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Abstract

Vision is the sense humans rely on most to navigate the world, make deci-
sions, and perform complex tasks. Understanding how humans see thus rep-
resents one of the most fundamental and important goals of neuroscience.
The use of the mouse as a model for parsing how vision works at a funda-
mental level started approximately a decade ago, ushered in by the mouse’s
convenient size, relatively low cost, and, above all, amenability to genetic
perturbations. In the course of that effort, a large cadre of new and powerful
tools for in vivo labeling, monitoring, and manipulation of neurons were
applied to this species. As a consequence, a significant body of work now ex-
ists on the architecture, function, and development of mouse central visual
pathways. Excitingly, much of that work includes causal testing of the role of
specific cell types and circuits in visual perception and behavior—something
rare to find in studies of the visual system of other species. Indeed, one could
argue that more information is now available about the mouse visual system
than any other sensory system, in any species, including humans. As such,
the mouse visual system has become a platform for multilevel analysis of the
mammalian central nervous system generally. Here we review the mouse vi-
sual system structure, function, and development literature and comment on
the similarities and differences between the visual system of this and other
model species. We also make it a point to highlight the aspects of mouse
visual circuitry that remain opaque and that are in need of additional ex-
perimentation to enrich our understanding of how vision works on a broad
scale.
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INTRODUCTION

The mouse is currently the preeminent model for studying visual circuit structure, function,
development, and disease. This was not the situation a decade ago. Several factors prompted
the surge in use of mice for studying the visual system. First, genetic tools in the mouse readily

500 Seabrook et al.



NE40CH22-Huberman ARI 5 July 2017 12:16

permit analyses of gene function and neural circuit architecture at the level of defined cell types
and connections. Second, light-based parameters can be tightly controlled and delivered both in
vitro (to the retina) and in vivo to the whole animal, enabling one to address how specific aspects
of sensory information are processed by the mammalian central nervous system. Third, in the
mouse, large-ensemble monitoring and manipulation of neuronal activity patterns are possible
in vivo (Ackman et al. 2012, Sohya et al. 2007, Stirman et al. 2016, Zhang et al. 2011) and can
be combined with behavioral analyses (Glickfeld et al. 2013b, 2014; Ko et al. 2014; Mrsic-Flogel
et al. 2005; Roth et al. 2016). What have we learned as the result of the tremendous amount of
experimental attention and effort that have been placed on the mouse visual system, and where
does that information place us with respect to understanding how human vision works? Previous
reviews dealt with the relative advantages and disadvantages of using the mouse as a model for vision
(Baker 2013, Huberman & Niell 2011). Here our objective is to provide an in-depth reference
for what is now known about the organization, function, and assembly of mouse visual circuits in
order to better define the major conceptual and experimental paths needed going forward and,
more generally, to deepen understanding of how vision works.

OVERALL ORGANIZATION OF THE MOUSE VISUAL SYSTEM

The organizational logic of the mouse visual system is based on the presence of local circuits
housed within given neural structures and cortical areas, and long-range connections that link
those local circuits together. Most visual connections transmit information about visual space
(e.g., a specific location within the visual field) and a feature within that space (e.g., motion,
direction, or a particular color). The two most heavily studied maps of visual space are retinotopy
and eye specificity (Figure 1). Within these two spatial maps, other aspects of visual stimuli such
as orientation, direction, and color are represented and processed. This selective processing of
individual visual features is carried out by segregating cells and their neurites into distinct layers,
maps, and subcellular wiring patterns (Figure 2). Below we review the layout and organizational
logic of visual features and describe how the brain transforms their representative neural signals
as they flow progressively up the neuraxis.

Mouse Retinal Circuits and Cell Types: A Brief Overview

Analysis of visual scenery begins with photoreception. The mouse has both rods and cones, but
the rods, which operate best at low-light conditions, vastly outnumber the cones. There are two
major cone types in the mouse, each with different spectral sensitivities—green and blue—as well
as a third type composed of mixed green/blue photopigment expression. Interestingly, the spatial
layout of the cone photoreceptors is not uniform across the retina (Szél & Röhlich 1992). One
consequence of this arrangement is that the processing of specific color qualities, as well as contrast,
varies across the visual field in an ethologically optimized way, allowing selective processing of
certain features in the sky-versus-ground portions of the scene (Applebury et al. 2000, Baden et al.
2013, Haverkamp et al. 2005, Szél & Röhlich 1992; reviewed in Wernet et al. 2014).

After photoreceptors convert light information into electrical signals, the retinal
interneurons—the horizontal, bipolar, and amacrine cells—filter and shape those signals and
transmit them to the output neurons of the eye, the retinal ganglion cells (RGCs). The spiking ac-
tivities of the RGCs are then sent to the brain, where they drive visual percepts and light-mediated
behaviors. Currently, there are believed to be ∼33 different RGC types, each of which responds
best to a particular aspect of the visual scene (Baden et al. 2016). For a more in-depth description
of the various RGC types and how they are thought to relate to central visual processing, we
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Figure 1
Mapping visual space from the retina to the brain in the mouse. (a) Neighboring points in a visual scene are mapped onto neighboring
neurons in the retina. The spatial order of these retinotopic maps is preserved in targets of RGCs such as the SC. (b) Axonal projections
from the two eyes are segregated into distinct domains within some retinorecipient targets that receive binocular input. This eye
specificity is visualized by injecting different colored anterograde tracers into each eye. dLGN neurons send their axons to V1, which in
mouse is composed of two zones. The monocular zone (M) receives information via dLGN exclusively from the contralateral eye,
whereas the binocular zone (B) gets input from both eyes. Other abbreviations: dLGN, dorsal lateral geniculate nucleus; IGL,
intergeniculate nucleus; OC, optic chiasm; RGC, retinal ganglion cell; SC, superior colliculus; V1, primary visual cortex; vLGN,
ventral lateral geniculate nucleus.
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Figure 2
Laminar specificity of the dLGN. (a) Retinorecipient targets, such as the dLGN, are subdivided into layers, which receive distinct
qualities of afferent retinal input. The dLGN of the mouse, unlike that in the primate, does not have cytoarchitectural lamination.
Labeling of different RGC subtypes using transgenic mice reveals that mouse dLGN does consist of functionally distinct layers. Panel
adapted from Hong & Chen (2011) and Nassi & Callaway (2009). (b) Target neurons (relay cells) are located in discrete regions of
mouse dLGN. Panel adapted from Krahe et al. (2011). (c) These functionally discrete layers each contain a complete retinotopic map.
(d ) Subcellular wiring of afferent input onto a W-like relay cell in the mouse dLGN. Panel adapted from Bickford et al. (2015).
Abbreviations: CB2, calbindin 2; D, dorsal; dLGN, dorsal lateral geniculate nucleus; DRD4, dopamine receptor 4; DSGC,
direction-selective ganglion cell; JAM-B, junctional adhesion molecule B; M, medial; N, nasal; RGC, retinal ganglion cell; RLP, round
vesicles, large profiles, pale mitochondria; RM, round vesicles, medium profiles; RSD, round vesicles, small profiles, dark mitochondria;
T, temporal; TRHR, thyrotropin-releasing hormone receptor; V1, primary visual cortex.
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refer you to several recent reviews on this topic (Berson 2008; Demb & Singer 2015; Dhande &
Huberman 2014a; Dhande et al. 2015b; Masland 2001, 2012; Métin et al. 1983; Roska & Meister
2014).

It is important to note that the spatial variation in photoreceptor types described above impacts
the spectral tuning as well as other response properties of RGCs ( Joesch & Meister 2016, Wang
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et al. 2011). It therefore follows that such variations can influence various aspects of central
visual processing. Additionally, several labs (Bleckert et al. 2014, Hughes et al. 2013, Zhang
et al. 2012; R.N. El-Danaf & A.D. Huberman, submitted manuscript) have recently discovered
evidence for large-scale variation in the density of different RGC types and their dendritic field
sizes across the retina. This equates to large variations in their receptive field sizes according to
their retinotopic location—the downstream consequence of which is that, within central visual
pathways, there is enriched (or reduced) analysis of certain visual features as viewed in particular
locations of the outside world. Moreover, there is also already clear evidence for dramatically
uneven spatial representations of specific receptive field properties, such as motion, in certain
higher cortical areas (Denman et al. 2017, Garrett et al. 2014, Rhim et al. 2017, Tan et al. 2015).
These two sets of findings are intriguing and suggest that the mouse visual system includes many
still-unrecognized subtleties, but little attention has yet been devoted to understanding the possible
relationship between retinal cell type distribution and the organization and dynamics of central
visual processing. In our opinion, one of the more important goals of the visual neuroscience field
is to resolve this gap—especially given how strongly variation in the distribution of retinal cell
type has informed our understanding of visual processing in primates and other species (Nassi &
Callaway 2009, Tootell et al. 1982). In theory, mouse genetic tools allow for retinal and central
neural circuits to be causally and unambiguously related to one another. In the meantime, the
fact that certain photoreceptor types and a growing number of RGC subtypes display significant
variation in their number, size, and connectivity across the retinal sheet underscores the idea that
the mouse visual system is far more similar to that of primates and carnivores than previously
thought—and it also reinforces the need for deeper study into how visual signals are transformed
as they flow through the brain.

Image-Forming Versus Non-Image-Forming Visual Pathways

The broadest functional distinction that one can make regarding the organization of visual circuits
is their separation into image-forming versus non-image-forming pathways. Image-forming cir-
cuits give rise directly to sight (i.e., locating and perceiving shapes, their locations, and their specific
features such as their direction of movement). Non-image-forming circuits, by contrast, operate
below the level of conscious perception to either support sight indirectly (e.g., pupil reflexes and
involuntary eye movements that ensure image stabilization) or support light-based modulation of
core physiological functions that take place over relatively long timescales and have no relationship
to sight, such as entrainment of the circadian clock, regulation of hormone rhythms, sleep cycles,
and pain sensitivity (Dhande et al. 2013, Hattar et al. 2003; Noseda & Burstein 2011, Yonehara
et al. 2009).

