol
or the 6-OH of the Manp attached to the O-2 position of myo-inositol, whereas Ac2PIM2 and
Ac2PIM6 possess four acyl groups at all of these positions. In mycobacteria, palmitic and tuber-
culostearic acyl chains are the most abundant substituents (6, 40, 70).

In all Mycobacterium species, LM and LAM both possess a mannan chain that contains ap-
proximately 21–34 α(1→6)-linked Manp residues periodically decorated with 5–10 units of single
α(1→2)-Manp residues (Figure 4) (25, 56). Notably, in the case of Mycobacterium chelonae, branch-
ing occurs at the C-3 position (44). The length of the mannan chain and the degree of branching in
LM are species specific. The mannan core is further glycosylated with 55–72 Araf residues, result-
ing in LAM. The arabinan domain contains a single linear α(1→5)-linked Araf chain with 3,5-α-D-
Araf branches (17, 56). The nonreducing end of the arabinan domain of LAM terminates in either a
branched hexa-arabinoside {[β-D-Araf-(1→2)-α-D-Araf ]2-3,5-α-D-Araf-(1→5)-α-D-Araf ]} or a
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Structure of mycobacterial tri-/tetra-acylated phosphatidyl-myo-inositol hexamannoside (Ac1/Ac2PIM6),
lipomannan and lipoarabinomannan, and roles of key enzymes that are responsible for their biosynthesis.
Abbreviation: MPI, mannosyl phosphate inositol. Adapted from Reference 51 with permission from Future
Medicine.

linear tetra-arabinoside [β-D-Araf-(1→2)-α-D-Araf-(1→5)-α-D-Araf-(1→5)-α-D-Araf ] (24, 26,
81). The arabinan motifs of LAM are further decorated by capping moieties. M. tuberculosis and
Mycobacterium leprae modify the arabinan termini with a series of α(1→2)-linked Manp residues
(ManLAM), whereas M. smegmatis possesses phosphoinositol caps (PILAM) (27, 57, 99). The
absence of capping moieties (AraLAM) in LAM has been shown in M. chelonae (44). In addition,
a unique 5-deoxy-5-methylthio-xylofuranose (MTX) substituent linked at C-4 of the terminal
Manp of the ManLAM cap was identified in M. tuberculosis (54, 119, 122, 123). Interestingly, a
similar MTX residue was also identified in the ManLAM of Mycobacterium kansasii; however, the
substituent was located on the mannan core instead of the capping Manp residues (43). Finally,
similarly to AG, succinyl groups were identified on the C-2 position of some inner 3,5-α-D-Araf
residues (31).

Biosynthesis of Phosphatidyl-myo-Inositol Mannosides, Lipomannan,
and Lipoarabinomannan

The early steps of PIM biosynthesis occur in the cytoplasm and employ GDP-Manp as the man-
nose donor. PimA (Rv2610c), an α-mannopyranosyltransferase (ManpT), initiates the transfer of
a single Manp residue from GDP-Manp to the 2 position of the myo-inositol ring of PI to yield
PIM1 (46, 60). PIM1 is then further glycosylated by PimB′ (Rv2188c), which transfers the second

www.annualreviews.org • Assembly of the Mycobacterial Wall 413



MI69CH21-Besra ARI 14 September 2015 11:16

single Manp to the 6 position of the myo-inositol ring, generating PIM2 (45, 68, 91). This second
mannosylation step may occur before or after acylation of PIM1 at the C-6 position of the Manp
residue linked to the 2-OH position of myo-inositol, catalyzed by the acyltransferase Rv2611c (61).
In vitro enzyme assays utilizing PimA and PimB′ of M. smegmatis demonstrated preference in gen-
erating AcPIM2 over AcPIM1, indicating preference of mannosylation over the acylation step (45).
However, deletion of pimB′ in C. glutamicum resulted in accumulation of AcPIM1, suggesting that
acylation of PIM1 is favored over the second mannosylation step (68, 91). The acyltransferase
responsible for the transfer of the fourth acyl chain to the C-3 position of the myo-inositol ring,
thus forming Ac2PIM1/Ac2PIM2, remains to be established. Previous studies have shown that
RvD2-ORF1 from M. tuberculosis CDC1551, designated as PimC, catalyzes further mannosyla-
tion of Ac1/Ac2PIM2, resulting in Ac1/Ac2PIM3 (64). However, no strong homologs of pimC have
been identified in M. tuberculosis H37Rv or M. smegmatis. PimC or a yet-unidentified α(1→6)
ManpT [PimD] catalyzes the subsequent addition of a Manp residue to the nonreducing end of
Ac1/Ac2PIM3, resulting in Ac1/Ac2PIM4. Formation of Ac1/Ac2PIM4 marks a branch point in
the biosynthesis toward the synthesis of higher PIMs, LM, and LAM (95, 96). Subsequent steps
are predicted to occur in the periplasmic space and to employ GT-C glycosyltransferases that
utilize polyprenyl-phosphate-based mannose donors (PPM) in contrast to the GT-A/B superfam-
ily, which employs nucleotide-derived sugars (13, 73). The transporters that are responsible for
flipping PIMs across the plasma membrane remain to be identified. PimE (Rv1159) catalyzes the
α(1→2) addition of a Manp residue to the Ac1/Ac2PIM4, resulting in formation of Ac1/Ac2PIM5