The primary basis for the segregation between image-forming versus non-image-forming vi-
sual pathways is the partitioning of axonal projections arising from different RGC subtypes to
different subcortical targets. As a whole population (all 33 subtypes), RGCs project to >40 sub-
cortical retinorecipient brain targets (Morin & Studholme 2014), each of which mediates a distinct
set of functions. The recent discovery and characterization of genetic tools for labeling specific
RGC types in the mouse has opened the door for rich understanding of these retinal output
pathways (reviewed in Dhande et al. 2015b, Roska & Meister 2014). Some of those structures,
such as the dorsal lateral geniculate nucleus (dLGN), relay retinal information directly to visual
cortex—the site of conscious perception—whereas others, such as the midbrain superior collicu-
lus (SC), receive direct input from the retina but connect to cortex only through intermediate
stations such as the lateral posterior nucleus (LP) or via feedforward connections to the dLGN
(Figure 3). Importantly, many (but not all) non-image-forming retinorecipient structures receive
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Figure 3
Subcortical retinorecipient targets involved in the image-forming pathway. The dLGN receives direct
retinal input and relays that information to V1. Thalamocortical relay neurons in the shell region of dLGN
send input to layers 1 and 2/3 of V1, whereas ones in the core region send their axons mainly to layer 4 but
also to layers 5b and 6. The dLGN receives direct feedback from corticothalamic neurons in layer 6 of V1 as
well as indirect feedback via the TRN. The SC also receives direct retinal input but connects to cortex via
intermediate stations such as the LP and the dLGN. Neurons in layer 5 of V1 send feedback to the SC. The
LP is connected with both primary and secondary areas of visual cortex. Abbreviations: AL, anterolateral
area; AM, anteromedial area; dLGN, dorsal lateral geniculate nucleus; LM, lateromedial area; LP, lateral
posterior nucleus; RL, rostrolateral area; SC, superior colliculus; SGS, stratum griseum superficialis; TRN,
thalamic reticular nucleus; V1, primary visual cortex.

afferent excitatory input from the cortex. The utility of those cortical projections is not entirely
clear, but recent work shows that cortical input to the nucleus of the optic tract—a retinorecipient
target in the dorsal brainstem that controls horizontal image-slip compensation—can modulate
the gain of this subcortical target under conditions in which multisensory information is am-
biguous (Liu et al. 2016). With rare exception (e.g., amygdala), the non-image-forming visual
structures that receive cortical projections themselves do not project directly to the cortex, and as
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far as we know, none of the retinorecipient targets in the hypothalamus, such as the hypothalamic
circadian clock, receive or send connections to the cortex.

In this review, we have elected to focus heavily on the bona fide image-forming visual circuits
devoted to sight: the dLGN, SC, and LP/pulvinar and their associated circuits. We do, however,
discuss the non-image-forming visual circuits that support sight, because these systems act in
concert. Our selection of this emphasis in part reflects space limitations, but it also reflects the
fact that other recent publications (Berson 2003, Schmidt et al. 2011) already provided excellent
in-depth review of the circuits for light-mediated control of non-image-forming vision.

RETINOTOPIC MAPPING

Image-forming visual areas generally contain complete or near-complete topographic representa-
tions of the retinal surface or retinotopic maps. Indeed, the presence of an independent retinotopic
map has been informally adopted as a criterion for designating a given brain structure or corti-
cal area as a unique processing station, and this is true regardless of species (Garrett et al. 2014,
Marshel et al. 2011, Wang & Burkhalter 2007, Zeki 1993). Retinotopic maps in retinorecipient
subcortical visual targets arise from two basic sources: the spatial arrangement of RGC axonal
projections in a given retinorecipient target and the spatial extent to which postsynaptic neurons
collect synaptic input from those axons (i.e., the degree of axonal convergence).

Retinotopic Maps in the Dorsal Lateral Geniculate Nucleus

As the principal relay of retinal information to the cortex, the dLGN is a key bottleneck for the
establishment of conscious sight. Our understanding of retinotopic organization in the mouse
dLGN arises mainly from experiments in which focal injections of anterograde tracers were made
into different locations in the retina to label the axons of topographically restricted populations of
RGCs (Grubb et al. 2003, Métin et al. 1983, Pfeiffenberger et al. 2006, Xu et al. 2011) and from
electrode recordings of dLGN neuronal responses to stimuli presented at discrete locations in the
visual field (Grubb & Thompson 2003, Piscopo et al. 2013). Studies show that despite housing a
relatively even and complete retinotopic map, the mouse’s lower visual field is overrepresented in
the dLGN (Grubb & Thompson 2003, Piscopo et al. 2013), and subtle anisotropies exist at the
boundary of dLGN eye-specific zones (discussed below). Some of these biases may relate to the
overall increased density of RGCs in the ventral and nasal portions of the retina (Baden et al. 2016,
Bleckert et al. 2014, Dhande & Huberman 2014b, Jeon et al. 1998) or the abovementioned fact
that a subset of dLGN-projecting RGC types vary their density and receptive field sizes according
to location in the retina (Bleckert et al. 2014; R.N. El-Danaf & A.D. Huberman, submitted
manuscript). Regardless, the different RGC types such as direction-selective, center-surround, or
contrast-suppressed RGCs that project to the mouse dLGN often terminate in relatively discrete
laminar zones (Figure 2) (Huberman et al. 2008a, 2009; Rivlin-Etzion et al. 2011; Kay et al.
2011; reviewed in Dhande & Huberman 2014a, Dhande et al. 2015b), each of which contains its
own complete retinotopic map. This stacking of retinotopically complete layers is relevant for
understanding layer-specific connectivity with the cortex (Bickford et al. 2015, Cruz-Martı́n et al.
2014; also see below) and likely reflects the progressive accumulation of evolutionarily optimized
visual processing streams (Karten & Shimizu 1989, Redies & Puelles 2001). Thus, understanding
the connectivity and functional relationships between dLGN, SC, and cortical layers ought to
shed light on core principles of visual circuit design in many species.

Electrophysiological recordings from brain slices that measured RGC axon convergence onto
individual dLGN neurons suggest that in the mouse, 1–5 RGCs connect to each relay cell (Chen
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& Regehr 2000). However, recent studies that used transsynaptic viral tracing from the cortex
to the retina (Cruz-Martı́n et al. 2014, Rompani et al. 2017) or dense electron microscopy (EM)
reconstructions of retinogeniculate circuits (Hammer et al. 2015, Morgan et al. 2016) suggest
a very different picture: Although some dLGN cells indeed receive retinal drive from small,
retinotopically isolated clusters of 1–2 RGC types, other dLGN neurons receive input from large
collections (as many as 12–20) of RGCs, within which there are a broad variety of RGC types.
These same studies went on to show there are even instances of individual dLGN neurons receiving
retinotopically matched input from both eyes (Rompani et al. 2017)—a feature we discuss further
in the next section. In summary, there is apparently far more spatial convergence and stimulus-
specific integration occurring in the mouse dLGN than one might assume on the basis of older
studies and in comparison to what is known for other species. In years to come, it will be important
to learn the functional implications of this during natural viewing.

Retinotopic Maps in the Mouse Superior Colliculus

The main task of the SC is to direct head and eye movements to particular locations in visual
space. The SC receives direct input from the retina and from visual cortex (Figures 1 and 3).
In the mouse, ∼90% of all RGCs project to the SC (Ellis et al. 2016). This is in stark contrast
to the ∼10% of RGCs that project to the SC in primates (Perry & Cowey 1984). Retinal inputs
to the dLGN and SC of the mouse bear an important relationship: Whereas only ∼30–40% of
all RGCs project to the dLGN in the mouse (Martin 1986), 100% of the retinogeniculate inputs
are collaterals of axons that also innervate the SC (Ellis et al. 2016, Huberman et al. 2008b).

Retinotopic order in the mouse SC arises from a straightforward, two-dimensional–to–two-
dimensional (retina-to-SC) mapping, with a 90◦ rotation of the afferent RGC axons as they enter
the SC (Figure 1). The main retinorecipient layer of the SC, the stratum griseum superficialis
(SGS), contains a representation of the entire contralateral retina (Dräger & Hubel 1976, Koch
et al. 2011). The deeper retinorecipient layer in the SC, the stratum opticum (SO), contains a
map of the ventrotemporal portion of the ipsilateral eye (Dräger & Hubel 1975) that is in register
with the overlying retinal map in the SGS. In terms of outputs, the SC projects to the outer shell
portion of the dLGN and to the LP/pulvinar in retinotopic fashion (Bickford et al. 2015, Roth
et al. 2016).

Four different approaches each show that the entire contralateral visual field is represented
smoothly and completely in the mouse SC (Ackman et al. 2012, Mrsic-Flogel et al. 2005, Xu et al.
2011): (a) focal anatomical labeling of RGC axons, (b) intrinsic imaging of population SC neuron
responses, (c) calcium imaging of RGC axons in the SC, and (d ) calcium imaging of SC neurons
(Figure 4). The one caveat is that because the density of photoreceptors and RGCs is higher in
the nasal and ventral retina, the visual field viewed by those cells—the upper peripheral visual
field—has a relatively expanded representation in the caudal SC (Mrsic-Flogel et al. 2005).

Retinotopic Maps in the Lateral Posterior/Pulvinar Nucleus

The pulvinar, referred to as the LP in rodents, is a multimodal thalamic structure that harbors
visually responsive cells. One of the main functions of the LP is to relay information about sen-
sorimotor mismatches between self-generated and externally generated visual flow to the cortex
(Roth et al. 2016). Anatomical and electrophysiological studies conducted in numerous species
indicate the LP/pulvinar has retinotopically organized subdivisions (Allen et al. 2016, Baldwin
et al. 2011, Bender 1981, Hutchins & Updyke 1989, Li et al. 2013). Interestingly, the map of
elevation in the LP is less pronounced than the azimuth map, but why this anisotropy exists is still
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posterior; R-SC, right SC; RGC, retinal ganglion cell; SC, superior colliculus; T, temporal; V, ventral.

unresolved. One idea is that LP is involved in signaling optic flow, which may require expanded
representations of the lateral visual fields.