(96). It is not clear whether the transfer of a second Manp residue, thus generating Ac1/Ac2PIM6,
is catalyzed by PimE or by a yet-unidentified, putative α(1→2) ManpT of the GT-C superfamily,
which utilizes PPM (96). A parallel pathway employs Ac1/Ac2PIM4 intermediates for the assembly
of LM and LAM. Recent studies demonstrated that LpqW (Rv1166) regulates this branch point
and promotes the channeling of Ac1/Ac2PIM4 toward LM and LAM biosynthesis (29, 62). MptA
(Rv2174) and MptB (Rv1459c) mannosyltransferases synthesize the characteristic α(1→6) man-
nan core of LM and LAM. Specifically, in vitro assays in combination with deletion mutations in
C. glutamicum characterized MptA as responsible for the synthesis of the distal end of the mannan
core, whereas MptB was suggested to be involved in the proximal end of the mannan core (55, 90,
91). Although deletion of MptB in C. glutamicum resulted in a lack of LM and LAM and dimin-
ished α(1→6) ManpT activity, complementation with MptB (Rv1459c) from M. tuberculosis or
M. smegmatis failed to restore the wild-type phenotype of C. glutamicum (91). One could speculate
that a slight variance in substrate specificity of the MptB orthologs may be responsible for this dis-
crepancy. In addition, deletion of MptB in M. smegmatis had no effect on LM and LAM assembly,
suggesting possible gene redundancy (91). Therefore, either an uncharacterized ManpT substi-
tutes for MptB deletion or MptA is responsible for the biosynthesis of both proximal and distal ends
of the mannan core. MptC (Rv2181) introduces the single α(1→2) Manp residues of the mannan
backbone, resulting in a mature LM (93). LAM is generated by the addition of 55–70 Araf residues
to LM, resulting in an arabinan domain similar to that of AG. It is speculated that a yet-unidentified
ArafT primes the mannan core with a few Araf residues in similar fashion as AftA, which primes
the galactan chain in AG (50, 92). EmbC (Rv3793) is exclusively responsible for the extension of
primed LM with the addition of 12–16 Araf residues in a linear α(1→5) fashion (2, 114). AftC,
a branching enzyme involved in the biosynthesis of AG, was demonstrated to introduce α(1→3)
Araf residues in LAM (17, 18). A second branching α(1→3) ArafT AftD has been proposed to play
a role in LAM biosynthesis; however, its clear function in LAM biosynthesis remains to be deter-
mined (116). The nonreducing arabinan domain of LAM is completed by addition of β(1→2) Araf
residues, resulting in characteristic tetra-arabinoside and hexa-arabinoside motifs (111). Given that
AftB possesses β(1→2) ArafT activity in AG biosynthesis, it is highly likely that it plays a similar

414 Jankute et al.



MI69CH21-Besra ARI 14 September 2015 11:16

role in LAM biosynthesis. Unlike the arabinan domain in AG, the arabinan domain of LAM is mod-
ified with mannose residues (27, 99). CapA (Rv1635c) has been identified as an α(1→5) ManpT,
which utilizes PPM as the sugar donor and attaches the first Manp residue to the nonreducing
arabinan termini of LAM (33). The subsequent attachment of at least one α(1→2) Manp residue
is catalyzed by MptC (Rv2181), which is also responsible for the addition of single α(1→2) Manp
residues to the α(1→6) mannose backbone resulting in ManLAM (56). The enzymes required for
the attachment of MTX and succinyl residues to the LAM remain to be established.