The LP receives direct input from neurons whose cell bodies reside in the deepest portion
of superficial SC (Gale & Murphy 2014). The LP also projects in relatively coarse retinotopic
fashion to the primary and secondary areas of visual cortex (Roth et al. 2016, Tohmi et al. 2014)
(Figure 5). In contrast to the dLGN, the LP projects fairly broadly to all cortical layers. That
diffuse connectivity, combined with the fact that relay neurons in LP express the calcium-binding
protein calbindin, makes this structure analogous to the matrix of thalamic cells that the late
Ted Jones (2001) hypothesized acts to modulate cortical states, as opposed to driving analysis of
specific sensory information. The LP/pulvinar has also been implicated in modulating attention
in primates (Saalmann et al. 2012), but comparable recordings from LP during attention tasks
or causal tests of this hypothesis in the mouse are still lacking. There is increasing interest in
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understanding LP-cortical function both for the sake of understanding its role in vision and for
probing nonprincipal relays to cortex in sensory processing. We anticipate much of that work will
take place in the context of the visual LP in the mouse.

Retinotopic Maps in the Visual Cortex

According to the criterion that a visual cortical area is one containing a distinct map of retinotopic
space (Zeki 1978), as many as 11 distinct visual cortical areas have been identified in the mouse
using anatomical and physiological methods (Garrett et al. 2014, Wang & Burkhalter 2007). In a
now classic study, Wang & Burkhalter (2007) carried out triple-color anterograde and retrograde
labeling from primary visual cortex (V1) and observed retinotopically correspondent patches of
label in 8 other cortical regions, thus indicating the presence of 9 total visual cortical areas, each
with a different size and shape and receiving reciprocal connections with V1. Wide-field imaging
of intrinsic hemodynamic responses or of calcium signals confirmed those findings and expanded
on them by revealing that (a) each cortical area best responds to a specific category of visual stimuli
(e.g., speed, direction) and (b) there are two additional retinotopically complete areas. This brings
the current count of the total number of visual cortical areas in the mouse to 11 (Garrett et al.
2014) (Figure 6).

Interestingly, the imaging studies of Garrett et al. (2014) reported that the V1 retinotopic map
represents a vastly greater portion of the visual field than do any of the extrastriate visual areas.
However, the extrastriate retinotopic maps do not simply contain fragmented representations of
the larger retinotopic space; rather, they contain complete maps of the retinal surface that are
warped to dramatically overrepresent specific locations in the visual field and are optimized for
processing specific types of visual feature information (Figure 6). In the future, it will be important
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to understand if and how the patterns of connectivity arising from the dLGN-to-V1 and from the
V1-to-extrastriate areas relate to these map specializations or hot spots. It will also be crucial to
consider how input from structures such as the LP contributes to these map specializations. The
ethological significance of these partial and apparently highly specialized maps currently remains
unknown, but the growing number of visual behavioral assays labs have developed for the mouse
(e.g., Busse et al. 2011, De Franceschi et al. 2016, Dhande et al. 2013, Glickfeld et al. 2013b,
Hoy et al. 2016, Yilmaz & Meister 2013) lend themselves nicely to working out the answer to this
important issue.

EYE-SPECIFIC AND BINOCULAR MAPS

The eyes of the mouse are positioned somewhat laterally within its skull (Figure 7). As a conse-
quence, each eye views largely nonoverlapping portions of the visual scene. Both eyes do, however,
view the same central 40◦ of visual space, enabling the enhanced depth perception associated with
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stereopsis (Figure 7). Rats have been proposed to preferentially view the overhead visual fields
through the use of convergent upward rotations of the eyes (Wallace et al. 2013), but that result
has been challenged (Meister & Cox 2013), and how mice view different portions of the visual
field as they move and according to their eye movements needs careful analysis.

Carnivores and primates have a strict line of decussation for RGCs, meaning that the cell bodies
of the RGCs that project contralaterally into the brain reside in a distinct retinotopic portion of
the eye from those which project ipsilaterally. In the mouse, the situation is quite different: There
is no true line of decussation because RGCs from throughout the entire retina project to the
contralateral hemisphere, and the small proportion of RGCs that project to the ipsilateral brain
hemisphere (approximately 5%) are interspersed among the contralateral-projecting RGCs within
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the ventrotemporal retina (Figure 6) (Dräger & Olsen 1980, Herrera et al. 2003, Koch et al. 2011,
Petros et al. 2008).

As a field, we still do not know (a) which RGC types comprise the ipsilateral-projecting popu-
lation and (b) which of those ipsilateral-projecting RGC types connect to the dLGN and SC. To
thoroughly understand visual processing in V1 as well as other aspects of vision in this species,
these issues need resolution. Mice that selectively express Cre in the ipsilateral-projecting RGC
population (e.g., Koch et al. 2011) will no doubt be helpful in resolving this. What is clear is that
in mice older than postnatal day 12 (P12), axonal projections from the two eyes are segregated
into distinct domains within all the retinorecipient targets that receive binocular input—a process
that arises during development and that we discuss in detail below and in previous reviews (Hu-
berman et al. 2008a) (Figure 1). Next, we review the architecture and functional implications of
this eye-specific segregation in the dLGN and SC and in downstream targets such as V1.

Ocular Maps in the Dorsal Lateral Geniculate Nucleus

The trajectories and termination zones of RGC projections from each of the two eyes can be
visualized simultaneously by labeling each retina with different color tracers, such as cholera toxin
conjugated to green- or red-fluorescing fluorophores (Huberman et al. 2003, Jaubert-Miazza
et al. 2005, Luo et al. 2013, Muir-Robinson et al. 2002, Stellwagen & Shatz 2002). Axons of
ipsilateral-projecting RGCs project to a restricted domain in the dorsomedial dLGN, where they
are segregated from RGC axons arising from the contralateral eye (Figure 1) (Muir-Robinson
et al. 2002), which corroborates evidence from single-eye labeling studies (Godement et al. 1984,
Huh et al. 2000). From the postsynaptic perspective, ocularity can be measured using single-unit
or patch electrodes from target neurons to determine if they sample and receive synaptic input
from one or both eyes (Grubb & Thompson 2003, Howarth et al. 2014). Anatomically distinct
eye-specific layers separated by interlaminar zones are present in the carnivore and primate dLGN
but are absent in the mouse (Figure 8), raising questions as to whether mouse dLGN neurons
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Figure 8
Cytoarchitectural structure of the dorsal lateral geniculate nucleus (dLGN) in different species. The dLGN of primates and carnivores
such as cats and ferrets have clear cellular layers separated by intralaminar zones. However, the cellular structure of the dLGN in the
mouse is homogeneous and does not have any obvious lamination. Images from http://BrainMaps.org. Abbreviations: K,
koniocellular; M, magnocellular; P, parvocellular.
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have dendritic territories limited to eye-specific domains. Most experiments report that dLGN
neurons of the mature mouse are driven functionally by RGCs from one or the other eye but
not both—a feature that emerges during development (see below) (Grubb et al. 2003, Jaubert-
Miazza et al. 2005, Zhao et al. 2013) and is consistent with features of the dLGN in carnivores and
primates (Hubel & Wiesel 1961). However, recent reports suggest that the dLGN of the mouse,
unlike other species, contains an abundance of binocularly innervated cells (Howarth et al. 2014,
Rompani et al. 2017). The functional implications of this for cortical processing, and for visual
perception, await resolution.

Ocular Maps in the Superior Colliculus

In the SC, RGC axons from the ipsilateral retina project to the rostromedial portion of the deeper
SO layer and therein are segregated from contralateral eye axons in the rostromedial SC (Figure 1)
(Dräger & Olsen 1980, Godement et al. 1984, Haustead et al. 2008, Xu et al. 2011). Comparatively
little is known about the function of this binocular representation, but recent evidence shows that
RGC convergence, synaptic strength, and maturation vary with SC mediolateral position (Furman
& Crair 2012, Furman et al. 2013), implying that binocular and monocular regions of the SC
process and incorporate visual signals differently.

Ocular Maps in the Visual Cortex

Few structure-function relationships have occupied the minds and efforts of neuroscientists more
than the brain circuits for binocular vision. Ocular dominance columns (ODCs)—the cortical
feature discovered and made famous by Hubel & Wiesel (1969) in their classic studies of cat
and primate V1—represent alternating patches of right eye–dominated and left eye–dominated
cortical territories. ODCs are most prominent and most famously elucidated as stripes when
viewed tangentially (from the dorsal surface) in layer 4 of primate V1. In carnivores, ODCs are
more patchy than stripe-like but are nonetheless still quite prominent, whereas in the mouse,
owing to the rather limited ipsilateral RGC projection to the dLGN and binocular field of view,
geniculocortical projections do not segregate into anatomical ocular dominance stripes or patches.
Instead there is a single binocular zone that receives mixed input from both the ipsilateral and
contralateral eyes. Thus, purely ipsilateral eye–driven cells are very rare in the mouse cortex
(Dräger 1975). Ten-m3 mutant mice, which have an altered dLGN ipsilateral topography and
an expanded ipsilateral projection from dLGN to visual cortex, do have ODCs (Merlin et al.
2013), supporting the idea that this feature is indeed the reflection of the degree of ipsilateral eye
territory in the dLGN. However, recent evidence demonstrates the existence of robust ODCs
in the rat—a species that also has limited ipsilateral RGC projections (Laing et al. 2015). This
raises the intriguing possibility that the absence of ODCs in mice could reflect the presence of
the numerous binocularly innervated cells in the dLGN (Howarth et al. 2014, Rompani et al.
2017). Going forward, it will be useful to obtain more detailed maps of eye-specific and binocular
retinogeniculocortical connectivity in the mouse. The current transsynaptic viral tracing methods
such as modified rabies make it possible to link retinal, dLGN, and V1 circuitries in detail (e.g.,
Callaway & Luo 2015, Cruz-Martı́n et al. 2014, Rompani et al. 2017). Thoughtful comparison
of those features with functional attributes of the mouse dLGN (e.g., Piscopo et al. 2013) are
needed to achieve full understanding of these important aspects of visual circuitries, and ideally,
those features will be placed within the context of mouse visual behaviors that rely on binocular
vision.
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FUNCTIONALLY DISTINCT PROCESSING STREAMS
AND CIRCUITRIES

The retinotopic and eye-specific maps described above represent evolution’s decision as to how
to best represent the topography of visual space through the two eyes. However, within those
spatial maps, specific features of the visual world must also be represented. Such features include
motion, direction, colors, and contrast. Visual feature representation is accomplished primarily
in two ways: (a) Neurons can either connect to distinct overall targets, or (b) they can connect to
distinct locations within each target. Generally, they do both. A consistent scheme for processing
select visual features, often referred to as parallel processing, is the subdivision of target nuclei
into layers—each of which receives afferent input (axons and synapses) carrying distinct qualities
of visual information.

In the mouse, parallel processing of unique visual features starts as early as the rod-cone
distinction, but the first anatomically obvious parallel pathways are the termination patterns of
the axons arising from the 33 functionally defined RGC subtypes (Baden et al. 2016). As mentioned
above, each of those RGC subtypes responds best to a particular feature in the visual world and
connects to anywhere from 1–4 separate subcortical visual areas through direct projections and
axon collaterals (Dhande et al. 2011, 2015b; Huberman et al. 2008b). Then, within many of those
targets—most notably the dLGN and SC—the axons of different categories of RGC types are
arranged into distinct layers. Coupled with the laminar-specific arrangement of target neuron cell
bodies, dendrites, or both, discrete modules across the depth of the dLGN and SC for processing
different visual features arise for all locations in the retinotopic map (Figure 2).

Layered Functional Channels in the Retinogeniculocortical Pathway

The mouse dLGN harbors layers, but they are more cryptic than those found in other species
such as macaques or cats. For example, the cytoarchitectonic structure of mouse dLGN appears
homogeneous—it lacks the overt cellular layers separated by intralaminar zones seen in carnivores
and primates (Figure 8). Inspection with the appropriate methods reveals, however, that the
rodent dLGN does in fact possess functionally distinct layers related to the unique termination
patterns of functionally distinct categories of retinogeniculate projections (Martin 1986, Reese
1988). Experiments in mice with genetically tagged RGC subtypes revealed that alpha-like RGCs
connect to the central core region of the dLGN, whereas bistratified On-Off direction-selective
RGCs connect to a shell region that resides adjacent to the optic tract, as do an Off type of
monostratified direction-selective ganglion cells (DSGCs) termed J RGCs (Ecker et al. 2010;
Huberman et al. 2008b, 2009; Kay et al. 2011; Kim et al. 2008, 2010; Rivlin-Etzion et al. 2011)
(Figures 2 and 9). The thalamic neurons in each of these two dLGN regions appear to differ
as well. Y-like and X-like dLGN relay neurons predominate in the core, whereas W-like dLGN
neurons prevail in the shell (Krahe et al. 2011) (Figures 2 and 9). Like other species, the dLGN of
the mouse also contains intrinsic interneurons. In the mouse, they are relatively evenly distributed
throughout the entire dLGN; however, it is still unclear whether different subtypes exist (Seabrook
et al. 2013b). Moreover, these interneurons have extensive, highly complex dendritic processes,
which can cross eye-specific borders and the functionally distinct layers in dLGN (Seabrook et al.
2013b).

The layers of RGC input and distinct neuron types situated within each laminar termination
zone translate to distinct thalamocortical output circuits as well. In the shell region of the dLGN,
On-Off DSGCs and Off-DSGCs synapse onto neurons with hemispheric (W-like) dendritic fields,
which in turn project to layers 1 and 2/3 of V1 (Bickford et al. 2015, Cruz-Martı́n et al. 2014,
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Krahe et al. 2011). By contrast, biconical (X-like) and symmetrical (Y-like) dendritic fields are
thought to receive input from non-direction-selective alpha-like RGCs and send their axons to
layer 4 of V1 (Figure 9). The implications of this are several, but from a circuit design standpoint,
they point to the idea that the mouse retino-dLGN-V1 circuit—although lacking conspicuous
cellular lamination—nonetheless has parallel pathway components that incorporate cell type–
specific laminar terminations, in a manner quite similar to that found in other species.
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Collicular Inputs to the Dorsal Lateral Geniculate Nucleus

Interestingly, neurons in the dLGN shell receive topographically organized input from neurons in
the SGS of the SC, but whether the SC to dLGN connections arise from retinorecipient neurons
in the SC or a different category of SC cells remains unclear (Bickford et al. 2015) (Figures 2
and 9). Regardless, this specific pattern of SC to dLGN shell input sets up a closed-loop network
for directional processing that possibly influences how cells at each station—dLGN, SC, and
V1—respond to moving visual stimuli, including object versus background motion (Bickford et al.
2015, Roth et al. 2016).

The sublayers of the SC (upper SGS, lower SGS, and SO) can also be defined by the signature
patterns of inputs arising from specific classes of RGCs (Dhande & Huberman 2014a; Dräger
& Hubel 1976; Hong et al. 2011; Huberman et al. 2008b, 2009). SC neurons normally are not
selective with respect to On or Off properties; that is, most SC cells are On-Off and respond
to both the onset and offset of a light stimulus (Chandrasekaran et al. 2007, Inayat et al. 2015).
Because cells outside the shell portion of the mouse dLGN are mostly tuned for On or Off but not
both, and all inputs to the dLGN represent collaterals of RGC axons that also project to the SC,
the abundance of On-Off responses in the SC therefore must be the consequence of SC neuron
dendrites collecting inputs from many types of RGCs, and indeed the receptive field structure of
SC neurons and intracellular fills of SC neurons in the mouse support that idea (Chandrasekaran
et al. 2007, Gale & Murphy 2014).

Homology of Retinogeniculocortical Circuits in Mouse,
Carnivores, and Primates

An interesting consideration is the high degree of similarity between the circuitry and neurochem-
ical attributes of mouse dLGN shell (where On-Off DSGC inputs prevail) and the SGS layer of
the SC. These include calbinidin immunoreactivity, small W-like cells, and sluggish (low axon-
conduction velocity) On-Off retinal inputs (Grubb & Thompson 2004, Huberman et al. 2009,
Stone 2013). Moreover, the dLGN shell also bears striking afferent and neurochemical resem-
blance to the so-called C-layer pathways in carnivores and the koniocellular pathways in primates,
raising the possibility that the C-layer and koniocellular pathways—most well known for carrying
yellow-blue opponent signals—may be responsible for processing direction- and/or orientation-
selective information. Indeed, recordings from neurons in the K layers of the marmoset and other
primates revealed direction- and orientation-selective properties in the koniocellular pathways
(Cheong et al. 2013, White et al. 2001, Xu et al. 2002), and such responses are also found in the
human dLGN by fMRI (Ling et al. 2015).

Orientation and Direction Selectivity

The detection of complex features within a visual scene, such as perception of motion, was initially
thought to be a signature property of visual cortex. However, recent studies demonstrate that
processing of this type of visual information occurs long before it is transmitted to higher visual
areas. There is now considerable evidence that subcortical areas—for instance, the dLGN—
contain neurons sensitive to direction or orientation that could bias the tuning seen in visual
cortex. Below, we discuss how information about the direction or orientation of movement is
passed along the visual pathway.
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In dorsal lateral geniculate nucleus and retinogeniculocortical circuits. Primary receptive
neurons in the mouse visual system (as in multiple other mammalian models) respond preferen-
tially to both simple center-surround stimulation at early (retinal and dLGN) levels of processing
and visual stimuli that move in either single polar directions (direction-selective) or in two polar-
opposing directions (orientation-selective, usually at later processing stages). In the mouse retina,
direction selectivity shows up first in genetically defined populations of RGCs that respond pref-
erentially to one of the four cardinal directions (Briggman et al. 2011, Huberman et al. 2009, Wei
et al. 2011). This information is passed to the dLGN shell, in which direction selectivity is either
maintained or sharpened or DSGC inputs are combined to generate orientation-selective cells
(Cruz-Martı́n et al. 2014, Marshel et al. 2012, Scholl et al. 2013). Interestingly, researchers have
also demonstrated recently that some mouse RGCs are orientation selective (Baden et al. 2016,
Nath & Schwartz 2016). Thus, neurons in the dLGN that are orientation selective may acquire
that property directly from the retina (Zhao et al. 2013).

An exciting new area of focus that grew largely out of the genetic and imaging tools available
in the mouse is the issue of how dLGN receptive fields are maintained, transformed, or both as
they pass to cortex. This issue has long been addressed in cats and primates, but from the general
framework that the dLGN-projecting RGCs and dLGN mainly contain center-surround units
(spot detectors) and that the properties of direction and orientation selectivity show up first in V1.
However, the presence of On-Off and Off DSGCs and orientation-selective RGCs that project to
the dLGN in the mouse and the fact that many dLGN neurons in the shell are direction and/or
orientation selective (Dhande & Huberman 2014a, Piscopo et al. 2013) promoted the exploration
of whether these properties are conferred onto the cortex from subcortical structures. Retrograde
transsynaptic labeling of V1-dLGN RGCs from various depths of V1 layers revealed, for example,
that On-Off DSGCs project to W-like cells in the dLGN shell that, in turn, project to superficial
V1 and thereby deliver direction- and orientation-selective information to V1 (Cruz-Martı́n et al.
2014). Cruz-Martı́n et al. also showed that spot-detector center-surround RGCs project to the
dLGN core and that the X- and Y-like cells in the dLGN core project to deeper layers 4 and
5b of V1, consistent with the classic model of retinogeniculocortical connectivity (Alonso et al.
2001, Hubel & Wiesel 1972, Usrey et al. 2000). Those findings raised two questions: What is the
functional purpose of the direction- and orientation-selective retinogeniculocortical pathway that
bypasses layer 4? And are there equivalent circuits for communicating direction- and orientation-
selective information from the thalamus directly to cortex in other species?