MYCOLIC ACIDS

Structure and Biosynthesis of Mycolic Acids

These long-chain α-alkyl-β-hydroxy fatty acids (C70−90) form an integral component in the mAGP
complex and contribute to the fluidity and permeability of the cell wall (72). There are three
distinct types: α-Mycolic acids are found in greatest abundance and exist only in a cis-cyclopropane
configuration, whereas methoxy mycolic acids and keto mycolic acids contain cyclopropane rings
in either a cis- or trans-configuration with an adjacent methyl branch (Figure 5) (87, 127, 128). The
biosynthesis of mycolic acids can be illustrated as five distinct stages. Primarily, the short-chain
fatty acids (C16–24) are synthesized in FAS-I (118). These saturated fatty acids can form the α-
alkyl moiety (C24) or can be extended by FAS-II to form the mero-chain (C56). FAS-II is initiated
by a condensation reaction catalyzed by FabH (β-ketoacyl-ACP synthase III) utilizing malonyl-
AcpM and palmitoyl-CoA, yielding a β-ketoacyl-AcpM intermediate. This is then reduced by
MabA (β-ketoacyl-ACP reductase) to produce β-hydroxyacyl-AcpM, which is then dehydrated
by HadAB/BC (β-hydroxyacyl-ACP dehydratase) to produce a trans-2-enoyl-AcpM intermediate.
This is then reduced by InhA (enoyl-ACP reductase) to produce an acyl-AcpM elongated by two
carbons. The FAS-II cycle continues with further condensation, catalyzed by KasA/B (β-ketoacyl-
ACP synthase), returning to the above via MabA, HadAB/BC, and InhA. This cycling continues
until the acyl chain reaches C42–62, forming the saturated long-chain meromycolate.

Various modifications are made to the saturated C42–62 chain following its synthesis via FAS-II.
These modifications provide functional groups to the meromycolate scaffold by various methods,
including cis-/trans-cyclopropanation, keto and methoxy groups via CmaA1-2-, MmaA1-4-, and
PcaA-type enzymes (35, 41, 42). The modifications to the meromycolate chain have been suggested
to vary the fluidity and permeability of the cell wall as well as provide protection from the host
immune system during infection (131). The meromycolic acid chain (C42–62) is activated for the
Claisen-type condensation by the generation of a meromycolyl-AMP by FadD32 (fatty acyl-AMP
ligase) (38). This meromycolyl-AMP substrate is linked to the α-alkyl short chain (C22–24) in
a reaction catalyzed by Pks13 to produce α-alkyl-β-keto-mycolic acid, which is subsequently
reduced (120). The greatest abundance of mycolic acids within the cell envelope and cell wall is
found as bound esters in mAGP and as trehalose mycolates. This process is catalyzed by a process
of transport via MmpL3 and the antigen 85 complex (48).

FUTURE PERSPECTIVES

The biosynthetic pathways of the individual components of the cell wall of M. tuberculosis are
now largely understood; however, a number of key enzymes in AG biosynthesis remain to be
elucidated, as discussed above. Moreover, mechanisms that regulate and coordinate mAGP
assembly to spatially arrange this complex within the cell envelope are still to be determined.
Determining the translocation mechanism of various lipid-linked sugar substrates, such as
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A schematic representation of mycolic acid biosynthesis in Mycobacterium tuberculosis.

intermediates involved in AG and LM/LAM biosynthesis, and sugar donors, DPA and PPM,
may identify ideal drug targets. Although it is not clear how and when these intermediates
are translocated to the periplasm, one could speculate that anchoring these molecules to the
membrane positions them close to sugar transporters and glycosyltransferases, thus promoting
export across the plasma membrane via multiprotein complexes. Recent studies employing a
bacterial two-hybrid analysis demonstrated that enzymes involved in the biosynthesis of AG and
precursor formation form complicated multiprotein complexes in C. glutamicum (49). Similar
studies also reported that mycolic acid biosynthesis in M. tuberculosis is based on large multiprotein
complexes, which are essential for mycobacterial viability, thus providing attractive drug targets
(125, 126). Finally, structural and functional analysis of membrane proteins involved in cell wall
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assembly lags behind that of soluble proteins involved in mAGP assembly. This is due to the
inherent challenge of extracting pure membrane proteins from their native membrane in an
active state. New approaches are attempting to address this limitation and will be key to the
analysis and structural elucidation of mycobacterial membrane glycosyltransferases.
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