The answer to the first question is now more or less complete. The bulk of evidence—both
anatomical and electrophysiological evidence with imaging and electrode recordings—shows that,
indeed, direction- and orientation-selective information to the shell is relayed to superficial V1
(Bickford et al. 2015, Cruz-Martı́n et al. 2014, Kondo & Ohki 2016, Piscopo 2013), whereas
neurons in the core region of the dLGN project to deeper layers of V1 (Bickford et al. 2015, Cruz-
Martı́n et al. 2014, Lien & Scanziani 2013). Elegant work from the Roska lab showed recently that
selective deletion of retinal direction selectivity causes a marked reduction in direction-selective
tuning of neurons in superficial V1, whereas receptive fields of neurons in deeper V1 layers is
relatively unchanged by loss of retinal direction selectivity (Hillier et al. 2014).

In regards to the second question of whether equivalent circuits exist in other species, it is
interesting to note that in every species in which this has been examined—mouse (Cruz-Martı́n
et al. 2014), rat (Martin 1986), tree shrew (Usrey et al. 1992), rabbits (Swadlow & Weyand 1985),
ferret (Erisir & Dreusicke 2005), and macaque (Lund et al. 1975)—there is a dLGN projection
arising from neurons in layers close to the optic tract (shell in the mouse, C-layers in carnivores
and shrews, and K-layers in primates) that bypasses layer 4 and projects to the more superficial
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layers 1–3 of V1. Moreover, in so many ways, this projection system resembles pulvinar projections
to V1: neurochemically, morphologically, and with regard to cell types (Figure 10). Parsing the
functional significance of these two parallel projection systems for visual perception and behavior
represents one of the major goals for the field in the years to come. Collectively, these findings also
underscore the extent to which tools and detailed study of the mouse visual system are revealing
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more general themes about the organization of visual circuits in other species and, thus, driving
new research directions in those models as well. For example, the search for On-Off DSGCs
in tree shrews and primates is now under way (Dhande et al. 2015a; G. Field & D. Fitzpatrick,
personal communication).

Orientation selectivity in the mouse V1. Unlike in cats and monkeys, orientation-selective
neurons in V1 follow no clear pattern in relationship to one another across the retinal surface,
instead showing a so-called salt and pepper organization. Recent work that did functional imaging
of secondary visual areas in cortex has shown that responses in V1 neurons to visual signals are
divided by function into separate pathways for action guidance and shape recognition (Glickfeld
et al. 2013a, 2014), similar to the primate dorsal and ventral streams, but comparable character-
ization of the nine strongly retinotopically connected secondary visual cortical areas (Wang &
Burkhalter 2007) is still in its early stages.

Orientation selectivity in the mouse superior colliculus. Recently, orientation-specific maps
were reported in the SC that have relatively large swaths of retinotopic space overrepresenting
specific orientations (Ahmadlou & Heimel 2015, Feinberg & Meister 2015). This is curious for
two reasons: (a) Previously, orientation selectivity was thought to arise within the cortex but not
to exist in subcortical structures (but see L. Wang et al. 2010); and (b) the maps described do
not represent all orientations evenly. The specific utility of these orientation hot spots for head
movement, eye movement, or other behaviors remains unclear at this time (Ahmadlou & Heimel
2015, Feinberg & Meister 2015, Inayat et al. 2015).

Visuomotor and Multimodal Context-Dependent Processing

An important function of the mouse visual system is the rapid estimate of relative movement and
speed that allows successful integration with movement. To this end, recent reports demonstrated
that locomotion had significant modulation of visual sensory responses in V1, a surprisingly early
level of visual processing for sensorimotor integration (Niell & Stryker 2010). Similarly, auditory
signals have also been found to affect neuronal response properties and tuning in V1 (Ibrahim et al.
2016, Iurilli et al. 2012), modifying the assumption that mouse V1 serves primarily as a simple
entry point for visual signals into the cortex. There is rapidly growing interest into how these

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 10
Behavioral output of non-image-forming visual pathways. (a) Axons of AOS RGCs in brainstem (NOT and
MTN) are involved in the pathway, generating head and eye movements to compensate for retinal slip and
provide image stabilization. (b) ipRGCs mediate the pupillary light reflex or reflexive response of
constricting the pupil to increases in luminance via the OPN. (c) ipRGCs that project to the SCN in the
hypothalamus are essential for the entrainment of internal biological clock rhythms to external cues such as
the light-dark cycle. (d ) ipRGCs sending information about external cues can also influence the HPA axis to
regulate the rhythm of hormones. The secretion of these hormones can affect physiological mechanisms
such as sleep and stress. (e) ipRGCs going to the hypothalamus have also been implicated in the regulation of
sleep. ( f ) Migraines are typically associated with photophobia, such as abnormal sensitivity to light, ocular
discomfort, and exacerbation of headache by light. Signals transferred by ipRGCs to thalamus and pretectum
are integrated into the trigeminovascular pathway and result in a nociceptive response to light.
Abbreviations: AOS, accessory optic system; HPA, hypothalamic-pituitary-adrenal; ipRGC, intrinsically
photosensitive RGC; MTN, medial terminal nucleus; NOT, nucleus of the optic tract; OPN, olivary
pretectal nucleus; REM, rapid eye movement; RGC, retinal ganglion cell; SCN, suprachiasmatic nucleus.
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multimodal and context-dependent operations of the visual pathway take place. Next, we consider
the behavioral paradigms that enable probing of the basic and context-dependent operations of
the visual cells, circuits, and pathways discussed above.

VISUALLY DRIVEN BEHAVIORS

Predator Aversion

The mouse displays innate defensive behaviors, which are essential for avoiding predators and thus
for survival. In nature, mice often fall prey to aerial predators, such as hawks and owls. Behavioral
analyses using a looming stimulus—an expanding dark disc shown on a monitor placed atop an
arena—can mimic the appearance of an approaching predator from above (Yilmaz & Meister
2013). In the mouse, this triggers either freezing for an extended period of time or escaping an
open area for cover under a shelter (Yilmaz & Meister 2013). Incredibly, a light expanding disk
or an expanding disk presented below the animal has no impact on freezing or flight, indicating
that a location in the visual field and the specific nature of the stimulus presented there are firmly
represented in the visual system and linked to defined motor command circuitry. In multiple
species, the SC or its nonmammalian homolog, the optic tectum, plays a role in mediating this
behavior (Ingle 1973, Shang et al. 2015, Temizer et al. 2015, Wei et al. 2015, Westby et al. 1990).

Electrophysiological recordings as well as activity-dependent c-Fos expression demonstrate that
neurons in superficial SC are active during looming stimuli (Wei et al. 2015, Zhao et al. 2014). The
cell types and subcortical connections involved are also becoming clearer from experiments using
optogenetic approaches, monitoring of activity-related immediate early genes, and Fos-TRAPing
(Guenthner et al. 2013), in which the loom-activated Fos+ cells turn on Cre during the loom/fear
experience and can then be replayed or inactivated using Cre-dependent activity manipulations
(Shang et al. 2015, Wei et al. 2015). A pathway between glutamatergic neurons located in medial
SC and the basolateral complex of amygdala, possibly via LP, may mediate the freezing response to
a looming stimulus (Wei et al. 2015). Excitatory parvalbumin-positive neurons in the SC connect
to the amygdala through the parabigeminal nucleus in the brainstem and can trigger fear responses
to looming stimuli (Shang et al. 2015).

A recent study also found evidence that distinct defensive responses are evoked by selective
features of visual cues that mimic the presence of a predator, with looming stimuli producing
fleeing behavior, whereas sweep stimuli induce a freezing response in the mouse (De Franceschi
et al. 2016). The sweep stimulus mimics a distal threat, so freezing may be more advantageous
to avoid detection by an incoming predator. Whether these different defensive strategies are
mediated through distinct visual pathways remains to be determined, but these pathways should
be decipherable using the Fos-TRAP or similar technologies described above.

Visual Hunting and Prey Capture

Surprisingly, rodents also capture and feed on various prey, such as insects or even small mammals,
reptiles, and amphibian species. In fact, one mouse species—the northern grasshopper mouse—
relies almost solely on predation for survival (Langley 1989). A recent report described the prey
capture behavior of the common laboratory mouse in quantitative detail and found that laboratory-
bred mice captured and fed on insects (grasshoppers) readily within a short time frame (Hoy et al.
2016). They further reported that vision accounted for the majority of long-range prey detec-
tion and accurate prey-stalking and approach behavior. This finding demonstrates a heretofore
largely ignored but ethologically relevant visual behavior in the mouse that should allow for the
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investigation of a complex behavior with genetic access to the underlying circuit architecture. An
interesting question is whether the mouse used vergence eye movements and/or the binocular
portion of their visual fields selectively to hunt, as other species such as carnivores and zebrafish
do (Bianco et al. 2011). Brain imaging and real-time eye tracking of freely moving animals should
be able to resolve this (Flusberg et al. 2008).

Visual Cliff and Depth Perception

For most terrestrial animals, including the mouse, falling from a high location can have hazardous
consequences, and thus the ability to visually discriminate the relative depth of surfaces from one
another has a significant impact on survival implications. At the same time, mice are impressive
gymnasts, routinely climbing up and down near-sheer surfaces to forage and socialize. In both
these contexts, depth perception and selective decisions about whether to take or avoid particular
trajectories are paramount. Binocular disparity, or the positional difference of a given point in
space seen by each eye, contributes critically to the perception of depth. In species with forward-
facing eyes, visual fields overlap almost totally, allowing them to perform stereoscopic depth
discrimination, but the laterally placed eyes of the mouse make depth perception more problematic
using only their small degree of binocular overlap (Figure 7).

The visual cliff test takes advantage of the innate aversion to heights that humans and other
animals possess and that can be used to probe an animals’ ability to discriminate depth (Walk
& Gibson 1961). In a modified visual cliff test for rodents, high-contrast checkerboard patterns
placed at different distances below a piece of clear acrylic or glass create the illusion of a shallow
safe side and a deeper cliff/danger side (Fox 1965). If mice are placed on a platform or ledge
between these two sides, they tend to step down onto the shallow side—a choice that is visually
guided because cues from other sensations, such as whisking and olfaction, are not available in this
regime. Moreover, mice with rod deficiency or retinal degeneration no longer exhibit a shallow-
side preference but instead choose randomly from either side, indicating that vision mediates this
choice (de Lima et al. 2012, Fox 1965, Frank & Kenton 1966, Lim et al. 2016, Nagy & Misanin
1970). Disruption of the ipsilateral retinal projections to dLGN can interfere with the normal cliff
response, showing the importance of the retinogeniculocortical pathway and binocularity therein
(Leamey et al. 2007). This has been demonstrated most clearly by genetic knockout of Ten-m3,
an adhesion molecule expressed by RGCs, which results in mistargeting of RGC axons from the
ipsilateral eye to dLGN, creating an elongated ipsilateral zone along the dorsomedial-ventrolateral
axis (Leamey et al. 2007). One functional consequence of this mismatch of retinal projections in
the dLGN is alteration of visual signal transfer to visual cortex and loss of a cohesive map of
binocular visual space. One idea is that such mismatch leads to interocular suppression similar to
that seen in Siamese cats or in strabismic primates (Leamey et al. 2007, Merlin et al. 2013).

ASSEMBLY OF THE MOUSE VISUAL SYSTEM

Mouse visual circuit development is governed by the cooperative influence of genes, molecular
factors, and neuronal activity. The relevant activity may be generated spontaneously (without sen-
sory drive) or by visual stimulation. After visual neurons are born, are specified, and migrate into
position, they extend out processes to form circuit connections within and between targets. At the
earliest stages of neurite outgrowth, axon pathfinding and target selection are driven primarily by
molecular guidance cues that act as intermediate signposts to steer one direction or another. Once
they reach the proximity of their targets, they must match to them in a process that involves both
positive (“go here”) and negative (“don’t go there”) signals. Visual afferents then must select the
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appropriate region, layer, and cells within that target structure. Synaptogenesis and synapse elim-
ination coincide with these later steps (Cheng et al. 2010, Josten & Huberman 2010). Later stages
of circuit development are more heavily influenced by spontaneous and sensory-evoked activity
to drive the strengthening, consolidation, and refinement of existing within-target circuitry, often
by employing molecular signals and physical recruitment of nonneural cells in the process (Chung
et al. 2013, Noutel et al. 2011, Stephan et al. 2012). The improvement in tools to mark specific
visual cell types and the experimental accessibility of the eyes has led to the rapid emergence of the
mouse visual system for studies of nervous system development and plasticity. Here we consider
the various steps leading to visual circuit development, with an emphasis on the emergence of
the features we describe above in the section titled Functionally Distinct Processing Streams and
Circuitries.

CONNECTING THE EYE TO THE BRAIN

Exiting the Eye and Growth to the Chiasm

The first major wiring process for long-range visual circuit development is to connect the eyes
with the brain and, in that context, for RGC axons to grow toward the optic disc and nerve. This
occurs during embryogenesis and is driven by repellant chemical cues in the retinal periphery
such as chondroitin sulfate proteoglycans (Snow et al. 1991, Stuermer & Bastmeyer 2000) and
by attractive cues expressed at the optic nerve head such as Netrin-1, acting through deleted in
colorectal cancer (DCC) receptors expressed by RGC growth cones (Deiner et al. 1997). RGC
axons then grow down the optic nerve until they reach the optic chiasm at the base of the brain.
There, RGC axons destined for ipsilateral visual nuclei turn laterally, away from the midline,
whereas contralateral-intended axons cross through the midline to the opposite brain hemisphere
(Petros et al. 2008).

Laterality at the Optic Chiasm

The binary routing of RGC axons at the optic chiasm is governed in large part by the transcription
factor Zic2, which is expressed in RGCs that turn ipsilaterally (Bhansali et al. 2014, Herrera et al.
2003, Petros et al. 2008, Rebsam et al. 2012, Sánchez-Arrones et al. 2013). Zic2 drives expression
of the kinase receptor EphB1, which in turn responds to repellant ephrin-B2 expressed at the
chiasm (Petros et al. 2010). In the mouse, Zic2 is expressed by a restricted set of RGCs in the
ventrotemporal retina and, interestingly, by a small subset of RGCs in the far nasal retina that
also stay ipsilateral (Herrera et al. 2003). The axons of RGCs whose somas reside outside the
ventrotemporal retina, as well as those of late-born RGCs residing in the ventrotemporal retina,
ignore the repellant ephrin-B2 to cross at the chiasm to project to the contralateral brain (Petros
et al. 2008). Their crossing is not merely a passive behavior; these contralateral-projecting RGCs
are identified by the expression of Islet2 (Pak et al. 2004) and SoxC (Kuwajima et al. 2017) and
respond directly to factors such as neuronal cell adhesion molecule (NrCAM) and Plexin-A1
that facilitate the crossing of contralateral axons directly by causing a reversal in the growth-
suppressing effects of Semaphorin6D (Kuwajima et al. 2012). One open question is whether the
same RGC types are included in both ipsilateral- and contralateral-projecting populations or
whether there are biases in the proportion of cell types that contribute to each projection pattern.
Indeed, understanding how different RGC types develop their unique patterns of pathfinding and
wiring is one of the major unmet goals of the field.
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Selecting a Retinorecipient Target

Beyond the optic chiasm, there are >40 distinct image-forming and non-image-forming RGC
targets in the brain (Morin & Studholme 2014). As a field, we are just starting to elucidate the full
range of different RGC classes and their targets and have only a rudimentary understanding of
the mechanisms that direct specific RGCs to different brain areas. An important and fundamental
question is, how do different RGCs know which brain areas to target? For example, in the image-
forming system, how do RGC axons know whether to target the dLGN, SC, or both?

Cellular Mechanisms of Axon-Target Matching

At the cellular level, RGC axon-target matching involves both directed targeting and a process
of refinement that is intimately related to the timing of RGC neurogenesis. Genetic marking
of different RGC types combined with birthdating markers allowed Osterhout et al. (2014) to
discover that early-born RGCs innervate multiple incorrect brain targets, while most of the excess
branches are subsequently removed. Later-arriving RGC projections chose their targets much
more accurately and avoid a significant pruning stage. Moreover, different RGC types are born at
different stages, leading to the formation of unique circuitries one after the other. It is still unclear
whether this reflects the progressive restriction of target neuron availability or a specific strategy
designed to more closely pair RGCs and their targets. This question should be resolved through
deletion experiments in which one of the early-born RGC types is eliminated, or experiments
in which RGC identity is altered. Tampering with the transcriptional machinery that governs
RGC-type identity allows this sort of experiment to be done.

Another open question is whether laminar-specific targeting of RGCs—a feature that is salient
in the dLGN and SC (Figures 2 and 9)—is governed by a similar mechanism as overall axon-
target matching. Some RGC types, such as the Off-alpha RGCs, undergo a process of refinement
to target the deeper portion of the SGS (Cheng et al. 2010, Huberman et al. 2008a). Since
virtually every specific subset of RGC types targets a particular layer of the dLGN and SC (Hong
et al. 2011; Kay et al. 2011; Kim et al. 2008, 2010; reviewed in Dhande & Huberman 2014a,
Dhande et al. 2015b), and this layer-specific targeting preserves and relays specific receptive field
properties from the retina to higher-order visual centers (Cruz-Martı́n et al. 2014), understanding
the relative order and dynamics of this layers-specific wiring is crucial. Work from Sanes and
colleagues (Hong et al. 2011, Kim et al. 2010) showed that, like overall target choice, there is
variation in the degree of specificity with which different RGC types target the correct layers
in the SC and dLGN. Moreover, retinal axon ingrowth regulates the timing of cortical axon
innervation of the dLGN, in part through the transient expression of a repellent molecule that
prevents premature entry (Brooks et al. 2013, Seabrook et al. 2013a). Corticogeniculate axons in
turn regulate the innervation of the dLGN by retinal axons (Shanks et al. 2016).

Molecular Mechanisms of Axon-Target Matching

What molecular factors regulate RGC axon-target matching? Recent work shows that cellu-
lar adhesion plays a key role, at least in the non-image-forming system (Osterhout et al. 2011)
(Figure 11). A subset of intrinsically photosensitive and related non-image-forming RGCs ex-
press Cadherin-6 (Cdh6), a Type II classical cadherin (Takeichi 1990). Their targets in the brain
also selectively express Cdh6, and genetic removal of Cdh6 causes a severe reduction in the num-
ber of these RGCs that target their respective brain areas (Osterhout et al. 2011); instead, the
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Figure 11
Molecular mechanisms regulating axon-target matching in the mouse visual system. (a) Subcortical visual pathway. (b) Cdh6 mediates
targeting of RGCs to the OPN. (c) RGC innervation of the NOT is facilitated via interactions between CNTN4 and APP. (d ) Sema6A
and PlexA2 and A4 control RGC axon-target matching in the MTN. (e) Reln ensures correct targeting of RGC axons going to the
vLGN and IGL. Abbreviations: APP, amyloid precursor protein; Cdh6, Cadherin-6; CNTN4, Contactin-4; dab1, disabled-1; dLGN,
dorsal lateral geniculate nucleus; IGL, intergeniculate nucleus; KO, knockout; mdPPN, medial pedunculopontine nucleus; MTN,
medial terminal nucleus; NOT, nucleus of the optic tract; OPN, olivary pretectal nucleus; reln, reelin; SC, superior colliculus; SCN,
suprachiasmatic nucleus; Sema6A, Semaphorin-6A; PlexA2/A4, Plexin-A2/A4; vLGN, ventral lateral geniculate nucleus.

neurons overshoot to the more distal SC. In the accessory optic system (AOS), On DSGCs and
a subset of On-Off DSGCs project to nuclei in the dorsal and ventral brainstem (Dhande &
Huberman 2014a; Dhande et al. 2013, 2015b; Yonehara et al. 2009). A screen of expression pat-
terns of IgG superfamily proteins and analysis of the genetically tagged RGCs reveal that they
express Contactin-4 (CNTN4), and biochemical experiments confirm they also express amyloid
precursor protein (APP), the loss of either of which leads to defects in DSGC-to-AOS wiring and
associated behavioral defects in image stabilization (Osterhout et al. 2015). Remarkably, ectopic
expression of CNTN4 in individual RGC types that normally avoid the AOS induced them to
form and stabilize inputs to AOS nuclei, revealing a causal instructive role for CNTN4 in this
process and suggesting that, more generally, individual molecules and their coreceptors (in this
case, APP) and ligands tightly regulate axon-target matching (Osterhout et al. 2015). Kolodkin
and coworkers (Sun et al. 2015) also beautifully showed that Plexin-Semaphorin interactions are
crucial for connecting On-type RGCs to the ventral brainstem targets that ensure vertical image
stabilization in the AOS.

To date, specific guidance or adhesion cues for regulating laminar targeting of the dLGN or SC
in a lock-and-key manner (or by repulsion, for that matter) have not been identified, but resolving
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how laminar targeting emerges is of critical importance and will also likely inform how dLGN
neurons wire to specific layers of V1. Still, important work has shown that molecular systems such
as reelin and its receptors, VLDLR and LRP8, together serve to link specific RGC types to their
correct target regions of the dLGN by controlling target cell position and migratory patterns (Su
et al. 2011, 2013).

RETINOTOPIC MAP DEVELOPMENT

Once axons find their correct targets and layer within that target, they have to map to the cor-
rect retinotopic location. There is robust evidence for an essential role of the EphA/ephrin-A
receptor/ligand gradient system in mapping the azimuth axis of the eye onto the brain (dLGN
and SC) (Triplett & Feldheim 2012). Perhaps the most compelling data stem from the disrupted
topography that manifests as mistargeted retinotopic projections in mice that lack all three of the
ephrin-A ligands normally expressed in the mammalian SC (Cang et al. 2008, Pfeiffenberger et al.
2006). The EphB/ephrin-B system may play a similar role for mapping the elevation axis of the
eye in central targets (McLaughlin et al. 2003, Triplett & Feldheim 2012), but the experimental
evidence for this is not as consistent. For one, the mapping phenotypes of EphB/ephrin-B mutant
mice are less apparent than the EphA/ephrin-A mutants, and the mechanism (biased medial or
lateral branching at the target) is not as obviously suited to topographic mapping. Second, other
gradient systems may act in concert with (or instead of) EphB/ephrin-B, including Wnt/Ryk sig-
naling (Schmitt et al. 2006). Additionally, pretarget dorsal/ventral sorting of RGC axons in the
ascending optic tract (before reaching the dLGN or SC) may preferentially bias axons to the
correct position before entering each target (Chan & Guillery 1994, Plas et al. 2005), reducing
the requirement for a target-level gradient matching system for mapping the elevation axis. This
pretarget sorting mechanism may similarly act through EphB/ephrin-B, other molecular factors,
or both (Plas et al. 2008), with a variety of cell adhesion molecules such as L1 neural cell adhe-
sion molecule (Dai et al. 2012), activated leukocyte cell adhesion molecule (Buhusi et al. 2009),
NrCAM (Dai et al. 2013), or even EphA/ephrin-A (Suetterlin & Drescher 2014).

Neural Activity in Retinotopic Map Development

Early experiments established that neural activity contributes to retinotopic map development
(Cline & Constantine-Paton 1989, O’Leary et al. 1986). Given that subcortical topographic map-
ping occurs when mouse eyelids are still closed (and retinal photoreceptors are not functionally
integrated in the retina), this activity is not due to visual sensory experience and appears instead
to be generated spontaneously (Galli & Maffei 1988, Meister et al. 1991). Shatz and colleagues
demonstrated that this activity comes in the form of acetylcholine receptor–mediated correlated
retinal waves (Feller et al. 1996, Meister et al. 1991) that propagate in vivo up the visual neu-
raxis to the dLGN, SC, and visual cortex (Ackman et al. 2012). Although interfering with either
the amount or spatiotemporal pattern of this activity disrupts cell-intrinsic topographic map for-
mation in the dLGN and SC (Burbridge et al. 2014, Grubb & Thompson 2003, McLaughlin
et al. 2003, Pfeiffenberger et al. 2006, Xu et al. 2011, Zhang et al. 2012), RGCs (in the same
retina) that experience normal retinal waves retain normal topographic and eye-specific projections
(Burbridge et al. 2014). This links topographic map refinement directly to correlated RGC activity
from spontaneous retinal waves and supports the view that map development is instructed through
a combination of early chemotropic factors and patterned spontaneous activity.

Surprisingly, retinotopic targeting (topography) of ipsilateral RGCs appears to be regulated,
at least in part, through distinct mechanisms, specifically by members of the teneurin family
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of homophilic transmembrane glycoproteins (Leamey & Sawatari 2014). In particular, Ten-m3
and Ten-m2 mutant mice have mapping defects that are restricted to RGCs that project to the
ipsilateral hemisphere (Dharmaratne et al. 2012, Leamey et al. 2007, Young et al. 2013). This
suggests that there are unique retinotopic mapping mechanisms for ipsilateral- and contralateral-
projecting RGC axons whose cell bodies are intermingled within the retinal binocular zone.

Mapping Space to and Within Visual Cortex

The mapping of dLGN axon projections to the visual cortex is likely governed by molecular and
activity-dependent factors similar to those responsible for mapping retinogeniculate projections,
including EphA/ephrin-A gradient matching (Zhao et al. 2013) and retinal waves (Ackman et al.
2012). Chronotopy is also thought to contribute to targeting and mapping dLGN projections
to V1, perhaps through a coordinated interaction with reciprocally projecting corticothalamic
neurons—the so-called handshake hypothesis (Molnár & Blakemore 1995). Although retinotopic
receptive fields in V1 are disordered in mice that lack normal retinal waves (Cang et al. 2005,
2008), the specific role of geniculocortical activity in this mapping process remains uncertain, as
activity manipulations to date have not specifically disrupted geniculocortical activity while leaving
retinal and corticocortical activity intact. The retinotopic structure of higher-order visual areas
is presumably relayed functionally from V1 via long-range connections and specific patterns of
connectivity (Garrett et al. 2014, Marshel et al. 2011, Wang & Burkhalter 2007). However, rela-
tively little is known about mechanisms governing development of these intracortical connections
or the developmental features of the numerous rodent extrastriate visual cortical areas.

The dLGN and SC receive direct input from the retina and retinotopically aligned feedback
projections from the visual cortex (layer 6 cells for dLGN, layer 5 cells for SC). That is, a given
local region of the dLGN or SC receives feedforward (from the retina) and feedback (from the
visual cortex) input from matched retinotopic locations. The development of these matched pro-
jections reflects the economical use of the same receptor-ligand matching systems and is assisted
by activity-dependent refinement (Phillips et al. 2011, Triplett et al. 2009, Wang et al. 2015,
Zhao et al. 2013).

DEVELOPMENT OF BINOCULAR MAPS

The mechanisms responsible for the development and plasticity of eye-specific projections in the
dLGN, SC, and V1 have been a subject of intensive research since these segregated projections
were first described in cat and primate (Hubel & Wiesel 1969, Rakic 1976). Their initial formation
does not require vision and, similar to retinotopic map refinement, occurs before true visual
experience is possible (Crair et al. 2001, Horton & Hocking 1996, Rakic 1976, White et al. 2001).
A reasonable extrapolation from these results is that the targeting and segregation of these eye-
specific projections is dictated by a molecular force or process, perhaps the same or a related one
that is responsible for guiding crossing at the optic chiasm. However, unlike the success achieved in
identifying molecular mechanisms governing chiasm crossing (Petros et al. 2008), target selection
(Osterhout et al. 2011, 2015; Sun et al. 2015), and retinotopic map development (Cang & Feldheim
2013, Triplett 2014), molecular factors that directly govern eye-specific segregation (and not
retinotopy) have not been identified. A diverse array of retinal activity manipulations, however, are
known to interfere with the process of eye segregation (Huberman et al. 2008a). Similar to their role
in topographic map development, retinal waves are believed to aid concurrently in the segregation
of eye-specific projections. This spontaneous activity-mediated circuit refinement is thought to
rely, at least in part, on a mechanism that translates correlations in RGC activity to pattern and
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refine circuits (Butts et al. 2007). For example, changing the timing of the activity in the two eyes
(making the largely random spontaneous activity more synchronous) disrupts eye segregation
(Zhang et al. 2012), as does breaking retinal waves into smaller, local domains (Xu et al. 2011).
Increasing wave synchrony or decreasing wave size does not, however, interfere with the emergence
of retinotopic projections. Because local correlations are preserved with these manipulations,
researchers believe this allows for activity-dependent refinement of topographic projections but
disrupts eye-specific segregation through disruption of more global inter-eye activity comparisons.
Eliminating activity completely, disrupting the correspondence between presynaptic (RGC) and
postsynaptic (SC neuron) activity, or changing the local activity correlations also disrupts this
refinement process, arguing for the contribution of a use-dependent competitive process that
resembles Hebb’s postulate (Bi & Poo 2001, Hebb 1949) and the “fire-together, wire-together”
model (Burbridge et al. 2014, Shatz 1992).

Retinotopic and eye-specific mapping emerge at roughly the same time in the mouse. Xu et al.
(2011) showed that a specific activity manipulation (inducing smaller retinal waves) disrupts eye
segregation and retinotopy, but only in the binocular parts of the dLGN and SC. RGCs from the
dorsal retina that encode and deliver visual information from a part of the world that is served by
only one eye have normal retinotopic projections (their axon arbors are not expanded). Remark-
ably, enucleating one eye, which of course eliminates binocular interactions, rescues retinotopy
for all remaining RGCs, even those relaying information from what would have been binocular
regions of the retina. Similarly, artificially synchronizing activity in the two eyes through opto-
genetic manipulation disrupts eye segregation and retinotopy, although stimulating one eye at a
time (asynchronously) has no effect on either (Zhang et al. 2012). Thus, retinotopic refinement of
binocular RGC axons (from the ventrotemporal crescent of the retina) cannot proceed normally
in the face of an activity manipulation that disrupts eye-specific segregation.

RECEPTIVE FIELD ALIGNMENT

Mice reared in the dark have clear binocular overlap of their On-Off receptive field subregions
(subregion correspondence), although it is degraded in quality relative to mice reared normally
(Sarnaik et al. 2014). Monocular On-Off subregion correspondence is unaffected by dark rearing,
suggesting this aspect is not dependent on visual experience. B.-S. Wang et al. (2010) also showed
that binocular correspondence of orientation preference gets better with visual experience but
is still much more similar than chance early on, indicating that the initial molecular process of
wiring that underlies receptive field organization is biased toward generating the correct patterns.
Further improvement of matching (beyond what is there early on) requires visual experience, but
again it exists without visual experience, which suggests intrinsic mechanisms that drive binocular
matching.

Neurons in visual cortex have elongated receptive fields that respond best to specifically ori-
ented lines such as bars and edges and are classified into two groups, simple and complex cells,
based on the complexity of their responses (Hubel & Wiesel 1962). Wang et al. (2013) showed that
binocular matching of orientation preference in complex orientation-selective cells is disrupted
in mice forced to have a precocious critical period (by overexpressing brain-derived neurotrophic
factor). Binocular matching occurs first in simple cells, then later in complex cells. The timing
of binocular matching of simple cells is not changed in mice with a precocious critical period.
Interestingly, the binocular matching of complex cells can be rescued by environmental enrich-
ment [which many argue should be considered normal environment, as typical rearing conditions
of laboratory mice are deprived environments (Würbel 2001)]. Thus, visual experience improves
matching of receptive field properties but is not necessary at some baseline level for the emergence
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and matching of basic receptive field properties, including matching of orientation preference be-
tween the eyes and correspondence of On-Off subregions.

Ko et al. (2013) examined the emergence of orientation-specific circuitry in the visual cortex
(using two-photon imaging). Neurons demonstrated orientation selectivity and spatial frequency
selectivity at eye opening (P13–P15) similar to that observed two weeks later, although the re-
sponses were more variable. However, specificity of local cortical connections improved in the two
weeks following eye opening (Ko et al. 2013). This improvement occurred, although to a lesser
extent, even when animals were dark reared (Ko et al. 2014). Thus, vision does not appear to be
necessary for the emergence of basic V1 response properties and even some of the more intri-
cate visual circuit properties. Nonetheless, fully elaborated features of the circuits and responses
emerge only with visual experience.

The development of direction selectivity in visual cortex of the mouse occurs quite early
(Rochefort et al. 2011). Moreover, the emergence of direction-selective responses does not require
visual experience, which is at odds with results in the ferret (White & Fitzpatrick 2007) but may
be consistent with the cat (Crair et al. 1998). The timing of development for direction-selective
responses in V1 parallels the emergence of direction selectivity in the retina and thus may be
retinally driven. Several groups are now pursuing this idea by specifically ablating retinal direction
selectivity and assessing the impact on V1 responses. The field eagerly awaits the results of such
experiments, as they stand to shed light on how specific cell types and their wiring may reflect
nature’s best solution to building visual circuitries that can encode the full range of environmental
stimuli.

CONCLUSIONS AND FUTURE DIRECTIONS

There is considerable excitement about the progress made in understanding mouse visual system
structure, function, and development in the past decade. As a consequence, the debate as to whether
the mouse is an adequate model for vision is waning; instead, the comparisons between mouse and
primates are now based on real data, and some general themes, if not principles, are starting to
emerge. Moreover, discoveries in the mouse, such as the fact that the koniocellular-like streams
of the mouse retinogeniculocortical pathway carry a preponderance of direction-selective cells,
have raised new hypotheses about the primate visual system, some of which have been tested and
are generating new models for primate vision (e.g., Zeater et al. 2015). In other words, the mouse
is now starting to inform studies in the primate as well. One thing is abundantly clear now: The
mouse is positioned squarely as a key model in the field of vision science and is here to stay.

One of our motivations in writing this review was to stimulate exploration of understudied
areas. Here we offer mention of a few that urgently need data:

1. Extrastriate function: Our understanding of extrastriate visual areas—their local networks
and functional contributions to vision in this species—is still scant. What do these areas
contribute to vision, and how do these contributions differ across areas? Also, because V1 is
multimodal in the mouse, is V1 more akin to extrastriate cortex of primates?

2. Better behavioral tests: This area is rapidly growing, but to understand what roles the var-
ious stations and their interconnections are serving in visual processing requires deeper
understanding of the natural role that vision plays for the wild mouse as well as how learned
behaviors and plasticity engage these brain areas in the lab setting. Do mice view each other’s
postures? How do they determine predator from conspecifics at distances where olfactory
and somatosensory information is ambiguous or not available?

3. What is the role of multisensory integration? To what extent does the visual system work
in concert with other sensory modalities to control navigation?
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4. In terms of development, what are some of the nongraded expressions of molecules that
govern target selection and laminar choice? For instance, little is known about how different
dLGN neurons select different cortical layers or cell types. And how are the intricate polysy-
naptic circuits such as direction-selective retina-dLGN or SC-cortical pathways wired up to
ensure laminar specificity? Are the same cues employed at each station—which would seem
economical but has not been explored experimentally?

5. How do the mutations that impact visual wiring in the mouse relate to human diseases that
cause blindness, deficits in plasticity, or degeneration?

Although the mouse visual system has recently become an increasingly important model for
mammalian sensory function and development and impressive progress has been made in under-
standing it, questions such as these represent the next set of challenges for keeping this model
relevant and for building toward translational tools to understand human vision and to treat human
disorders. We should all be encouraged by the speed and extent to which the vision community
has embraced the mouse, as well as grateful for the cautionary notes put forth by those who were
rightfully concerned that the mouse does not faithfully represent all there is to know about visual
function or development (see Baker 2013). There are now an ample number of key problems still
to tackle in the field of mouse visual development, structure, and function. Based on the rapid
progress made thus far, we feel the time is ripe to tackle the next set of key issues, and we are
optimistic about where the field is going.
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Dräger UC, Olsen JF. 1980. Origins of crossed and uncrossed retinal projections in pigmented and albino
mice. J. Comp. Neurol. 191:383–412

www.annualreviews.org • The Mouse Visual System 531



NE40CH22-Huberman ARI 5 July 2017 12:16

Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K, et al. 2010. Melanopsin-expressing retinal
ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60

Ellis EM, Gauvain G, Sivyer B, Murphy GJ. 2016. Shared and distinct retinal input to the mouse superior
colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:602–10

Erisir A, Dreusicke M. 2005. Quantitative morphology and postsynaptic targets of thalamocortical axons in
critical period and adult ferret visual cortex. J. Comp. Neurol. 485:11–31

Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–32
Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996. Requirement for cholinergic synaptic

transmission in the propagation of spontaneous retinal waves. Science 272:1182–87
Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP, et al. 2008. High-speed, miniaturized

fluorescence microscopy in freely moving mice. Nat. Methods 5:935
Fox M. 1965. The visual cliff test for the study of visual depth perception in the mouse. Anim. Behav. 13:232–33
Frank R, Kenton J. 1966. Visual cliff behavior of mice as a function of genetic differences in eye characteristics.

Psychon. Sci. 4:35–36
Furman M, Crair MC. 2012. Synapse maturation is enhanced in the binocular region of the retinocollicular

map prior to eye opening. J. Neurophysiol. 107:3200–16
Furman M, Xu H-P, Crair MC. 2013. Competition driven by retinal waves promotes morphological and

functional synaptic development of neurons in the superior colliculus. J. Neurophysiol. 110:1441–54
Gale SD, Murphy GJ. 2014. Distinct representation and distribution of visual information by specific cell

types in mouse superficial superior colliculus. J. Neurosci. 34:13458–71
Galli L, Maffei L. 1988. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science

242:90–91
Garrett ME, Nauhaus I, Marshel JH, Callaway EM. 2014. Topography and areal organization of mouse visual

cortex. J. Neurosci. 34:12587–600
Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013a. Cortico-cortical projections in mouse visual cortex

are functionally target specific. Nat. Neurosci. 16:219–26
Glickfeld LL, Histed MH, Maunsell JH. 2013b. Mouse primary visual cortex is used to detect both orientation

and contrast changes. J. Neurosci. 33:19416–22
Glickfeld LL, Reid RC, Andermann ML. 2014. A mouse model of higher visual cortical function. Curr. Opin.

Neurobiol. 24:28–33
Godement P, Salaün J, Imbert M. 1984. Prenatal and postnatal development of retinogeniculate and retinocol-

licular projections in the mouse. J. Comp. Neurol. 230:552–75
Grubb MS, Rossi FM, Changeux J-P, Thompson ID. 2003. Abnormal functional organization in the dorsal

lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron
40:1161–72

Grubb MS, Thompson ID. 2003. Quantitative characterization of visual response properties in the mouse
dorsal lateral geniculate nucleus. J. Neurophysiol. 90:3594–607

Grubb MS, Thompson ID. 2004. Biochemical and anatomical subdivision of the dorsal lateral geniculate
nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Vis.
Res. 44:3365–76

Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. 2013. Permanent genetic access to transiently
active neurons via TRAP: targeted recombination in active populations. Neuron 78:773–84

Hammer S, Monavarfeshani A, Lemon T, Su J, Fox MA. 2015. Multiple retinal axons converge onto relay
cells in the adult mouse thalamus. Cell Rep. 12:1575–83

Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas R, et al. 2003. Melanopsin and rod–cone photore-
ceptive systems account for all major accessory visual functions in mice. Nature 424:75–81

Haustead DJ, Lukehurst SS, Clutton GT, Bartlett CA, Dunlop SA, et al. 2008. Functional topography and
integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A−/−mice. J. Neurosci.
28:7376–86
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